JP2014504652A - Fusible polyimide molding compound and method for preparing the same - Google Patents

Fusible polyimide molding compound and method for preparing the same Download PDF

Info

Publication number
JP2014504652A
JP2014504652A JP2013546562A JP2013546562A JP2014504652A JP 2014504652 A JP2014504652 A JP 2014504652A JP 2013546562 A JP2013546562 A JP 2013546562A JP 2013546562 A JP2013546562 A JP 2013546562A JP 2014504652 A JP2014504652 A JP 2014504652A
Authority
JP
Japan
Prior art keywords
polyimide
polyamide
preparing
fusible
molding powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013546562A
Other languages
Japanese (ja)
Other versions
JP5495464B2 (en
Inventor
チウ、ズシェウ
ホウ、フェイフェン
バオ、ライヤン
ル、カイ
Original Assignee
上海市合成樹脂研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海市合成樹脂研究所 filed Critical 上海市合成樹脂研究所
Publication of JP2014504652A publication Critical patent/JP2014504652A/en
Application granted granted Critical
Publication of JP5495464B2 publication Critical patent/JP5495464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本発明は、可融性ポリイミド成形用コンパウンドの調製方法を提供するものであり、該方法は次の各工程を含む:(工程1)ポリアミド酸溶液の調製:2,3,3’,4’−ODPAとオキシジアニリンとを等モル比で非プロトン性極性溶液に投入し、これら両物質を室温で3〜5時間反応させてポリアミド酸溶液を調製し;(工程2)化学イミド化:前記ポリアミド酸溶液100重量部に対し、脱水剤40〜160重量部、及び第3アミン系有機アルカリ触媒5〜50重量部を、非極性アレーン等のポリアミド沈殿剤と共に投入し、0.5〜2時間高速撹拌して化学イミド化を完了させ;濾過を経てポリアミド成形用粉末を調製する。s−ポリアミドに比べ、a−ポリアミドは成形温度を70℃下げることができ、220℃におけるa−ポリアミドの機械的性質はs−ポリアミドよりも優れ、且つa−ポリアミドは可溶性及び可融性を有する。  The present invention provides a method for preparing a fusible polyimide molding compound, which includes the following steps: (Step 1) Preparation of a polyamic acid solution: 2, 3, 3 ′, 4 ′ -ODPA and oxydianiline are introduced into an aprotic polar solution at an equimolar ratio, and both substances are reacted at room temperature for 3 to 5 hours to prepare a polyamic acid solution; (Step 2) Chemical imidization: To 100 parts by weight of the polyamic acid solution, 40 to 160 parts by weight of a dehydrating agent and 5 to 50 parts by weight of a tertiary amine organic alkali catalyst are added together with a polyamide precipitating agent such as nonpolar arene, and 0.5 to 2 hours. Stir at high speed to complete chemical imidation; prepare a polyamide molding powder via filtration. Compared to s-polyamide, a-polyamide can lower the molding temperature by 70 ° C, the mechanical properties of a-polyamide at 220 ° C are superior to s-polyamide, and a-polyamide is soluble and fusible. .

Description

本発明は、可融性ポリイミド成形用コンパウンド及びその調製方法に関し、特に2,3,3’,4’−ジフェニルエーテルテトラカルボン酸二無水物とオキシジアニリンとを反応させてa−ODPA(2,3,3’,4’−ジフェニルエーテルテトラカルボン酸二無水物)/3,4’−ODA(3,4’−アミノジフェニルエーテル)成形用粉末を調製する方法に関する。   The present invention relates to a fusible polyimide molding compound and a method for preparing the same, and in particular, 2,3,3 ′, 4′-diphenyl ether tetracarboxylic dianhydride and oxydianiline are reacted to form a-ODPA (2, 3,3 ′, 4′-diphenyl ether tetracarboxylic dianhydride) / 3,4′-ODA (3,4′-aminodiphenyl ether).

ポリイミドは、その優れた耐高温性、耐低温性、耐溶剤性、耐放射線性、並びに顕著な機械的強度及び誘電特性ゆえに注目を集めており、航空宇宙、自動車、マイクロエレクトロニクス、パネル型ディスプレイ等、多くの高度先端技術分野で広く利用されている。1960年代にデュポン社がカプトン(Kapton)フィルム(「カプトン」はイー アイ デュポン ドゥ ヌムール アンド カンパニーの登録商標である。)を開発して以来、約50年が経過した。ピロメリット酸二無水物(PMDA)とODAとの線形重合で得られるこのポリイミドは優れた性能を有するが、成形が困難である。つまり、加工成形の難しさ、並びに製造コストの高さの2点がその速やかな発展の妨げとなっていた。ポリイミド材料の加工性を改良し、製造コストを下げる代表的な方法の一つとして、溶融プロセスで製造できる熱可塑性ポリイミドに関する研究開発が挙げられる。溶融プロセスで製造できる熱可塑性ポリイミドは、ポリイミドに関与する当業者らにとって開発目標の一つとなっている。   Polyimides are attracting attention due to their excellent high temperature resistance, low temperature resistance, solvent resistance, radiation resistance, and remarkable mechanical strength and dielectric properties. Aerospace, automobiles, microelectronics, panel type displays, etc. Widely used in many advanced technology fields. About 50 years have passed since DuPont developed Kapton film ("Kapton" is a registered trademark of EI DuPont de Nemours and Company) in the 1960s. This polyimide obtained by linear polymerization of pyromellitic dianhydride (PMDA) and ODA has excellent performance but is difficult to mold. That is, the difficulty of processing and molding and the high manufacturing cost have hindered its rapid development. One of the typical methods for improving the workability of the polyimide material and reducing the production cost is research and development on thermoplastic polyimide that can be produced by a melting process. Thermoplastic polyimides that can be produced by a melt process have become one of the development goals for those skilled in the art involved in polyimides.

3,3’,4,4’−ODPAと4,4’−ODAとの重合反応はジメチルアセトアミド溶媒中で進行し、得られたイミドを粉末化することで可融性ポリイミド成形用粉末(s−ポリイミド)を得ることができる。該ポリマーの繰返しモノマー構造は下記の通り。

上記熱可塑性成形用コンパウンドはRatemYS−20の商品名で市販されており、1970年代に上海市合成樹脂研究所で優れた研究開発が行われていた。この樹脂は、その優れた機械的性質、電気的性質、耐高温性、耐低温性、耐摩耗性ゆえに−259〜220℃の温度範囲で使用でき、現在では高・低温用シール・ワッシャ、バルブ、ピストン・リング、自動給油軸受及び電気取付部品として用いられている。しかし、上記s−ポリイミドは成形しづらく、通常の成形は380℃で圧縮成形にて行われている。近年、省エネルギー、排気ガス低減並びに成形効率の見地から、成形温度を380℃から大幅に低下させ、射出成形や押出成形で成形可能とすることが望まれている。
The polymerization reaction of 3,3 ′, 4,4′-ODPA and 4,4′-ODA proceeds in a dimethylacetamide solvent, and the resulting imide is powdered to produce a fusible polyimide molding powder (s -Polyimide) can be obtained. The repeating monomer structure of the polymer is as follows.

