JP2014235271A - Zoom lens, optical device, and method for manufacturing the zoom lens - Google Patents

Zoom lens, optical device, and method for manufacturing the zoom lens Download PDF

Info

Publication number
JP2014235271A
JP2014235271A JP2013115937A JP2013115937A JP2014235271A JP 2014235271 A JP2014235271 A JP 2014235271A JP 2013115937 A JP2013115937 A JP 2013115937A JP 2013115937 A JP2013115937 A JP 2013115937A JP 2014235271 A JP2014235271 A JP 2014235271A
Authority
JP
Japan
Prior art keywords
lens
lens group
component
positive
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013115937A
Other languages
Japanese (ja)
Other versions
JP6191246B2 (en
Inventor
佐藤 治夫
Haruo Sato
治夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013115937A priority Critical patent/JP6191246B2/en
Publication of JP2014235271A publication Critical patent/JP2014235271A/en
Application granted granted Critical
Publication of JP6191246B2 publication Critical patent/JP6191246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance zoom lens that successfully corrects various kinds of aberration and has small degradation in optical performance during vibration control, and others.SOLUTION: A zoom lens comprises, in order from an object side, a first lens group G1 having negative refractive power and a second lens group G2 having positive refractive power. The first lens group G1 includes, in order from the object side, at least one negative lens component and a positive lens component. The second lens group G2 includes, in order from the object side, a positive lens component and a cemented lens composed of a negative lens and a positive lens. A distance between the first lens group G1 and the second lens group G2 changes during magnification change from a wide-angle end state to a telephoto end state, the positive lens component in the second lens group G2 moves so as to include a component in a direction orthogonal to an optical axis, and a predetermined conditional expression is satisfied.

Description

本発明は、ズームレンズ、光学装置、ズームレンズの製造方法に関する。   The present invention relates to a zoom lens, an optical device, and a method for manufacturing a zoom lens.

従来、負の屈折力を有するレンズ群を最も物体側に備えた所謂負先行ズームレンズであって、防振機能を備えたものが多数提案されている(例えば、特許文献1を参照。)。   Conventionally, many so-called negative advanced zoom lenses having a lens group having negative refractive power closest to the object side and having an anti-vibration function have been proposed (see, for example, Patent Document 1).

特開2011−107269号公報JP 2011-107269 A

しかしながら、上述のような従来のズームレンズは、諸収差の補正が不十分であるという問題があった。   However, the conventional zoom lens as described above has a problem that correction of various aberrations is insufficient.

そこで本発明は上記問題点に鑑みてなされたものであり、諸収差を良好に補正し、防振時の光学性能の劣化が小さい高性能なズームレンズ、該ズームレンズを備えた光学装置、及び該ズームレンズの製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems, and is a high-performance zoom lens that satisfactorily corrects various aberrations and has little deterioration in optical performance during image stabilization, an optical apparatus including the zoom lens, and An object of the present invention is to provide a method for manufacturing the zoom lens.

上記課題を解決するために本発明は、
物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなり、
前記第1レンズ群が、物体側から順に、少なくとも1つの負レンズ成分と、正レンズ成分とを有し、
前記第2レンズ群が、物体側から順に、正レンズ成分と、負レンズと正レンズとの接合レンズとを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、
前記第2レンズ群における前記正レンズ成分が、光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とするズームレンズを提供する。
0.10 < Bfw/D2 < 0.90
1.10 < fvr/f2 < 3.30
但し、
Bfw:広角端状態における前記ズームレンズのバックフォーカス
D2 :前記第2レンズ群の総厚
fvr:前記第2レンズ群における前記正レンズ成分の焦点距離
f2 :前記第2レンズ群の焦点距離
In order to solve the above problems, the present invention
In order from the object side, the first lens group having a negative refractive power and a second lens group having a positive refractive power,
The first lens group has at least one negative lens component and a positive lens component in order from the object side,
The second lens group includes, in order from the object side, a positive lens component and a cemented lens of a negative lens and a positive lens.
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes,
The positive lens component in the second lens group moves so as to include a component in a direction orthogonal to the optical axis,
Provided is a zoom lens that satisfies the following conditional expression.
0.10 <Bfw / D2 <0.90
1.10 <fvr / f2 <3.30
However,
Bfw: Back focus D2 of the zoom lens in the wide-angle end state D2: Total thickness of the second lens group fvr: Focal length of the positive lens component in the second lens group f2: Focal length of the second lens group

また本発明は、
前記ズームレンズを有することを特徴とする光学装置を提供する。
The present invention also provides
An optical apparatus comprising the zoom lens is provided.

また本発明は、
物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなるズームレンズの製造方法であって、
前記第1レンズ群が、物体側から順に、少なくとも1つの負レンズ成分と、正レンズ成分とを有するようにし、
前記第2レンズ群が、物体側から順に、正レンズ成分と、負レンズと正レンズとの接合レンズとを有するようにし、
前記第2レンズ群が以下の条件式を満足するようにし、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化するようにし、
前記第2レンズ群における前記正レンズ成分が、光軸と直交する方向の成分を含むように移動するようにすることを特徴とするズームレンズの製造方法を提供する。
0.10 < Bfw/D2 < 0.90
1.10 < fvr/f2 < 3.30
但し、
Bfw:広角端状態における前記ズームレンズのバックフォーカス
D2 :前記第2レンズ群の総厚
fvr:前記第2レンズ群における前記正レンズ成分の焦点距離
f2 :前記第2レンズ群の焦点距離
The present invention also provides
In order from the object side, a zoom lens manufacturing method including a first lens group having a negative refractive power and a second lens group having a positive refractive power,
The first lens group has at least one negative lens component and a positive lens component in order from the object side,
The second lens group includes, in order from the object side, a positive lens component and a cemented lens of a negative lens and a positive lens.
The second lens group satisfies the following conditional expression:
When changing the magnification from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group is changed.
The zoom lens manufacturing method is characterized in that the positive lens component in the second lens group moves so as to include a component in a direction orthogonal to the optical axis.
0.10 <Bfw / D2 <0.90
1.10 <fvr / f2 <3.30
However,
Bfw: Back focus D2 of the zoom lens in the wide-angle end state D2: Total thickness of the second lens group fvr: Focal length of the positive lens component in the second lens group f2: Focal length of the second lens group

本発明によれば、諸収差を良好に補正し、防振時の光学性能の劣化が小さい高性能なズームレンズ、該ズームレンズを備えた光学装置、及び該ズームレンズの製造方法を提供することができる。   According to the present invention, it is possible to provide a high-performance zoom lens that satisfactorily corrects various aberrations and has a small deterioration in optical performance during image stabilization, an optical device including the zoom lens, and a method for manufacturing the zoom lens. Can do.

図1は、本願の第1実施例に係るズームレンズの広角端状態における無限遠物体合焦時の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the configuration of the zoom lens according to the first embodiment of the present application when focusing on an object at infinity in the wide-angle end state. 図2(a)、図2(b)、及び図2(c)はそれぞれ、本願の第1実施例に係るズームレンズの広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。2 (a), 2 (b), and 2 (c) respectively show the infinite object combination in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens according to Example 1 of the present application. FIG. 5 is a diagram showing various aberrations during focusing. 図3(a)、図3(b)、及び図3(c)はそれぞれ、本願の第1実施例に係るズームレンズの広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。3 (a), 3 (b), and 3 (c) respectively show the infinite object combination in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens according to Example 1 of the present application. It is a coma aberration figure at the time of performing anti-vibration at the time of a focus. 図4は、本願の第2実施例に係るズームレンズの広角端状態における無限遠物体合焦時の構成を示す断面図である。FIG. 4 is a cross-sectional view showing the configuration of the zoom lens according to the second embodiment of the present application when focusing on an object at infinity in the wide-angle end state. 図5(a)、図5(b)、及び図5(c)はそれぞれ、本願の第2実施例に係るズームレンズの広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 5 (a), 5 (b), and 5 (c) respectively show infinite objects in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens according to the second embodiment of the present application. FIG. 5 is a diagram showing various aberrations during focusing. 図6(a)、図6(b)、及び図6(c)はそれぞれ、本願の第2実施例に係るズームレンズの広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。6 (a), 6 (b), and 6 (c) respectively show the infinite object combination in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens according to the second embodiment of the present application. It is a coma aberration figure at the time of performing anti-vibration at the time of a focus. 図7は、本願の第3実施例に係るズームレンズの広角端状態における無限遠物体合焦時の構成を示す断面図である。FIG. 7 is a cross-sectional view showing the configuration of the zoom lens according to the third embodiment of the present application when focusing on an object at infinity in the wide-angle end state. 図8(a)、図8(b)、及び図8(c)はそれぞれ、本願の第3実施例に係るズームレンズの広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。8 (a), 8 (b), and 8 (c) respectively show the infinite object combination in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens according to Example 3 of the present application. FIG. 5 is a diagram showing various aberrations during focusing. 図9(a)、図9(b)、及び図9(c)はそれぞれ、本願の第3実施例に係るズームレンズの広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。9 (a), 9 (b), and 9 (c) respectively show the infinite object combination in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens according to Example 3 of the present application. It is a coma aberration figure at the time of performing anti-vibration at the time of a focus. 図10は、本願のズームレンズを備えたカメラの構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a camera including the zoom lens of the present application. 図11は、本願のズームレンズの製造方法の概略を示す図である。FIG. 11 is a diagram showing an outline of a manufacturing method of the zoom lens of the present application.

以下、本願のズームレンズ、光学装置及びズームレンズの製造方法について説明する。
本願のズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなり、前記第1レンズ群が、物体側から順に、少なくとも1つの負レンズ成分と、正レンズ成分とを有し、前記第2レンズ群が、物体側から順に、正レンズ成分と、負レンズと正レンズとの接合レンズとを有し、広角端状態から望遠端状態への変倍時に前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群における前記正レンズ成分が、光軸と直交する方向の成分を含むように移動し、以下の条件式(1)、(2)を満足することを特徴とする。
(1) 0.10 < Bfw/D2 < 0.90
(2) 1.10 < fvr/f2 < 3.30
但し、
Bfw:広角端状態における前記ズームレンズのバックフォーカス(前記ズームレンズ中にオプティカルローパスフィルタ又はこれに相当するダミーガラスが配置されている場合には、これらを取り除いた状態のバックフォーカス、即ち空気換算バックフォーカス)
D2 :前記第2レンズ群の総厚
fvr:前記第2レンズ群における前記正レンズ成分の焦点距離
f2 :前記第2レンズ群の焦点距離
Hereinafter, the zoom lens, the optical device, and the zoom lens manufacturing method of the present application will be described.
The zoom lens according to the present application includes, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power, and the first lens group includes at least the order from the object side. One negative lens component and a positive lens component, and the second lens group includes, in order from the object side, a positive lens component and a cemented lens of a negative lens and a positive lens, and from the wide-angle end state. At the time of zooming to the telephoto end state, the distance between the first lens group and the second lens group changes, and the positive lens component in the second lens group includes a component in a direction perpendicular to the optical axis. And the following conditional expressions (1) and (2) are satisfied.
(1) 0.10 <Bfw / D2 <0.90
(2) 1.10 <fvr / f2 <3.30
However,
Bfw: Back focus of the zoom lens in the wide-angle end state (when an optical low-pass filter or a dummy glass equivalent thereto is disposed in the zoom lens, the back focus in a state in which these are removed, that is, the air conversion back focus)
D2: total thickness of the second lens group fvr: focal length of the positive lens component in the second lens group f2: focal length of the second lens group

上記のように本願のズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなる負先行ズームレンズを改善したものである。具体的には、本願のズームレンズは、レンズ枚数を必要以上に増やすことなく、小型化と像ぶれ補正の構造即ち防振構造の単純化を図りながら、球面収差、コマ収差及び非点収差を良好に補正したものである。   As described above, the zoom lens of the present application is obtained by improving the negative leading zoom lens including the first lens group having negative refractive power and the second lens group having positive refractive power in order from the object side. . Specifically, the zoom lens of the present application reduces spherical aberration, coma and astigmatism while reducing the size and simplifying the image blur correction structure, that is, the image stabilization structure, without increasing the number of lenses more than necessary. Corrected well.

条件式(1)は、本願のズームレンズのバックフォーカスと、第2レンズ群の総厚即ち第2レンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離との関係を規定する条件式である。本願のズームレンズは、条件式(1)を満足することにより、小型化を図りながらコマ収差や非点収差等の諸収差を良好に補正することができる。   Conditional expression (1) represents the back focus of the zoom lens of the present application and the total thickness of the second lens group, that is, the distance on the optical axis from the most object side lens surface to the most image side lens surface in the second lens group. Is a conditional expression that prescribes the relationship between The zoom lens of the present application can satisfactorily correct various aberrations such as coma and astigmatism while achieving miniaturization by satisfying conditional expression (1).

