JP2014236628A - Dc high-voltage power supply device - Google Patents

Dc high-voltage power supply device Download PDF

Info

Publication number
JP2014236628A
JP2014236628A JP2013118042A JP2013118042A JP2014236628A JP 2014236628 A JP2014236628 A JP 2014236628A JP 2013118042 A JP2013118042 A JP 2013118042A JP 2013118042 A JP2013118042 A JP 2013118042A JP 2014236628 A JP2014236628 A JP 2014236628A
Authority
JP
Japan
Prior art keywords
electric circuit
circuit board
power supply
voltage power
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013118042A
Other languages
Japanese (ja)
Other versions
JP6146739B2 (en
Inventor
正志 辻本
Masashi Tsujimoto
正志 辻本
宏継 田中
Hirotsugu Tanaka
宏継 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Denkiki Co Ltd
Original Assignee
Kyoto Denkiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Denkiki Co Ltd filed Critical Kyoto Denkiki Co Ltd
Priority to JP2013118042A priority Critical patent/JP6146739B2/en
Publication of JP2014236628A publication Critical patent/JP2014236628A/en
Application granted granted Critical
Publication of JP6146739B2 publication Critical patent/JP6146739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce cost of manufacture by also easily dealing with an output voltage change and improving workability of assembly.SOLUTION: Electric circuit boards 500 packaging voltage doubler rectifier circuits for one stage and having the same shape are stacked as many as a number corresponding to a desired output voltage, thereby configuring a booster circuit unit 5. By inverting the directions of the electric circuit boards 500 for each stage, right above output terminals 504-506 of the electric circuit board 500 on a certain stage, input terminals 503-501 of the electric circuit board 500 on the next stage are positioned. By using a conductive support member 530 in place of a cable wire, the output terminals 504-506 of a certain stage and the input terminals 503-501 of the next stage are connected. Between terminals which do not require electrical connection, an insulative support member 531 which functions simply as a support is interposed. Thus, the need of work for connecting boards via a cable wire is eliminated and assemblability is improved.

Description

本発明は直流高電圧電源装置に関し、さらに詳しくは、多段の倍電圧整流回路を用いて高電圧を発生する直流高電圧電源装置に関する。   The present invention relates to a direct current high voltage power supply apparatus, and more particularly to a direct current high voltage power supply apparatus that generates a high voltage using a multistage voltage doubler rectifier circuit.

負荷に対してkVオーダーの直流高電圧を印加するための電源装置として、倍電圧整流回路を多段接続した昇圧回路を用いた電源装置が知られている。この種の直流高電圧電源装置における昇圧回路として最も代表的で頻用されているのは、コッククロフト・ウォルトン回路(Cockcroft-Walton circuit)である。コッククロフト・ウォルトン回路にはいくつかの構成のバリエーションがあるが、その基本は、コンデンサとダイオードとを組み合わせた倍電圧整流回路であり、これを任意の段数だけ直列に接続することによって、所望の高電圧を出力することが可能である(特許文献1など参照)。   As a power supply device for applying a DC high voltage of kV order to a load, a power supply device using a booster circuit in which voltage doubler rectifier circuits are connected in multiple stages is known. The most typical and frequently used booster circuit in this type of DC high-voltage power supply is the Cockcroft-Walton circuit. The Cockcroft-Walton circuit has several configuration variations, but the basis is a voltage doubler rectifier circuit that combines a capacitor and a diode. A voltage can be output (see Patent Document 1).

コッククロフト・ウォルトン回路を用いた直流高電圧電源装置において倍電圧整流回路の段数を増やして高い電圧を得ようとすると、大きな回路基板が必要となり、装置が大形になる。そこで、装置を小型化するために、コンデンサとダイオードを含む倍電圧整流回路を1枚の電気回路基板(いわゆるプリント基板)上に実装し、それを基板の拡がり方向と直交する方向に複数枚積み重ねた構成の直流高電圧電源装置が知られている(特許文献2、3参照)。   In a DC high-voltage power supply apparatus using a Cockcroft-Walton circuit, if an attempt is made to obtain a high voltage by increasing the number of voltage doubler rectifier circuits, a large circuit board is required, and the apparatus becomes large. Therefore, in order to reduce the size of the device, a voltage doubler rectifier circuit including a capacitor and a diode is mounted on a single electric circuit board (so-called printed board), and a plurality of them are stacked in a direction orthogonal to the spreading direction of the board. There is known a DC high-voltage power supply device having the above configuration (see Patent Documents 2 and 3).

特許文献2に記載の装置では、同一形状の回路基板を多数枚積み重ね、その全体を可撓性の絶縁樹脂でモールドして一体化している。また、特許文献3に記載の装置では、上段にいくに従い小さい形状の回路基板を用いるとともに、その回路基板一つ一つを絶縁樹脂でモールドし、そのモールドされた回路基板を多数積み重ねることで昇圧回路ユニットを構成するようにしている。   In the apparatus described in Patent Document 2, a large number of circuit boards having the same shape are stacked, and the whole is molded and integrated with a flexible insulating resin. In addition, in the apparatus described in Patent Document 3, a circuit board having a small shape is used as it goes up, and each circuit board is molded with an insulating resin, and a plurality of molded circuit boards are stacked. A circuit unit is configured.

上述したように、倍電圧整流回路を実装した回路基板を積み重ねる構造を採ることにより装置の小型化を図ることができるものの、上述した従来の構造では次のような問題がある。   As described above, the apparatus can be miniaturized by adopting a structure in which circuit boards mounted with voltage doubler rectifier circuits are stacked, but the conventional structure described above has the following problems.

即ち、こうした直流高電圧電源装置は様々な装置(負荷)の電源として利用されるが、当然、その負荷によって、必要とされる出力電圧値は相違する。1枚の回路基板による電圧増倍率は決まっている(典型的には2倍である)ので、積み重ねる回路基板の枚数を変更することで出力電圧を変更することができる。しかしながら、上述した従来の直流高電圧電源装置では、出力電圧の仕様に応じて回路基板の枚数を変更することは考慮されていない。そのため、そうした変更に簡単に対応できるような組立性、つまり装置を組み立てる際の容易性は考慮されておらず、組立て時に回路基板の枚数を変更しようとすると面倒で手間が掛かる。そのため、製造コストが高くなり、その分、装置のコストアップに繋がる。   That is, such a DC high-voltage power supply device is used as a power source for various devices (loads), but naturally, the required output voltage value differs depending on the load. Since the voltage multiplication factor by one circuit board is determined (typically twice), the output voltage can be changed by changing the number of circuit boards to be stacked. However, in the conventional DC high-voltage power supply device described above, changing the number of circuit boards according to the output voltage specification is not considered. For this reason, the assembling property that can easily cope with such a change, that is, the ease of assembling the device is not taken into consideration, and it is troublesome and troublesome to change the number of circuit boards during assembly. As a result, the manufacturing cost is increased, which leads to an increase in the cost of the apparatus.

