JP2014235061A - Turbidity sensor - Google Patents

Turbidity sensor Download PDF

Info

Publication number
JP2014235061A
JP2014235061A JP2013116195A JP2013116195A JP2014235061A JP 2014235061 A JP2014235061 A JP 2014235061A JP 2013116195 A JP2013116195 A JP 2013116195A JP 2013116195 A JP2013116195 A JP 2013116195A JP 2014235061 A JP2014235061 A JP 2014235061A
Authority
JP
Japan
Prior art keywords
light
emitting element
disposed
light emitting
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013116195A
Other languages
Japanese (ja)
Inventor
諭 瀧澤
Satoshi Takizawa
諭 瀧澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2013116195A priority Critical patent/JP2014235061A/en
Priority to CN201410222367.8A priority patent/CN104215609A/en
Publication of JP2014235061A publication Critical patent/JP2014235061A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a turbidity sensor capable, in a compact and simple structure though, of compensating for a change in the ambient temperature or a change in the luminous energy of a light-emitting element, even when a placement interval between the light-emitting element and a detection-purpose light-receiving element is narrowed due to downsizing.SOLUTION: Provided is a turbidity sensor 1 comprising: a sensor body 4 provided with two cavity parts 2, 3 provided with openings 8, 9 disposed adjacent to each other with an interval therebetween, and having light shading properties; a light-emitting element 5 disposed inside the cavity part 2 and provided with a semiconductor element for emitting light in a direction toward the opening 8 of the cavity part 2 in a prescribed irradiation angle range θ; a detection-purpose light-receiving element 6 disposed in the cavity part 3 and used for receiving incident light from the opening 9 of the cavity part 3; and compensation-purpose light-receiving means disposed at least partly inside the cavity part 2 and used for receiving light leaking to the outside of the irradiation angle range θ of the light-emitting element 5.

Description

本発明は、濁度センサに関するものである。   The present invention relates to a turbidity sensor.

従来、発光ダイオードとフォトダイオードとの間に、周期的に感度の試験を行うための内部光学較正器を設けて発光ダイオードの温度影響や劣化による光量変化を補償する濁度センサが知られている(例えば、特許文献1参照。)。この濁度センサは、発光ダイオードとフォトダイオードとの間に設けたチャネルを介して発光ダイオードからその照射角度範囲内に射出された光の一部をフォトダイオードに導き、フォトダイオードにより検出された光量によって発光ダイオードの光量変動による濁度の検出値を補正している。このチャネルには開閉を切り替える切替機構が設けられ、濁度の検出時にはこのチャネルを閉じておき、必要に応じてチャネルを開いて補正用の光を検出することとしている。   Conventionally, a turbidity sensor has been known in which an internal optical calibrator for periodically performing a sensitivity test is provided between a light emitting diode and a photodiode to compensate for a change in light amount due to temperature influence or deterioration of the light emitting diode. (For example, refer to Patent Document 1). This turbidity sensor guides a part of the light emitted from the light emitting diode within the irradiation angle range to the photodiode through a channel provided between the light emitting diode and the photodiode, and detects the amount of light detected by the photodiode. Thus, the detected value of turbidity due to light quantity fluctuation of the light emitting diode is corrected. This channel is provided with a switching mechanism for switching between opening and closing. When turbidity is detected, this channel is closed, and if necessary, the channel is opened to detect correction light.