本願のズームレンズの条件式(1)の対応値が上限値を上回ると、第2レンズ群の総厚がバックフォーカスに比較して著しく小さくなる。この場合、結果的に第2レンズ群の屈折力が大きくなり、球面収差、コマ収差及び非点収差が悪化してしまうので好ましくない。なお、条件式(1)の上限値を0.81とすれば、前述の諸収差の補正が有利になるので好ましい。また、条件式(1)の上限値を0.75とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   When the corresponding value of the conditional expression (1) of the zoom lens of the present application exceeds the upper limit value, the total thickness of the second lens group becomes significantly smaller than the back focus. In this case, as a result, the refractive power of the second lens group becomes large, and spherical aberration, coma aberration, and astigmatism are deteriorated. If the upper limit value of conditional expression (1) is set to 0.81, it is preferable because the above-described correction of various aberrations is advantageous. Moreover, if the upper limit of conditional expression (1) is set to 0.75, it is more preferable because the effect of the present application can be maximized.

一方、本願のズームレンズの条件式(1)の対応値が下限値を下回ると、第2レンズ群の総厚がバックフォーカスに比較して著しく大きくなる。この場合、本願のズームレンズの全長が大きくなり、大型化してしまうので好ましくない。また、本願のズームレンズを無理に小型化しようとすれば、第1レンズ群の屈折力を大きくしなければならず、結果的に非点収差や像面湾曲が悪化してしまうので好ましくない。なお、条件式(1)の下限値を0.20とすれば、コマ収差や非点収差等の諸収差の補正が有利になるので好ましい。また、条件式(1)の下限値を0.25とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   On the other hand, when the corresponding value of the conditional expression (1) of the zoom lens of the present application is less than the lower limit value, the total thickness of the second lens group becomes significantly larger than the back focus. In this case, the entire length of the zoom lens of the present application is increased, which is not preferable. Further, if the zoom lens of the present application is to be forcibly reduced in size, the refractive power of the first lens group must be increased, resulting in deterioration in astigmatism and field curvature. Note that it is preferable to set the lower limit value of conditional expression (1) to 0.20 because it is advantageous to correct various aberrations such as coma and astigmatism. Moreover, if the lower limit value of conditional expression (1) is 0.25, it is more preferable because the effects of the present application can be maximized.

上記のように本願のズームレンズは、前記第2レンズ群における前記正レンズ成分が、防振レンズ群として光軸と直交する方向の成分を含むように移動する。これにより、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができる。
ここで、本願において「レンズ成分」とは、2枚以上のレンズを接合してなる接合レンズ、或いは単レンズをいう。なお、後述する本願の各実施例で示す複合型非球面レンズは、ガラスレンズに樹脂層を成型するという特性上、樹脂層が光学系として独立に存在し得ないため、1枚のレンズとして扱うものとする。
As described above, the zoom lens of the present application moves so that the positive lens component in the second lens group includes a component in a direction orthogonal to the optical axis as the anti-vibration lens group. Accordingly, it is possible to correct image blur due to camera shake or the like, that is, to perform image stabilization.
Here, in the present application, the “lens component” refers to a cemented lens or a single lens formed by cementing two or more lenses. It should be noted that the composite aspherical lens shown in each example of the present application to be described later is treated as a single lens because the resin layer cannot exist independently as an optical system due to the property of molding a resin layer on a glass lens. Shall.

条件式(2)は、防振レンズ群の焦点距離、言い換えれば防振レンズ群の最適な屈折力を規定する条件式である。防振レンズ群の屈折力は、防振時の収差変動に大きく関わるとともに、防振時の防振レンズ群の移動量を決定するパラメータである。本願のズームレンズは、条件式(2)を満足することにより、本願のズームレンズの大型化を防止しながら防振時にコマ収差の変動や倍率色収差の変動を良好に抑えることができる。   Conditional expression (2) is a conditional expression that defines the focal length of the image stabilizing lens group, in other words, the optimum refractive power of the image stabilizing lens group. The refractive power of the anti-vibration lens group is a parameter that greatly affects aberration fluctuations during image stabilization and determines the amount of movement of the image stabilization lens group during image stabilization. By satisfying conditional expression (2), the zoom lens of the present application can satisfactorily suppress fluctuations in coma and lateral chromatic aberration during image stabilization while preventing an increase in size of the zoom lens of the present application.

本願のズームレンズの条件式(2)の対応値が上限値を上回ると、防振レンズ群の屈折率力が著しく小さくなる。この場合、防振時の防振レンズ群の移動に伴う収差変動は小さくなるものの、効果的に防振を行うためには防振レンズ群の移動量を大きくしなければならない。このため、結果的に本願のズームレンズが大型化してしまうだけでなく、防振時にコマ収差の変動が大きくなってしまうので好ましくない。なお、条件式(2)の上限値を2.70とすれば、諸収差の補正が有利になるので好ましい。また、条件式(2)の上限値を2.60とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   When the corresponding value of the conditional expression (2) of the zoom lens of the present application exceeds the upper limit value, the refractive index power of the vibration-proof lens group becomes extremely small. In this case, although the variation in aberration due to the movement of the image stabilizing lens group during image stabilization is reduced, the amount of movement of the image stabilizing lens group must be increased in order to effectively perform image stabilization. As a result, the zoom lens of the present application is not only increased in size, but also the coma aberration fluctuation is increased during image stabilization, which is not preferable. If the upper limit value of conditional expression (2) is 2.70, correction of various aberrations is advantageous, which is preferable. Moreover, if the upper limit of conditional expression (2) is 2.60, it is more preferable because the effects of the present application can be maximized.

一方、本願のズームレンズの条件式(2)の対応値が下限値を下回ると、防振レンズ群の屈折力が著しく大きくなる。特に、後述する本願の各実施例に係るズームレンズのように防振レンズ群を1枚の正レンズで構成した場合、防振時にコマ収差の変動や倍率色収差の変動が大きくなってしまうので好ましくない。なお、条件式(2)の下限値を1.53とすれば、諸収差の補正が有利になるので好ましい。また、条件式(2)の下限値を1.70とすれば、本願の効果を最大限に発揮することができるのでより好ましい。
以上の構成により、諸収差を良好に補正し、防振時の光学性能の劣化が小さい高性能なズームレンズを実現することができる。
On the other hand, when the corresponding value of the conditional expression (2) of the zoom lens of the present application is less than the lower limit value, the refractive power of the anti-vibration lens group is significantly increased. In particular, when the anti-vibration lens group is composed of a single positive lens as in the zoom lens according to each embodiment of the present invention described later, it is preferable because fluctuations in coma and chromatic aberration of magnification become large during image stabilization. Absent. Note that it is preferable to set the lower limit of conditional expression (2) to 1.53 because it is advantageous to correct various aberrations. Moreover, it is more preferable that the lower limit value of the conditional expression (2) is 1.70 because the effect of the present application can be maximized.
With the above configuration, it is possible to realize a high-performance zoom lens that corrects various aberrations satisfactorily and has little deterioration in optical performance during image stabilization.

また本願のズームレンズは、以下の条件式(3)を満足することが望ましい。
(3) 0.20 < f2/ft < 0.65
但し、
ft:望遠端状態における前記ズームレンズの焦点距離
f2:前記第2レンズ群の焦点距離
It is desirable that the zoom lens of the present application satisfies the following conditional expression (3).
(3) 0.20 <f2 / ft <0.65
However,
ft: focal length of the zoom lens in the telephoto end state f2: focal length of the second lens group

条件式(3)は、第2レンズ群の焦点距離、言い換えれば第2レンズ群の最適な屈折力を規定する条件式である。本願のズームレンズは、条件式(3)を満足することにより、本願のズームレンズの大型化を防止しながら球面収差、コマ収差及び非点収差等を良好に補正することができる。   Conditional expression (3) is a conditional expression that defines the focal length of the second lens group, in other words, the optimum refractive power of the second lens group. By satisfying conditional expression (3), the zoom lens of the present application can satisfactorily correct spherical aberration, coma aberration, astigmatism and the like while preventing an increase in size of the zoom lens of the present application.

本願のズームレンズの条件式(3)の対応値が上限値を上回ると、第2レンズ群の屈折力が著しく小さくなる。この場合、本願のズームレンズが大型化してしまう。そこで、本願のズームレンズを小型化しようとすれば、第1レンズ群の屈折力を著しく大きくしなければならず、結果的に非点収差やコマ収差等が悪化してしまうので好ましくない。なお、条件式(3)の上限値を0.58とすれば、前述の諸収差の補正が有利になるので好ましい。また、条件式(3)の上限値を0.55とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   When the corresponding value of the conditional expression (3) of the zoom lens of the present application exceeds the upper limit value, the refractive power of the second lens group becomes extremely small. In this case, the zoom lens of the present application is enlarged. Therefore, if it is attempted to reduce the size of the zoom lens of the present application, the refractive power of the first lens group must be remarkably increased. As a result, astigmatism, coma, and the like deteriorate, which is not preferable. Note that it is preferable to set the upper limit of conditional expression (3) to 0.58 because the correction of various aberrations described above becomes advantageous. Moreover, if the upper limit of conditional expression (3) is 0.55, the effect of the present application can be maximized, which is more preferable.

一方、本願のズームレンズの条件式(3)の対応値が下限値を下回ると、第2レンズ群の屈折力が著しく大きくなる。この場合、結果的に球面収差、コマ収差及び非点収差等が悪化してしまうので好ましくない。なお、条件式(3)の下限値を0.30とすれば、前述の諸収差の補正が有利になるので好ましい。また、条件式(3)の下限値を0.40とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   On the other hand, when the corresponding value of the conditional expression (3) of the zoom lens of the present application is less than the lower limit value, the refractive power of the second lens group is remarkably increased. In this case, since spherical aberration, coma aberration, astigmatism and the like deteriorate as a result, it is not preferable. Note that it is preferable to set the lower limit of conditional expression (3) to 0.30 because the above-described correction of various aberrations is advantageous. Moreover, if the lower limit of conditional expression (3) is set to 0.40, it is more preferable because the effect of the present application can be maximized.

また本願のズームレンズは、前記第2レンズ群が、最も像側に配置されており物体側に凹面を向けたメニスカス形状の負レンズ成分と、前記負レンズ成分の物体側に隣り合って配置された正レンズ成分とをさらに有することが望ましい。なお、「物体側に凹面を向けたメニスカス形状の負レンズ成分」とは、当該負レンズ成分が接合レンズである場合には、最も物体側のレンズ面が凹面であり、最も像側のレンズ面が凸面である接合負レンズを意味する。上記構成により、本願のズームレンズの全長が小さくなり、小型化を図ることができる。また、収差補正の観点では、最も像側に配置されており物体側に凹面を向けたメニスカス形状の負レンズ成分と正レンズ成分との組み合わせによって、コマ収差、非点収差及び像面湾曲を良好に補正することができる。   In the zoom lens of the present application, the second lens group is disposed adjacent to the object side of the negative lens component and the meniscus-shaped negative lens component with the concave surface facing the object side, which is disposed closest to the image side. It is desirable to further have a positive lens component. Note that “a meniscus negative lens component having a concave surface facing the object side” means that when the negative lens component is a cemented lens, the lens surface closest to the object side is concave and the lens surface closest to the image side Means a cemented negative lens having a convex surface. With the above configuration, the overall length of the zoom lens of the present application is reduced, and the size can be reduced. Also, from the viewpoint of aberration correction, coma, astigmatism and curvature of field are excellent by combining a meniscus negative lens component and a positive lens component that are arranged closest to the image side and have a concave surface facing the object side. Can be corrected.

また本願のズームレンズは、以下の条件式(4)を満足することが望ましい。
(4) 0.10 < D2r/Bfw < 2.00
但し、
D2r:前記第2レンズ群における前記負レンズ成分とその物体側に隣り合って配置された前記正レンズ成分との間隔
Bfw:広角端状態における前記ズームレンズのバックフォーカス(前記ズームレンズ中にオプティカルローパスフィルタ又はこれに相当するダミーガラスが配置されている場合には、これらを取り除いた状態のバックフォーカス、即ち空気換算バックフォーカス)
It is desirable that the zoom lens of the present application satisfies the following conditional expression (4).
(4) 0.10 <D2r / Bfw <2.00
However,
D2r: Distance between the negative lens component in the second lens group and the positive lens component arranged adjacent to the object side Bfw: Back focus of the zoom lens in the wide-angle end state (optical low-pass in the zoom lens) When a filter or a dummy glass equivalent thereto is arranged, the back focus in a state in which these are removed, that is, the air equivalent back focus)

条件式(4)は、第2レンズ群における負レンズ成分とその物体側に隣り合って配置された正レンズ成分との最適な空気間隔を規定する条件式である。本願のズームレンズは、条件式(4)を満足することにより、非点収差、像面湾曲、コマ収差及び球面収差を良好に補正することができる。   Conditional expression (4) is a conditional expression that prescribes an optimum air gap between the negative lens component in the second lens group and the positive lens component arranged adjacent to the object side. The zoom lens of the present application can satisfactorily correct astigmatism, field curvature, coma aberration, and spherical aberration by satisfying conditional expression (4).