The above thermoplastic molding compound is commercially available under the trade name of RateYS-20, and excellent research and development was conducted at the Shanghai Synthetic Resin Research Institute in the 1970s. This resin can be used in the temperature range of -259 to 220 ° C due to its excellent mechanical properties, electrical properties, high temperature resistance, low temperature resistance, and wear resistance, and is currently used for high and low temperature seal washers and valves. , Piston rings, automatic oil supply bearings and electrical mounting parts. However, the s-polyimide is difficult to mold, and normal molding is performed by compression molding at 380 ° C. In recent years, from the viewpoint of energy saving, exhaust gas reduction, and molding efficiency, it has been desired to significantly reduce the molding temperature from 380 ° C. and enable molding by injection molding or extrusion molding.

21世紀に入ると、日本国宇部興産社と米航空宇宙局(NASA)が不均一ビフェニルテトラカルボン酸二無水物から成るポリイミド(PI)について盛んに研究を行い、該ポリマーが4,4’−ODAよりも高いガラス転移点(Tg)と優れた加工性を有することを見出した。中国長春応用化学研究所の丁孟賢(Ding Mengyang)の研究チームは、s−ODPAの異性体である2,3,3’,4’−ODPAと4,4’−ODAとの反応に関する予備的な研究を牽引した(Q. Li,X. Fang,Z. Wang,L. Gao,M.
Ding,J. Polymer Science,Part A: Polymer Chemistry, Vol.41,3249,(2003))。2,3,3’,4’−ODPAと4,4’−ODAとの重合で得られるポリイミドは、下記の構造を有する。:

In the 21st century, Ube Industries, Ltd. and the National Aeronautics and Space Administration (NASA) actively studied polyimide (PI) composed of heterogeneous biphenyltetracarboxylic dianhydride, and the polymer was 4,4'- It has been found that it has a glass transition point (Tg) higher than ODA and excellent workability. Ding Mengyang's research team at Changchun Institute of Applied Chemistry, China, has conducted preliminary research on the reaction of s-ODPA isomers 2,3,3 ', 4'-ODPA with 4,4'-ODA. Led the study (Q. Li, X. Fang, Z. Wang, L. Gao, M .;
Ding, J.A. Polymer Science, Part A: Polymer Chemistry, Vol. 41, 3249, (2003)). A polyimide obtained by polymerization of 2,3,3 ′, 4′-ODPA and 4,4′-ODA has the following structure. :

日本の宇宙科学研究所(ISAS)の横田力男らの研究チーム(Yokota, Proceeding of Aircraft Symposium, Vol.41, No.3, 602−606(2003))、及びNASAグレン研究センターのKathy C. Chuangらの研究チーム(54th International SAMPE Symposium, May 18−21, Baltimore, MD(2009))は、3,3’,4,4’−ODPAに代えて2,3,3’,4’−ODPAを使用し、レジン・トランスファー・モールディング(RTM)用のポリイミド樹脂として利用できるポリイミド、またはフェニルエチニルフタル酸無水物の末端保護型の低分子量プレポリマーを合成した。上記の低分子量ポリマーの主な構造は下記の通り。
Yokota Rikio's research team (Yokota, Proceeding of Aircraft Symposium, Vol. 41, No. 3, 602-606 (2003)) at the Institute for Space Science in Japan (ISAS), and Kathy C. at NASA Glenn Research Center. Chuang et al.'S research team (54th International SAMPE Symposium, May 18-21, Baltimore, MD (2009)) replaced 2,3,3 ', 4'-ODPA instead of 3,3', 4,4'-ODPA. Was used to synthesize a polyimide that can be used as a polyimide resin for resin transfer molding (RTM), or a phenylethynylphthalic anhydride end-protected low molecular weight prepolymer. The main structure of the low molecular weight polymer is as follows.

この他に、横田力男教授らは2,3,3’,4’−ODPAと4,4’−オキシジアニリンとからポリイミド薄膜も製造した。この薄膜は、その宇宙環境下での安定性と熱融解性からソーラー・セイルの薄膜材料に用いられる可能性がある。両者を区別するために、この種の構造を有するポリイミドをa型ポリイミド(以後、a−ポリイミドと記載)、3,3’,4,4’−ODPAを用いて調製されたポリイミドをs型ポリイミド(以後、s−ポリイミドと記載)と称される。   In addition, Prof. Rikio Yokota et al. Produced a polyimide thin film from 2,3,3 ', 4'-ODPA and 4,4'-oxydianiline. This thin film may be used for solar sail thin film materials because of its stability in the space environment and thermal melting properties. In order to distinguish the two, a polyimide having this type of structure is referred to as a-type polyimide (hereinafter referred to as a-polyimide), and polyimide prepared using 3,3 ′, 4,4′-ODPA is referred to as s-type polyimide. (Hereinafter referred to as s-polyimide).

a−ポリイミド薄膜の主な性能は下記の通りである。a−ポリイミド薄膜のメチルピロリドンへの溶解度は20%より大きい。上記薄膜に対して375℃、20秒間の熱間プレスを行うと容易に融解し、45MGy及び100MGyの陽子線照射下での破断伸度はそれぞれ73%及び39%、1MGy及び20MGyの電子線照射下での破断伸度はそれぞれ63%及び76%、照射量150ESD下での破断伸度は71%である。上記薄膜は耐放射線性と加工性に優れることから、航空宇宙産業への応用が期待されている。しかしながら、この種の成形用粉末の適当な調製方法はこれまでに知られていない。   The main performance of the a-polyimide thin film is as follows. The solubility of the a-polyimide thin film in methylpyrrolidone is greater than 20%. When the above thin film is hot pressed at 375 ° C. for 20 seconds, it melts easily, and the elongation at break under proton beam irradiation of 45 MGy and 100 MGy is 73% and 39%, respectively, and electron beam irradiation of 1 MGy and 20 MGy, respectively. The breaking elongation at the bottom is 63% and 76%, respectively, and the breaking elongation at an irradiation dose of 150 ESD is 71%. The thin film is excellent in radiation resistance and workability, and is expected to be applied to the aerospace industry. However, no suitable preparation method for this type of molding powder has been known so far.

現状では、ポリイミド成形用粉末の一般的な調製方法として、化学イミド化と熱イミド化とがある。
しかし、成形用粉末の調製に熱イミド化を適用すると、樹脂の劣化、即ち粘度の大幅な低下が生じ、実際、ポリイミド樹脂の粘度低下は最大で、ポリアミド酸の一次粘度の50%未満にまで低下した。
At present, there are chemical imidization and thermal imidization as general methods for preparing polyimide molding powder.
However, when thermal imidization is applied to the preparation of the molding powder, the resin is deteriorated, that is, the viscosity is greatly reduced. In fact, the polyimide resin has a maximum viscosity reduction of less than 50% of the primary viscosity of the polyamic acid. Declined.