特表2006−510015号公報JP-T-2006-510015

しかしながら、特許文献1の濁度センサは、発光ダイオードとフォトダイオードとの間にチャネルや切替機構を設けるためのスペースが必要であることから、十分に小型化ができないという不都合がある。また、切替機構を設けることにより、構造や動作(シーケンス)が複雑化するという問題がある。
本発明は、上述した事情に鑑みてなされたものであって、小型で簡易な構成であって、小型化により発光素子と検出用受光素子との配置間隔が狭くなったとしても、周囲温度の変化(温度影響)や発光素子の劣化による発光素子の光量の変化を補償できる濁度センサを提供することを目的としている。
However, the turbidity sensor disclosed in Patent Document 1 requires a space for providing a channel and a switching mechanism between the light emitting diode and the photodiode, and thus has a disadvantage that it cannot be sufficiently reduced in size. Moreover, there is a problem that the structure and operation (sequence) are complicated by providing the switching mechanism.
The present invention has been made in view of the above-described circumstances, and has a small and simple configuration. Even if the arrangement interval between the light emitting element and the light receiving element for detection is reduced due to the downsizing, the ambient temperature is reduced. It is an object of the present invention to provide a turbidity sensor that can compensate for a change (temperature effect) and a change in the light amount of a light emitting element due to deterioration of the light emitting element.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明の一態様は、間隔を空けて隣接配置された開口を備える2つの空洞部を備え、遮光性を有するセンサ本体と、一方の前記空洞部内に配置され、その開口方向に向かって所定の照射角度範囲に光を射出する半導体素子を備える発光素子と、他方の前記空洞部内に配置され、その開口から入射してきた光を受光する検出用受光素子と、少なくともその一部が、一方の前記空洞部内に配置され、前記発光素子の前記照射角度範囲外に漏出した光を受光する補償用受光手段とを備える濁度センサを提供する。
In order to achieve the above object, the present invention provides the following means.
One aspect of the present invention includes two hollow portions having openings arranged adjacent to each other with a space therebetween, and has a light-shielding sensor body, and is disposed in one of the hollow portions and has a predetermined direction in the opening direction. A light emitting element including a semiconductor element that emits light within an irradiation angle range, a detection light receiving element that is disposed in the other cavity and receives light incident from the opening, and at least a part of the light receiving element is one of the ones There is provided a turbidity sensor including a compensation light receiving means that is disposed in a cavity and receives light leaked out of the irradiation angle range of the light emitting element.

本態様によれば、発光素子からその照射角度範囲内に発せられ、検出対象において散乱した光が検出用受光素子により受光されるとともに、発光素子からその照射角度範囲外に発せられた光が、検出用受光素子とは別個に設けられた補償用受光素子によって検出される。これにより、従来の濁度センサのような、補償用の光を検出するために空洞部や切替機構を配置するスペースを発光素子と検出用受光素子との間に設けずに済む。その結果、濁度センサを小型化しつつ、発光素子の温度影響や劣化による光量変化を補償して濁度を精度よく検出することができる。   According to this aspect, the light emitted from the light emitting element within the irradiation angle range, the light scattered in the detection target is received by the light receiving element for detection, and the light emitted from the light emitting element outside the irradiation angle range is It is detected by a compensation light receiving element provided separately from the detection light receiving element. Thus, unlike the conventional turbidity sensor, there is no need to provide a space for arranging the cavity and the switching mechanism between the light emitting element and the detection light receiving element in order to detect compensation light. As a result, it is possible to detect turbidity with high accuracy by compensating for the change in the amount of light due to the temperature effect and deterioration of the light emitting element while reducing the size of the turbidity sensor.

上記態様においては、前記発光素子が、光を射出する半導体素子を透明樹脂によりモールドしてなる砲弾型LEDであっていてもよい。
半導体素子を透明樹脂によりモールドしてなる砲弾型LEDである発光素子は、その照射角度範囲内には透明樹脂により集光された比較的強度の高い光を射出するが、照射角度範囲外には照射角度範囲内よりも低い強度の光を輝点から漏出する。この照射角度範囲外に漏出される光も発光素子の温度影響や劣化の程度に比例してその光量が変動する。この特性を利用し、補償用受光素子によって検出された光量が所定の閾値を下回った場合は、発光素子への電圧を上げるなどして、散乱光の検出に利用される光量を一定範囲に保つようにすることで、発光素子の温度影響や劣化による光量の変動を補償することができる。
In the above aspect, the light-emitting element may be a bullet-type LED formed by molding a semiconductor element that emits light with a transparent resin.
A light emitting element which is a bullet-type LED formed by molding a semiconductor element with a transparent resin emits a relatively high intensity light collected by the transparent resin within the irradiation angle range, but outside the irradiation angle range. Light having a lower intensity than within the irradiation angle range is leaked from the bright spot. The amount of light that leaks out of this irradiation angle range also varies in proportion to the temperature effect and the degree of deterioration of the light emitting element. Utilizing this characteristic, when the amount of light detected by the compensation light receiving element falls below a predetermined threshold, the amount of light used for detecting scattered light is kept within a certain range by increasing the voltage to the light emitting element. By doing so, it is possible to compensate for fluctuations in the amount of light due to temperature effects and deterioration of the light emitting element.

