JP2014235973A - Resin composition for electric insulation - Google Patents

Resin composition for electric insulation Download PDF

Info

Publication number
JP2014235973A
JP2014235973A JP2013118709A JP2013118709A JP2014235973A JP 2014235973 A JP2014235973 A JP 2014235973A JP 2013118709 A JP2013118709 A JP 2013118709A JP 2013118709 A JP2013118709 A JP 2013118709A JP 2014235973 A JP2014235973 A JP 2014235973A
Authority
JP
Japan
Prior art keywords
resin
general formula
resin composition
electrical insulation
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013118709A
Other languages
Japanese (ja)
Other versions
JP6410409B2 (en
Inventor
聡寛 田渕
Akitomo Tabuchi
聡寛 田渕
俊英 岡本
Toshihide Okamoto
俊英 岡本
藤井 弘文
Hirofumi Fujii
弘文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Shinko Corp
Original Assignee
Nitto Shinko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Shinko Corp filed Critical Nitto Shinko Corp
Priority to JP2013118709A priority Critical patent/JP6410409B2/en
Publication of JP2014235973A publication Critical patent/JP2014235973A/en
Application granted granted Critical
Publication of JP6410409B2 publication Critical patent/JP6410409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition for electric insulation in which surface dryability is excellent and furthermore, its cured product has high adhesion force when being heated.SOLUTION: A resin composition for electric insulation comprises a resin obtained by the mixture and reaction of a compound represented by a predetermined chemical formula, a bisphenol type epoxy resin represented by a predetermined chemical formula, and (meth) acrylic acid, and a polymerizable monomer.

Description

本発明は、電気絶縁用樹脂組成物に関する。   The present invention relates to a resin composition for electrical insulation.

従来、コンデンサー(例えば、エアコン、扇風機、洗濯機等に用いられるコンデンサー)、アマチュア(例えば、モートル、電気ドリル等に用いられるアマチュア)、電源トランス(例えば、テレビ、ステレオ、コンパクトディスクプレーヤー等に用いられる電源トランス)等の電気機器の部品(例えば、コイルなど)に絶縁性を付与するのに、電気絶縁用樹脂組成物が含浸ワニスとして用いられている。   Conventionally used for condensers (for example, condensers used in air conditioners, electric fans, washing machines, etc.), amateurs (for example, amateurs used in motors, electric drills, etc.), power transformers (for example, televisions, stereos, compact disc players, etc.) An electrical insulating resin composition is used as an impregnating varnish for imparting insulation to components (for example, coils) of electrical equipment such as a power transformer.

前記電気絶縁用樹脂組成物としては、樹脂と、反応性希釈剤たる重合性モノマーとを含有する電気絶縁用樹脂組成物が知られている(例えば、特許文献1)。   As the resin composition for electrical insulation, a resin composition for electrical insulation containing a resin and a polymerizable monomer that is a reactive diluent is known (for example, Patent Document 1).

しかし、従来の電気絶縁用樹脂組成物では、重合性モノマーを重合させる際に、空気中の酸素によって重合が阻害され、表面の硬化性(「表面乾燥性」、「空気乾燥性」とも言われ、以下「表面乾燥性」という。)が不十分となるという問題がある。   However, in the conventional resin composition for electrical insulation, when the polymerizable monomer is polymerized, the polymerization is inhibited by oxygen in the air, and the surface curability (“surface drying”, “air drying”) is also said. , Hereinafter referred to as “surface drying”) is insufficient.

斯かる観点から、重合性モノマー及び樹脂に加えて、添加剤としてのアリル位に水素を有する化合物(不飽和脂肪酸、変性ジシクロペンタジエン樹脂、変性ポリブタジエン等)、及び、金属触媒(ナフテン酸マンガン、ナフテン酸コバルト等)を含有する電気絶縁用樹脂組成物が用いられている(例えば、特許文献2)。また、重合性モノマーと、樹脂としてのアリル位に水素を有する化合物と、金属触媒(ナフテン酸マンガン、ナフテン酸コバルト等)とを含有する電気絶縁用樹脂組成物も用いられている(例えば、特許文献3)。   From such a viewpoint, in addition to the polymerizable monomer and the resin, a compound having an allylic hydrogen as an additive (unsaturated fatty acid, modified dicyclopentadiene resin, modified polybutadiene, etc.), and a metal catalyst (manganese naphthenate, A resin composition for electrical insulation containing cobalt naphthenate or the like is used (for example, Patent Document 2). In addition, a resin composition for electrical insulation containing a polymerizable monomer, a compound having hydrogen at the allylic position as a resin, and a metal catalyst (manganese naphthenate, cobalt naphthenate, etc.) is also used (for example, patents). Reference 3).

これらの電気絶縁用樹脂組成物は、アリル位の水素が金属触媒を介して空気中の酸素と反応することで過酸化物が生成され、この過酸化物が電気絶縁用樹脂組成物の硬化反応(重合性モノマーの重合反応)の反応開始種になる。そして、重合性モノマーの反応が促進され、表面乾燥性に優れたものとなるという利点がある。   In these resin compositions for electrical insulation, peroxides are generated by the reaction of hydrogen at the allylic position with oxygen in the air via a metal catalyst, and this peroxide is a curing reaction of the resin composition for electrical insulation. It becomes a reaction starting species of (polymerization reaction of polymerizable monomer). And there exists an advantage that reaction of a polymerizable monomer is accelerated | stimulated and it will become the thing excellent in surface dryness.