化学イミド化とは、室温で、脱水剤と触媒とをポリアミド酸の溶液系に添加し、高速撹拌しながら所定時間反応させた後、樹脂を液相系から分離回収する。即ち、粘稠溶液系が固液系に変化した後、濾過により粉末を分離回収し、洗浄、乾燥を経て成形に適する粉末、つまり成型用粉末を調製する。上記方法は、生成するポリイミドが溶媒に不溶な系について好適である。勿論、上記粉末は脱水剤と触媒を添加した後に加温することにより調製することもできる。或いは、触媒を添加しないポリアミド酸の溶液系にアレーン系溶媒を添加し、その沸点の高さと容易に水と共沸する性質を利用して、アミン化に伴って生成する水を系外へ除去することができる。生成するポリイミドは、当初のポリアミン酸含有系の溶媒中には溶解しないので、同様に成形用粉末を分離回収することができる。しかしながら、a−ODPAとジフェニルエーテルジアミンとから合成されるポリイミドは元のポリアミン酸含有系に可溶なので、かかる従来法では調製することができない。ポリイミド溶液を最初に調製し、続いてこのポリイミド溶液を大量のポリイミドの貧溶媒中に分散させる方法も試みられているが、この方法では引火性・可燃性の溶媒を大量に用いる必要があり、生成する粉末の粒径が極めて大きく、調製された粉末が内部に沸点の高い溶媒を含み、この溶媒は蒸発除去することが難しい。また、この粉末は欠陥を生じやすく、得られる成形用粉末の色調は黒色で粒径のバラツキが大きく、凝集しやすく、成型品に気泡を生じやすい。   In chemical imidation, a dehydrating agent and a catalyst are added to a polyamic acid solution system at room temperature, and reacted for a predetermined time while stirring at high speed, and then the resin is separated and recovered from the liquid phase system. That is, after the viscous solution system is changed to a solid-liquid system, the powder is separated and recovered by filtration, and after washing and drying, a powder suitable for molding, that is, a molding powder is prepared. The above method is suitable for a system in which the produced polyimide is insoluble in a solvent. Of course, the powder can also be prepared by heating after adding the dehydrating agent and the catalyst. Alternatively, an arene solvent is added to a polyamic acid solution system to which no catalyst is added, and the water generated by amination is removed out of the system by utilizing its high boiling point and the ability to easily azeotrope with water. can do. Since the produced polyimide does not dissolve in the original polyamic acid-containing solvent, the molding powder can be similarly separated and recovered. However, polyimides synthesized from a-ODPA and diphenyl ether diamine are soluble in the original polyamic acid-containing system and cannot be prepared by such conventional methods. A method of preparing a polyimide solution first and then dispersing this polyimide solution in a large amount of polyimide poor solvent has also been tried, but this method requires the use of a large amount of flammable and flammable solvents, The particle size of the produced powder is extremely large, and the prepared powder contains a solvent having a high boiling point inside, and this solvent is difficult to be removed by evaporation. Further, this powder is liable to cause defects, and the color tone of the obtained molding powder is black and has a large variation in particle diameter, tends to agglomerate, and easily causes bubbles in the molded product.

本発明は、化学イミド化の方法を改良することを目的とし、イミド化プロセスを室温で高速撹拌しながら行うことにより、粒径が細かく均一で、色調が暗くならず、成形が容易な、可溶性かつ可融性のa−ポリイミド成形用粉末を調製しようとするものである。   The present invention aims to improve the method of chemical imidization, and the imidization process is carried out at room temperature with high-speed stirring, so that the particle size is fine and uniform, the color tone is not dark, and the molding is easy and soluble. In addition, a fusible a-polyimide molding powder is to be prepared.

本発明は、可融性ポリイミド成形用コンパウンドの調製方法を提供することを目的とし、該方法は次の各工程を含む。
(工程1)ポリアミド酸溶液の調製:2,3,3’,4’−ODPAとオキシジアニリンとを等モル比で非プロトン性極性溶液に投入し、これら両物質を室温で3〜5時間反応させてポリアミド酸溶液を調製し;
(工程2)化学イミド化:前記ポリアミド酸溶液100重量部に対し、脱水剤40〜160重量部、及び第3アミン系有機アルカリ触媒5〜50重量部を、非極性アレーン等のポリアミド沈殿剤と共に投入し、0.5〜2時間高速撹拌して化学イミド化を完了させ;濾過を経てポリアミド成形用粉末を調製する。
An object of the present invention is to provide a method for preparing a fusible polyimide molding compound, and the method includes the following steps.
(Step 1) Preparation of polyamic acid solution: 2,3,3 ′, 4′-ODPA and oxydianiline are charged into an aprotic polar solution at an equimolar ratio, and both these materials are allowed to stand at room temperature for 3 to 5 hours. React to prepare a polyamic acid solution;
(Step 2) Chemical imidization: 40 to 160 parts by weight of a dehydrating agent and 5 to 50 parts by weight of a tertiary amine organic alkali catalyst are added to 100 parts by weight of the polyamic acid solution together with a polyamide precipitating agent such as nonpolar arene. The mixture is stirred at high speed for 0.5 to 2 hours to complete chemical imidation; a polyamide molding powder is prepared through filtration.

前記可融性ポリイミド成形用粉末の調製方法において、前記工程1におけるオキシジアニリンは4,4’−ODAまたは3,4’−ODAまたは両者の混合物である。   In the method for preparing a fusible polyimide molding powder, the oxydianiline in Step 1 is 4,4'-ODA or 3,4'-ODA or a mixture of both.

前記可融性ポリイミド成形用粉末の調製方法において、上記非プロトン性極性溶媒はDMAC、DMF、N−メチルピロリドン、DMSO及びGBLから選択される1種以上であり、前記非プロトン性極性溶媒の使用量と、 2,3,3’,4’−ODPA及びODAの合計使用量との重量比は4〜10:1である。即ち、ポリアミド酸1gを合成するために非プロトン性極性溶媒4〜10gが必要である。   In the method for preparing the fusible polyimide molding powder, the aprotic polar solvent is at least one selected from DMAC, DMF, N-methylpyrrolidone, DMSO and GBL, and the use of the aprotic polar solvent The weight ratio of the amount and the total amount of 2,3,3 ′, 4′-ODPA and ODA used is 4-10: 1. That is, 4-10 g of aprotic polar solvent is required to synthesize 1 g of polyamic acid.