上記態様においては、前記補償用受光手段が、前記発光素子の光の射出方向の後方に、その射出軸に直交する平面に対して受光面を傾斜させて配置される受光素子であっていてもよい。
この場合において、射出軸に直交する平面に対して受光面を傾斜させることにより、受光面で検出する光量を配置される傾斜角度によって調節することができる。これにより、補償用受光素子を最適な角度に調節して、検出される光量を調節することにより、従来のような絞りやシャッタが不必要となり、構造を簡易にすることができるとともに、省スペースを図って濁度センサを小型化することができる。
In the above aspect, the compensation light-receiving means may be a light-receiving element that is disposed behind the light-emitting direction of the light-emitting element with a light-receiving surface inclined with respect to a plane orthogonal to the emission axis. Good.
In this case, by inclining the light receiving surface with respect to a plane orthogonal to the emission axis, the amount of light detected on the light receiving surface can be adjusted by the arranged inclination angle. As a result, the light receiving element for compensation is adjusted to the optimum angle, and the amount of light detected is adjusted, so that the conventional diaphragm and shutter are not required, the structure can be simplified, and space is saved. The turbidity sensor can be reduced in size.

上記態様においては、前記補償用受光手段が、前記発光素子の射出軸に交差する方向に配置される受光素子であってもよい。   In the above aspect, the light-receiving element for compensation may be a light-receiving element arranged in a direction intersecting with an emission axis of the light-emitting element.

上記態様においては、前記補償用受光手段が、前記発光素子が配置される空洞部内の前記発光素子の側方に一端を配置した光ファイバと、前記光ファイバにより伝播されその他端から射出される光を検出する受光素子からなってもよい。
この場合において、空洞部内に補償用受光素子を配置するスペースを確保せずに済むとともに、発光素子の側方にスペースをとらない細径の光ファイバを配置し、かつ、絞りおよび補償用受光素子を外部に配置しているので、濁度センサのさらなる小型化を図ることができる。
In the above aspect, the light receiving means for compensation includes an optical fiber having one end disposed on the side of the light emitting element in the cavity where the light emitting element is disposed, and light propagated by the optical fiber and emitted from the other end. It may consist of a light receiving element that detects.
In this case, it is not necessary to secure a space for disposing the compensating light receiving element in the cavity, and a small-diameter optical fiber that does not occupy a space is disposed on the side of the light emitting element. Is disposed outside, the turbidity sensor can be further downsized.

上記態様においては、前記光ファイバの一端が、光ファイバの光軸上に発光素子の輝点が配置されないように傾斜して配置されてもよい。
この場合において、光ファイバの一端を配置する傾斜角度によって光ファイバ内に入射する光量が異なるため、光ファイバ内に入射する光量を低下させることができ、絞りのような調光手段をなくしても、補償用受光手段を検出用受光素子と同一の受光特性を有するものとすることができる。
In the above aspect, the one end of the optical fiber may be disposed so as to be inclined so that the bright spot of the light emitting element is not disposed on the optical axis of the optical fiber.
In this case, the amount of light incident on the optical fiber differs depending on the inclination angle at which one end of the optical fiber is arranged. Therefore, the amount of light incident on the optical fiber can be reduced, and the light control means such as a diaphragm can be eliminated. The compensation light-receiving means can have the same light-receiving characteristics as the detection light-receiving element.