特開2009−102586号公報JP 2009-102586 A 特開2006−158094号公報JP 2006-158094 A 特開2007−297479号公報JP 2007-297479 A

しかしながら、昨今では、より一層表面乾燥性に優れる電気絶縁用樹脂組成物が求められるが、表面乾燥性を高めるべく、アリル位に水素を有する化合物、及び、金属触媒の含有割合を高くすると、酸化分解等の副反応が生じ、電気絶縁用樹脂組成物を硬化した硬化物が酸化劣化し易いという問題がある。   However, recently, there is a demand for a resin composition for electrical insulation that is further excellent in surface dryness. However, in order to increase the surface dryability, if the content ratio of the compound having hydrogen at the allylic position and the metal catalyst is increased, oxidation occurs. There is a problem that a side reaction such as decomposition occurs, and a cured product obtained by curing the resin composition for electrical insulation is easily oxidized and deteriorated.

本発明は、上記問題点に鑑み、表面乾燥性に優れ、更に、硬化物が加熱されても硬化物の固着力が高い電気絶縁用樹脂組成物を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a resin composition for electrical insulation that is excellent in surface drying property and has a high adhesive strength even when the cured product is heated.

本発明者らが鋭意研究したところ、電気絶縁用樹脂組成物が、一般式(1)で示される化合物、一般式(2)で示されるビスフェノール型エポキシ樹脂、及び、(メタ)アクリル酸を混合し反応させて得られる樹脂と、重合性モノマーと、を含有することにより、電気絶縁用樹脂組成物が、表面乾燥性に優れ、更に、硬化物が加熱されても硬化物の固着力が高いものとなることを見出し、本発明を想到するに至った。   When the present inventors diligently researched, the resin composition for electrical insulation mixed the compound shown by General formula (1), the bisphenol type epoxy resin shown by General formula (2), and (meth) acrylic acid. The resin composition for electrical insulation is excellent in surface drying property by containing the resin obtained by the reaction and a polymerizable monomer. Furthermore, even when the cured product is heated, the cured product has a high adhesive force. As a result, the present invention has been conceived.

Figure 2014235973
Figure 2014235973

Figure 2014235973
Figure 2014235973

即ち、上記課題を解決するための電気絶縁用樹脂組成物に係る本発明は、一般式(1)で示される化合物、一般式(2)で示されるビスフェノール型エポキシ樹脂、及び、(メタ)アクリル酸を混合し反応させて得られる樹脂と、重合性モノマーと、を含有することを特徴とする。   That is, the present invention relating to a resin composition for electrical insulation for solving the above-described problems includes a compound represented by general formula (1), a bisphenol-type epoxy resin represented by general formula (2), and (meth) acrylic. It contains a resin obtained by mixing and reacting an acid, and a polymerizable monomer.

Figure 2014235973
Figure 2014235973

Figure 2014235973
Figure 2014235973

また、本発明に係る電気絶縁用樹脂組成物においては、好ましくは、前記一般式(1)で示される化合物、前記一般式(2)で示されるビスフェノール型エポキシ樹脂、及び、(メタ)アクリル酸を混合し反応させて得られる前記樹脂は、前記一般式(1)で示される化合物と、前記一般式(2)で示されるビスフェノール型エポキシ樹脂と、(メタ)アクリル酸とをモル比0.5〜1.5:1.0:0.5〜1.5で混合し反応させて得られる樹脂である。   In the resin composition for electrical insulation according to the present invention, preferably, the compound represented by the general formula (1), the bisphenol type epoxy resin represented by the general formula (2), and (meth) acrylic acid The resin obtained by mixing and reacting a compound represented by the general formula (1), a bisphenol type epoxy resin represented by the general formula (2), and (meth) acrylic acid in a molar ratio of 0.00. It is a resin obtained by mixing and reacting at 5-1.5: 1.0: 0.5-1.5.

さらに、本発明に係る電気絶縁用樹脂組成物においては、好ましくは、前記重合性モノマーが、ジアリルフタレート及びジアリルイソフタレートの少なくとも一方を含む。   Furthermore, in the resin composition for electrical insulation according to the present invention, preferably, the polymerizable monomer contains at least one of diallyl phthalate and diallyl isophthalate.

本発明によれば、表面乾燥性に優れ、更に、硬化物が加熱されても硬化物の固着力が高い電気絶縁用樹脂組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the resin composition for electrical insulation which is excellent in surface drying property and has high adhesive force of hardened | cured material even if hardened | cured material is heated can be provided.

固着力を測定するための平角線の配置を示した側面図。The side view which showed arrangement | positioning of the flat wire for measuring the adhering force. 固着力を測定するための平角線の配置を示した正面図。The front view which showed arrangement | positioning of the flat wire for measuring the adhering force.

以下、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described.

本実施形態の電気絶縁用樹脂組成物は、一般式(1)で示される化合物、一般式(2)で示されるビスフェノール型エポキシ樹脂、及び、(メタ)アクリル酸を混合し反応させて得られる樹脂と、重合性モノマーと、を含有する。
なお、本明細書における“(メタ)アクリル酸”は、“メタクリル酸”と“アクリル酸”の何れか一方及び両方を含む概念である。
The resin composition for electrical insulation of this embodiment is obtained by mixing and reacting a compound represented by the general formula (1), a bisphenol type epoxy resin represented by the general formula (2), and (meth) acrylic acid. A resin and a polymerizable monomer are contained.
In addition, “(meth) acrylic acid” in the present specification is a concept including one or both of “methacrylic acid” and “acrylic acid”.