特開2006−304506号公報JP 2006-304506 A 特開平7−312300号公報JP-A-7-312300 特開2008−41318号公報JP 2008-41318 A

本発明は上記課題に鑑みて成されたものであり、その主な目的は、その組立性を改善し、特に様々な出力電圧の仕様に対応する場合であってもそれに応じた組立てを容易に行えるようにすることにより、製造コストを引き下げることが可能な直流高電圧電源装置を提供することにある。   The present invention has been made in view of the above problems, and its main purpose is to improve its assemblability, and in particular, it is easy to assemble in accordance with various output voltage specifications. An object of the present invention is to provide a direct-current high-voltage power supply device capable of reducing the manufacturing cost by making it possible.

上記課題を解決するために成された本発明は、コンデンサとダイオードとを含む倍電圧整流回路を複数段直列に接続した昇圧回路を用いて高電圧を生成する直流高電圧電源装置において、該昇圧回路は、1又は複数の倍電圧整流回路を実装した電気回路基板を複数枚積み重ねて構成するものであって、
前記電気回路基板それぞれに入力端子と出力端子とを設け、積み重ねられた電気回路基板間に介在してそれぞれ電気回路基板に取り付けた複数の支柱部材により電気回路基板同士を所定間隔保って保持せしめ、前記複数の支柱部材の一部を導電性の支柱部材とし、
積み重ねられた或る1つの電気回路基板上に設けられた入力端子と、その1つ上の段又は1つ下の段の電気回路基板上に設けられた出力端子とを、前記導電性の支柱部材を介して電気的に接続する構造としたことを特徴としている。
In order to solve the above-described problems, the present invention provides a DC high-voltage power supply apparatus that generates a high voltage using a booster circuit in which a plurality of voltage doubler rectifier circuits including a capacitor and a diode are connected in series. The circuit is configured by stacking a plurality of electric circuit boards on which one or a plurality of voltage doubler rectifier circuits are mounted,
Each of the electric circuit boards is provided with an input terminal and an output terminal, and the electric circuit boards are held at a predetermined interval by a plurality of support members attached to the electric circuit boards respectively interposed between the stacked electric circuit boards, A part of the plurality of support members is a conductive support member,
An input terminal provided on one stacked electric circuit board and an output terminal provided on an electric circuit board in the upper stage or the lower stage thereof are connected to the conductive column. It is characterized by a structure that is electrically connected via a member.

本発明に係る直流高電圧電源装置では、倍電圧整流回路が実装された電気回路基板を複数枚積み重ねるが、その積層構造を形成するための支柱部材を利用して上下の電気回路基板の間の信号(各基板の電圧出力)の伝達を行う。そのため、上下の電気回路基板間を接続するケーブル線が不要になり、支柱部材を電気回路基板に固定するための例えば螺入などによる取付作業を行うだけで、上下の電気回路基板の電気的接続が行える。   In the DC high-voltage power supply device according to the present invention, a plurality of electric circuit boards on which a voltage doubler rectifier circuit is mounted are stacked, but a support member for forming the stacked structure is used to form a space between upper and lower electric circuit boards. Transmits signals (voltage output of each board). This eliminates the need for cable lines to connect the upper and lower electric circuit boards, and it is possible to connect the upper and lower electric circuit boards simply by performing, for example, screwing in to fix the column member to the electric circuit board. Can be done.

なお、積み重ねる電気回路基板の形状や基板上の各部品(ダイオード、コンデンサなど)の配置は同一とするのが好ましい。それにより、電気回路基板の設計コストや製造コストを抑えることができる。また、電気回路基板が共通であるので、昇圧回路を組み立てる際に電気回路基板を取り違えるようなミスの発生も防止できる。   In addition, it is preferable that the shape of the electric circuit board to be stacked and the arrangement of each component (diode, capacitor, etc.) on the board are the same. Thereby, the design cost and manufacturing cost of the electric circuit board can be suppressed. Further, since the electric circuit board is common, it is possible to prevent the occurrence of a mistake that causes the electric circuit board to be mistaken when assembling the booster circuit.

本発明に係る直流高電圧電源装置の好ましい一態様としては、
矩形状である上記電気回路基板の一辺に沿って入力端子を配置するとともにこれと対向する辺に沿って出力端子を配置し、
複数の電気回路基板を積み重ねる際に、1つの電気回路基板の出力端子の直上に1つ上の段の電気回路基板の入力端子が位置するように、段毎に交互に電気回路基板の向きを入れ替える構造とするとよい。
As a preferable aspect of the DC high-voltage power supply device according to the present invention,
An input terminal is disposed along one side of the electric circuit board that is rectangular, and an output terminal is disposed along a side opposite to the input terminal.
When stacking a plurality of electric circuit boards, the direction of the electric circuit boards is alternately changed for each stage so that the input terminal of the upper electric circuit board is positioned immediately above the output terminal of one electric circuit board. It is good to have a structure to replace.

さらに、この構造では、1つの電気回路基板の出力端子の直上に1つ上の段の電気回路基板の入力端子が位置する状態で、その出力端子と入力端子とを前記導電性の支柱部材を介して電気的に接続する一方、前記1つの電気回路基板の入力端子と、その直上に位置する、その1つ上の段の電気回路基板の出力端子とを、絶縁性の支柱部材を介して接続するとよい。   Further, in this structure, in a state where the input terminal of the upper stage electric circuit board is positioned immediately above the output terminal of one electric circuit board, the conductive support member is connected to the output terminal and the input terminal. While connecting electrically, the input terminal of the said one electric circuit board and the output terminal of the electric circuit board of the one stage located on it directly via the insulating support | pillar member It is good to connect.

この構造によれば、各電気回路基板に設けられている入力端子及び出力端子を利用し、これに取り付けられる導電性支柱部材及び絶縁性支柱部材によって、積層構造である昇圧回路を形成することができる。また、この構造では、電気回路基板上で出力端子と入力端子とが必然的に離れた位置にあるので、入出力間の絶縁距離の確保が容易である。   According to this structure, by using the input terminal and the output terminal provided on each electric circuit board, the step-up circuit having a laminated structure can be formed by the conductive support member and the insulating support member attached thereto. it can. In this structure, since the output terminal and the input terminal are inevitably separated from each other on the electric circuit board, it is easy to secure an insulation distance between the input and output.