本願のズームレンズの条件式(4)の対応値が上限値を上回ると、前記空気間隔がバックフォーカスに比較して著しく大きくなる。この場合、第2レンズ群における負レンズ成分の径が著しく大きくなり、本願のズームレンズをカメラに適用した際に、当該負レンズ成分がカメラ内部に収まらなくなってしまう。また、収差補正の観点では、当該負レンズ成分が像面湾曲を補正する効果、所謂フィールドフラットナーとしての効果を奏するだけになるため、コマ収差や球面収差の補正効果が小さくなってしまうので好ましくない。なお、条件式(4)の上限値を1.50とすれば、前述の諸収差の補正が有利になるので好ましい。また、条件式(4)の上限値を1.20とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   When the corresponding value of the conditional expression (4) of the zoom lens of the present application exceeds the upper limit value, the air interval becomes significantly larger than the back focus. In this case, the diameter of the negative lens component in the second lens group becomes remarkably large, and when the zoom lens of the present application is applied to the camera, the negative lens component will not fit inside the camera. Further, from the viewpoint of aberration correction, the negative lens component only has an effect of correcting curvature of field, that is, an effect as a so-called field flattener, so that the correction effect of coma aberration and spherical aberration is reduced, which is preferable. Absent. If the upper limit value of conditional expression (4) is 1.50, it is preferable because the above-described correction of various aberrations is advantageous. Moreover, if the upper limit of conditional expression (4) is 1.20, it is more preferable because the effects of the present application can be maximized.

一方、本願のズームレンズの条件式(4)の対応値が下限値を下回ると、前記空気間隔がバックフォーカスに比較して著しく小さくなる。この場合、第2レンズ群における負レンズ成分による軸外収差の補正効果が小さくなり、またフィールドフラットナーとしての効果も小さくなる。このため、結果的に非点収差や像面湾曲の補正効果が小さくなるので好ましくない。また、バックフォーカスが大きくなるため、本願のズームレンズの小型化の観点でも好ましくない。なお、条件式(4)の下限値を0.20とすれば、前述の諸収差の補正が有利になるので好ましい。また、条件式(4)の下限値を0.30とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   On the other hand, when the corresponding value of the conditional expression (4) of the zoom lens of the present application is less than the lower limit value, the air interval becomes significantly smaller than the back focus. In this case, the effect of correcting the off-axis aberration due to the negative lens component in the second lens group is reduced, and the effect as a field flattener is also reduced. For this reason, astigmatism and field curvature correction effects are reduced as a result, which is not preferable. Further, since the back focus becomes large, it is not preferable from the viewpoint of miniaturization of the zoom lens of the present application. Note that it is preferable to set the lower limit of conditional expression (4) to 0.20 because the above-described correction of various aberrations is advantageous. Moreover, if the lower limit value of conditional expression (4) is 0.30, it is more preferable because the effect of the present application can be maximized.

また本願のズームレンズは、以下の条件式(5)を満足することが望ましい。
(5) 0.60 < (−f2r)/f2 < 2.00
但し、
f2r:前記第2レンズ群における前記負レンズ成分の焦点距離
f2 :前記第2レンズ群の焦点距離
It is desirable that the zoom lens of the present application satisfies the following conditional expression (5).
(5) 0.60 <(− f2r) / f2 <2.00
However,
f2r: focal length of the negative lens component in the second lens group f2: focal length of the second lens group

条件式(5)は、第2レンズ群における負レンズ成分の焦点距離、言い換えれば当該負レンズ成分の屈折力を規定する条件式である。本願のズームレンズは、条件式(5)を満足することにより、像面湾曲、非点収差、球面収差及びコマ収差を良好に補正することができる。   Conditional expression (5) is a conditional expression that defines the focal length of the negative lens component in the second lens group, in other words, the refractive power of the negative lens component. The zoom lens of the present application can satisfactorily correct field curvature, astigmatism, spherical aberration, and coma by satisfying conditional expression (5).

本願のズームレンズの条件式(5)の対応値が上限値を上回ると、第2レンズ群における負レンズ成分の焦点距離の絶対値が著しく大きくなり、負の屈折力が小さくなる。この場合、当該負レンズ成分によるバックフォーカスを短くする効果が小さくなり、かつ像面湾曲や非点収差の補正効果も小さくなってしまうので好ましくない。なお、条件式(5)の上限値を1.80とすれば、前述の諸収差の補正が有利になるので好ましい。また、条件式(5)の上限値を1.70とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   When the corresponding value of the conditional expression (5) of the zoom lens of the present application exceeds the upper limit value, the absolute value of the focal length of the negative lens component in the second lens group becomes significantly large, and the negative refractive power becomes small. In this case, the effect of shortening the back focus by the negative lens component is reduced, and the effect of correcting curvature of field and astigmatism is also reduced. Note that it is preferable to set the upper limit of conditional expression (5) to 1.80 because the correction of various aberrations described above becomes advantageous. Moreover, if the upper limit of conditional expression (5) is 1.70, the effect of the present application can be exhibited to the maximum, which is more preferable.

一方、本願のズームレンズの条件式(5)の対応値が下限値を下回ると、第2レンズ群における負レンズ成分の焦点距離の絶対値が著しく小さくなり、負の屈折力が著しく大きくなる。この場合、結果的に球面収差やコマ収差が悪化してしまうので好ましくない。また、偏芯に対する敏感度も大きくなってしまう、即ち製造誤差等により本願のズームレンズを構成するレンズに偏芯が生じた場合に諸収差が発生しやすくなってしまうので好ましくない。なお、条件式(5)の下限値を0.70とすれば、球面収差等の諸収差の補正が有利になるので好ましい。また、条件式(5)の下限値を0.90とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   On the other hand, when the corresponding value of the conditional expression (5) of the zoom lens of the present application is below the lower limit value, the absolute value of the focal length of the negative lens component in the second lens group is remarkably reduced, and the negative refractive power is remarkably increased. In this case, since spherical aberration and coma aberration are deteriorated as a result, it is not preferable. In addition, the sensitivity to decentering also increases, that is, it is not preferable because various aberrations are likely to occur when decentering occurs in the lens constituting the zoom lens of the present application due to a manufacturing error or the like. If the lower limit value of conditional expression (5) is 0.70, it is preferable to correct various aberrations such as spherical aberration. Moreover, if the lower limit of conditional expression (5) is set to 0.90, it is more preferable because the effect of the present application can be maximized.

また本願のズームレンズは、以下の条件式(6)を満足することが望ましい。
(6) 0.50 < f2p/f2 < 2.00
但し、
f2p:前記第2レンズ群における前記負レンズ成分の物体側に隣り合って配置された前記正レンズ成分の焦点距離
f2 :前記第2レンズ群の焦点距離
It is desirable that the zoom lens of the present application satisfies the following conditional expression (6).
(6) 0.50 <f2p / f2 <2.00
However,
f2p: focal length of the positive lens component arranged adjacent to the object side of the negative lens component in the second lens group f2: focal length of the second lens group

条件式(6)は、第2レンズ群における負レンズ成分の物体側に隣り合って配置された正レンズ成分の焦点距離、言い換えれば当該正レンズ成分の屈折力を規定する条件式である。本願のズームレンズは、条件式(6)を満足することにより、球面収差やコマ収差を良好に補正することができる。   Conditional expression (6) is a conditional expression that defines the focal length of the positive lens component arranged adjacent to the object side of the negative lens component in the second lens group, in other words, the refractive power of the positive lens component. The zoom lens of the present application can satisfactorily correct spherical aberration and coma aberration by satisfying conditional expression (6).

本願のズームレンズの条件式(6)の対応値が上限値を上回ると、第2レンズ群における負レンズ成分の物体側に隣り合って配置された正レンズ成分の正の屈折力が小さくなる。この場合、球面収差の補正効果が小さくなってしまうので好ましくない。なお、条件式(6)の上限値を1.70とすれば、諸収差の補正が有利になるので好ましい。また、条件式(6)の上限値を1.50とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   When the corresponding value of conditional expression (6) of the zoom lens of the present application exceeds the upper limit value, the positive refractive power of the positive lens component arranged adjacent to the object side of the negative lens component in the second lens group becomes small. This is not preferable because the effect of correcting the spherical aberration is reduced. If the upper limit value of conditional expression (6) is 1.70, it is preferable because various aberrations can be corrected. Moreover, if the upper limit of conditional expression (6) is set to 1.50, it is more preferable because the effect of the present application can be maximized.

一方、本願のズームレンズの条件式(6)の対応値が下限値を下回ると、第2レンズ群における負レンズ成分の物体側に隣り合って配置された正レンズ成分の正の屈折力が大きくなる。この場合、結果的に球面収差やコマ収差が悪化してしまうので好ましくない。なお、条件式(6)の下限値を0.55とすれば、球面収差等の諸収差の補正が有利になるので好ましい。また、条件式(6)の下限値を0.60とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   On the other hand, when the corresponding value of conditional expression (6) of the zoom lens of the present application is below the lower limit value, the positive refractive power of the positive lens component arranged adjacent to the object side of the negative lens component in the second lens group is large. Become. In this case, since spherical aberration and coma aberration are deteriorated as a result, it is not preferable. It is preferable to set the lower limit of conditional expression (6) to 0.55 because it is advantageous to correct various aberrations such as spherical aberration. Moreover, if the lower limit value of conditional expression (6) is 0.60, it is more preferable because the effect of the present application can be maximized.

また本願のズームレンズは、以下の条件式(7)を満足することが望ましい。
(7) 1.00 < (r2r+r1r)/(r2r−r1r) < 8.00
但し、
r1r:前記第2レンズ群における前記負レンズ成分中の最も物体側のレンズ面の曲率半径
r2r:前記第2レンズ群における前記負レンズ成分中の最も像側のレンズ面の曲率半径
It is desirable that the zoom lens of the present application satisfies the following conditional expression (7).
(7) 1.00 <(r2r + r1r) / (r2r−r1r) <8.00
However,
r1r: radius of curvature of the lens surface closest to the object in the negative lens component in the second lens group r2r: radius of curvature of the lens surface closest to the image in the negative lens component in the second lens group

条件式(7)は、第2レンズ群における負レンズ成分の形状因子を規定する条件式である。条件式(7)は、基本的に当該負レンズ成分が物体側に凹面を向けた負メニスカス形状であることを示している。なお、条件式(7)の対応値は、当該負レンズ成分が接合レンズ、単レンズ或いは非球面レンズのいずれの場合でも、負レンズ成分中の最も物体側の面の近軸曲率半径と最も像側の面の近軸曲率半径とで算出する。本願のズームレンズは、条件式(7)を満足することにより、本願のズームレンズの大型化を防止しながら像面湾曲、非点収差及びコマ収差を良好に補正することができる。   Conditional expression (7) is a conditional expression that defines the shape factor of the negative lens component in the second lens group. Conditional expression (7) basically indicates that the negative lens component has a negative meniscus shape with a concave surface facing the object side. It should be noted that the corresponding value of conditional expression (7) is that the paraxial radius of curvature of the surface closest to the object in the negative lens component and the most image, regardless of whether the negative lens component is a cemented lens, a single lens or an aspheric lens Calculated with the paraxial radius of curvature of the side surface. By satisfying conditional expression (7), the zoom lens of the present application can satisfactorily correct field curvature, astigmatism, and coma while preventing an increase in the size of the zoom lens of the present application.

本願のズームレンズの条件式(7)の対応値が上限値を上回ると、第2レンズ群における負レンズ成分中の最も物体側のレンズ面と最も像側のレンズ面との曲率半径の差がなくなってしまう。即ち、当該負レンズ成分の屈折力が小さくなってしまう。このため、当該負レンズ成分による諸収差の補正効果が小さくなり、結果的に像面湾曲や非点収差を十分に補正することができなくなってしまう。また、第2レンズ群後方の負の屈折力が小さくなることにより、本願のズームレンズの大型化を招くことになってしまうので好ましくない。なお、条件式(7)の上限値を7.00とすれば、前述の諸収差の補正が有利になるので好ましい。また、条件式(7)の上限値を5.00とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   When the corresponding value of the conditional expression (7) of the zoom lens of the present application exceeds the upper limit value, the difference in the radius of curvature between the lens surface closest to the object side and the lens surface closest to the image side in the negative lens component in the second lens group. It will disappear. That is, the refractive power of the negative lens component becomes small. For this reason, the correction effect of various aberrations by the negative lens component is reduced, and as a result, it becomes impossible to sufficiently correct field curvature and astigmatism. Further, since the negative refractive power behind the second lens group is reduced, the zoom lens of the present application is increased in size, which is not preferable. It is preferable to set the upper limit of conditional expression (7) to 7.00 because the correction of various aberrations described above becomes advantageous. Moreover, if the upper limit of conditional expression (7) is set to 5.00, it is more preferable because the effect of the present application can be maximized.