Figure 2014235973
Figure 2014235973

Figure 2014235973
Figure 2014235973

前記一般式(1)で示される化合物は、テトラヒドロフタル酸無水物と2−ヒドロキシエチル(メタ)アクリレートとを反応させることで得られる。
なお、本明細書における“2−ヒドロキシエチル(メタ)アクリレート”は、“2−ヒドロキシエチルメタクリレート”と“2−ヒドロキシエチルアクリレート”の何れか一方及び両方を含む概念である。
The compound represented by the general formula (1) can be obtained by reacting tetrahydrophthalic anhydride with 2-hydroxyethyl (meth) acrylate.
In addition, “2-hydroxyethyl (meth) acrylate” in the present specification is a concept including one or both of “2-hydroxyethyl methacrylate” and “2-hydroxyethyl acrylate”.

テトラヒドロフタル酸無水物と2−ヒドロキシエチル(メタ)アクリレートとの反応については、テトラヒドロフタル酸無水物と2−ヒドロキシエチル(メタ)アクリレートとをモル比1.0:0.5〜1.5で混合して反応させることが好ましい。
テトラヒドロフタル酸無水物と2−ヒドロキシエチル(メタ)アクリレートとを80〜100℃で30〜240分間加熱させることで、前記一般式(1)で示される化合物を得ることができる。
About reaction of tetrahydrophthalic anhydride and 2-hydroxyethyl (meth) acrylate, tetrahydrophthalic anhydride and 2-hydroxyethyl (meth) acrylate are molar ratio 1.0: 0.5-1.5. It is preferable to mix and react.
The compound represented by the general formula (1) can be obtained by heating tetrahydrophthalic anhydride and 2-hydroxyethyl (meth) acrylate at 80 to 100 ° C. for 30 to 240 minutes.

前記一般式(2)で示されるビスフェノール型エポキシ樹脂は、“ビスフェノールA型エポキシ樹脂(R2 は、メチル基)”と“ビスフェノールF型エポキシ樹脂(R2 は、水素)”の何れか一方及び両方を含む概念である。 The bisphenol type epoxy resin represented by the general formula (2) is one of “bisphenol A type epoxy resin (R 2 is a methyl group)” and “bisphenol F type epoxy resin (R 2 is hydrogen)” and It is a concept that includes both.

前記一般式(1)で示される化合物と、一般式(2)で示されるビスフェノール型エポキシ樹脂と、(メタ)アクリル酸との反応については、前記一般式(1)で示される化合物と、一般式(2)で示されるビスフェノール型エポキシ樹脂と、(メタ)アクリル酸とをモル比0.5〜1.5:1.0:0.5〜1.5で混合して反応させることが好ましい。
前記一般式(1)で示される化合物と、一般式(2)で示されるビスフェノール型エポキシ樹脂と、(メタ)アクリル酸とを反応させる際には、触媒を用いてもよい。該触媒としては、トリフェニルホスフィン等が挙げられる。
前記一般式(1)で示される化合物と、一般式(2)で示されるビスフェノール型エポキシ樹脂と、(メタ)アクリル酸とを反応させる際には、前記一般式(1)で示される化合物と、一般式(2)で示されるビスフェノール型エポキシ樹脂と、(メタ)アクリル酸とを100〜120℃で4〜64時間加熱して反応させる。
Regarding the reaction between the compound represented by the general formula (1), the bisphenol type epoxy resin represented by the general formula (2), and (meth) acrylic acid, the compound represented by the general formula (1), The bisphenol type epoxy resin represented by the formula (2) and (meth) acrylic acid are preferably mixed and reacted at a molar ratio of 0.5 to 1.5: 1.0: 0.5 to 1.5. .
When the compound represented by the general formula (1), the bisphenol type epoxy resin represented by the general formula (2), and (meth) acrylic acid are reacted, a catalyst may be used. Examples of the catalyst include triphenylphosphine.
When the compound represented by the general formula (1), the bisphenol type epoxy resin represented by the general formula (2), and (meth) acrylic acid are reacted, the compound represented by the general formula (1) The bisphenol type epoxy resin represented by the general formula (2) and (meth) acrylic acid are reacted by heating at 100 to 120 ° C. for 4 to 64 hours.

nは、好ましくは、0〜2、より好ましくは0〜1である。   n is preferably 0 to 2, more preferably 0 to 1.