なお、上述したような構造とするためには、上記電気回路基板において、複数の入力端子は一直線上で且つ等間隔に設けられ、複数の出力端子も同様に一直線上で且つ前記入力端子の間隔と同一の等間隔に設けられてなるようにするとよい。
もちろん、入力端子や出力端子に取り付けられる導電性支柱部材及び絶縁性支柱部材だけでは十分な強度が確保できない場合には、補助的な支柱部材を別途設けてもよい。
In order to obtain the structure as described above, in the electric circuit board, the plurality of input terminals are provided on a straight line and at equal intervals, and the plurality of output terminals are similarly arranged on a straight line and the interval between the input terminals. It is good to be provided at the same equal intervals.
Of course, in the case where sufficient strength cannot be secured only by the conductive support member and the insulating support member attached to the input terminal and the output terminal, an auxiliary support member may be separately provided.

また本発明に係る直流高電圧電源装置では、電気回路基板を複数積み重ねた状態で、その全体を樹脂材でモールドして一体化するとよい。   Moreover, in the DC high-voltage power supply device according to the present invention, it is preferable that a plurality of electric circuit boards are stacked and molded as a whole with a resin material.

本発明に係る直流高電圧電源装置によれば、昇圧回路を構成する複数枚の電気回路基板同士をケーブル線で接続する必要がなく、各段の電気回路基板をそれぞれ保持するための支柱部材の取付作業と上下の電気回路基板の電気的接続の作業とを兼ねることができる。それにより、昇圧回路の組立てが簡便になり、特に、電気回路基板の枚数を減らしたり逆に増やしたりする場合でも、組立てを容易に行うことができる。それによって、製造コストの引き下げや製造効率の改善が可能であり、また使用する部品点数を削減することもでき、装置コストを引き下げることができる。   According to the DC high-voltage power supply device according to the present invention, there is no need to connect the plurality of electric circuit boards constituting the booster circuit with the cable lines, and the support member for holding the electric circuit boards at each stage is provided. It is possible to combine the mounting work and the electrical connection work between the upper and lower electric circuit boards. As a result, the booster circuit can be easily assembled. In particular, even when the number of electrical circuit boards is reduced or increased, the assembly can be easily performed. Thereby, the manufacturing cost can be reduced and the manufacturing efficiency can be improved, the number of parts used can be reduced, and the apparatus cost can be reduced.

また本発明に係る直流高電圧電源装置によれば、電気回路基板の積層構造を保持するための強固な支柱部材を電気的接続に利用できるので、例えば何らかの外力が加わった場合でも電気的接続が断絶するような事態を生じにくく、高い信頼性を確保することができる。   Further, according to the DC high-voltage power supply device according to the present invention, since the solid support member for holding the laminated structure of the electric circuit board can be used for the electrical connection, for example, even when some external force is applied, the electrical connection is possible. It is difficult to cause a situation of disconnection, and high reliability can be ensured.

本発明の一実施例による直流高電圧電源装置のブロック構成図。1 is a block diagram of a DC high voltage power supply device according to an embodiment of the present invention. 本実施例の直流高電圧電源装置における1段の倍電圧整流回路の回路図。FIG. 3 is a circuit diagram of a one-stage voltage doubler rectifier circuit in the DC high-voltage power supply device according to the present embodiment. 本実施例の直流高電圧電源装置における1段の倍電圧整流回路を実装した電気回路基板の外観上面図。The external appearance top view of the electric circuit board | substrate which mounted the 1 step | paragraph voltage doubler rectifier circuit in the direct-current high-voltage power supply device of a present Example. 本実施例の直流高電圧電源装置における昇圧回路ユニットに用いられる支柱部材の取付構造を示す概略一部断面図。The schematic partial sectional view which shows the attachment structure of the support | pillar member used for the booster circuit unit in the direct-current high-voltage power supply device of a present Example. 本実施例の直流高電圧電源装置における昇圧回路ユニットの外観斜視図。1 is an external perspective view of a booster circuit unit in a DC high-voltage power supply device according to the present embodiment. 図5に示した昇圧回路ユニットの正面図(a)及び右側面図(b)。The front view (a) and right view (b) of the booster circuit unit shown in FIG.

本発明の一実施例である直流高電圧電源装置について、添付図面を参照して説明する。図1は本実施例の直流高電圧電源装置のブロック構成図である。   A DC high-voltage power supply device according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram of a DC high-voltage power supply device according to this embodiment.

本実施例の直流高電圧電源装置は、外部の商用交流電源(例えばAC200V/220V単相)1に接続された商用交流整流回路2と、高周波インバータ回路3と、高周波昇圧トランス4と、N段の倍電圧整流回路51〜5Nからなる昇圧回路ユニット5と、を備え、昇圧回路ユニット5における最終段の倍電圧整流回路5Nの出力電圧が、外部の負荷6に印加される。   The DC high-voltage power supply device of this embodiment includes a commercial AC rectifier circuit 2 connected to an external commercial AC power source (for example, AC 200V / 220V single phase) 1, a high-frequency inverter circuit 3, a high-frequency step-up transformer 4, an N-stage And the booster circuit unit 5 including the voltage doubler rectifier circuits 51 to 5N. The output voltage of the final voltage doubler rectifier circuit 5N in the booster circuit unit 5 is applied to the external load 6.

各部の動作を概略的に説明する。商用交流電源1から供給された交流電力は商用交流整流回路2において交流-直流変換され、この変換によって得られた直流電力が高周波インバータ回路3によって、上記商用交流電力よりも周波数の高い交流電圧(高周波電圧)に変換される。この高周波電圧が高周波昇圧トランス4によって所定振幅値の高周波電圧に昇圧される。高周波昇圧トランス4では、例えば110rms程度の振幅値を数kVrms程度まで昇圧することができる。こうして昇圧された高周波電圧を、昇圧回路ユニット5に含まれる倍電圧整流回路51〜5Nの各段でそれぞれ2倍に昇圧しつつ整流し、最終的には例えば数十kV〜百数十kV程度の直流電圧を生成して昇圧回路ユニット5から出力する。   The operation of each part will be schematically described. The AC power supplied from the commercial AC power source 1 is AC-DC converted in the commercial AC rectifier circuit 2, and the DC power obtained by this conversion is converted by the high-frequency inverter circuit 3 into an AC voltage (having a higher frequency than the commercial AC power). High frequency voltage). This high-frequency voltage is boosted to a high-frequency voltage having a predetermined amplitude value by the high-frequency step-up transformer 4. In the high-frequency step-up transformer 4, for example, an amplitude value of about 110 rms can be boosted to about several kVrms. The boosted high-frequency voltage is rectified while being boosted twice in each stage of the voltage doubler rectifier circuits 51 to 5N included in the booster circuit unit 5, and finally, for example, about several tens kV to several tens of kV. Is generated and output from the booster circuit unit 5.