一方、本願のズームレンズの条件式(7)の対応値が下限値を下回ると、第2レンズ群における負レンズ成分が両凹形状になる。この場合、コマ収差や非点収差が悪化してしまうので好ましくない。また、偏芯に対する敏感度も大きくなってしまうので好ましくない。なお、条件式(7)の下限値を1.50とすれば、球面収差等の諸収差の補正が有利になるので好ましい。また、条件式(7)の下限値を2.00とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   On the other hand, when the corresponding value of conditional expression (7) of the zoom lens of the present application is below the lower limit value, the negative lens component in the second lens group becomes a biconcave shape. In this case, coma and astigmatism are deteriorated, which is not preferable. Moreover, since the sensitivity with respect to eccentricity will also become large, it is not preferable. If the lower limit value of conditional expression (7) is 1.50, it is preferable to correct various aberrations such as spherical aberration. Moreover, if the lower limit of conditional expression (7) is set to 2.00, it is more preferable because the effect of the present application can be maximized.

また本願のズームレンズは、以下の条件式(8)を満足することが望ましい。
(8) −3.00 < (r2p+r1p)/(r2p−r1p) < 0.00
但し、
r1p:前記第2レンズ群における前記負レンズ成分の物体側に隣り合って配置された前記正レンズ成分中の最も物体側のレンズ面の曲率半径
r2p:前記第2レンズ群における前記負レンズ成分の物体側に隣り合って配置された前記正レンズ成分中の最も像側のレンズ面の曲率半径
It is desirable that the zoom lens of the present application satisfies the following conditional expression (8).
(8) −3.00 <(r2p + r1p) / (r2p−r1p) <0.00
However,
r1p: radius of curvature of the lens surface closest to the object side in the positive lens component arranged adjacent to the object side of the negative lens component in the second lens group r2p: the negative lens component in the second lens group The radius of curvature of the lens surface closest to the image side in the positive lens component arranged adjacent to the object side

条件式(8)は、第2レンズ群における負レンズ成分の物体側に隣り合って配置された正レンズ成分の形状因子を規定する条件式である。条件式(8)は、当該正レンズ成分が、物体側に凹面を向けた正メニスカス形状、物体側に平面を向けた平凸形状又は両凸形状であることを示している。本願のズームレンズは、条件式(8)を満足することにより、像面湾曲、非点収差及び球面収差を良好に補正することができる。   Conditional expression (8) is a conditional expression that defines the shape factor of the positive lens component arranged adjacent to the object side of the negative lens component in the second lens group. Conditional expression (8) indicates that the positive lens component has a positive meniscus shape with a concave surface facing the object side, a plano-convex shape with a flat surface facing the object side, or a biconvex shape. The zoom lens of the present application can satisfactorily correct field curvature, astigmatism, and spherical aberration by satisfying conditional expression (8).

本願のズームレンズの条件式(8)の対応値が上限値を上回ると、第2レンズ群における負レンズ成分の物体側に隣り合って配置された正レンズ成分が、物体側により強い凸面を向けた正レンズ形状、即ち当該正レンズ成分中の最も物体側のレンズ面が最も像側のレンズ面よりも曲率半径の絶対値が小さな正レンズ形状となる。この場合、像面湾曲や非点収差が悪化してしまうので好ましくない。なお、条件式(8)の上限値を−0.10とすれば、前述の諸収差の補正が有利になるので好ましい。また、条件式(8)の上限値を−0.30とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   When the corresponding value of the conditional expression (8) of the zoom lens of the present application exceeds the upper limit value, the positive lens component arranged adjacent to the object side of the negative lens component in the second lens group has a stronger convex surface on the object side. The positive lens shape, that is, the positive lens shape in which the lens surface closest to the object side in the positive lens component has a smaller absolute value of the radius of curvature than the lens surface closest to the image side. In this case, field curvature and astigmatism are deteriorated, which is not preferable. Note that it is preferable to set the upper limit of conditional expression (8) to −0.10 because the above-described correction of various aberrations is advantageous. Moreover, if the upper limit of conditional expression (8) is set to -0.30, it is more preferable because the effect of the present application can be maximized.

一方、本願のズームレンズの条件式(8)の対応値が下限値を下回ると、第2レンズ群における負レンズ成分の物体側に隣り合って配置された正レンズ成分は、当該正レンズ成分中の最も物体側のレンズ面と最も像側のレンズ面との曲率半径の差が少ない、屈折力の比較的小さなメニスカス形状となる。この場合、球面収差が悪化してしまうので好ましくない。なお、条件式(8)の下限値を−2.50とすれば、諸収差の補正が有利になるので好ましい。また、条件式(8)の下限値を−2.00とすれば、本願の効果を最大限に発揮することができるのでより好ましい。   On the other hand, when the corresponding value of the conditional expression (8) of the zoom lens of the present application is less than the lower limit value, the positive lens component arranged adjacent to the object side of the negative lens component in the second lens group is included in the positive lens component. Thus, a meniscus shape having a relatively small refractive power and a small difference in radius of curvature between the lens surface closest to the object side and the lens surface closest to the image side is obtained. In this case, since spherical aberration will deteriorate, it is not preferable. If the lower limit value of conditional expression (8) is set to -2.50, it is preferable to correct various aberrations. Moreover, it is more preferable that the lower limit value of the conditional expression (8) is −2.00 because the effect of the present application can be exhibited to the maximum.

また本願のズームレンズは、前記第2レンズ群における光軸と直交する方向の成分を含むように移動する前記正レンズ成分よりも像側に開口絞りを有することが望ましい。この構成により、本願のズームレンズは、防振時にコマ収差等の変動を抑えることができる。   The zoom lens of the present application preferably has an aperture stop on the image side of the positive lens component that moves so as to include a component in a direction orthogonal to the optical axis in the second lens group. With this configuration, the zoom lens of the present application can suppress fluctuations in coma and the like during image stabilization.

また本願のズームレンズは、前記開口絞りが前記第2レンズ群における前記接合レンズの像側に隣り合って配置されていることが望ましい。この構成により、本願のズームレンズは、防振時にコマ収差等の変動を抑えることができる。   In the zoom lens of the present application, it is desirable that the aperture stop is disposed adjacent to the image side of the cemented lens in the second lens group. With this configuration, the zoom lens of the present application can suppress fluctuations in coma and the like during image stabilization.

また本願のズームレンズは、前記第1レンズ群が少なくとも1つの非球面を有することが望ましい。この構成により、本願のズームレンズは、軸外光線に対する収差、特に非点収差、像面湾曲及びコマ収差を良好に補正することができる。   In the zoom lens of the present application, it is preferable that the first lens group has at least one aspheric surface. With this configuration, the zoom lens of the present application can satisfactorily correct aberrations with respect to off-axis rays, particularly astigmatism, field curvature, and coma.

また本願のズームレンズは、前記第2レンズ群が少なくとも1つの非球面を有することが望ましい。この構成により、本願のズームレンズは、コマ収差や球面収差を良好に補正することができる。   In the zoom lens of the present application, it is desirable that the second lens group has at least one aspheric surface. With this configuration, the zoom lens of the present application can satisfactorily correct coma and spherical aberration.

また本願のズームレンズは、前記第2レンズ群における光軸と直交する方向の成分を含むように移動する前記正レンズ成分が、像側のレンズ面が物体側のレンズ面よりも曲率半径の絶対値が小さい両凸形状の正レンズからなることが望ましい。この構成により、本願のズームレンズは、防振レンズ群の大きさをコンパクトに抑えることができる。このため、本願のズームレンズの小型化を図ることができ、結果的に小型化による諸収差の悪化を防ぐこともできる。   In the zoom lens of the present application, the positive lens component moving so as to include a component in a direction orthogonal to the optical axis in the second lens group has an absolute radius of curvature of the image-side lens surface than the object-side lens surface. It is desirable to be composed of a biconvex positive lens having a small value. With this configuration, the zoom lens of the present application can keep the size of the image stabilizing lens group compact. Therefore, the zoom lens of the present application can be reduced in size, and as a result, deterioration of various aberrations due to the reduction in size can be prevented.

本願の光学装置は、上述した構成のズームレンズを有することを特徴としている。これにより、諸収差を良好に補正し、防振時の光学性能の劣化が小さい高性能な光学装置を実現することができる。   The optical apparatus of the present application is characterized by having the zoom lens having the above-described configuration. As a result, it is possible to realize a high-performance optical apparatus that corrects various aberrations satisfactorily and has little deterioration in optical performance during image stabilization.

本願のズームレンズの製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなるズームレンズの製造方法であって、前記第1レンズ群が、物体側から順に、少なくとも1つの負レンズ成分と、正レンズ成分とを有するようにし、前記第2レンズ群が、物体側から順に、正レンズ成分と、負レンズと正レンズとの接合レンズとを有するようにし、前記第2レンズ群が以下の条件式(1)、(2)を満足するようにし、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化するようにし、前記第2レンズ群における前記正レンズ成分が、光軸と直交する方向の成分を含むように移動するようにすることを特徴としている。これにより、諸収差を良好に補正し、防振時の光学性能の劣化が小さい高性能なズームレンズを製造することができる。
(1) 0.10 < Bfw/D2 < 0.90
(2) 1.10 < fvr/f2 < 3.30
但し、
Bfw:広角端状態における前記ズームレンズのバックフォーカス
D2 :前記第2レンズ群の総厚
fvr:前記第2レンズ群における前記正レンズ成分の焦点距離
f2 :前記第2レンズ群の焦点距離
The zoom lens manufacturing method of the present application is a zoom lens manufacturing method including, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power. One lens group has at least one negative lens component and a positive lens component in order from the object side, and the second lens group has a positive lens component, a negative lens, and a positive lens in order from the object side. And the second lens group satisfies the following conditional expressions (1) and (2), and the first lens group during zooming from the wide-angle end state to the telephoto end state: And the second lens group are changed so that the positive lens component in the second lens group moves so as to include a component in a direction orthogonal to the optical axis. As a result, it is possible to manufacture a high-performance zoom lens that corrects various aberrations satisfactorily and has little deterioration in optical performance during image stabilization.
(1) 0.10 <Bfw / D2 <0.90
(2) 1.10 <fvr / f2 <3.30
However,
Bfw: Back focus D2 of the zoom lens in the wide-angle end state D2: Total thickness of the second lens group fvr: Focal length of the positive lens component in the second lens group f2: Focal length of the second lens group

以下、本願の数値実施例に係るズームレンズを添付図面に基づいて説明する。
(第1実施例)
図1は、本願の第1実施例に係るズームレンズの広角端状態における無限遠物体合焦時のレンズ構成、及び変倍時の各レンズ群の移動軌跡を示す図である。
本実施例に係るズームレンズは、光軸に沿って物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成されている。
Hereinafter, zoom lenses according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a diagram showing a lens configuration at the time of focusing on an object at infinity in the wide-angle end state of the zoom lens according to the first embodiment of the present application, and a movement locus of each lens group at the time of zooming.
The zoom lens according to the present exemplary embodiment includes, in order from the object side along the optical axis, a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power.

第1レンズ群G1は、光軸に沿って物体側から順に、両凹形状の負レンズL11と、物体側に凸面を向けた正メニスカスレンズL12とからなる。なお、負レンズL11は、像側のガラス表面に設けた樹脂層を非球面形状に形成してなる複合型非球面レンズである。   The first lens group G1 includes, in order from the object side along the optical axis, a biconcave negative lens L11 and a positive meniscus lens L12 having a convex surface directed toward the object side. The negative lens L11 is a composite aspherical lens formed by forming a resin layer provided on the image side glass surface into an aspherical shape.

第2レンズ群G2は、光軸に沿って物体側から順に、両凸形状の正レンズL21と、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合正レンズと、開口絞りSと、厚肉な両凸形状の正レンズL24と両凹形状の負レンズL25との接合負レンズと、両凸形状の正レンズL26と、像側に凸面を向けた正メニスカスレンズL27と像側に凸面を向けた負メニスカスレンズL28との接合負レンズとからなる。なお、正レンズL26は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a biconvex positive lens L21, a negative meniscus lens L22 having a convex surface facing the object side, and a positive meniscus lens L23 having a convex surface facing the object side. A cemented negative lens, an aperture stop S, a cemented negative lens of a thick biconvex positive lens L24 and a biconcave negative lens L25, a biconvex positive lens L26, and a convex surface on the image side. A positive meniscus lens L27 directed to the negative meniscus lens L28 having a convex surface facing the image side. The positive lens L26 is a glass mold aspheric lens having an aspheric lens surface on the object side.

なお、第2レンズ群G2と像面Iとの間には、オプティカルローパスフィルタに相当するダミーガラスFLが配置されている。   A dummy glass FL corresponding to an optical low-pass filter is disposed between the second lens group G2 and the image plane I.

以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が変化するように、第1レンズ群G1及び第2レンズ群G2が光軸に沿って移動する。   Under the above configuration, in the zoom lens according to the present embodiment, the first lens group G1 and the second lens group G2 change so that the air gap between the first lens group G1 and the second lens group G2 changes during zooming from the wide-angle end state to the telephoto end state. The first lens group G1 and the second lens group G2 move along the optical axis.

また、本実施例に係るズームレンズは、手ぶれ等の発生時に、第2レンズ群G2中の正レンズL21を防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。   In the zoom lens according to the present embodiment, when camera shake or the like occurs, the positive lens L21 in the second lens group G2 is moved as a vibration-proof lens group so as to include a component in a direction orthogonal to the optical axis. Shake.