<重合性モノマー>
本実施形態の電気絶縁用樹脂組成物は、前記重合性モノマーを反応性希釈剤として含有する。
前記重合性モノマーは、前記一般式(1)で示される樹脂とは別に、該樹脂と反応するモノマーを含む。
前記重合性モノマーとしては、ジアリルフタレート、ジアリルイソフタレート、ヒドロキシエチル(メタ)アクリレート、トリス(2−アクリロイルオキシエチル)イソシアヌレート、ジシクロペンテニルオキシエチルメタクリレート、ジシクロペンテニルアクリレート、ジシクロペンタニルアクリレート、ベンジルアクリレート、ノナンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、ジシクロペンタニルメタクリレート、ペンタメチルピペリジニルメタクリレート、テトラメチルピペリジニルメタクリレート、ベンジルメタクリレート、ネオペンチルグリコールジメタクリレート等の不飽和モノマーが挙げられる。
前記重合性モノマーとしては、高引火点及び長期保存性(安定性)の観点から、ジアリルフタレート及びジアリルイソフタレートの少なくとも一方を含むことが好ましい。
前記重合性モノマーの含有量としては、前記樹脂100質量部に対して10〜200質量部が好ましく、20〜100質量部がより好ましい。
<Polymerizable monomer>
The resin composition for electrical insulation of this embodiment contains the polymerizable monomer as a reactive diluent.
Apart from the resin represented by the general formula (1), the polymerizable monomer includes a monomer that reacts with the resin.
Examples of the polymerizable monomer include diallyl phthalate, diallyl isophthalate, hydroxyethyl (meth) acrylate, tris (2-acryloyloxyethyl) isocyanurate, dicyclopentenyloxyethyl methacrylate, dicyclopentenyl acrylate, dicyclopentanyl acrylate, Unsaturated monomers such as benzyl acrylate, nonanediol diacrylate, 1,4-butanediol dimethacrylate, dicyclopentanyl methacrylate, pentamethylpiperidinyl methacrylate, tetramethylpiperidinyl methacrylate, benzyl methacrylate, neopentyl glycol dimethacrylate Is mentioned.
The polymerizable monomer preferably contains at least one of diallyl phthalate and diallyl isophthalate from the viewpoint of a high flash point and long-term storage stability (stability).
As content of the said polymerizable monomer, 10-200 mass parts is preferable with respect to 100 mass parts of said resin, and 20-100 mass parts is more preferable.

<その他の添加剤>
本実施形態の電気絶縁用樹脂組成物は、本発明の目的に反しない範囲において、上記の他に当該技術分野で用いられる種々の添加剤を含有してもよい。
例えば、本実施形態の電気絶縁用樹脂組成物は、更に、アリル位に水素を有する化合物、及び、金属触媒としてのナフテン酸またはオクチル酸の金属塩(コバルト、亜鉛、ジルコニウム、マンガン等)を含有してもよい。
さらに、本実施形態の電気絶縁用樹脂組成物は、更に、着色剤、消泡剤、レベリング剤等を含有してもよい。
<Other additives>
The resin composition for electrical insulation of the present embodiment may contain various additives used in the technical field in addition to the above as long as the object of the present invention is not adversely affected.
For example, the resin composition for electrical insulation of this embodiment further contains a compound having hydrogen at the allylic position, and a metal salt of naphthenic acid or octylic acid (cobalt, zinc, zirconium, manganese, etc.) as a metal catalyst. May be.
Furthermore, the resin composition for electrical insulation of the present embodiment may further contain a colorant, an antifoaming agent, a leveling agent and the like.

本実施形態の電気絶縁用樹脂組成物の粘度は、好ましくは3.0Pa・sec未満、より好ましくは0.5Pa・sec以上3.0Pa・sec未満、さらに好ましくは1.0〜2.0Pa・secである。
本実施形態の電気絶縁用樹脂組成物は、粘度が3.0Pa・sec未満であることにより、対象物に含浸しやすいという利点を有する。粘度が0.5Pa・sec以上であることにより、含浸する対象物から垂れにくいという利点を有する。
なお、電気絶縁用樹脂組成物の粘度(25℃)は、JIS K 5600−2−2:1999に準じて測定した値を意味する。
The viscosity of the resin composition for electrical insulation of the present embodiment is preferably less than 3.0 Pa · sec, more preferably 0.5 Pa · sec or more and less than 3.0 Pa · sec, further preferably 1.0 to 2.0 Pa · sec. sec.
The resin composition for electrical insulation of this embodiment has an advantage that the object is easily impregnated because the viscosity is less than 3.0 Pa · sec. When the viscosity is 0.5 Pa · sec or more, there is an advantage that it is difficult to sag from the object to be impregnated.
In addition, the viscosity (25 degreeC) of the resin composition for electrical insulation means the value measured according to JISK5600-2-2: 1999.

また、本実施形態の電気絶縁用樹脂組成物は、硬化することで、体積抵抗率が、好ましくは、1.0×1013Ωcm以上、より好ましくは1.0×1014〜1.0×1016Ωcmとなる。
なお、体積抵抗率は、JIS C 2139:2008に準じて測定した値を意味する。
Moreover, the resin composition for electrical insulation of the present embodiment is cured to have a volume resistivity of preferably 1.0 × 10 13 Ωcm or more, more preferably 1.0 × 10 14 to 1.0 ×. 10 16 Ωcm.
The volume resistivity means a value measured according to JIS C 2139: 2008.

尚、本実施形態の電気絶縁用樹脂組成物は、上記構成を有するものであったが、本発明の電気絶縁用樹脂組成物は、上記構成に限定されず、適宜設計変更可能である。   In addition, although the resin composition for electrical insulation of this embodiment has the said structure, the resin composition for electrical insulation of this invention is not limited to the said structure, and can change a design suitably.

次に、実施例および比較例を挙げて本発明についてさらに具体的に説明する。   Next, the present invention will be described more specifically with reference to examples and comparative examples.