前記可融性ポリイミド成形用粉末の調製方法において、前記工程2で述べた上記非極性アレーンの使用量が前記工程1で述べた非プロトン性極性溶媒の使用量の10〜50重量%であり、上記非極性アレーンはトルエンまたはキシレンまたは両者の混合物である。   In the method for preparing the fusible polyimide molding powder, the amount of the nonpolar arene described in Step 2 is 10 to 50% by weight of the amount of the aprotic polar solvent described in Step 1. The nonpolar arene is toluene or xylene or a mixture of both.

前記可融性ポリイミド成形用粉末の調製方法において、前記工程2で述べた脱水剤は無水酢酸、無水プロピオン酸、および両者の混合物から選択される。   In the method for preparing the fusible polyimide molding powder, the dehydrating agent described in Step 2 is selected from acetic anhydride, propionic anhydride, and a mixture of both.

前記可融性ポリイミド成形用粉末の調製方法において、前記工程2で述べた触媒はピリジン、3,5−ルチジン、3−メチルピリジン、4−メチルピリジン、トリメチルアミン、N−メチルモルホリン、トリエチルアミン及びイソキノリンから選択される1種以上である。   In the method for preparing a fusible polyimide molding powder, the catalyst described in Step 2 is composed of pyridine, 3,5-lutidine, 3-methylpyridine, 4-methylpyridine, trimethylamine, N-methylmorpholine, triethylamine and isoquinoline. One or more selected.

前記可融性ポリイミド成形用粉末の調製方法において、前記工程2は、
前記濾過の後にさらに前記ポリイミド粉末を洗浄、濾別、乾燥する工程を含む。
In the method for preparing the fusible polyimide molding powder, the step 2 includes:
The filtration further includes a step of washing, filtering and drying the polyimide powder.

前記可融性ポリイミド成形用粉末の調製方法において、前記ポリイミド粉末は100メッシュの標準篩を通過でき、その分子量は数平均分子量で30000〜36000、重量平均分子量で50000〜70000、分子量分散度1.91〜2.00に調節され、好ましくは重量平均分子量を60000〜70000とされる。   In the method for preparing the fusible polyimide molding powder, the polyimide powder can pass through a 100-mesh standard sieve, and the molecular weight is 30000-36000 in terms of number average molecular weight, 50000-70000 in terms of weight average molecular weight, and the molecular weight dispersity is 1. The weight average molecular weight is preferably 60000-70000.

前記可融性ポリイミド成形用粉末の調製方法において、前記工程2はさらに、生成したポリイミド粉末に220℃〜280℃の熱処理を施して成型用粉末のイミド化度を上昇させ、最終的に成形に使用できるポリイミド成形用粉末を調製する工程を含む。   In the method for preparing the fusible polyimide molding powder, the step 2 further includes subjecting the produced polyimide powder to a heat treatment at 220 ° C. to 280 ° C. to increase the imidization degree of the molding powder, and finally to molding. A step of preparing a usable polyimide molding powder.

本発明で提供されるポリイミド成形用粉末は、圧縮成形によりプラスチック試験片に加工することができ、その時の成形温度は280〜350℃、成形圧力は15〜70MPa、保持時間は被加工物の厚さにもよるが一般に3〜30分間である。   The polyimide molding powder provided in the present invention can be processed into a plastic test piece by compression molding. At that time, the molding temperature is 280 to 350 ° C., the molding pressure is 15 to 70 MPa, and the holding time is the thickness of the workpiece. Although it depends, it is generally 3 to 30 minutes.

2,3,3’,4’−a−ODPAとODAとから構成されるポリイミドの非プロトン性極性溶媒中における溶解度は非常に大きいので、上記粉末は直接的には調製することができず、ゲルが生成してしまう。そこで本発明者らは、上記化学イミド化において上記非プロトン性極性溶媒にトルエン、またはキシレン、または両者の混合物を添加した。この混合溶媒はポリイミド酸を溶解することはできるが、該溶媒中のポリイミドの溶解度を大幅に低下させることができる。   Since the solubility of the polyimide composed of 2,3,3 ′, 4′-a-ODPA and ODA in aprotic polar solvent is very large, the powder cannot be prepared directly, A gel is formed. Therefore, the inventors added toluene, xylene, or a mixture of both to the aprotic polar solvent in the chemical imidation. Although this mixed solvent can dissolve the polyimide acid, the solubility of the polyimide in the solvent can be greatly reduced.

化学イミド化の進行に伴いイミド化度が上昇すると、ポリイミドの溶解度は低下するので、ポリイミドはその溶解度が或るレベルに低下した段階で自然に混合溶媒から分離する。上記非極性アレーン系溶媒はポリイミド酸のみならず、ポリイミドに対しても貧溶媒なので、イミド化プロセス中はポリイミド樹脂溶液系の見かけの粘度を低下させるが、一方で分離したポリイミドに対する該溶液系の溶解力を上昇させることもない。従って、上記ポリイミド成形用粉末は首尾良く分離し、洗浄及び濾過を経て、100メッシュの標準篩を通過する均一な微粉末を調製することができる。   As the degree of imidization increases with the progress of chemical imidization, the solubility of polyimide decreases, so that the polyimide naturally separates from the mixed solvent when the solubility decreases to a certain level. The non-polar arene solvent is a poor solvent not only for polyimide acid but also for polyimide, so the apparent viscosity of the polyimide resin solution system is reduced during the imidization process, while the solution system for the separated polyimide is It does not increase the dissolving power. Therefore, the above-mentioned polyimide molding powder can be successfully separated, and after washing and filtration, a uniform fine powder passing through a 100 mesh standard sieve can be prepared.

本発明はまた、前記方法により調製される可融性ポリイミド成形用粉末を提供する。ここで、前記ODPAとしては3,4’−ODPAを選択できる。この場合の上記可融性ポリイミド成形用粉末はa−ODPA/3,4’−ODAとなり、成形温度は290℃、成形圧力は15MPa、ガラス転移温度(TG)は250℃、引張強度(MPa)は120MPa、引張弾性率(GPa)は2.5MPaである。a−ODPA/4,4’−ODA成形用粉末と比較して、ポリイミド成形用粉末a−ODPA/3,4’−ODAはより成形に使い易い。   The present invention also provides a fusible polyimide molding powder prepared by the above method. Here, 3,4PA-ODPA can be selected as the ODPA. In this case, the fusible polyimide molding powder is a-ODPA / 3,4′-ODA, the molding temperature is 290 ° C., the molding pressure is 15 MPa, the glass transition temperature (TG) is 250 ° C., and the tensile strength (MPa). Is 120 MPa, and the tensile modulus (GPa) is 2.5 MPa. Compared with a-ODPA / 4,4'-ODA molding powder, polyimide molding powder a-ODPA / 3,4'-ODA is easier to use for molding.