また、本実施例に係るズームレンズでは、第1レンズ群G1を合焦レンズ群として光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。   In the zoom lens according to the present embodiment, the first lens group G1 is moved to the object side along the optical axis as the focusing lens group, thereby focusing from an object at infinity to a near object.

以下の表1に、本実施例に係るズームレンズの諸元の値を掲げる。
表1において、fは焦点距離を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面と第n+1面との光軸上の間隔(nは整数))、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に*を付して曲率半径rの欄に近軸曲率半径の値を示している。
Table 1 below lists values of specifications of the zoom lens according to the present example.
In Table 1, f indicates a focal length.
In [Surface Data], the surface number is the order of the optical surfaces counted from the object side, r is the radius of curvature, and d is the surface interval (the interval on the optical axis between the nth surface and the (n + 1) th surface (n is an integer). ), Nd represents the refractive index with respect to the d-line (wavelength 587.6 nm), and νd represents the Abbe number with respect to the d-line (wavelength 587.6 nm). Further, the object plane indicates the object plane, the variable indicates the variable plane spacing, the stop S indicates the aperture stop S, and the image plane indicates the image plane I. The radius of curvature r = ∞ indicates a plane. For the aspherical surface, * is added to the surface number, and the value of the paraxial radius of curvature is indicated in the column of the radius of curvature r.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
S(y)=(y/r)/[1+[1−κ(y/r)]1/2]
+A4×y+A6×y+A8×y+A10×y10+A12×y12
ここで、yを光軸に垂直な方向の高さ、S(y)を高さyにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4、A6、A8、A10、A12を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(nは整数)は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
S (y) = (y 2 / r) / [1+ [1-κ (y 2 / r 2 )] 1/2 ]
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 + A12 × y 12
Here, y is the height in the direction perpendicular to the optical axis, S (y) is the distance (sag amount) along the optical axis direction from the tangential plane of the apex of the aspheric surface at the height y to the aspheric surface, κ Is a conic constant, A4, A6, A8, A10, and A12 are aspherical coefficients, and r is a radius of curvature (paraxial radius of curvature) of the reference spherical surface. “E−n” (n is an integer) indicates “× 10 −n ”, for example “1.234E-05” indicates “1.234 × 10 −5 ”. The secondary aspherical coefficient A2 is 0 and is not shown.

[各種データ]において、FNOはFナンバー、ωは半画角(単位は「°」)、Yは像高、TLはズームレンズの全長(無限遠物体合焦時の第1面から像面Iまでの光軸上の距離)をそれぞれ示す。空気換算Bfは本実施例に係るズームレンズからダミーガラスFLを取り除いた状態のバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)、βは撮影倍率、d0は物体から第1面までの光軸上の距離、dnは第n面と第n+1面との可変の間隔をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[条件式対応値]には、本実施例に係るズームレンズの各条件式の対応値を示す。
In [Various data], FNO is the F number, ω is the half angle of view (unit is “°”), Y is the image height, TL is the total length of the zoom lens (from the first surface at the time of focusing on the object at infinity to the image plane I). (Distance on the optical axis). The air conversion Bf is the back focus (distance on the optical axis between the lens surface closest to the image side and the image plane I) with the dummy glass FL removed from the zoom lens according to the present embodiment, β is the shooting magnification, and d0 is the object magnification. The distance on the optical axis from the first surface to the first surface, dn, indicates the variable distance between the nth surface and the (n + 1) th surface. W represents the wide-angle end state, M represents the intermediate focal length state, and T represents the telephoto end state.
[Lens Group Data] indicates the start surface and focal length of each lens group.
[Conditional Expression Corresponding Value] indicates the corresponding value of each conditional expression of the zoom lens according to the present embodiment.

ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 -4971.9688 2.0000 1.883000 40.66
2 26.3000 0.1000 1.560930 36.64
*3 20.9102 8.3000 1.000000
4 41.7495 6.0000 1.846660 23.80
5 172.2935 可変 1.000000

6 571.0318 2.0000 1.729160 54.61
7 -80.4994 0.8000 1.000000
8 21.7945 1.0000 1.772500 49.62
9 15.2210 4.5000 1.497820 82.57
10 49.1048 2.6000 1.000000
11(絞りS) ∞ 1.2000 1.000000
12 30.5361 11.9000 1.497820 82.57
13 -20.2027 1.0000 1.883000 40.66
14 41.2241 4.3500 1.000000
*15 81.5098 3.8000 1.677900 54.89
16 -23.3482 16.5500 1.000000
17 -18.3979 3.5000 1.688930 31.16
18 -14.3586 1.5000 1.816000 46.59
19 -36.8838 可変 1.000000

20 ∞ 2.0000 1.516800 64.12
21 ∞ 可変 1.000000

像面 ∞

[非球面データ]
面番号 κ A4 A6 A8 A10 A12
3 0.0274 6.78771E-07 1.25604E-09 -1.73623E-11 3.54718E-14 -0.32980E-16
15 0.3278 -1.52946E-06 6.46816E-09 0.00000E+00 0.00000E+00 0.00000E+00

[各種データ]
変倍比 2.69

W M T
f 28.8 50.0 77.6
FNO 3.6 4.6 5.9
ω 39.4 23.5 15.5
Y 21.6 21.6 21.6
TL 138.096 124.193 130.033
空気換算Bf 17.948 33.285 53.253

(無限遠物体合焦時)
W M T
f 28.80000 50.00000 77.60000
d0 ∞ ∞ ∞
d5 48.36733 19.12659 4.99821
d19 13.00000 28.33774 48.30574
d21 3.62901 3.62901 3.62901

(有限距離物体合焦時)
W M T
β -0.03352 -0.03344 -0.03340
d0 811.7935 1447.7945 2275.7959
d5 51.54475 20.95678 6.17746
d19 13.00000 28.33774 48.30574
d21 3.63428 3.63427 3.63426

(近距離物体合焦時)
W M T
β -0.14567 -0.25376 -0.39562
d0 151.1474 151.1474 151.1474
d5 61.86733 32.62659 18.49821
d19 13.00000 28.33774 48.30574
d21 3.72635 3.92342 4.34136

[レンズ群データ]
群 始面 f
1 1 -52.39559
2 6 37.90707

[条件式対応値]
(1) Bfw/D2 = 0.328
(2) fvr/f2 = 2.556
(3) f2/ft = 0.488
(4) D2r/Bfw = 0.922
(5) (−f2r)/f2 =1.184
(6) f2p/f2 = 0.717
(7) (r2r+r1r)/(r2r−r1r) = 2.990
(8) (r2p+r1p)/(r2p−r1p) = -0.555
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞

1 -4971.9688 2.0000 1.883000 40.66
2 26.3000 0.1000 1.560930 36.64
* 3 20.9102 8.3000 1.000000
4 41.7495 6.0000 1.846660 23.80
5 172.2935 Variable 1.000000

6 571.0318 2.0000 1.729160 54.61
7 -80.4994 0.8000 1.000000
8 21.7945 1.0000 1.772500 49.62
9 15.2210 4.5000 1.497820 82.57
10 49.1048 2.6000 1.000000
11 (Aperture S) ∞ 1.2000 1.000000
12 30.5361 11.9000 1.497820 82.57
13 -20.2027 1.0000 1.883000 40.66
14 41.2241 4.3500 1.000000
* 15 81.5098 3.8000 1.677900 54.89
16 -23.3482 16.5500 1.000000
17 -18.3979 3.5000 1.688930 31.16
18 -14.3586 1.5000 1.816000 46.59
19 -36.8838 Variable 1.000000

20 ∞ 2.0000 1.516800 64.12
21 ∞ Variable 1.000000

Image plane ∞

[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
3 0.0274 6.78771E-07 1.25604E-09 -1.73623E-11 3.54718E-14 -0.32980E-16
15 0.3278 -1.52946E-06 6.46816E-09 0.00000E + 00 0.00000E + 00 0.00000E + 00

[Various data]
Scaling ratio 2.69

W M T
f 28.8 50.0 77.6
FNO 3.6 4.6 5.9
ω 39.4 23.5 15.5
Y 21.6 21.6 21.6
TL 138.096 124.193 130.033
Air conversion Bf 17.948 33.285 53.253

(When focusing on an object at infinity)
W M T
f 28.80000 50.00000 77.60000
d0 ∞ ∞ ∞
d5 48.36733 19.12659 4.99821
d19 13.00000 28.33774 48.30574
d21 3.62901 3.62901 3.62901

(When focusing on a finite distance object)
W M T
β -0.03352 -0.03344 -0.03340
d0 811.7935 1447.7945 2275.7959
d5 51.54475 20.95678 6.17746
d19 13.00000 28.33774 48.30574
d21 3.63428 3.63427 3.63426

(When focusing on a short distance object)
W M T
β -0.14567 -0.25376 -0.39562
d0 151.1474 151.1474 151.1474
d5 61.86733 32.62659 18.49821
d19 13.00000 28.33774 48.30574
d21 3.72635 3.92342 4.34136

[Lens group data]
Group start surface f
1 1 -52.39559
2 6 37.90707

[Conditional expression values]
(1) Bfw / D2 = 0.328
(2) fvr / f2 = 2.556
(3) f2 / ft = 0.488
(4) D2r / Bfw = 0.922
(5) (−f2r) /f2=1.184
(6) f2p / f2 = 0.717
(7) (r2r + r1r) / (r2r-r1r) = 2.990
(8) (r2p + r1p) / (r2p−r1p) = − 0.555

図2(a)、図2(b)、及び図2(c)はそれぞれ、本願の第1実施例に係るズームレンズの広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図3(a)、図3(b)、及び図3(c)はそれぞれ、本願の第1実施例に係るズームレンズの広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。なお、図3(a)、図3(b)、及び図3(c)における防振レンズ群(正レンズL21)のシフト量、即ち光軸に直交する方向への移動量はそれぞれ、0.318mm、0.319mm、及び0.342mmである。
2 (a), 2 (b), and 2 (c) respectively show the infinite object combination in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens according to Example 1 of the present application. FIG. 5 is a diagram showing various aberrations during focusing.
3 (a), 3 (b), and 3 (c) respectively show the infinite object combination in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens according to Example 1 of the present application. It is a coma aberration figure at the time of performing anti-vibration at the time of a focus. Note that the shift amount of the image stabilizing lens group (positive lens L21) in FIGS. 3A, 3B, and 3C, that is, the amount of movement in the direction orthogonal to the optical axis is 0. 318 mm, 0.319 mm, and 0.342 mm.

各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。コマ収差図は、各像高Yにおけるコマ収差を示す。防振時のコマ収差図は、像高Y=−15.10、0.0、及び15.10におけるコマ収差を示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。   In each aberration diagram, FNO represents an F number, and Y represents an image height. d indicates the aberration at the d-line (wavelength 587.6 nm), and g indicates the aberration at the g-line (wavelength 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. The coma aberration diagram shows coma aberration at each image height Y. The coma diagram at the time of image stabilization shows the coma aberration at the image heights Y = −15.10, 0.0, and 15.10. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.

各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって球面収差、コマ収差、像面湾曲、及び非点収差を含む諸収差を良好に補正し優れた光学性能を有しており、さらに防振時にも優れた光学性能を有していることがわかる。   From each aberration diagram, the zoom lens according to the present example has excellent optical performance by satisfactorily correcting various aberrations including spherical aberration, coma aberration, field curvature, and astigmatism from the wide-angle end state to the telephoto end state. It can be seen that it has excellent optical performance even during vibration isolation.

(第2実施例)
図4は、本願の第2実施例に係るズームレンズの広角端状態における無限遠物体合焦時のレンズ構成、及び変倍時の各レンズ群の移動軌跡を示す図である。
本実施例に係るズームレンズは、光軸に沿って物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成されている。
(Second embodiment)
FIG. 4 is a diagram showing a lens configuration at the time of focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 2 of the present application, and a movement locus of each lens group at the time of zooming.
The zoom lens according to the present exemplary embodiment includes, in order from the object side along the optical axis, a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12とからなる。なお、負メニスカスレンズL11は、像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The first lens group G1 includes, in order from the object side along the optical axis, a negative meniscus lens L11 having a convex surface facing the object side, and a positive meniscus lens L12 having a convex surface facing the object side. The negative meniscus lens L11 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第2レンズ群G2は、光軸に沿って物体側から順に、両凸形状の正レンズL21と、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合正レンズと、開口絞りSと、両凸形状の正レンズL24と厚肉な両凹形状の負レンズL25との接合負レンズと、物体側に凹面を向けた正メニスカスレンズL26と、像側に凸面を向けた負メニスカスレンズL27とからなる。   The second lens group G2 includes, in order from the object side along the optical axis, a biconvex positive lens L21, a negative meniscus lens L22 having a convex surface facing the object side, and a positive meniscus lens L23 having a convex surface facing the object side. A cemented positive lens, an aperture stop S, a cemented negative lens of a biconvex positive lens L24 and a thick biconcave negative lens L25, a positive meniscus lens L26 having a concave surface facing the object side, and an image And a negative meniscus lens L27 having a convex surface on the side.