昇圧回路ユニット5を構成するN段の倍電圧整流回路51〜5Nの回路構成は同一である。図2は1段の倍電圧整流回路50の回路図である。図2に示すように、本実施例の直流高電圧電源装置で用いられている昇圧回路ユニット5はいわゆる対称型コッククロフト・ウォルトン回路であり、1段分の倍電圧整流回路50は、第2入力端子502と第2出力端子505との間に接続された直流コラムコンデンサ510と、第1入力端子501と第1出力端子504との間に接続された第1交流コラムコンデンサ508と、第3入力端子503と第3出力端子506との間に接続された第2交流コラムコンデンサ509と、全波整流回路を構成するようにブリッジ状に接続された4個のダイオード511〜514と、を含む。ここでは、3個のコンデンサ508、509、510はいずれもフィルムコンデンサであるが、これに限るものではない。   The N-stage voltage doubler rectifier circuits 51 to 5N constituting the booster circuit unit 5 have the same circuit configuration. FIG. 2 is a circuit diagram of a single-stage voltage doubler rectifier circuit 50. As shown in FIG. 2, the booster circuit unit 5 used in the DC high-voltage power supply apparatus of this embodiment is a so-called symmetric cockcroft-Walton circuit, and the double voltage rectifier circuit 50 for one stage has a second input A DC column capacitor 510 connected between the terminal 502 and the second output terminal 505; a first AC column capacitor 508 connected between the first input terminal 501 and the first output terminal 504; and a third input. A second AC column capacitor 509 connected between the terminal 503 and the third output terminal 506, and four diodes 511 to 514 connected in a bridge shape so as to form a full-wave rectifier circuit are included. Here, the three capacitors 508, 509, and 510 are all film capacitors, but are not limited thereto.

高周波昇圧トランス4の出力に接続される初段の倍電圧整流回路51においては、図2中に点線で示す枠内に記載したように、トランス4の2次巻線4bの一方の端子が第1入力端子501に接続され、他方の端子が第3入力端子503に接続され、センター端子が第2入力端子502に接続されている。   In the first-stage voltage doubler rectifier circuit 51 connected to the output of the high-frequency step-up transformer 4, one terminal of the secondary winding 4 b of the transformer 4 is the first terminal as described in the frame indicated by the dotted line in FIG. 2. The other terminal is connected to the third input terminal 503, and the center terminal is connected to the second input terminal 502.

倍電圧整流回路50の電圧増倍動作はよく知られているの(例えば特許文献1参照)で詳しく説明しないが、ダイオード511〜514を通した各コンデンサ508〜509の電荷蓄積を入力電圧の1周期毎に繰り返すことで、入力端子501〜503に印加された入力電圧を2倍に昇圧して出力する。したがって、N段の倍電圧整流回路50を直列に接続した昇圧回路ユニット5は、該昇圧回路ユニット5への入力電圧を2×N倍に昇圧して出力することになる。出力の直流高電圧は最終段の倍電圧整流回路5Nの第2出力端子505から取り出される。
なお、本実施例の直流高電圧電源装置は負極性の高電圧を出力するものであるが、正極性の高電圧を出力する構成に変更可能であることは当然である。
Although the voltage multiplication operation of the voltage doubler rectifier circuit 50 is well known (see, for example, Patent Document 1), it will not be described in detail, but the charge accumulation of each of the capacitors 508 to 509 through the diodes 511 to 514 is 1 of the input voltage. By repeating every cycle, the input voltage applied to the input terminals 501 to 503 is boosted twice and output. Therefore, the booster circuit unit 5 in which the N-stage voltage doubler rectifier circuit 50 is connected in series boosts the input voltage to the booster circuit unit 5 by 2 × N times and outputs the boosted voltage. The output DC high voltage is taken out from the second output terminal 505 of the final voltage doubler rectifier circuit 5N.
The DC high-voltage power supply device according to the present embodiment outputs a negative high voltage, but can be changed to a configuration that outputs a positive high voltage.

図3は、図2に示した1段の倍電圧整流回路50に含まれる各部品が実装された状態の電気回路基板500の外観上面図である。図3中の符号は、図2に示した回路図中の各部品の符号と同一である。この電気回路基板500はいわゆる片面プリント基板であり、図3では見えない裏面に銅などの金属箔によるパターン配線(図4中の符号523)が形成されている。図3中には、こうしたパターン配線によって実現される各部品間の電気的な接続を、太点線で示している。ダイオード511〜514、コンデンサ508〜510等の部品は、パターン配線により形成されたマウント部にハンダ付けされることで固定されている。なお、N段の倍電圧整流回路51〜5Nに対応する電気回路基板500の形状や部品配置は全く同一(つまり共通)である。   FIG. 3 is an external top view of the electric circuit board 500 in a state where components included in the one-stage voltage doubler rectifier circuit 50 shown in FIG. 2 are mounted. The reference numerals in FIG. 3 are the same as the reference numerals of the components in the circuit diagram shown in FIG. This electric circuit board 500 is a so-called single-sided printed board, and a pattern wiring (reference numeral 523 in FIG. 4) made of a metal foil such as copper is formed on the back surface which cannot be seen in FIG. In FIG. 3, the electrical connection between the components realized by such pattern wiring is indicated by a thick dotted line. Components such as the diodes 511 to 514 and the capacitors 508 to 510 are fixed by soldering to a mount portion formed by pattern wiring. The shape and component arrangement of the electric circuit board 500 corresponding to the N-stage voltage doubler rectifier circuits 51 to 5N are exactly the same (that is, common).

図3に示すように、1枚の電気回路基板500は上面視矩形状であり、対向する一方の辺(図3では左方の辺)に沿って略一直線上に、第1入力端子501、第2入力端子502、及び第3入力端子503が形成されている。また、対向する他方の辺(図3では右方の辺)に沿って略一直線上に、第1出力端子504、第2出力端子505、及び第3出力端子506が形成されている。図3中に示すように、第2入力端子502及び第2出力端子505は電気回路基板500の上下方向の略中央の中央線C上に位置しており、第2入力端子502と第1入力端子501との距離、 第2入力端子502と第3入力端子503との距離、第2出力端子505と第1出力端子504との距離、及び、第2出力端子505と第3出力端子506との距離は、同一(距離d)となっている。   As shown in FIG. 3, one electric circuit board 500 has a rectangular shape in a top view, and the first input terminals 501 are arranged on a substantially straight line along one opposing side (the left side in FIG. 3). A second input terminal 502 and a third input terminal 503 are formed. In addition, a first output terminal 504, a second output terminal 505, and a third output terminal 506 are formed on a substantially straight line along the opposite side (the right side in FIG. 3). As shown in FIG. 3, the second input terminal 502 and the second output terminal 505 are located on a substantially central line C in the vertical direction of the electric circuit board 500, and the second input terminal 502 and the first input The distance between the terminal 501, the distance between the second input terminal 502 and the third input terminal 503, the distance between the second output terminal 505 and the first output terminal 504, and the second output terminal 505 and the third output terminal 506. Are the same (distance d).