(樹脂1)
2−ヒドロキシエチルメタクリレート0.9molに、触媒としてのp−ベンゾキノン(2−ヒドロキシエチルメタクリレート、テトラヒドロフタル酸無水物、メタクリル酸、及び、ビスフェノールA型エポキシ樹脂の合計量1質量部に対して、4.0×10-4質量部)を加え溶解させた後、テトラヒドロフタル酸無水物0.9molを加えて90℃で3時間反応させた。
この反応液に、メタクリル酸0.9mol、ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ社製、商品名:AER250)1.0mol、及び、触媒としてのトリフェニルホスフィン(2−ヒドロキシエチルメタクリレート、テトラヒドロフタル酸無水物、メタクリル酸、及び、ビスフェノールA型エポキシ樹脂の合計量1質量部に対して、4.0×10-4質量部)を溶解させ、110℃で16時間反応させて樹脂1を得た。
(Resin 1)
To 0.9 mol of 2-hydroxyethyl methacrylate, p-benzoquinone (2-hydroxyethyl methacrylate, tetrahydrophthalic anhydride, methacrylic acid, and bisphenol A type epoxy resin in a total amount of 1 part by mass is used as a catalyst. after .0 × 10 -4 parts by weight) added to dissolve, it was added tetrahydrophthalic anhydride 0.9mol allowed to react for 3 hours at 90 ° C..
In this reaction solution, 0.9 mol of methacrylic acid, 1.0 mol of bisphenol A type epoxy resin (manufactured by Asahi Kasei Chemicals, trade name: AER250), and triphenylphosphine (2-hydroxyethyl methacrylate, tetrahydrophthalic anhydride as a catalyst) Product, methacrylic acid, and bisphenol A type epoxy resin in a total amount of 1 part by mass, 4.0 × 10 −4 parts by mass) were dissolved and reacted at 110 ° C. for 16 hours to obtain Resin 1.

(樹脂2)
メタクリル酸1.8mol、ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ社製、商品名:AER250)1.0mol、触媒としてのp−ベンゾキノン(仕込比)、触媒としてのトリフェニルホスフィン(メタクリル酸、及び、ビスフェノールA型エポキシ樹脂の合計量1質量部に対して、4.0×10-4質量部)を溶解させ、110℃で16時間反応させて樹脂2を得た。
(Resin 2)
1.8 mol of methacrylic acid, 1.0 mol of bisphenol A type epoxy resin (manufactured by Asahi Kasei Chemicals, trade name: AER250), p-benzoquinone (charge ratio) as a catalyst, triphenylphosphine (methacrylic acid and bisphenol as a catalyst) 4.0 × 10 −4 parts by mass) of 1 part by mass of the total amount of the A-type epoxy resin was dissolved and reacted at 110 ° C. for 16 hours to obtain Resin 2.

(樹脂3)
2−ヒドロキシエチルメタクリレート1.8molに、触媒としてのp−ベンゾキノン(2−ヒドロキシエチルメタクリレート、テトラヒドロフタル酸無水物、及び、ビスフェノールA型エポキシ樹脂の合計量1質量部に対して、4.0×10-4質量部)を加え溶解させた後、テトラヒドロフタル酸無水物1.8molを加えて90℃で3時間反応させた。
この反応液に、ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ社製、商品名:AER250)1.0mol、及び、触媒としてのトリフェニルホスフィン(2−ヒドロキシエチルメタクリレート、テトラヒドロフタル酸無水物、及び、ビスフェノールA型エポキシ樹脂の合計量1質量部に対して、4.0×10-4質量部)を溶解させ、そのまま110℃で16時間反応させて樹脂3を得た。
(Resin 3)
To 1.8 mol of 2-hydroxyethyl methacrylate, p-benzoquinone (2-hydroxyethyl methacrylate, tetrahydrophthalic anhydride, and bisphenol A type epoxy resin as a catalyst in an amount of 4.0 × 10 −4 parts by mass) was added and dissolved, and then 1.8 mol of tetrahydrophthalic anhydride was added and reacted at 90 ° C. for 3 hours.
In this reaction solution, 1.0 mol of bisphenol A type epoxy resin (manufactured by Asahi Kasei Chemicals, trade name: AER250), and triphenylphosphine (2-hydroxyethyl methacrylate, tetrahydrophthalic anhydride, and bisphenol A as a catalyst) 4.0 × 10 −4 parts by mass) with respect to 1 part by mass of the total amount of type epoxy resin, and reacted as it is at 110 ° C. for 16 hours to obtain Resin 3.

(樹脂4)
ビスフェノールA型エポキシ樹脂をビスフェノールF型エポキシ樹脂に代えたこと以外は、樹脂1と同じ方法によって樹脂4を得た。
(Resin 4)
Resin 4 was obtained in the same manner as Resin 1 except that bisphenol A type epoxy resin was replaced with bisphenol F type epoxy resin.

(樹脂5)
メタクリル酸をアクリル酸に代えたこと以外は、樹脂1と同じ方法によって樹脂5を得た。
(Resin 5)
Resin 5 was obtained by the same method as Resin 1 except that methacrylic acid was replaced with acrylic acid.

(樹脂6)
2−ヒドロキシエチルメタクリレートを2−ヒドロキシエチルアクリレートに代えたこと以外は、樹脂1と同じ方法によって樹脂6を得た。
(Resin 6)
Resin 6 was obtained by the same method as Resin 1 except that 2-hydroxyethyl methacrylate was replaced with 2-hydroxyethyl acrylate.

(実施例1〜5、及び、比較例1〜3)
上記樹脂1〜6、重合性モノマーとしてのジアリルフタレート(DAP)、重合性モノマーとしてのジアリルイソフタレート(iso−DAP)、金属触媒(60質量%ナフテン酸マンガン(NapMn))、末端変性ポリブタジエン(日本曹達社製、BF−1000)(アリル位に水素を有する化合物)を用いて、表1に示す配合割合の実施例及び比較例の電気絶縁用樹脂組成物を作製した。
(Examples 1-5 and Comparative Examples 1-3)
Resins 1-6, diallyl phthalate (DAP) as polymerizable monomer, diallyl isophthalate (iso-DAP) as polymerizable monomer, metal catalyst (60 mass% manganese naphthenate (NapMn)), terminal-modified polybutadiene (Japan) Using the product of Soda Co., Ltd. (BF-1000) (compound having hydrogen at the allylic position), resin compositions for electrical insulation of Examples and Comparative Examples having the blending ratios shown in Table 1 were prepared.