本発明によれば、小型で簡易な構成であって、小型化により発光素子と検出用受光素子との配置間隔が狭くなったとしても、周囲温度の変化や発光素子の劣化による発光素子の光量の変化を補償できる濁度センサを提供できる。   According to the present invention, even if the arrangement distance between the light emitting element and the light receiving element for detection is reduced due to the downsizing, the light amount of the light emitting element due to a change in ambient temperature or deterioration of the light emitting element is achieved. It is possible to provide a turbidity sensor that can compensate for changes in the turbidity.

本発明の第1の実施形態に係る濁度センサの縦断面を示す一部を破断した全体構成図である。It is the whole block diagram which fractured | ruptured a part which shows the longitudinal cross-section of the turbidity sensor which concerns on the 1st Embodiment of this invention. 図1の濁度センサの発光素子を示す拡大図である。It is an enlarged view which shows the light emitting element of the turbidity sensor of FIG. 図1の濁度センサのA部の詳細を示す拡大図である。It is an enlarged view which shows the detail of the A section of the turbidity sensor of FIG. 本発明の第2の実施形態に係る濁度センサの縦断面を示す一部を破断した全体構成図である。It is the whole block diagram which fractured | ruptured a part which shows the longitudinal cross-section of the turbidity sensor which concerns on the 2nd Embodiment of this invention. 図4の濁度センサのB部の詳細を示す拡大図である。It is an enlarged view which shows the detail of the B section of the turbidity sensor of FIG.

本発明の第1の実施形態に係る濁度センサ1について、図面を参照して以下に説明する。
本実施形態に係る濁度センサ1は、図1に示されるように、2つの空洞部2,3を有するセンサ本体4と、該センサ本体4の一方の空洞部2内に配置された発光素子5と、他方の空洞部3内に配置された検出用受光素子6と、少なくともその一部が、一方の空洞部2内に配置された補償用受光手段の一例である補償用受光素子7とを備えている。
A turbidity sensor 1 according to a first embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the turbidity sensor 1 according to the present embodiment includes a sensor body 4 having two cavities 2 and 3, and a light emitting element disposed in one cavity 2 of the sensor body 4. 5, a detection light receiving element 6 disposed in the other cavity portion 3, and a compensation light receiving element 7, at least part of which is an example of a compensation light receiving means disposed in one cavity portion 2, It has.

センサ本体4は、遮光性を有する材質からなっている。センサ本体4に設けられた2つの空洞部2,3は、センサ本体4の一端面4aに間隔を空けて隣接配置された開口8,9を備えている。
各空洞部2,3は、図1に示されるように、上述した一端面4aに対して傾いており、一方の空洞部2の長手軸と他方の空洞部3の長手軸とが略直角をなして交差している。
The sensor body 4 is made of a light-shielding material. The two cavities 2, 3 provided in the sensor body 4 include openings 8, 9 that are arranged adjacent to each other at one end surface 4 a of the sensor body 4 with a space therebetween.
As shown in FIG. 1, each of the cavities 2 and 3 is inclined with respect to the one end face 4a described above, and the longitudinal axis of one cavity 2 and the longitudinal axis of the other cavity 3 are substantially perpendicular. Crossed.

発光素子5は、例えば発光ダイオード(LED)であり、一方の空洞部2内にその開口8方向に向かって光を射出するよう配置されている。発光素子5は、図2に示されるように、光を発生する半導体素子10をエポキシ樹脂12でモールドし砲弾型に形成された砲弾型LEDである。砲弾型の頭部5aが球面状に構成されることにより、半導体素子10から頭部5aの方向(以下、前方という。)に所定の照射角度範囲θに発せられた光が頭部5aで集光されて高強度の光が試料液に向けて射出されるようになっている。
半導体素子10は、照射角度範囲θ外にも光を漏出している。
The light emitting element 5 is, for example, a light emitting diode (LED), and is disposed in one cavity 2 so as to emit light toward the direction of the opening 8. As shown in FIG. 2, the light emitting element 5 is a bullet type LED formed by molding a semiconductor element 10 that generates light with an epoxy resin 12 into a bullet shape. By forming the bullet-shaped head 5a into a spherical shape, light emitted from the semiconductor element 10 in the direction of the head 5a (hereinafter referred to as the front) within a predetermined irradiation angle range θ is collected by the head 5a. Light is emitted and high-intensity light is emitted toward the sample liquid.
The semiconductor element 10 leaks light outside the irradiation angle range θ.