また、図4に示すように、3個の入力端子501〜503及び3個の出力端子504〜506は全て同一内径の円形状の貫通穴521を有し、電気回路基板500のおもて面(図3で現れている部品面)及び裏面(図3では現れていないパターン面)において、その貫通穴521の周縁部及び該貫通穴521の内周面には、配線パターン523に連続する金属箔層522が形成され、電気回路基板500のおもて面及び裏面に露出した金属箔層522が当該基板500内の回路と外部との電気的接点となっている。   Also, as shown in FIG. 4, the three input terminals 501 to 503 and the three output terminals 504 to 506 all have circular through holes 521 having the same inner diameter, and the front surface of the electric circuit board 500. (The component surface appearing in FIG. 3) and the back surface (pattern surface not appearing in FIG. 3), the peripheral portion of the through hole 521 and the inner peripheral surface of the through hole 521 have a metal continuous to the wiring pattern 523. A foil layer 522 is formed, and the metal foil layer 522 exposed on the front surface and the back surface of the electric circuit board 500 is an electrical contact between the circuit in the board 500 and the outside.

図5は図3に示した倍電圧整流回路50を複数段積み重ねることで構成される昇圧回路ユニット5の外観斜視図、図6は図5に示した昇圧回路ユニット5の正面図(a)及び右側面図(b)である。この例では、倍電圧整流回路50を実装した電気回路基板500を8段積み重ね、入力電圧を2×8=16倍した出力電圧が得られるようになっている。なお、図5及び図6では、図面が煩雑になるのを避けるため、1枚の電気回路基板500に実装される4本のダイオード511〜514のうち、2本のダイオード511、512の記載を省略している。   5 is an external perspective view of the booster circuit unit 5 configured by stacking a plurality of voltage doubler rectifier circuits 50 shown in FIG. 3, and FIG. 6 is a front view of the booster circuit unit 5 shown in FIG. It is a right view (b). In this example, eight stages of electric circuit boards 500 mounted with the voltage doubler rectifier circuit 50 are stacked, and an output voltage obtained by multiplying the input voltage by 2 × 8 = 16 is obtained. In FIGS. 5 and 6, two diodes 511 and 512 among the four diodes 511 to 514 mounted on one electric circuit board 500 are described to avoid making the drawings complicated. Omitted.

上述したように、電気回路基板500上で、3個の入力端子501〜503は略一直線上に設けられ、その間隔はいずれもdであり、同様に、3個の出力端子504〜506も略一直線上に設けられ、その間隔はいずれもdである。そのため、例えば図3に示した電気回路基板500を紙面に直交する軸を中心に180°回転させ、その回転前の電気回路基板500上に重ね合わせると、回転前の電気回路基板500の第1入力端子501、第2入力端子502、及び第3入力端子503に、回転後の電気回路基板の第3出力端子506、第2出力端子505、及び第1出力端子504がそれぞれ重なり、回転前の電気回路基板500の第1出力端子504、第2出力端子505、及び第3出力端子506に、回転後の電気回路基板の第3入力端子503、第2入力端子502、及び第1入力端子501がそれぞれ重なる。   As described above, on the electric circuit board 500, the three input terminals 501 to 503 are provided on a substantially straight line, the intervals are all d, and similarly, the three output terminals 504 to 506 are also substantially the same. They are provided on a straight line, and the distance between them is d. Therefore, for example, when the electric circuit board 500 shown in FIG. 3 is rotated by 180 ° about an axis orthogonal to the paper surface and superimposed on the electric circuit board 500 before the rotation, the first electric circuit board 500 before the rotation is rotated. The third output terminal 506, the second output terminal 505, and the first output terminal 504 of the electric circuit board after rotation overlap with the input terminal 501, the second input terminal 502, and the third input terminal 503, respectively, and before rotation. The first output terminal 504, the second output terminal 505, and the third output terminal 506 of the electric circuit board 500 are connected to the third input terminal 503, the second input terminal 502, and the first input terminal 501 of the electric circuit board after rotation. Each overlap.

このため、倍電圧整流回路50を実装した電気回路基板500を複数段積み重ねるとき、或る段の電気回路基板500のすぐ上の段の電気回路基板500の向きを上述したように180°回転させると、或る段の電気回路基板500に実装されている倍電圧整流回路50の出力端子504〜506の垂直上方に、上の段の電気回路基板500に実装されている倍電圧整流回路50の入力端子501〜503を位置させることができる。そこで、本実施例の直流高電圧電源装置では、図5及び図6に示すように、電気回路基板500の向きを1段ずつ交互に180°反転させるようにしている。そして、或る段の電気回路基板500とその一つ上の段の電気回路基板500とで電気的に接続する必要のある端子間に導電性支柱部材530を配する一方、電気的に接続しない端子間には導電性支柱部材530と同じ長さの絶縁性支柱部材531を配するようにしている。導電性支柱部材530は例えばステンレス等の金属である導電体からなり、絶縁性支柱部材531は例えばセラミック等の絶縁体からなる。   For this reason, when the electric circuit boards 500 mounted with the voltage doubler rectifier circuit 50 are stacked in a plurality of stages, the direction of the electric circuit board 500 immediately above the electric circuit board 500 at a certain stage is rotated by 180 ° as described above. Of the voltage doubler rectifier circuit 50 mounted on the upper stage electric circuit board 500, vertically above the output terminals 504 to 506 of the voltage doubler rectifier circuit 50 mounted on the electric circuit board 500 of a certain stage. Input terminals 501 to 503 can be positioned. Therefore, in the DC high-voltage power supply device of this embodiment, as shown in FIGS. 5 and 6, the direction of the electric circuit board 500 is alternately inverted by 180 ° step by step. Then, the conductive support member 530 is arranged between the terminals that need to be electrically connected between the electric circuit board 500 of a certain stage and the electric circuit board 500 of the upper stage, but not electrically connected. An insulating support member 531 having the same length as that of the conductive support member 530 is disposed between the terminals. The conductive support member 530 is made of a conductor such as stainless steel, and the insulating support member 531 is made of an insulator such as ceramic.