(評価)
(耐熱性の評価(200℃での固着力の測定))
図1に、耐熱性評価のための平角線の配置を示した側面図を示す。また、図2に、固着力を測定するための平角線の配置を示した正面図を示す。
平角線1(日立マグネットワイヤ社製、商品名:AIW、幅:3.2mm、厚さ:1.8mm)について、長さが50mmのものを2本、長さが80mmのものを2本用意し、これらの平角線1及びエナメル線2から図1及び図2に示す試料を作製し、この試料に電気絶縁用樹脂組成物を含浸させた。そして、電気絶縁用樹脂組成物を含浸させた試料を表1の条件で加熱して電気絶縁用樹脂組成物を硬化させて試験片を作製した。
そして、該試験片の200℃の温度条件下での固着力をJIS C 2103:2006のストラッカ法に準じて測定した。
(Evaluation)
(Evaluation of heat resistance (measurement of adhesive strength at 200 ° C))
In FIG. 1, the side view which showed arrangement | positioning of the flat wire for heat resistance evaluation is shown. FIG. 2 is a front view showing the arrangement of rectangular wires for measuring the fixing force.
For flat wire 1 (manufactured by Hitachi Magnet Wire Co., Ltd., trade name: AIW, width: 3.2 mm, thickness: 1.8 mm), two 50 mm long and two 80 mm long are prepared. Then, a sample shown in FIGS. 1 and 2 was prepared from the flat wire 1 and the enamel wire 2, and this sample was impregnated with the resin composition for electrical insulation. And the sample which impregnated the resin composition for electrical insulation was heated on the conditions of Table 1, the resin composition for electrical insulation was hardened, and the test piece was produced.
And the adhering force under the temperature condition of 200 ° C. of the test piece was measured according to the JIS C 2103: 2006 Stracker method.

(表面乾燥性(表面硬化性))
鉄板の表面に電気絶縁用樹脂組成物を厚み20μm程度に塗布し、表1の条件で硬化させ、その直後に硬化物の表面を指で触ってタックの有無(指への粘着物の付着)を確認した。
○:タックが確認されなかった。
×:タックが確認された。
(Surface drying (surface hardening))
A resin composition for electrical insulation is applied to the surface of the iron plate to a thickness of about 20 μm and cured under the conditions shown in Table 1. Immediately after that, the surface of the cured product is touched with a finger to check whether or not there is a tack (attachment of adhesive to the finger). It was confirmed.
○: Tack was not confirmed.
X: Tack was confirmed.

試験結果を表1に示す。   The test results are shown in Table 1.

Figure 2014235973
Figure 2014235973

表1に示すように、本発明の範囲内である実施例1〜5の電気絶縁用樹脂組成物は、比較例1、2に比べて、表面乾燥性に優れていた。
また、実施例1〜5の電気絶縁用樹脂組成物は、比較例3に比べて、200℃での硬化物の固着力が高かった。
As shown in Table 1, the resin compositions for electrical insulation of Examples 1 to 5 that are within the scope of the present invention were superior in surface drying properties as compared with Comparative Examples 1 and 2.
Moreover, the resin composition for electrical insulation of Examples 1-5 had a high adhesive strength of the cured product at 200 ° C. as compared with Comparative Example 3.