一方、本発明で調製される可溶性・可融性ポリイミド成形用粉末(a−ODPA/4,4’−ODA)はDMF、DMAC、N−メチルピロリドン、DMSO及びGBLに溶解する。a−ODPA/4,4’−ODAポリイミドの分子量は数平均分子量(Mn)で30000〜36000、重量平均分子量で50000〜70000である。上記ポリイミド成形用粉末のガラス転移温度は277〜282℃であり、空気中での熱重量分析における5%重量減少温度は551℃、10%重量減少温度は567℃、引張強度(MPa)は129MPa、引張弾性率(GPa)は2.96GPa、圧縮強度は160MPa、圧縮弾性率は1.39GPa、曲げ強度は168MP、曲げ弾性率は3.22GPa、衝撃強度は250KJ/m又は94J/m、及び伸びは21%である。本発明のa−ポリイミドとs−ポリイミドの機械的性質を下記表1に示す。これらの結果より、s−ポリイミドと比べ、a−ポリイミドは高温性能が大幅に改良されていることが解る。 On the other hand, the soluble and fusible polyimide molding powder (a-ODPA / 4,4′-ODA) prepared in the present invention is dissolved in DMF, DMAC, N-methylpyrrolidone, DMSO and GBL. The molecular weight of a-ODPA / 4,4′-ODA polyimide is 30000-36000 in terms of number average molecular weight (Mn) and 50,000-70000 in terms of weight average molecular weight. The polyimide molding powder has a glass transition temperature of 277 to 282 ° C., a 5% weight loss temperature in air thermogravimetric analysis is 551 ° C., a 10% weight reduction temperature is 567 ° C., and a tensile strength (MPa) is 129 MPa. The tensile modulus (GPa) is 2.96 GPa, the compressive strength is 160 MPa, the compressive modulus is 1.39 GPa, the flexural strength is 168 MP, the flexural modulus is 3.22 GPa, the impact strength is 250 KJ / m 2 or 94 J / m, And the elongation is 21%. The mechanical properties of the a-polyimide and s-polyimide of the present invention are shown in Table 1 below. From these results, it can be seen that the high temperature performance of a-polyimide is greatly improved as compared with s-polyimide.


a−ODPAとODAとから合成されるポリイミドの溶解度と溶融性を上手く利用し、併せて、成形用粉末の調製において化学イミド化とポリイミド溶液を用いることの利点を活かすことにより、本発明によれば、その初期の段階で高極性の非プロトン性溶媒がポリイミド酸系の形成に用いられ、次に非極性溶媒が添加されて溶媒系の極性が変化し、その一方で、化学イミド化用の触媒が添加されて、可溶性・可融性ポリイミドが調製される。上記調製方法の工程は簡便で、反応条件が穏やかで、操作が簡単かつ安全で、反応効率が高く、従って工業大量生産に適し、生成する成形用粉末は細粒かつ均一で、色調は暗くなりにくく、しかも成形し易い。この他、上記方法により調整されるa−ポリイミド成形用粉末は既存のs−ポリイミド成形用粉末に比べて加工温度が低く、機械的性質に優れ、かつ220℃における機械的性質の維持率が高く、極めて広範な用途が見込まれる。

According to the present invention, the solubility and meltability of polyimide synthesized from a-ODPA and ODA can be used well, and the advantages of using chemical imidization and polyimide solution in the preparation of molding powder can be utilized. For example, at the initial stage, a highly polar aprotic solvent is used to form a polyimide acid system, and then a nonpolar solvent is added to change the polarity of the solvent system, while for chemical imidization. A catalyst is added to prepare a soluble and fusible polyimide. The steps of the above preparation method are simple, the reaction conditions are mild, the operation is simple and safe, the reaction efficiency is high, and therefore suitable for industrial mass production, the resulting molding powder is fine and uniform, the color tone becomes dark Difficult and easy to mold. In addition, the a-polyimide molding powder prepared by the above method has a lower processing temperature, superior mechanical properties, and a higher maintenance ratio of mechanical properties at 220 ° C. than the existing s-polyimide molding powders. A very wide range of applications is expected.

以下に具体的な実施形態をまとめ、本発明をさらに説明するが、本発明の権利保護範囲は以下の実施形態に記載される範囲に限定されない。   Specific embodiments will be summarized below and the present invention will be further described. However, the scope of rights protection of the present invention is not limited to the scope described in the following embodiments.

実施形態1
機械式震盪器、温度計及び窒素ガス導入管を備えた5000ml容の丸底4ツ口フラスコに、310g(1mol)の2,3,3’,4’−ODPA、200gの4,4’−ODA、及び2200mlのDMACを投入し、4時間反応させてポリイミド酸溶液を調製し、続いて1050gの無水酢酸、260gのトリエチルアミン、及び220gのトルエンを添加して1時間反応させることによりイミド化を完了させ、ポリイミド粉末を濾別し、続いて該粉末を1000mlのアセトンで3回洗浄し、濾過後、2時間乾燥させ、220〜280℃における2〜5時間の熱処理を経て426.6gのa−ポリイミド粉末を調製する。収率90%、数平均分子量(Mn)=33000、重量平均分子量(Mw)=65000。上記ポリイミドは、310℃/30MPaの条件で成形してプラスチック試験片とすることができる。このプラスチック試験片の性能指数を表2に示す。
ガラス転移温度:277℃
空気中での熱重量分析による5%重量減少温度:551℃
空気中での熱重量分析による10%重量減少温度:567℃
Embodiment 1
In a 5000 ml round bottom four-necked flask equipped with a mechanical shaker, thermometer and nitrogen gas inlet tube, 310 g (1 mol) of 2,3,3 ′, 4′-ODPA, 200 g of 4,4′- ODA and 2200 ml of DMAC were added and reacted for 4 hours to prepare a polyimide acid solution. Subsequently, 1050 g of acetic anhydride, 260 g of triethylamine, and 220 g of toluene were added and reacted for 1 hour. Complete, filter the polyimide powder, and then wash the powder three times with 1000 ml of acetone, filter, dry for 2 hours, and heat-treat at 220-280 ° C. for 2-5 hours to 426.6 g of a -Prepare polyimide powder. Yield 90%, number average molecular weight (Mn) = 33000, weight average molecular weight (Mw) = 65000. The polyimide can be molded into a plastic test piece under the condition of 310 ° C./30 MPa. The performance index of this plastic specimen is shown in Table 2.
Glass transition temperature: 277 ° C
5% weight loss temperature by thermogravimetric analysis in air: 551 ° C
10% weight loss temperature by thermogravimetric analysis in air: 567 ° C