具体的にいうと、最下段に位置する電気回路基板500は、図5及び図6(a)中の右端側に入力端子501〜503が位置しており、これら入力端子501〜503にそれぞれ接続されたケーブル線533を通して高周波昇圧トランス4で昇圧された高周波電圧が入力される。下から2段目に位置する電気回路基板500は、図5及び図6(a)中の左端側に入力端子501〜503が位置しており、それらは最下段に位置する電気回路基板500における出力端子504〜506の直上に位置している。そこで、最下段に位置する電気回路基板500の出力端子504〜506とその上の段に位置する電気回路基板500の入力端子501〜503との間に3本の導電性支柱部材530を介設し、それによって各出力端子504〜506と各入力端子501〜503との間の電気的な接続を確保している。   More specifically, the electric circuit board 500 located at the lowermost stage has input terminals 501 to 503 located on the right end side in FIG. 5 and FIG. 6A, and is connected to these input terminals 501 to 503, respectively. The high-frequency voltage boosted by the high-frequency step-up transformer 4 is input through the cable line 533. The electric circuit board 500 located at the second stage from the bottom has the input terminals 501 to 503 located on the left end side in FIGS. 5 and 6A, and these are in the electric circuit board 500 located at the lowest stage. It is located immediately above the output terminals 504 to 506. Therefore, three conductive support members 530 are interposed between the output terminals 504 to 506 of the electric circuit board 500 positioned at the lowermost stage and the input terminals 501 to 503 of the electric circuit board 500 positioned at the upper level. Thus, electrical connection between the output terminals 504 to 506 and the input terminals 501 to 503 is ensured.

一方、最下段に位置する電気回路基板500の入力端子501〜503とその上の段に位置する電気回路基板500の出力端子504〜506との間には、それぞれ絶縁性支柱部材531を介設している。これにより、上の段の電気回路基板500は、3本の導電性支柱部材530及び3本の絶縁性支柱部材531を支柱として下段の電気回路基板500の直上に保持される。即ち、導電性支柱部材530は上下の電気回路基板500の間で電気信号を伝達する配線として機能する一方、絶縁性支柱部材531と共に、上下の2枚の電気回路基板500間の距離を所定距離に保持しつつ、それを積み重ねた構造を固定維持するための支柱として機能する。   On the other hand, an insulating support member 531 is interposed between the input terminals 501 to 503 of the electric circuit board 500 positioned at the lowest level and the output terminals 504 to 506 of the electric circuit board 500 positioned at the upper level. doing. As a result, the upper stage electric circuit board 500 is held directly above the lower stage electric circuit board 500 with the three conductive support members 530 and the three insulating support members 531 as the support. That is, the conductive support member 530 functions as a wiring for transmitting an electric signal between the upper and lower electric circuit boards 500, and the distance between the upper and lower electric circuit boards 500 together with the insulating support member 531 is a predetermined distance. It functions as a support for holding the structure in which the stacked structures are fixed.

各段の電気回路基板500についても同様に、3本の導電性支柱部材530及び3本の絶縁性支柱部材531を用いて積み重ねる。図5及び図6の例では、最上段の電気回路基板500は図5及び図6(a)中の右端側に出力端子504〜506が位置するから、それら出力端子504〜506にそれぞれ電圧出力用のケーブル線534を接続する。   Similarly, the electric circuit boards 500 at each stage are stacked using the three conductive support members 530 and the three insulating support members 531. In the example of FIGS. 5 and 6, since the output terminals 504 to 506 are positioned on the right end side in FIGS. 5 and 6A of the uppermost electric circuit board 500, voltage outputs are output to these output terminals 504 to 506, respectively. A cable line 534 is connected.

導電性支柱部材530及び絶縁性支柱部材531は例えば円柱形状、円筒形状、多角柱形状、多角筒形状などであり、例えば図4(a)に示すように、一端に雄ねじ53aを形成し、他端に雌ねじ53bを形成しておく。そして、図4(b)に示すように、2本の支柱部材530、531の間に電気回路基板500を挟み、入力端子501〜503又は出力端子504〜506の穴に挿通した一方の支柱部材の雄ねじ53aを他方の支柱部材530、531の雌ねじ53bに螺入することで、それら支柱部材530、531同士を固定するとともに、電気回路基板500をそれら支柱部材530、531の間に固定する構成としている。また、このとき、導電性支柱部材530の端面が入力端子501〜503又は出力端子504〜506の金属箔層522に密着することで、電気的な接触が確保される。   The conductive support member 530 and the insulating support member 531 have, for example, a columnar shape, a cylindrical shape, a polygonal column shape, a polygonal cylinder shape, and the like. For example, as shown in FIG. An internal thread 53b is formed at the end. Then, as shown in FIG. 4B, one of the strut members inserted between the input terminals 501 to 503 or the output terminals 504 to 506 with the electric circuit board 500 sandwiched between the two strut members 530 and 531. The male screw 53a is screwed into the female screw 53b of the other column member 530, 531, so that the column members 530, 531 are fixed to each other and the electric circuit board 500 is fixed between the column members 530, 531. It is said. At this time, the end face of the conductive support member 530 is in close contact with the metal foil layer 522 of the input terminals 501 to 503 or the output terminals 504 to 506, thereby ensuring electrical contact.

なお、最上段の電気回路基板500については、該基板500の上からねじで導電性支柱部材530及び絶縁性支柱部材531を固定するようにしている。また、最下段の電気回路基板500の下面には、絶縁性部材からなる脚部を取り付けている。   For the uppermost electric circuit board 500, the conductive support member 530 and the insulating support member 531 are fixed from above the substrate 500 with screws. Further, a leg portion made of an insulating member is attached to the lower surface of the lowermost electric circuit board 500.

このように本実施例の直流高電圧電源装置において、昇圧回路ユニット5は、それぞれ1段分の倍電圧整流回路50を実装した電気回路基板500と、複数本の導電性支柱部材530及び絶縁性支柱部材531とから、構成される。
さらに、図5に示したように電気回路基板500を積み重ねて構成された昇圧回路ユニット5は、ケーブル線533、534を外側に延出させるようにした状態で、その全体が樹脂材によりモールドされる。樹脂モールドは、例えば箱状の型枠に組み上がった昇圧回路ユニット5を収納し、樹脂材を型枠に流し込んで固めることで成形することができる。
As described above, in the DC high-voltage power supply device of this embodiment, the booster circuit unit 5 includes the electric circuit board 500 on which the double voltage rectifier circuit 50 for one stage is mounted, the plurality of conductive support members 530, and the insulating property. It is comprised from the support | pillar member 531.
Further, the booster circuit unit 5 configured by stacking the electric circuit boards 500 as shown in FIG. 5 is molded entirely with a resin material with the cable wires 533 and 534 extending outward. The The resin mold can be molded, for example, by storing the booster circuit unit 5 assembled in a box-shaped mold and pouring the resin material into the mold to be hardened.