なお、第2レンズ群G2と像面Iとの間には、オプティカルローパスフィルタに相当するダミーガラスFLが配置されている。   A dummy glass FL corresponding to an optical low-pass filter is disposed between the second lens group G2 and the image plane I.

以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が変化するように、第1レンズ群G1及び第2レンズ群G2が光軸に沿って移動する。   Under the above configuration, in the zoom lens according to the present embodiment, the first lens group G1 and the second lens group G2 change so that the air gap between the first lens group G1 and the second lens group G2 changes during zooming from the wide-angle end state to the telephoto end state. The first lens group G1 and the second lens group G2 move along the optical axis.

また、本実施例に係るズームレンズは、手ぶれ等の発生時に、第2レンズ群G2中の正レンズL21を防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。   In the zoom lens according to the present embodiment, when camera shake or the like occurs, the positive lens L21 in the second lens group G2 is moved as a vibration-proof lens group so as to include a component in a direction orthogonal to the optical axis. Shake.

また、本実施例に係るズームレンズでは、第1レンズ群G1を合焦レンズ群として光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
以下の表2に、本実施例に係るズームレンズの諸元の値を掲げる。
In the zoom lens according to the present embodiment, the first lens group G1 is moved to the object side along the optical axis as the focusing lens group, thereby focusing from an object at infinity to a near object.
Table 2 below lists values of specifications of the zoom lens according to the present example.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 129.6401 1.8000 1.816000 46.59
*2 21.0701 8.9601 1.000000
3 30.0752 5.0000 1.846660 23.80
4 45.1546 可変 1.000000

5 863.7134 2.0000 1.719990 50.27
6 -61.3930 1.0000 1.000000
7 17.2972 1.0000 1.755000 52.34
8 12.7054 4.0000 1.487490 70.31
9 35.6021 2.6000 1.000000
10(絞りS) ∞ 1.2000 1.000000
11 50.7556 3.3000 1.497820 82.57
12 -22.5421 4.0448 1.834000 37.18
13 102.6004 7.7445 1.000000
14 -1687.0183 2.3000 1.755000 52.34
15 -27.0690 10.4203 1.000000
16 -16.4791 1.5000 1.603110 60.69
17 -35.1170 可変 1.000000

18 ∞ 2.0000 1.516800 64.12
19 ∞ 1.0000 1.000000

像面 ∞

[非球面データ]
面番号 κ A4 A6 A8 A10 A12
2 -1.0221 2.31156E-05 -8.21484E-09 2.65178E-11 -2.36759E-14 0.30473E-16

[各種データ]
変倍比 2.69

W M T
f 28.8 50.0 77.6
FNO 3.6 4.6 5.9
ω 40.3 23.8 15.6
Y 21.6 21.6 21.6
TL 135.888 123.401 131.060
空気換算Bf 30.026 46.751 68.524

(無限遠物体合焦時)
W M T
f 28.80000 50.00000 77.60000
d0 ∞ ∞ ∞
d4 48.31067 19.09858 4.98405
d17 27.70760 44.43215 66.20563

(有限距離物体合焦時)
W M T
β -0.03333 -0.03333 -0.03333
d0 814.8805 1450.8873 2278.8752
d4 51.22174 20.77536 6.06446
d17 27.70760 44.43215 66.20563

(近距離物体合焦時)
W M T
β -0.11369 -0.18777 -0.30039
d0 204.1827 217.1539 209.2043
d4 58.23991 28.54415 14.72028
d17 27.70760 44.43215 66.20563

[レンズ群データ]
群 始面 f
1 1 -50.15165
2 5 39.56434

[条件式対応値]
(1) Bfw/D2 = 0.730
(2) fvr/f2 = 2.014
(3) f2/ft = 0.510
(4) D2r/Bfw = 0.347
(5) (−f2r)/f2 = 1.342
(6) f2p/f2 = 0.920
(7) (r2r+r1r)/(r2r−r1r) = 2.768
(8) (r2p+r1p)/(r2p−r1p) = -1.033
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞

1 129.6401 1.8000 1.816000 46.59
* 2 21.0701 8.9601 1.000000
3 30.0752 5.0000 1.846660 23.80
4 45.1546 Variable 1.000000

5 863.7134 2.0000 1.719990 50.27
6 -61.3930 1.0000 1.000000
7 17.2972 1.0000 1.755000 52.34
8 12.7054 4.0000 1.487490 70.31
9 35.6021 2.6000 1.000000
10 (Aperture S) ∞ 1.2000 1.000000
11 50.7556 3.3000 1.497820 82.57
12 -22.5421 4.0448 1.834000 37.18
13 102.6004 7.7445 1.000000
14 -1687.0183 2.3000 1.755000 52.34
15 -27.0690 10.4203 1.000000
16 -16.4791 1.5000 1.603110 60.69
17 -35.1170 Variable 1.000000

18 ∞ 2.0000 1.516800 64.12
19 ∞ 1.0000 1.000000

Image plane ∞

[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
2 -1.0221 2.31156E-05 -8.21484E-09 2.65178E-11 -2.36759E-14 0.30473E-16

[Various data]
Scaling ratio 2.69

W M T
f 28.8 50.0 77.6
FNO 3.6 4.6 5.9
ω 40.3 23.8 15.6
Y 21.6 21.6 21.6
TL 135.888 123.401 131.060
Air conversion Bf 30.026 46.751 68.524

(When focusing on an object at infinity)
W M T
f 28.80000 50.00000 77.60000
d0 ∞ ∞ ∞
d4 48.31067 19.09858 4.98405
d17 27.70760 44.43215 66.20563

(When focusing on a finite distance object)
W M T
β -0.03333 -0.03333 -0.03333
d0 814.8805 1450.8873 2278.8752
d4 51.22174 20.77536 6.06446
d17 27.70760 44.43215 66.20563

(When focusing on a short distance object)
W M T
β -0.11369 -0.18777 -0.30039
d0 204.1827 217.1539 209.2043
d4 58.23991 28.54415 14.72028
d17 27.70760 44.43215 66.20563

[Lens group data]
Group start surface f
1 1 -50.15165
2 5 39.56434

[Conditional expression values]
(1) Bfw / D2 = 0.730
(2) fvr / f2 = 2.014
(3) f2 / ft = 0.510
(4) D2r / Bfw = 0.347
(5) (−f2r) /f2=1.342
(6) f2p / f2 = 0.920
(7) (r2r + r1r) / (r2r-r1r) = 2.768
(8) (r2p + r1p) / (r2p−r1p) = − 1.033

図5(a)、図5(b)、及び図5(c)はそれぞれ、本願の第2実施例に係るズームレンズの広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図6(a)、図6(b)、及び図6(c)はそれぞれ、本願の第2実施例に係るズームレンズの広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。なお、図6(a)、図6(b)、及び図6(c)における正レンズL21のシフト量はそれぞれ、0.268mm、0.274mm、及び0.300mmである。
FIGS. 5 (a), 5 (b), and 5 (c) respectively show infinite objects in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens according to the second embodiment of the present application. FIG. 5 is a diagram showing various aberrations during focusing.
6 (a), 6 (b), and 6 (c) respectively show the infinite object combination in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens according to the second embodiment of the present application. It is a coma aberration figure at the time of performing anti-vibration at the time of a focus. Note that the shift amounts of the positive lens L21 in FIGS. 6A, 6B, and 6C are 0.268 mm, 0.274 mm, and 0.300 mm, respectively.

各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって球面収差、コマ収差、像面湾曲、及び非点収差を含む諸収差を良好に補正し優れた光学性能を有しており、さらに防振時にも優れた光学性能を有していることがわかる。   From each aberration diagram, the zoom lens according to the present example has excellent optical performance by satisfactorily correcting various aberrations including spherical aberration, coma aberration, field curvature, and astigmatism from the wide-angle end state to the telephoto end state. It can be seen that it has excellent optical performance even during vibration isolation.

(第3実施例)
図7は、本願の第3実施例に係るズームレンズの広角端状態における無限遠物体合焦時のレンズ構成、及び変倍時の各レンズ群の移動軌跡を示す図である。
本実施例に係るズームレンズは、光軸に沿って物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成されている。
(Third embodiment)
FIG. 7 is a diagram illustrating a lens configuration at the time of focusing on an object at infinity in the wide-angle end state of the zoom lens according to the third example of the present application, and a movement locus of each lens unit at the time of zooming.
The zoom lens according to the present exemplary embodiment includes, in order from the object side along the optical axis, a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL11は、像側のガラス表面に設けた樹脂層を非球面形状に形成してなる複合型非球面レンズである。   The first lens group G1 has, in order from the object side along the optical axis, a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side. And a positive meniscus lens L13. The negative meniscus lens L11 is a composite aspherical lens formed by forming a resin layer provided on the glass surface on the image side into an aspherical shape.

第2レンズ群G2は、光軸に沿って物体側から順に、両凸形状の正レンズL21と、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合正レンズと、開口絞りSと、両凸形状の正レンズL24と両凹形状の負レンズL25との接合負レンズと、物体側に凹面を向けた正メニスカスレンズL26と、像側に凸面を向けた負メニスカスレンズL27とからなる。   The second lens group G2 includes, in order from the object side along the optical axis, a biconvex positive lens L21, a negative meniscus lens L22 having a convex surface facing the object side, and a positive meniscus lens L23 having a convex surface facing the object side. A cemented positive lens, an aperture stop S, a cemented negative lens of a biconvex positive lens L24 and a biconcave negative lens L25, a positive meniscus lens L26 having a concave surface on the object side, and a convex surface on the image side. And a negative meniscus lens L27.

なお、第2レンズ群G2と像面Iとの間には、オプティカルローパスフィルタに相当するダミーガラスFLが配置されている。   A dummy glass FL corresponding to an optical low-pass filter is disposed between the second lens group G2 and the image plane I.

以上の構成の下、本実施例に係るズームレンズでは、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が変化するように、第1レンズ群G1及び第2レンズ群G2が光軸に沿って移動する。   Under the above configuration, in the zoom lens according to the present embodiment, the first lens group G1 and the second lens group G2 change so that the air gap between the first lens group G1 and the second lens group G2 changes during zooming from the wide-angle end state to the telephoto end state. The first lens group G1 and the second lens group G2 move along the optical axis.

また、本実施例に係るズームレンズは、手ぶれ等の発生時に、第2レンズ群G2中の正レンズL21を防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。   In the zoom lens according to the present embodiment, when camera shake or the like occurs, the positive lens L21 in the second lens group G2 is moved as a vibration-proof lens group so as to include a component in a direction orthogonal to the optical axis. Shake.

また、本実施例に係るズームレンズでは、第1レンズ群G1を合焦レンズ群として光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
以下の表3に、本実施例に係るズームレンズの諸元の値を掲げる。
In the zoom lens according to the present embodiment, the first lens group G1 is moved to the object side along the optical axis as the focusing lens group, thereby focusing from an object at infinity to a near object.
Table 3 below provides values of specifications of the zoom lens according to the present example.

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 116.5439 2.5000 1.883000 40.66
2 34.0000 0.1000 1.495210 56.34
*3 29.0469 5.0000 1.000000
4 63.6902 1.8000 1.755000 52.34
5 25.4273 5.0212 1.000000
6 31.3966 6.5000 1.755200 27.57
7 89.3561 可変 1.000000

8 829.8000 2.0000 1.696800 55.52
9 -58.8700 1.0000 1.000000
10 17.5046 1.0000 1.755000 52.34
11 13.0504 4.3000 1.497820 82.57
12 35.4225 2.6000 1.000000
13(絞りS) ∞ 1.2000 1.000000
14 81.2095 3.3000 1.497820 82.57
15 -23.5095 1.0941 1.834000 37.18
16 5375.7345 9.4402 1.000000
17 -93.3560 2.3000 1.755000 52.34
18 -27.6456 11.0082 1.000000
19 -15.0106 1.8000 1.516800 63.88
20 -28.7667 可変 1.000000

21 ∞ 2.0000 1.516800 64.12
22 ∞ 0.99999 1.000000

像面 ∞

[非球面データ]
面番号 κ A4 A6 A8 A10 A12
3 1.2251 -4.31213E-06 -1.31478E-08 2.06223E-11 -4.27696E-14 0.00000E+00

[各種データ]
変倍比 2.69

W M T
f 28.8 50.0 77.6
FNO 3.6 4.6 5.9
ω 39.69 23.65 15.57
Y 21.6 21.6 21.6
TL 140.304 128.380 136.771
空気換算Bf 29.351 46.638 69.141

(無限遠物体合焦時)
W M T
f 28.80000 50.00000 77.60000
d0 ∞ ∞ ∞
d7 48.30690 19.09843 4.98530
d20 27.03333 44.31854 66.82223

(有限距離物体合焦時)
W M T
β -0.03333 -0.03333 -0.03333
d0 814.6032 1450.6087 2278.6175
d7 51.12322 20.72064 6.03053
d20 27.03333 44.31854 66.82223