この結果は、以下の理由によるものと考えられる。
すなわち、実施例1で用いた樹脂1は、一般式(3)で示される樹脂(ここで、x及びyの何れか一方が一般式(4)であり、他方が下記一般式(5)であり、一般式(3)のmと一般式(2)のnとは、「n=m+1」の関係にある。)を有し、比較例2で用いた樹脂2は、一般式(6)で示される樹脂であり、比較例3で用いた樹脂3は、下記一般式(7)で示される樹脂であると考えられる。
一般式(3)で示される樹脂は、一般式(6)で示される樹脂と対比すると、脂環式の不飽和基を備える点で異なる。実施例1の電気絶縁用樹脂組成物は、比較例2の電気絶縁用樹脂組成物に比べて、表面乾燥性に優れていたのは、実施例1で用いた樹脂がこの脂環式の不飽和基を有し、そして、この脂環式の不飽和基が表面乾燥性を高める役割をしていることによるものと考えられる。
一般式(3)で示される樹脂と一般式(7)で示される樹脂とを対比すると、一般式(3)で示される樹脂が、1分子に脂環式の不飽和基を1つのみ有するのに対し、一般式(5)で示される樹脂が、1分子に脂環式の不飽和基を2つ有する点で異なる。実施例1の電気絶縁用樹脂組成物は、比較例3の電気絶縁用樹脂組成物に比べて、200℃での硬化物の固着力が高かったのは、実施例1で用いた樹脂が、比較例3で用いた樹脂よりも嵩高い脂環式の不飽和基の含有割合が小さいので、立体障害が生じ難く、その結果、実施例1で用いた樹脂が、重合性モノマーの架橋剤としての役割を十分に発揮していることや、主鎖において、原子の数に対する芳香環の数の比が高いので、樹脂骨格が剛直となっていることによるものと考えられる。
なお、実施例1で用いた樹脂1は、一般式(6)で示される樹脂や、一般式(7)で示される樹脂を含有しうるが、単に樹脂2及び樹脂3を有する比較例1に比べて、実施例1は、良好な結果が得られていることからも、実施例1が良好な結果となったのは、一般式(3)で示される樹脂を含有することによることが伺える。
また、上述した実施例1を含め実施例1〜5で用いた樹脂1、4〜6は、一般式(8)で示された樹脂(ここで、x及びyの何れか一方が一般式(9)であり、他方が下記一般式(10)であり、一般式(8)のmと一般式(2)のnとは、「n=m+1」の関係にある。)を有すると考えられ、実施例2〜5も実施例1と同様な理由で、良好な結果が得られたと考えられる。
さらに、このことから、実施例で用いた重合性モノマー以外の重合性モノマーを用いた場合でも同様な効果が発揮され得る。
This result is considered to be due to the following reason.
That is, the resin 1 used in Example 1 is a resin represented by the general formula (3) (wherein one of x and y is the general formula (4), and the other is the following general formula (5). And m in the general formula (3) and n in the general formula (2) have a relationship of “n = m + 1”. The resin 2 used in Comparative Example 2 has the general formula (6). The resin 3 used in Comparative Example 3 is considered to be a resin represented by the following general formula (7).
The resin represented by the general formula (3) is different from the resin represented by the general formula (6) in that it includes an alicyclic unsaturated group. The resin composition for electrical insulation of Example 1 was superior to the resin composition for electrical insulation of Comparative Example 2 in terms of surface dryness because the resin used in Example 1 was not alicyclic. This is considered to be due to having a saturated group and the role of this alicyclic unsaturated group to enhance the surface drying property.
When the resin represented by the general formula (3) and the resin represented by the general formula (7) are compared, the resin represented by the general formula (3) has only one alicyclic unsaturated group per molecule. On the other hand, the resin represented by the general formula (5) is different in that it has two alicyclic unsaturated groups per molecule. The resin composition for electrical insulation of Example 1 had higher adhesive strength of the cured product at 200 ° C. than the resin composition for electrical insulation of Comparative Example 3, because the resin used in Example 1 Since the content of the alicyclic unsaturated group that is bulky than the resin used in Comparative Example 3 is small, steric hindrance is unlikely to occur, and as a result, the resin used in Example 1 is used as a crosslinking agent for the polymerizable monomer. This is considered to be due to the fact that the resin skeleton is rigid because the ratio of the number of aromatic rings to the number of atoms in the main chain is high.
The resin 1 used in Example 1 can contain the resin represented by the general formula (6) and the resin represented by the general formula (7). In comparison, since Example 1 has obtained good results, it can be inferred that the results of Example 1 were good because it contained the resin represented by the general formula (3). .
Further, the resins 1 and 4 to 6 used in Examples 1 to 5 including Example 1 described above are the resins represented by the general formula (8) (wherein either one of x and y is a general formula ( 9) and the other is the following general formula (10), and m in the general formula (8) and n in the general formula (2) are considered to have a relationship of “n = m + 1”. In Examples 2 to 5, it is considered that good results were obtained for the same reason as Example 1.
Furthermore, from this, the same effect can be exhibited even when a polymerizable monomer other than the polymerizable monomer used in the examples is used.

Figure 2014235973
Figure 2014235973

Figure 2014235973
Figure 2014235973

Figure 2014235973
Figure 2014235973

Figure 2014235973
Figure 2014235973

Figure 2014235973
Figure 2014235973

Figure 2014235973
Figure 2014235973

Figure 2014235973
Figure 2014235973

Figure 2014235973
Figure 2014235973

従って、本発明によれば、表面乾燥性に優れ、更に、硬化物が加熱されても硬化物の固着力が高い電気絶縁用樹脂組成物を提供することができることがわかる。   Therefore, according to this invention, it turns out that the resin composition for electrical insulation which is excellent in surface drying property and has high adhesive force of hardened | cured material even if hardened | cured material is heated can be provided.

1:平角線、2:エナメル線   1: Flat wire, 2: Enamel wire

Claims (3)

一般式(1)で示される化合物、一般式(2)で示されるビスフェノール型エポキシ樹脂、及び、(メタ)アクリル酸を混合し反応させて得られる樹脂と、重合性モノマーと、を含有することを特徴とする電気絶縁用樹脂組成物。
Figure 2014235973
Figure 2014235973
Containing a compound represented by the general formula (1), a bisphenol type epoxy resin represented by the general formula (2), and a resin obtained by mixing and reacting with (meth) acrylic acid, and a polymerizable monomer. An electrically insulating resin composition characterized by the above.
Figure 2014235973
Figure 2014235973
前記一般式(1)で示される化合物、前記一般式(2)で示されるビスフェノール型エポキシ樹脂、及び、(メタ)アクリル酸を混合し反応させて得られる前記樹脂は、前記一般式(1)で示される化合物と、前記一般式(2)で示されるビスフェノール型エポキシ樹脂と、(メタ)アクリル酸とをモル比0.5〜1.5:1.0:0.5〜1.5で混合し反応させて得られる樹脂である請求項1に記載の電気絶縁用樹脂組成物。   The resin obtained by mixing and reacting the compound represented by the general formula (1), the bisphenol type epoxy resin represented by the general formula (2), and (meth) acrylic acid is the general formula (1). The bisphenol type epoxy resin represented by the general formula (2) and (meth) acrylic acid in a molar ratio of 0.5 to 1.5: 1.0: 0.5 to 1.5 The resin composition for electrical insulation according to claim 1, which is a resin obtained by mixing and reacting. 前記重合性モノマーが、ジアリルフタレート及びジアリルイソフタレートの少なくとも一方を含む請求項1又は2に記載の電気絶縁用樹脂組成物。   The resin composition for electrical insulation according to claim 1 or 2, wherein the polymerizable monomer contains at least one of diallyl phthalate and diallyl isophthalate.
JP2013118709A 2013-06-05 2013-06-05 Resin composition for electrical insulation Active JP6410409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013118709A JP6410409B2 (en) 2013-06-05 2013-06-05 Resin composition for electrical insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013118709A JP6410409B2 (en) 2013-06-05 2013-06-05 Resin composition for electrical insulation