本実施例の直流高電圧電源装置では、以上のように昇圧回路ユニット5を構成することによって、各電気回路基板500間をケーブル線で接続する必要がない。そのため、ケーブル線を電気回路基板にハンダ付けしたり、ねじで取り付けたりする手間が軽減され、組立性が向上する。   In the direct-current high-voltage power supply device of the present embodiment, by configuring the booster circuit unit 5 as described above, it is not necessary to connect the electric circuit boards 500 with cable lines. Therefore, the trouble of soldering the cable wire to the electric circuit board or attaching with the screw is reduced, and the assemblability is improved.

また、出力電圧の異なる直流高電圧電源装置を製造する際には、単に積み重ねる電気回路基板500の枚数を減らしたり増やしたりすればよいので、出力電圧の変更への対応が容易である。また、電気回路基板500に実装される部品(コンデンサやダイオード)を高さの異なるものに変更する場合には、導電性支柱部材530及び絶縁性支柱部材531の長さを変更し、電気回路基板500上に実装されたコンデンサやダイオードの上面とのその上の段の電気回路基板500の下面との間に、所定の距離(絶縁距離)が確保されるようにすればよい。したがって、こうした変更にも容易に対応できる。また、積み重ねる電気回路基板500を共通化したので、組立て時に電気回路基板を取り違える等のミスを生じることも防止でき、その点でも組立性が良好である。また、製造上のコストのみならず、基板設計などに要するコストも軽減できる。   Further, when manufacturing DC high-voltage power supply devices having different output voltages, it is only necessary to reduce or increase the number of electric circuit boards 500 to be stacked, so that it is easy to cope with changes in the output voltage. Further, when changing the components (capacitor and diode) mounted on the electric circuit board 500 to those having different heights, the lengths of the conductive support member 530 and the insulating support member 531 are changed, and the electric circuit board is changed. A predetermined distance (insulating distance) may be ensured between the upper surface of the capacitor or diode mounted on 500 and the lower surface of electric circuit board 500 in the upper stage. Therefore, it is possible to easily cope with such a change. Further, since the electric circuit boards 500 to be stacked are made common, it is possible to prevent mistakes such as mistaken electric circuit boards at the time of assembling, and the assemblability is also good in that respect. Further, not only the manufacturing cost but also the cost required for the substrate design can be reduced.

なお、上記実施例は本発明の一例にすぎず、本発明の趣旨の範囲で適宜変形、修正、追加を行っても本願特許請求の範囲に包含されることも当然である。   In addition, the said Example is only an example of this invention, Even if it changes suitably, amends, and is added in the range of the meaning of this invention, it is naturally included in the claim of this application.

例えば上記実施例では、昇圧回路ユニット5を構成する複数の倍電圧整流回路50の基板500を全て同一形状、同一部品配置としたが、これらは必須ではない。もちろん、全ての電気回路基板500を共通にすることで、上述したような利点がある。   For example, in the above embodiment, the substrates 500 of the plurality of voltage doubler rectifier circuits 50 constituting the booster circuit unit 5 are all the same shape and the same component arrangement, but these are not essential. Of course, by making all the electric circuit boards 500 common, there is an advantage as described above.

また、上記実施例では、1枚の電気回路基板500に1段分の倍電圧整流回路50を実装していたが、1枚の電気回路基板500に2段分等、複数段の倍電圧整流回路50を実装し、それを積み重ねるようにしてもよい。   In the above-described embodiment, one stage of voltage doubler rectifier circuit 50 is mounted on one electric circuit board 500. However, a plurality of stages of voltage doubler rectifiers, such as two stages, are mounted on one electric circuit board 500. The circuit 50 may be mounted and stacked.

また、導電性支柱部材530及び絶縁性支柱部材531と電気回路基板500との接続の方法も上記実施例に記載のものに限らない。重要なことは、導電性支柱部材530と各電気回路基板500上の入力端子501〜503又は出力端子504〜506とをできるだけ小さい電気抵抗で以て接続することである。   Further, the method for connecting the conductive support member 530 and the insulating support member 531 to the electric circuit board 500 is not limited to that described in the above embodiment. What is important is that the conductive support member 530 and the input terminals 501 to 503 or the output terminals 504 to 506 on each electric circuit board 500 are connected with as little electrical resistance as possible.

さらにまた、上記実施例では、昇圧回路ユニット5を樹脂モールドしていたが、昇圧回路ユニット5を絶縁油や絶縁ガス中に設置することで、空間的な絶縁性を高める構成としてもよい。   Furthermore, in the above-described embodiment, the booster circuit unit 5 is resin-molded. However, the booster circuit unit 5 may be installed in insulating oil or insulating gas to increase the spatial insulation.

1…商用交流電源
2…商用交流整流回路
3…高周波インバータ回路
4…高周波昇圧トランス
5…昇圧回路ユニット
50、51、5N…倍電圧整流回路
500…電気回路基板
501〜503…入力端子
504〜506…出力端子
508、509…交流コラムコンデンサ
510…直流コラムコンデンサ
511〜514…ダイオード
521…貫通穴
522…金属箔層
523…配線パターン
530…導電性支柱部材
531…絶縁性支柱部材
6…負荷
DESCRIPTION OF SYMBOLS 1 ... Commercial alternating current power supply 2 ... Commercial alternating current rectifier circuit 3 ... High frequency inverter circuit 4 ... High frequency step-up transformer 5 ... Boost circuit unit 50, 51, 5N ... Voltage doubler rectifier circuit 500 ... Electric circuit board 501-503 ... Input terminals 504-506 ... Output terminals 508, 509 ... AC column capacitor 510 ... DC column capacitors 511-514 ... Diode 521 ... Through hole 522 ... Metal foil layer 523 ... Wiring pattern 530 ... Conductive support member 531 ... Insulating support member 6 ... Load

Claims (5)