比較例1
機械式震盪器、温度計及び窒素ガス導入管を備えた5000ml容の丸底4ツ口フラスコに、310g(1mol)の2,3,3’,4’−ODPA、200gの4,4’−ODA、及び2200mlのDMACを投入し、4時間反応させてポリイミド酸溶液を調製し、続いて1000gの無水酢酸、130gのトリエチルアミン、及び500gのトルエンを添加して1時間反応させることによりイミド化を完了させ、ポリイミド粉末を濾別し、続いて該粉末を1000mlのアセトンで3回洗浄し、濾過後、2時間乾燥させ、220〜280℃における2〜5時間の熱処理を経て445.56gのs−ポリイミド粉末を調製する。収率93%、数平均分子量(Mn)=33000、重量平均分子量(Mw)=65000。上記ポリイミドは、380℃/30MPaの条件で成形してプラスチック試験片とすることができる。このプラスチック試験片の性能指数を表3に示す。
ガラス転移温度:267℃
Comparative Example 1
In a 5000 ml round bottom four-necked flask equipped with a mechanical shaker, thermometer and nitrogen gas inlet tube, 310 g (1 mol) of 2,3,3 ′, 4′-ODPA, 200 g of 4,4′- ODA and 2200 ml of DMAC were added and reacted for 4 hours to prepare a polyimide acid solution. Subsequently, 1000 g of acetic anhydride, 130 g of triethylamine, and 500 g of toluene were added and reacted for 1 hour. Complete, filter the polyimide powder, then wash the powder three times with 1000 ml of acetone, filter, dry for 2 hours, and heat-treat at 220-280 ° C. for 2-5 hours to 445.56 g of s. -Prepare polyimide powder. Yield 93%, number average molecular weight (Mn) = 33000, weight average molecular weight (Mw) = 65000. The polyimide can be molded into a plastic test piece under conditions of 380 ° C./30 MPa. The performance index of this plastic specimen is shown in Table 3.
Glass transition temperature: 267 ° C

前記表2及び表3に示すように、調製したa−ポリイミドの220℃における機械的性質、及び220℃における機械的性質の維持率は、比較例1のs−ポリイミドよりも良好である。a−ポリイミドの成形温度は70℃低下させることができる。   As shown in Table 2 and Table 3, the mechanical properties of the prepared a-polyimide at 220 ° C. and the maintenance ratio of the mechanical properties at 220 ° C. are better than those of the s-polyimide of Comparative Example 1. The molding temperature of a-polyimide can be lowered by 70 ° C.

実施形態2
脱水剤である無水酢酸の添加量を2570gとし、トリエチルアミンの添加量を700gとし、キシレンの添加量を230gとし、イミド化の反応時間を1.5時間とし、アセトンを用いて3回洗浄を行う以外は、実施形態1に記載したと同じ操作及び手順にしたがってポリイミド酸を調製する。ポリイミドの分子量は、Mn=36000及びMw=70000。その他の性能指数は、実施形態1に示したと同じである。
Embodiment 2
The addition amount of acetic anhydride as a dehydrating agent is 2570 g, the addition amount of triethylamine is 700 g, the addition amount of xylene is 230 g, the reaction time of imidization is 1.5 hours, and washing is performed three times with acetone. The polyimide acid is prepared according to the same operation and procedure as described in Embodiment 1 except for the above. The molecular weight of polyimide is Mn = 36000 and Mw = 70000. Other performance indexes are the same as those shown in the first embodiment.

実施形態3
ポリイミド酸の反応時間を5時間とし、無水酢酸の添加量を3600gとし、トリエチルアミンの添加量を260gとし、キシレンの添加量を1400gとし、イミド化の反応時間を2時間とし、アセトン800gと水200gとの混合液を用いて3回洗浄を行う以外は、実施形態1に記載したと同じ操作及び手順にしたがってポリイミド酸を調製する。ポリイミドの分子量は、Mn=30000及びMw=52000。その他の性能指数は、実施形態1に示したと同じである。
Embodiment 3
The reaction time of polyimide acid was 5 hours, the addition amount of acetic anhydride was 3600 g, the addition amount of triethylamine was 260 g, the addition amount of xylene was 1400 g, the reaction time of imidization was 2 hours, 800 g of acetone and 200 g of water A polyimide acid is prepared in accordance with the same operation and procedure as described in Embodiment 1, except that washing is performed three times using a mixed solution. The molecular weight of polyimide is Mn = 30000 and Mw = 52000. Other performance indexes are the same as those shown in the first embodiment.

実施形態4
4,4’−ODAに代えて3,4’−ODAを用いる他は、実施形態1と同様である。a−ODPAと3,4’−ODAとから調製されるポリイミドの分子量は、Mn=31000、Mw=50000、一般構造式は下記の通り。

式中、nは60〜80の整数である。
Embodiment 4
The third embodiment is the same as the first embodiment except that 3,4′-ODA is used instead of 4,4′-ODA. The molecular weight of polyimide prepared from a-ODPA and 3,4'-ODA is Mn = 31000, Mw = 50000, and the general structural formula is as follows.

In the formula, n is an integer of 60-80.

性能指数は下記の通り。
a−ODPA/3,4’−ODA
成形圧力:290℃/15MPa
ガラス転移温度(Tg):250(℃)
引張強度(MPa):120MPa
引張弾性率(GPa):2.5MPa
The figure of merit is as follows.
a-ODPA / 3,4'-ODA
Molding pressure: 290 ° C / 15 MPa
Glass transition temperature (Tg): 250 (° C.)
Tensile strength (MPa): 120 MPa
Tensile modulus (GPa): 2.5 MPa

実施形態5
脱水剤である無水酢酸の使用量を1050g、トリエチルアミンの使用量を320g、ピリジンの使用量を260g、キシレンの使用量を260gとし、イミド化反応時間を1時間とし、アセトンを用いて3回洗浄を行う以外は、実施形態1に記載したと同じ操作及び手順にしたがってポリイミド酸を合成する。ポリイミドの分子量はMn=32000及びMw=60000、その他の性能指数は実施形態1で述べたと同様である。
Embodiment 5
The amount of acetic anhydride used as a dehydrating agent is 1050 g, the amount of triethylamine used is 320 g, the amount of pyridine used is 260 g, the amount of xylene used is 260 g, the imidation reaction time is 1 hour, and washing is performed three times with acetone. Except that, polyimide acid is synthesized according to the same operation and procedure as described in the first embodiment. The molecular weight of polyimide is Mn = 32000 and Mw = 60000, and the other figure of merit is the same as described in the first embodiment.

実施形態6
脱水剤である無水酢酸の使用量2570g、トリエチルアミンの使用量を350g、ピリジンの使用量を350g、キシレンの使用量を250gとし、イミド化反応時間を1.5時間とし、アセトンを用いて3回洗浄を行う以外は、実施形態1に記載したと同じ操作及び手順にしたがってポリイミド酸を合成する。ポリイミドの分子量はMn=31000及びMw=55000、その他の性能指数は実施形態1で述べたと同様である。
Embodiment 6
The amount of acetic anhydride used as a dehydrating agent is 2570 g, the amount of triethylamine used is 350 g, the amount of pyridine used is 350 g, the amount of xylene used is 250 g, the imidation reaction time is 1.5 hours, and acetone is used three times. Except for washing, a polyimide acid is synthesized according to the same operation and procedure as described in the first embodiment. The molecular weight of polyimide is Mn = 31000 and Mw = 55000, and the other figure of merit is the same as described in the first embodiment.