(近距離物体合焦時)
W M T
β -0.11550 -0.19104 -0.30670
d0 199.9371 212.3221 203.6115
d7 58.06582 28.39556 14.60250
d20 27.03333 44.31854 66.82223

[レンズ群データ]
群 始面 f
1 1 -49.32881
2 8 40.22031

[条件式対応値]
(1) Bfw/D2 = 0.715
(2) fvr/f2 = 1.963
(3) f2/ft = 0.518
(4) D2r/Bfw = 0.375
(5) (−f2r)/f2 = 1.580
(6) f2p/f2 = 1.274
(7) (r2r+r1r)/(r2r−r1r) = 3.182
(8) (r2p+r1p)/(r2p−r1p) = -1.841
(Table 3) Third Example
[Surface data]
Surface number r d nd νd
Object ∞

1 116.5439 2.5000 1.883000 40.66
2 34.0000 0.1000 1.495210 56.34
* 3 29.0469 5.0000 1.000000
4 63.6902 1.8000 1.755000 52.34
5 25.4273 5.0212 1.000000
6 31.3966 6.5000 1.755200 27.57
7 89.3561 Variable 1.000000

8 829.8000 2.0000 1.696800 55.52
9 -58.8700 1.0000 1.000000
10 17.5046 1.0000 1.755000 52.34
11 13.0504 4.3000 1.497820 82.57
12 35.4225 2.6000 1.000000
13 (Aperture S) ∞ 1.2000 1.000000
14 81.2095 3.3000 1.497820 82.57
15 -23.5095 1.0941 1.834000 37.18
16 5375.7345 9.4402 1.000000
17 -93.3560 2.3000 1.755000 52.34
18 -27.6456 11.0082 1.000000
19 -15.0106 1.8000 1.516800 63.88
20 -28.7667 Variable 1.000000

21 ∞ 2.0000 1.516800 64.12
22 ∞ 0.99999 1.000000

Image plane ∞

[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
3 1.2251 -4.31213E-06 -1.31478E-08 2.06223E-11 -4.27696E-14 0.00000E + 00

[Various data]
Scaling ratio 2.69

W M T
f 28.8 50.0 77.6
FNO 3.6 4.6 5.9
ω 39.69 23.65 15.57
Y 21.6 21.6 21.6
TL 140.304 128.380 136.771
Air conversion Bf 29.351 46.638 69.141

(When focusing on an object at infinity)
W M T
f 28.80000 50.00000 77.60000
d0 ∞ ∞ ∞
d7 48.30690 19.09843 4.98530
d20 27.03333 44.31854 66.82223

(When focusing on a finite distance object)
W M T
β -0.03333 -0.03333 -0.03333
d0 814.6032 1450.6087 2278.6175
d7 51.12322 20.72064 6.03053
d20 27.03333 44.31854 66.82223

(When focusing on a short distance object)
W M T
β -0.11550 -0.19104 -0.30670
d0 199.9371 212.3221 203.6115
d7 58.06582 28.39556 14.60250
d20 27.03333 44.31854 66.82223

[Lens group data]
Group start surface f
1 1 -49.32881
2 8 40.22031

[Conditional expression values]
(1) Bfw / D2 = 0.715
(2) fvr / f2 = 1.963
(3) f2 / ft = 0.518
(4) D2r / Bfw = 0.375
(5) (−f2r) /f2=1.580
(6) f2p / f2 = 1.274
(7) (r2r + r1r) / (r2r−r1r) = 3.182
(8) (r2p + r1p) / (r2p−r1p) = − 1.841

図8(a)、図8(b)、及び図8(c)はそれぞれ、本願の第3実施例に係るズームレンズの広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図9(a)、図9(b)、及び図9(c)はそれぞれ、本願の第3実施例に係るズームレンズの広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のコマ収差図である。なお、図9(a)、図9(b)、及び図9(c)における正レンズL21のシフト量はそれぞれ、0.256mm、0.260mm、及び0.283mmである。
8 (a), 8 (b), and 8 (c) respectively show the infinite object combination in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens according to Example 3 of the present application. FIG. 5 is a diagram showing various aberrations during focusing.
9 (a), 9 (b), and 9 (c) respectively show the infinite object combination in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens according to Example 3 of the present application. It is a coma aberration figure at the time of performing anti-vibration at the time of a focus. The shift amounts of the positive lens L21 in FIGS. 9A, 9B, and 9C are 0.256 mm, 0.260 mm, and 0.283 mm, respectively.

各収差図より、本実施例に係るズームレンズは、広角端状態から望遠端状態にわたって球面収差、コマ収差、像面湾曲、及び非点収差を含む諸収差を良好に補正し優れた光学性能を有しており、さらに防振時にも優れた光学性能を有していることがわかる。   From each aberration diagram, the zoom lens according to the present example has excellent optical performance by satisfactorily correcting various aberrations including spherical aberration, coma aberration, field curvature, and astigmatism from the wide-angle end state to the telephoto end state. It can be seen that it has excellent optical performance even during vibration isolation.

上記各実施例によれば、球面収差、コマ収差、及び非点収差等の諸収差を良好に補正し、防振時の光学性能の劣化が小さい高性能なズームレンズを実現することができる。特に、各実施例に係るズームレンズは、79〜31°程度の包括角とF3.5〜5.6程度の大口径を有し、レンズ枚数が少なく小型である。また、各実施例に係るズームレンズは、後述するカメラの撮影レンズだけでなく、印刷用レンズや複写用レンズにも好適である。   According to each of the above embodiments, it is possible to realize a high-performance zoom lens that satisfactorily corrects various aberrations such as spherical aberration, coma aberration, and astigmatism, and has little deterioration in optical performance during image stabilization. In particular, the zoom lens according to each embodiment has a comprehensive angle of about 79 to 31 ° and a large aperture of about F3.5 to 5.6, and is small in size with a small number of lenses. Further, the zoom lens according to each embodiment is suitable not only for a camera taking lens described later but also for a printing lens and a copying lens.

なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願のズームレンズの光学性能を損なわない範囲で適宜採用することが可能である。
本願のズームレンズの数値実施例として2群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、3群や4群等)のズームレンズを構成することもできる。具体的には、本願のズームレンズの最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。
In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be appropriately adopted within a range that does not impair the optical performance of the zoom lens of the present application.
The numerical example of the zoom lens of the present application is shown as having a two-group configuration, but the present application is not limited to this, and a zoom lens of another group configuration (for example, a third group or a fourth group) can also be configured. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the zoom lens of the present application may be used.

上記各実施例に係るズームレンズは、第1レンズ群を繰り出すことで無限遠物体から近距離物体への合焦を行う。しかしこれに限られず、本願のズームレンズは、いずれかのレンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させることで合焦を行う構成としてもよい。具体的には、第2レンズ群全体を合焦レンズ群としたリヤフォーカス方式や、第2レンズ群の一部を合焦レンズ群としたリヤフォーカス方式又はインナーフォーカス方式を採用してもよい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。   The zoom lens according to each of the above embodiments performs focusing from an object at infinity to an object at a short distance by extending the first lens group. However, the present invention is not limited to this, and the zoom lens of the present application performs focusing by moving a part of one of the lens groups, the entire lens group, or a plurality of lens groups in the optical axis direction as a focusing lens group. It is good also as a structure. Specifically, a rear focus method in which the entire second lens group is a focusing lens group, a rear focus method in which a part of the second lens group is a focusing lens group, or an inner focus method may be employed. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.

また、本願のズームレンズにおいて、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることもできる。特に、本願のズームレンズでは第2レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。   In the zoom lens of the present application, either the entire lens group or a part of the lens group is moved so as to include a component in a direction perpendicular to the optical axis as an anti-vibration lens group, or an in-plane direction including the optical axis It is also possible to adopt a configuration in which image blur caused by camera shake or the like is corrected by rotating (swinging) to the right. In particular, in the zoom lens of the present application, it is preferable that at least a part of the second lens group is an anti-vibration lens group.

また、本願のズームレンズを構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the zoom lens of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願のズームレンズにおいて開口絞りは第2レンズ群中又は第2レンズ群の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願のズームレンズを構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
In the zoom lens of the present application, it is preferable that the aperture stop is disposed in the second lens group or in the vicinity of the second lens group, and the role may be substituted by a lens frame without providing a member as the aperture stop. .
Further, an antireflection film having a high transmittance in a wide wavelength range may be provided on the lens surface of the lens constituting the zoom lens of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.

次に、本願のズームレンズを備えたカメラを図10に基づいて説明する。
図10は、本願のズームレンズを備えたカメラの構成を示す図である。
図10に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係るズームレンズを備えたレンズ交換式の所謂ミラーレスカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
Next, a camera equipped with the zoom lens of the present application will be described with reference to FIG.
FIG. 10 is a diagram illustrating a configuration of a camera including the zoom lens of the present application.
As shown in FIG. 10, the camera 1 is a so-called mirrorless camera with an interchangeable lens provided with the zoom lens according to the first embodiment as the photographing lens 2.
In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.
When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係るズームレンズは、諸収差を良好に補正し、防振時の光学性能の劣化が小さい高性能なズームレンズである。したがって本カメラ1は、諸収差を良好に補正し、防振時の光学性能の劣化を抑え、高い光学性能を実現することができる。なお、上記第2、第3実施例に係るズームレンズを撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係るズームレンズを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Here, the zoom lens according to the first embodiment mounted as the photographing lens 2 on the camera 1 is a high-performance zoom lens that corrects various aberrations well and has little deterioration in optical performance during image stabilization. Therefore, this camera 1 can correct various aberrations satisfactorily, suppress deterioration of optical performance during image stabilization, and realize high optical performance. It should be noted that the same effects as those of the camera 1 can be obtained even if a camera equipped with the zoom lenses according to the second and third embodiments as the photographing lens 2 is configured. Further, even when the zoom lens according to each of the above embodiments is mounted on a single-lens reflex camera having a quick return mirror and observing a subject with a finder optical system, the same effect as the camera 1 can be obtained.

最後に、本願のズームレンズの製造方法の概略を図11に基づいて説明する。
図11に示す本願のズームレンズの製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなるズームレンズの製造方法であって、以下のステップS1〜S5を含むものである。
Finally, the outline of the manufacturing method of the zoom lens of this application is demonstrated based on FIG.
The zoom lens manufacturing method of the present application shown in FIG. 11 is a zoom lens manufacturing method including a first lens group having a negative refractive power and a second lens group having a positive refractive power in order from the object side. The following steps S1 to S5 are included.

ステップS1:第1レンズ群が、物体側から順に、少なくとも1つの負レンズ成分と、正レンズ成分とを有するようにする。
ステップS2:第2レンズ群が、物体側から順に、正レンズ成分と、負レンズと正レンズとの接合レンズとを有するようにする。
Step S1: The first lens group has at least one negative lens component and a positive lens component in order from the object side.
Step S2: The second lens group includes, in order from the object side, a positive lens component and a cemented lens of a negative lens and a positive lens.

ステップS3:第2レンズ群が以下の条件式(1)、(2)を満足するようにし、第1、第2レンズ群をレンズ鏡筒内に物体側から順に配置する。
(1) 0.10 < Bfw/D2 < 0.90
(2) 1.10 < fvr/f2 < 3.30
但し、
Bfw:広角端状態におけるズームレンズのバックフォーカス
D2 :第2レンズ群の総厚
fvr:第2レンズ群における正レンズ成分の焦点距離
f2 :第2レンズ群の焦点距離
Step S3: The second lens group satisfies the following conditional expressions (1) and (2), and the first and second lens groups are sequentially arranged in the lens barrel from the object side.
(1) 0.10 <Bfw / D2 <0.90
(2) 1.10 <fvr / f2 <3.30
However,
Bfw: Back focus of zoom lens in wide-angle end state D2: Total thickness of second lens group fvr: Focal length of positive lens component in second lens group f2: Focal length of second lens group

ステップS4:レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群との間隔が変化するようにする。
ステップS5:レンズ鏡筒に公知の移動機構を設ける等することで、第2レンズ群における正レンズ成分が、光軸と直交する方向の成分を含むように移動するようにする。
Step S4: By providing a known moving mechanism in the lens barrel, the distance between the first lens group and the second lens group is changed at the time of zooming from the wide-angle end state to the telephoto end state.
Step S5: By providing a known moving mechanism in the lens barrel, the positive lens component in the second lens group is moved so as to include a component in a direction orthogonal to the optical axis.

斯かる本願のズームレンズの製造方法によれば、諸収差を良好に補正し、防振時の光学性能の劣化が小さい高性能なズームレンズを製造することができる。   According to such a zoom lens manufacturing method of the present application, it is possible to manufacture a high-performance zoom lens that corrects various aberrations satisfactorily and has little deterioration in optical performance during image stabilization.