コンデンサとダイオードとを含む倍電圧整流回路を複数段直列に接続した昇圧回路を用いて高電圧を生成する直流高電圧電源装置において、該昇圧回路は、1又は複数の倍電圧整流回路を実装した電気回路基板を複数枚積み重ねて構成するものであって、
前記電気回路基板それぞれに入力端子と出力端子とを設け、積み重ねられた電気回路基板間に介在してそれぞれ電気回路基板に取り付けた複数の支柱部材により電気回路基板同士を所定間隔保って保持せしめ、前記複数の支柱部材の一部を導電性の支柱部材とし、
積み重ねられた或る1つの電気回路基板上に設けられた入力端子と、その1つ上の段又は1つ下の段の電気回路基板上に設けられた出力端子とを、前記導電性の支柱部材を介して電気的に接続する構造としたことを特徴とする直流高電圧電源装置。
In a DC high-voltage power supply apparatus that generates a high voltage using a booster circuit in which a plurality of voltage doubler rectifier circuits including a capacitor and a diode are connected in series, the booster circuit has one or more voltage doubler rectifier circuits mounted It is configured by stacking multiple electric circuit boards,
Each of the electric circuit boards is provided with an input terminal and an output terminal, and the electric circuit boards are held at a predetermined interval by a plurality of support members attached to the electric circuit boards respectively interposed between the stacked electric circuit boards, A part of the plurality of support members is a conductive support member,
An input terminal provided on one stacked electric circuit board and an output terminal provided on an electric circuit board in the upper stage or the lower stage thereof are connected to the conductive column. A direct-current high-voltage power supply device characterized in that it is structured to be electrically connected through a member.
請求項1に記載の直流高電圧電源装置であって、
矩形状である前記電気回路基板の一辺に沿って入力端子を配置するとともにこれと対向する辺に沿って出力端子を配置し、
複数の電気回路基板を積み重ねる際に、1つの電気回路基板の出力端子の直上に1つ上の段の電気回路基板の入力端子が位置するように、段毎に交互に電気回路基板の向きを入れ替える構造としたことを特徴とする直流高電圧電源装置。
It is a direct-current high voltage power supply device according to claim 1,
An input terminal is arranged along one side of the electric circuit board that is rectangular and an output terminal is arranged along a side opposite to the input terminal.
When stacking a plurality of electric circuit boards, the direction of the electric circuit boards is alternately changed for each stage so that the input terminal of the upper electric circuit board is positioned immediately above the output terminal of one electric circuit board. A DC high-voltage power supply device characterized in that the structure is replaced.
請求項2に記載の直流高電圧電源装置であって、
1つの電気回路基板の出力端子の直上に1つ上の段の電気回路基板の入力端子が位置する状態で、その出力端子と入力端子とを前記導電性の支柱部材を介して電気的に接続する一方、前記1つの電気回路基板の入力端子と、その直上に位置する、その1つ上の段の電気回路基板の出力端子とを、絶縁性の支柱部材を介して接続するようにしたことを特徴とする直流高電圧電源装置。
It is a direct-current high-voltage power supply device according to claim 2,
In a state where the input terminal of the upper stage electric circuit board is located immediately above the output terminal of one electric circuit board, the output terminal and the input terminal are electrically connected via the conductive support member. On the other hand, the input terminal of the one electric circuit board is connected to the output terminal of the upper one electric circuit board located immediately above it via an insulating support member. DC high-voltage power supply device characterized by
請求項3に記載の直流高電圧電源装置であって、
前記電気回路基板において、複数の入力端子は一直線上で且つ等間隔に設けられ、複数の出力端子も同様に一直線上で且つ前記入力端子の間隔と同一の等間隔に設けられてなることを特徴とする直流高電圧電源装置。
It is a direct-current high-voltage power supply device according to claim 3,
In the electrical circuit board, the plurality of input terminals are provided on a straight line and at equal intervals, and the plurality of output terminals are also provided on the straight line and at the same intervals as the input terminals. DC high voltage power supply.
請求項1〜4のいずれかに記載の直流高電圧電源装置であって、
前記電気回路基板を複数枚積み重ねた状態で、その全体を樹脂材でモールドしてなることを特徴とする直流高電圧電源装置。
A DC high-voltage power supply device according to any one of claims 1 to 4,
A DC high-voltage power supply device comprising a plurality of electric circuit boards stacked and molded with a resin material.
JP2013118042A 2013-06-04 2013-06-04 DC high voltage power supply Active JP6146739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013118042A JP6146739B2 (en) 2013-06-04 2013-06-04 DC high voltage power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013118042A JP6146739B2 (en) 2013-06-04 2013-06-04 DC high voltage power supply

Publications (2)

Publication Number Publication Date
JP2014236628A true JP2014236628A (en) 2014-12-15
JP6146739B2 JP6146739B2 (en) 2017-06-14

Family

ID=52138960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013118042A Active JP6146739B2 (en) 2013-06-04 2013-06-04 DC high voltage power supply

Country Status (1)

Country Link
JP (1) JP6146739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821786A (en) * 2021-02-04 2021-05-18 兰州大学 Compact negative high-voltage direct-current power supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972941U (en) * 1972-10-06 1974-06-25
US6154382A (en) * 1998-09-30 2000-11-28 Nec Corporation High-voltage power supply circuit having a plurality of diode bridges connected in series to the secondary winding of a transformer
JP2001284097A (en) * 2000-03-29 2001-10-12 Hitachi Medical Corp High voltage switching circuit and x-ray system using this circuit
JP2008041318A (en) * 2006-08-02 2008-02-21 Mitsubishi Electric Corp Device for generating direct current high voltage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972941U (en) * 1972-10-06 1974-06-25
US6154382A (en) * 1998-09-30 2000-11-28 Nec Corporation High-voltage power supply circuit having a plurality of diode bridges connected in series to the secondary winding of a transformer
JP2001284097A (en) * 2000-03-29 2001-10-12 Hitachi Medical Corp High voltage switching circuit and x-ray system using this circuit
JP2008041318A (en) * 2006-08-02 2008-02-21 Mitsubishi Electric Corp Device for generating direct current high voltage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821786A (en) * 2021-02-04 2021-05-18 兰州大学 Compact negative high-voltage direct-current power supply

Also Published As

Publication number Publication date
JP6146739B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5434757B2 (en) DC-DC converter
US10790080B2 (en) Embedded magnetic component transformer device
JP5673508B2 (en) Power supply
US20120229948A1 (en) Capacitor Used as Insulating Spacer for a High Current Bus Structure
US20200111599A1 (en) Inductor and power supply conversion circuit
JP6121080B1 (en) Power converter
JP6326038B2 (en) Electrical circuit device
US9078372B2 (en) Power system and power converting device thereof
WO2016103870A1 (en) Capacitor circuit, capacitor module and power conversion system
JP2014011319A (en) Electronic apparatus
US20180367031A1 (en) Power supply device
JP2016195506A (en) Circuit board and electric power conversion device
JP6378126B2 (en) Charge / discharge device
JP6066822B2 (en) Ground structure, control device, and control system
JP6493174B2 (en) Electronics
JP6127287B2 (en) Circuit unit
JP6146739B2 (en) DC high voltage power supply
JP2012100413A (en) Switching power supply
JP6670704B2 (en) High voltage generator and X-ray high voltage device using the same
JP2008271752A (en) Wiring structure of full bridge circuit
JP2015159697A (en) Dc high voltage power supply device
JP6064790B2 (en) DC-DC converter
JP2018510603A (en) Circuit device with transformer with center tap and output voltage measurement
JP7209875B2 (en) Boost circuit and voltage generator
JP2013172583A (en) Switching power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170509

R150 Certificate of patent or registration of utility model

Ref document number: 6146739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250