以上、本発明を前記の最良の実施形態にもとづいて説明したが、以上の記載が本発明を限定するものと理解されるべきではない。本明細書の内容を読んだ当業者にとって、本発明の様々な変形や置き換えは自明である。したがって、本発明の範囲は専ら添付の特許請求の範囲により規定されるものである。   As mentioned above, although this invention was demonstrated based on the said best embodiment, the above description should not be understood as limiting this invention. Various modifications and replacements of the present invention will be apparent to those skilled in the art who have read the present description. Accordingly, the scope of the present invention is defined solely by the appended claims.

Claims (10)

次の各工程を含む、可融性ポリイミド成形用粉末の調製方法:
(工程1)ポリアミド酸溶液の調製:2,3,3’,4’−ODPAとオキシジアニリンとを等モル比で非プロトン性極性溶液に投入し、これら両物質を室温で3〜5時間反応させてポリアミド酸溶液を調製する;及び
(工程2)化学イミド化:前記ポリアミド酸溶液100重量部に対し、脱水剤40〜160重量部、及び第3アミン系有機アルカリ触媒5〜50重量部を、非極性アレーン等のポリアミド沈殿剤と共に投入し、0.5〜2時間高速撹拌して化学イミド化を完了させ;濾過を経てポリアミド成形用粉末を調製する。
Preparation method of fusible polyimide molding powder including the following steps:
(Step 1) Preparation of polyamic acid solution: 2,3,3 ′, 4′-ODPA and oxydianiline are charged into an aprotic polar solution at an equimolar ratio, and both these materials are allowed to stand at room temperature for 3 to 5 hours. (Step 2) Chemical imidization: 40 to 160 parts by weight of a dehydrating agent and 5 to 50 parts by weight of a tertiary amine organic alkali catalyst with respect to 100 parts by weight of the polyamic acid solution. Is added together with a polyamide precipitating agent such as nonpolar arene and stirred at high speed for 0.5 to 2 hours to complete the chemical imidization; a powder for polyamide molding is prepared through filtration.
前記工程1におけるODAは4,4’−ODAまたは3,4’−ODAまたは両者の混合物である、請求項1に記載の可融性ポリアミド成形用粉末の調製方法。 The method for preparing a fusible polyamide molding powder according to claim 1, wherein the ODA in the step 1 is 4,4'-ODA or 3,4'-ODA or a mixture of both. 上記非プロトン性極性溶媒はDMAC、DMF、N−メチルピロリドン、DMSO及びGBLから選択される1種以上であり、前記非プロトン性極性溶媒の使用量と、2,3,3’,4’−ODPA及びODAの合計使用量との重量比は4〜10:1、即ち、ポリアミド酸1gを合成するために非プロトン性極性溶媒4〜10gを必要とする、請求項1または2に記載の可融性ポリイミド成形用粉末の調製方法。 The aprotic polar solvent is at least one selected from DMAC, DMF, N-methylpyrrolidone, DMSO and GBL, and the amount of the aprotic polar solvent used is 2, 3, 3 ′, 4′- The weight ratio of the total amount of ODPA and ODA used is 4 to 10: 1, that is, 4 to 10 g of aprotic polar solvent is required to synthesize 1 g of polyamic acid. Method for preparing fusible polyimide molding powder. 前記工程2で述べた上記非極性アレーンの使用量が前記工程1で述べた非プロトン性極性溶媒の使用量の10〜50重量%であり、上記非極性アレーンはトルエンまたはキシレンまたは両者の混合物である、請求項3に記載の可融性ポリイミド成形用粉末の調製方法。 The amount of the nonpolar arene described in Step 2 is 10 to 50% by weight of the amount of the aprotic polar solvent described in Step 1, and the nonpolar arene is toluene or xylene or a mixture of both. A method for preparing a fusible polyimide molding powder according to claim 3. 前記工程2で述べた脱水剤は、無水酢酸、無水プロピオン酸、および両者の混合物から選択される、請求項4に記載の可融性ポリイミド成形用粉末の調製方法。 The method for preparing a fusible polyimide molding powder according to claim 4, wherein the dehydrating agent described in Step 2 is selected from acetic anhydride, propionic anhydride, and a mixture of both. 前記工程2で述べた触媒はピリジン、3,5−ルチジン、3−メチルピリジン、トリメチルアミン、N−メチルモルホリン、トリエチルアミン及びイソキノリンから選択される1種以上である、請求項1,2,4または5に記載の可融性ポリイミド成形用粉末の調製方法。 The catalyst described in Step 2 is one or more selected from pyridine, 3,5-lutidine, 3-methylpyridine, trimethylamine, N-methylmorpholine, triethylamine, and isoquinoline. A method for preparing the fusible polyimide molding powder described in 1. 前記工程2は、 前記濾過の後にさらに前記ポリイミド粉末を洗浄、濾別、乾燥する工程を含む、請求項1,2,4または5に記載の前記可融性ポリイミド成形用粉末の調製方法。 The said process 2 is a preparation method of the said fusible polyimide molding powder of Claim 1, 2, 4 or 5 which further includes the process of wash | cleaning, filtering and drying the said polyimide powder after the said filtration. 前記ポリイミド粉末は100メッシュの標準篩を通過でき、その分子量は数平均分子量で30000〜36000、重量平均分子量で50000〜70000に調節される、請求項1に記載の前記可融性ポリイミド成形用粉末の調製方法。 The fusible polyimide molding powder according to claim 1, wherein the polyimide powder can pass through a 100-mesh standard sieve, and the molecular weight thereof is adjusted to 30000-36000 in terms of number average molecular weight and 50000-70000 in terms of weight average molecular weight. Preparation method. 前記工程2はさらに、生成したポリイミド粉末に220℃〜280℃の熱処理を施し、最終的に成形に使用できるポリイミド成形用粉末を調製する工程を含む、請求項1,2,4,5または8に記載の可融性ポリイミド成形用粉末の調製方法。 The step 2 further includes a step of subjecting the produced polyimide powder to a heat treatment at 220 ° C. to 280 ° C. to finally prepare a polyimide molding powder that can be used for molding. A method for preparing the fusible polyimide molding powder described in 1. 前記ODAは3,4’−ODAであり、ポリアミドの構造式が下記の通りである、請求項1,5または8に記載の可融性ポリアミド成形用粉末の調製方法:

式中、nは60〜80の整数である。
The method for preparing a fusible polyamide molding powder according to claim 1, 5 or 8, wherein the ODA is 3,4'-ODA and the structural formula of the polyamide is as follows:

In the formula, n is an integer of 60-80.
JP2013546562A 2010-12-30 2011-12-22 Fusible polyimide molding compound and method for preparing the same Active JP5495464B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN2010106193480A CN102108124A (en) 2010-12-30 2010-12-30 Preparation method of meltable polyimide moulding compound
CN201010619348.0 2010-12-30
CN201110417304.4 2011-12-14
CN201110417304.4A CN102492141B (en) 2010-12-30 2011-12-14 Soluble polyimide molded plastic and preparation method thereof
PCT/CN2011/002164 WO2012088759A1 (en) 2010-12-30 2011-12-22 Meltable polyimide moulding plastic and preparation method therefor

Publications (2)

Publication Number Publication Date
JP2014504652A true JP2014504652A (en) 2014-02-24
JP5495464B2 JP5495464B2 (en) 2014-05-21

Family

ID=44172418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013546562A Active JP5495464B2 (en) 2010-12-30 2011-12-22 Fusible polyimide molding compound and method for preparing the same

Country Status (3)

Country Link
JP (1) JP5495464B2 (en)
CN (2) CN102108124A (en)
WO (1) WO2012088759A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108124A (en) * 2010-12-30 2011-06-29 上海市合成树脂研究所 Preparation method of meltable polyimide moulding compound
CN103289090B (en) * 2013-05-15 2016-04-20 常州市尚科特种高分子材料有限公司 The preparation method of thermoplastic polyimide molding material
CN103724623B (en) * 2013-12-16 2016-06-29 上海市合成树脂研究所 A kind of preparation method of solvable meltability copolyimide moulding compound
US9416229B2 (en) 2014-05-28 2016-08-16 Industrial Technology Research Institute Dianhydride and polyimide
CN104530429B (en) * 2014-12-31 2017-02-01 东华大学 High-fluidity wide-processing-widow polyimide pre-polymer and preparation method thereof
CN108192097A (en) * 2017-12-01 2018-06-22 中国航空工业集团公司基础技术研究院 A kind of solvable thermoplastic polyimide and its ultra-fine powder, preparation method thereof
CN112048062B (en) * 2019-06-05 2022-05-06 河北寰烯科技有限公司 Preparation of polyimide by catalyzing dehydration of polyamic acid with choline chloride-urea eutectic solvent
CN111234222A (en) * 2020-01-15 2020-06-05 神马实业股份有限公司 Preparation method of copolymerization modified thermosetting polyimide material
CN113429601B (en) * 2021-06-21 2023-03-31 浙江中科玖源新材料有限公司 Preparation method of high-barrier polyimide film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147966A (en) * 1990-07-31 1992-09-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Polyimide molding powder, coating, adhesive and matrix resin
US6114494A (en) * 1998-12-03 2000-09-05 Ranbar Electrical Materials, Inc. Polyimide material and method of manufacture
CN1174026C (en) * 2001-12-25 2004-11-03 中国科学院大连化学物理研究所 Method for preparing polyimide molding powder
CN1175031C (en) * 2001-12-27 2004-11-10 中国科学院大连化学物理研究所 Easily workable high-performance polyimide material and its preparation method
TW200728908A (en) * 2006-01-25 2007-08-01 Kaneka Corp Photosensitive dry film resist, printed wiring board using same, and method for producing printed wiring board
CN101392057A (en) * 2008-11-03 2009-03-25 吉林大学 Method for preparing crystalline thermoplastic polyimide moulding powder
CN102108124A (en) * 2010-12-30 2011-06-29 上海市合成树脂研究所 Preparation method of meltable polyimide moulding compound

Also Published As

Publication number Publication date
WO2012088759A1 (en) 2012-07-05
CN102108124A (en) 2011-06-29
JP5495464B2 (en) 2014-05-21
CN102492141A (en) 2012-06-13
CN102492141B (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5495464B2 (en) Fusible polyimide molding compound and method for preparing the same
CN108219133B (en) Polyimide resin containing furan ring and preparation method thereof
JP6604588B2 (en) Varnishes using 2-phenyl-4,4′-diaminodiphenyl ethers, imide resin compositions excellent in moldability and cured resin molded articles having excellent elongation at break, and prepregs, imide prepregs and heat resistance using them, and Fiber reinforced material with excellent mechanical strength
CN101565504B (en) Preparation method of high-temperature endurable active toughener powder used for epoxy resin
JP6202554B2 (en) Polyimide resin composition made of terminal-modified imide oligomer using 2-phenyl-4,4'-diaminodiphenyl ether and aromatic thermoplastic polyimide using oxydiphthalic acid, and varnish, and heat resistance and mechanical properties Excellent molded article of polyimide resin composition, prepreg, and fiber reinforced composite material thereof
CN105440283B (en) A kind of modified cyanic acid ester resin and preparation method thereof
JP2006104440A (en) Soluble terminal-modified imide oligomer and varnish and cured product thereof
JP6332528B2 (en) Polyimide resin composition made of terminal-modified imide oligomer using 2-phenyl-4,4'-diaminodiphenyl ether and aromatic thermoplastic polyimide using oxydiphthalic acid, and varnish, and heat resistance and mechanical properties Excellent molded article of polyimide resin composition, prepreg, and fiber reinforced composite material thereof
JP4263182B2 (en) Soluble end-modified imide oligomer and varnish and cured product thereof
CN104530429A (en) High-fluidity wide-processing-widow polyimide pre-polymer and preparation method thereof
CN107892745A (en) A kind of thermoplastic poly benzoxazole acid imide and preparation method thereof
JPWO2017195393A1 (en) Terminal-modified imide oligomer, varnish, cured product thereof, film, and imide prepreg and fiber-reinforced composite material using the same
CN109735917A (en) A kind of ternary copolymerization polyimide spinning solution and preparation method
Nohara et al. Processing of high performance composites based on peek by aqueous suspension prepregging
JPS6322832A (en) Novel soluble and/or meltable polyimide or polyamideimide and production thereof
JPS62205124A (en) Polyimide
Feng et al. Thermoplastic polyimide (TPI)
CN114015044A (en) Colorless transparent polyimide resin film and preparation method thereof
CN108148411B (en) Thermally processable low-Tg cyano-group-containing polyimide, polyimide film, polyimide powder and application thereof
Chen et al. Synthesis and properties of novel meltable fluorinated aromatic oligoimides endcapped with 4-phenylethynylphthalic anhydride
WO2019226641A9 (en) Varnish of polyimide having high heat resistance and excellent mechanical strength
CN110256670B (en) Thermoplastic polyimide containing fluorene group and preparation method and application thereof
CN115678010B (en) Polyamide acid, polyimide resin and preparation method thereof
CN113667119B (en) Polyacetamide-imide film and preparation method thereof
JP2012092262A (en) Method for producing crystalline polyimide

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5495464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250