G1 第1レンズ群
G2 第2レンズ群
FL ダミーガラス
S 開口絞り
I 像面
W 広角端状態
T 望遠端状態
G1 First lens group G2 Second lens group FL Dummy glass S Aperture stop I Image surface W Wide-angle end state T Telephoto end state

Claims (14)

物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなり、
前記第1レンズ群が、物体側から順に、少なくとも1つの負レンズ成分と、正レンズ成分とを有し、
前記第2レンズ群が、物体側から順に、正レンズ成分と、負レンズと正レンズとの接合レンズとを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、
前記第2レンズ群における前記正レンズ成分が、光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とするズームレンズ。
0.10 < Bfw/D2 < 0.90
1.10 < fvr/f2 < 3.30
但し、
Bfw:広角端状態における前記ズームレンズのバックフォーカス
D2 :前記第2レンズ群の総厚
fvr:前記第2レンズ群における前記正レンズ成分の焦点距離
f2 :前記第2レンズ群の焦点距離
In order from the object side, the first lens group having a negative refractive power and a second lens group having a positive refractive power,
The first lens group has at least one negative lens component and a positive lens component in order from the object side,
The second lens group includes, in order from the object side, a positive lens component and a cemented lens of a negative lens and a positive lens.
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes,
The positive lens component in the second lens group moves so as to include a component in a direction orthogonal to the optical axis,
A zoom lens satisfying the following conditional expression:
0.10 <Bfw / D2 <0.90
1.10 <fvr / f2 <3.30
However,
Bfw: Back focus D2 of the zoom lens in the wide-angle end state D2: Total thickness of the second lens group fvr: Focal length of the positive lens component in the second lens group f2: Focal length of the second lens group
以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
0.20 < f2/ft < 0.65
但し、
ft:望遠端状態における前記ズームレンズの焦点距離
f2:前記第2レンズ群の焦点距離
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
0.20 <f2 / ft <0.65
However,
ft: focal length of the zoom lens in the telephoto end state f2: focal length of the second lens group
前記第2レンズ群が、最も像側に配置されており物体側に凹面を向けたメニスカス形状の負レンズ成分と、前記負レンズ成分の物体側に隣り合って配置された正レンズ成分とをさらに有し、
以下の条件式を満足することを特徴とする請求項1又は請求項2に記載のズームレンズ。
0.10 < D2r/Bfw < 2.00
但し、
D2r:前記第2レンズ群における前記負レンズ成分とその物体側に隣り合って配置された前記正レンズ成分との間隔
Bfw:広角端状態における前記ズームレンズのバックフォーカス
The second lens group further includes a meniscus negative lens component that is disposed closest to the image side and has a concave surface facing the object side, and a positive lens component that is disposed adjacent to the object side of the negative lens component. Have
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
0.10 <D2r / Bfw <2.00
However,
D2r: Distance between the negative lens component in the second lens group and the positive lens component arranged adjacent to the object side Bfw: Back focus of the zoom lens in the wide-angle end state
以下の条件式を満足することを特徴とする請求項3に記載のズームレンズ。
0.60 < (−f2r)/f2 < 2.00
但し、
f2r:前記第2レンズ群における前記負レンズ成分の焦点距離
f2 :前記第2レンズ群の焦点距離
The zoom lens according to claim 3, wherein the following conditional expression is satisfied.
0.60 <(− f2r) / f2 <2.00
However,
f2r: focal length of the negative lens component in the second lens group f2: focal length of the second lens group
以下の条件式を満足することを特徴とする請求項3又は請求項4に記載のズームレンズ。
0.50 < f2p/f2 < 2.00
但し、
f2p:前記第2レンズ群における前記負レンズ成分の物体側に隣り合って配置された前記正レンズ成分の焦点距離
f2 :前記第2レンズ群の焦点距離
The zoom lens according to claim 3 or 4, wherein the following conditional expression is satisfied.
0.50 <f2p / f2 <2.00
However,
f2p: focal length of the positive lens component arranged adjacent to the object side of the negative lens component in the second lens group f2: focal length of the second lens group
以下の条件式を満足することを特徴とする請求項3から請求項5のいずれか一項に記載のズームレンズ。
1.00 < (r2r+r1r)/(r2r−r1r) < 8.00
但し、
r1r:前記第2レンズ群における前記負レンズ成分中の最も物体側のレンズ面の曲率半径
r2r:前記第2レンズ群における前記負レンズ成分中の最も像側のレンズ面の曲率半径
The zoom lens according to any one of claims 3 to 5, wherein the following conditional expression is satisfied.
1.00 <(r2r + r1r) / (r2r−r1r) <8.00
However,
r1r: radius of curvature of the lens surface closest to the object in the negative lens component in the second lens group r2r: radius of curvature of the lens surface closest to the image in the negative lens component in the second lens group
以下の条件式を満足することを特徴とする請求項3から請求項6のいずれか一項に記載のズームレンズ。
−3.00 < (r2p+r1p)/(r2p−r1p) < 0.00
但し、
r1p:前記第2レンズ群における前記負レンズ成分の物体側に隣り合って配置された前記正レンズ成分中の最も物体側のレンズ面の曲率半径
r2p:前記第2レンズ群における前記負レンズ成分の物体側に隣り合って配置された前記正レンズ成分中の最も像側のレンズ面の曲率半径
The zoom lens according to any one of claims 3 to 6, wherein the following conditional expression is satisfied.
−3.00 <(r2p + r1p) / (r2p−r1p) <0.00
However,
r1p: radius of curvature of the lens surface closest to the object side in the positive lens component arranged adjacent to the object side of the negative lens component in the second lens group r2p: the negative lens component in the second lens group The radius of curvature of the lens surface closest to the image side in the positive lens component arranged adjacent to the object side
前記第2レンズ群における光軸と直交する方向の成分を含むように移動する前記正レンズ成分よりも像側に開口絞りを有することを特徴とする請求項1から請求項7のいずれか一項に記載のズームレンズ。   8. The aperture stop is located on the image side of the positive lens component moving so as to include a component in a direction orthogonal to the optical axis in the second lens group. 8. Zoom lens described in 1. 前記開口絞りが前記第2レンズ群における前記接合レンズの像側に隣り合って配置されていることを特徴とする請求項8に記載のズームレンズ。   The zoom lens according to claim 8, wherein the aperture stop is disposed adjacent to the image side of the cemented lens in the second lens group. 前記第1レンズ群が少なくとも1つの非球面を有することを特徴とする請求項1から請求項9のいずれか一項に記載のズームレンズ。   The zoom lens according to any one of claims 1 to 9, wherein the first lens group has at least one aspherical surface. 前記第2レンズ群が少なくとも1つの非球面を有することを特徴とする請求項1から請求項10のいずれか一項に記載のズームレンズ。   The zoom lens according to any one of claims 1 to 10, wherein the second lens group has at least one aspherical surface. 前記第2レンズ群における光軸と直交する方向の成分を含むように移動する前記正レンズ成分が、像側のレンズ面が物体側のレンズ面よりも曲率半径の絶対値が小さい両凸形状の正レンズからなることを特徴とする請求項1から請求項11のいずれか一項に記載のズームレンズ。   The positive lens component moving so as to include a component perpendicular to the optical axis in the second lens group has a biconvex shape in which the image side lens surface has a smaller absolute value of the radius of curvature than the object side lens surface. The zoom lens according to claim 1, comprising a positive lens. 請求項1から請求項12のいずれか一項に記載のズームレンズを有することを特徴とする光学装置。   An optical apparatus comprising the zoom lens according to any one of claims 1 to 12. 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなるズームレンズの製造方法であって、
前記第1レンズ群が、物体側から順に、少なくとも1つの負レンズ成分と、正レンズ成分とを有するようにし、
前記第2レンズ群が、物体側から順に、正レンズ成分と、負レンズと正レンズとの接合レンズとを有するようにし、
前記第2レンズ群が以下の条件式を満足するようにし、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化するようにし、
前記第2レンズ群における前記正レンズ成分が、光軸と直交する方向の成分を含むように移動するようにすることを特徴とするズームレンズの製造方法。
0.10 < Bfw/D2 < 0.90
1.10 < fvr/f2 < 3.30
但し、
Bfw:広角端状態における前記ズームレンズのバックフォーカス
D2 :前記第2レンズ群の総厚
fvr:前記第2レンズ群における前記正レンズ成分の焦点距離
f2 :前記第2レンズ群の焦点距離
In order from the object side, a zoom lens manufacturing method including a first lens group having a negative refractive power and a second lens group having a positive refractive power,
The first lens group has at least one negative lens component and a positive lens component in order from the object side,
The second lens group includes, in order from the object side, a positive lens component and a cemented lens of a negative lens and a positive lens.
The second lens group satisfies the following conditional expression:
When changing the magnification from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group is changed.
A zoom lens manufacturing method, wherein the positive lens component in the second lens group moves so as to include a component in a direction orthogonal to the optical axis.
0.10 <Bfw / D2 <0.90
1.10 <fvr / f2 <3.30
However,
Bfw: Back focus D2 of the zoom lens in the wide-angle end state D2: Total thickness of the second lens group fvr: Focal length of the positive lens component in the second lens group f2: Focal length of the second lens group
JP2013115937A 2013-05-31 2013-05-31 Zoom lens, optical device Active JP6191246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013115937A JP6191246B2 (en) 2013-05-31 2013-05-31 Zoom lens, optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013115937A JP6191246B2 (en) 2013-05-31 2013-05-31 Zoom lens, optical device

Publications (2)

Publication Number Publication Date
JP2014235271A true JP2014235271A (en) 2014-12-15
JP6191246B2 JP6191246B2 (en) 2017-09-06

Family

ID=52138036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013115937A Active JP6191246B2 (en) 2013-05-31 2013-05-31 Zoom lens, optical device

Country Status (1)

Country Link
JP (1) JP6191246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568358A (en) * 2017-09-11 2019-05-15 Canon Kk Optical system and image pickup apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179205A (en) * 1994-12-26 1996-07-12 Nikon Corp Wide-angle zoom lens
JP2010181518A (en) * 2009-02-04 2010-08-19 Nikon Corp Zoom lens, optical apparatus with the zoom lens, and method for manufacturing zoom lens
JP2011107269A (en) * 2009-11-13 2011-06-02 Nikon Corp Lens system, optical equipment, and method of manufacturing lens system
JP2012027309A (en) * 2010-07-26 2012-02-09 Nikon Corp Zoom lens, optical device and method for manufacturing zoom lens
JP2012173730A (en) * 2011-02-24 2012-09-10 Nikon Corp Zoom lens, optical device, and manufacturing method for zoom lens
JP2012220827A (en) * 2011-04-12 2012-11-12 Nikon Corp Zoom lens, imaging apparatus, and method for manufacturing zoom lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179205A (en) * 1994-12-26 1996-07-12 Nikon Corp Wide-angle zoom lens
JP2010181518A (en) * 2009-02-04 2010-08-19 Nikon Corp Zoom lens, optical apparatus with the zoom lens, and method for manufacturing zoom lens
JP2011107269A (en) * 2009-11-13 2011-06-02 Nikon Corp Lens system, optical equipment, and method of manufacturing lens system
JP2012027309A (en) * 2010-07-26 2012-02-09 Nikon Corp Zoom lens, optical device and method for manufacturing zoom lens
JP2012173730A (en) * 2011-02-24 2012-09-10 Nikon Corp Zoom lens, optical device, and manufacturing method for zoom lens
JP2012220827A (en) * 2011-04-12 2012-11-12 Nikon Corp Zoom lens, imaging apparatus, and method for manufacturing zoom lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568358A (en) * 2017-09-11 2019-05-15 Canon Kk Optical system and image pickup apparatus
GB2568358B (en) * 2017-09-11 2021-01-27 Canon Kk Optical system and image pickup apparatus
US10942361B2 (en) 2017-09-11 2021-03-09 Canon Kabushiki Kaisha Optical system and image pickup apparatus

Also Published As

Publication number Publication date
JP6191246B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
CN107621690B (en) Zoom optical system
JP5273184B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
US8995064B2 (en) Zoom lens, imaging apparatus, and method for manufacturing zoom lens
CN110832376B (en) Variable magnification optical system and optical device
JP2009156905A (en) Zoom lens and optical device with the zoom lens
JP5344291B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP2010044226A (en) Zoom lens system, optical equipment having same, and variable magnification method using same
JP6127462B2 (en) Variable magnification optical system, optical device
JP6229259B2 (en) Variable magnification optical system, optical device
JPWO2018074413A1 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6182868B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2020034932A (en) Zoom optical system, optical device, and method of manufacturing zoom optical system
WO2014112176A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP6354257B2 (en) Variable magnification optical system and imaging apparatus
CN107884917B (en) Variable magnification optical system and optical device
JP2015031951A (en) Zoom lens, optical device and method for manufacturing zoom lens
JP5545064B2 (en) Zoom lens, imaging device, and zoom lens manufacturing method
JP6098176B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6102269B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6060616B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6354256B2 (en) Variable magnification optical system and imaging apparatus
JP6191246B2 (en) Zoom lens, optical device
JP2010170063A (en) Zoom lens system, image capturing apparatus, and method of manufacturing the zoom lens system
JP6424414B2 (en) Variable magnification optical system, optical device
JP5974719B2 (en) Zoom lens, optical device, and zoom lens manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R150 Certificate of patent or registration of utility model

Ref document number: 6191246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250