Publications (2)

Publication Number Publication Date
JP2014235973A true JP2014235973A (en) 2014-12-15
JP6410409B2 JP6410409B2 (en) 2018-10-24

Family

ID=52138511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013118709A Active JP6410409B2 (en) 2013-06-05 2013-06-05 Resin composition for electrical insulation

Country Status (1)

Country Link
JP (1) JP6410409B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057573A (en) * 2021-11-24 2022-02-18 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Preparation method of benzyl methacrylate
CN115160883A (en) * 2022-06-17 2022-10-11 河南省亚安绝缘材料厂有限公司 Oil-resistant epoxy modified acrylic coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300220A (en) * 1989-05-15 1990-12-12 Showa Denko Kk Allylic thermosetting resin composition
JPH11140141A (en) * 1997-11-07 1999-05-25 Mitsubishi Rayon Co Ltd Syrup composition, primer for reinforcing method, reinforcing material for structure, and resin mortar or resin concrete
JP2002184238A (en) * 2000-12-19 2002-06-28 Hitachi Chem Co Ltd Electrical insulating resin composition, and manufacturing method of electric equipment using the same
JP2008179740A (en) * 2007-01-26 2008-08-07 Showa Highpolymer Co Ltd Radically curable resin composition for film and film prepared by using it
JP2013053247A (en) * 2011-09-05 2013-03-21 Kyocera Chemical Corp Resin composition and coil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300220A (en) * 1989-05-15 1990-12-12 Showa Denko Kk Allylic thermosetting resin composition
JPH11140141A (en) * 1997-11-07 1999-05-25 Mitsubishi Rayon Co Ltd Syrup composition, primer for reinforcing method, reinforcing material for structure, and resin mortar or resin concrete
JP2002184238A (en) * 2000-12-19 2002-06-28 Hitachi Chem Co Ltd Electrical insulating resin composition, and manufacturing method of electric equipment using the same
JP2008179740A (en) * 2007-01-26 2008-08-07 Showa Highpolymer Co Ltd Radically curable resin composition for film and film prepared by using it
JP2013053247A (en) * 2011-09-05 2013-03-21 Kyocera Chemical Corp Resin composition and coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057573A (en) * 2021-11-24 2022-02-18 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Preparation method of benzyl methacrylate
CN115160883A (en) * 2022-06-17 2022-10-11 河南省亚安绝缘材料厂有限公司 Oil-resistant epoxy modified acrylic coating

Also Published As

Publication number Publication date
JP6410409B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP5337762B2 (en) Unsaturated polyester resin composition for fixing coils
JP6410409B2 (en) Resin composition for electrical insulation
JP5202284B2 (en) Thermosetting resin composition
JP6031321B2 (en) Resin composition for electrical insulation
JP5690759B2 (en) Thermosetting resin composition, cured product, conductive wire, coil for electrical equipment, and electrical equipment
JP2016197548A (en) Resin composition for electrical insulation
TWI471348B (en) Epoxy resin compositions comprising epoxy and vinyl ester groups
JP4947333B2 (en) Resin composition for electrical insulation and method for producing electrical equipment insulator using the same
JP2011225767A (en) Resin composition for electric insulation and electric appliance using the composition
JP2009117335A (en) Resin composition for electric equipment insulation and electric equipment
JP2015002095A (en) Resin composition for electric insulation and manufacturing method of insulated electric appliance using the same
JP2016054121A (en) Resin composition for electric insulation
JP5202439B2 (en) Thermosetting resin composition
JP6759139B2 (en) Resin composition for coil impregnation and coil for automobile motor
JP2007297479A (en) Resin composition and method for producing electric equipment insulator
JP2013023674A (en) Thermosetting resin composition and coil manufactured by using the same
JP3876709B2 (en) Liquid thermosetting resin composition, liquid thermosetting resin composition manufacturing method, and insulating coil manufacturing method
JP4427703B2 (en) Thermosetting resin composition and coil using the same
JP2011079966A (en) Electrical equipment insulating resin composition and electrical equipment using the same
JP2006143888A (en) Resin composition, resin composition for electric insulation and method for producing insulated electric equipment
JP2005206788A (en) Resin composition, resin composition for electric insulation and method for producing insulated electric instrument
JP2002226526A (en) Unsaturated polyester resin composition
JP6236238B2 (en) Resin composition for electrical insulation
JP2010244965A (en) Electrical insulation resin composition, and method of manufacturing electric equipment insulating material using the same
JP2014045120A (en) Resin composition for electric insulation, and electric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180925

R150 Certificate of patent or registration of utility model

Ref document number: 6410409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250