検出用受光素子6は、例えばフォトダイオードであり、他方の空洞部3内にその開口9から入射してきた光を検出するよう配置されている。検出用受光素子6が検出する光は、発光素子5から試料液に向けて射出された光が試料液中の濁質成分により散乱した散乱光の一部である。散乱光の光量は比較的少ないため、検出用受光素子6は、少ない光量であっても感度よく検出できるような受光特性を有するものであることが好ましい。   The detection light-receiving element 6 is, for example, a photodiode, and is disposed so as to detect light incident from the opening 9 in the other cavity 3. The light detected by the detection light receiving element 6 is a part of the scattered light that is emitted from the light emitting element 5 toward the sample liquid and scattered by the turbid component in the sample liquid. Since the amount of scattered light is relatively small, it is preferable that the detection light receiving element 6 has a light receiving characteristic that can be detected with high sensitivity even with a small amount of light.

補償用受光素子7も、例えばフォトダイオードであり、図3に示されるように、発光素子5が、頭部5aの方向とは逆の方向(以下、後方という。)に漏出した光の光量を検出する平板状の受光面11を備えている。補償用受光素子7は、部品調達や組み立て時の取り違えミスなどの観点から、検出用受光素子6と同一の受光特性を有するものを使用することが好ましい。   The compensation light receiving element 7 is also a photodiode, for example, and as shown in FIG. 3, the amount of light leaked by the light emitting element 5 in the direction opposite to the direction of the head 5a (hereinafter referred to as the rear). A flat light receiving surface 11 to be detected is provided. The compensation light receiving element 7 preferably has the same light receiving characteristics as the detection light receiving element 6 from the viewpoint of component mistakes and mistakes during assembly.

この補償用受光素子7は、図3に示されるように、一方の空洞部2内において、発光素子5が照射する光の射出方向の後方にその射出軸Lに直交する発光素子5の平面5bに対して受光面11を傾斜させて配置されている。これにより、発光素子5から試料液に向けて射出される光をさえぎることなく、補償用の光を検出することができる。   As shown in FIG. 3, the compensation light-receiving element 7 has a flat surface 5b of the light-emitting element 5 orthogonal to the emission axis L behind the light emission direction of the light-emitting element 5 in one cavity portion 2. The light receiving surface 11 is inclined with respect to the surface. Thereby, the compensation light can be detected without blocking the light emitted from the light emitting element 5 toward the sample solution.

補償用受光素子7は、光の入射角度の受光面11の垂線に対する傾斜角度が大きくなるほど、検出される光量が少なくなる特性を有するので、射出軸Lに対して発光素子5を傾斜させることにより、検出される光量を低下させることができる。   The compensation light-receiving element 7 has a characteristic that the detected light quantity decreases as the inclination angle of the incident angle of the light with respect to the perpendicular of the light-receiving surface 11 increases. Therefore, the light-receiving element 5 is inclined with respect to the emission axis L. The amount of light detected can be reduced.

これにより、補償用受光素子7の受光面11で検出する光量が、発光素子5の平面5bに対して受光面11を平行に配置した場合と比較して少なくなる。その結果、補償用受光素子7は、絞りのような調光手段を用いることなく、発光素子5の照射角度範囲θ外に漏出した光を直接検出しても検出光量を抑えることができ、発光素子5から漏出した光よりも極めて光量の少ない散乱光を感度よく検出する検出用受光素子6と同一の受光特性を有するものとすることができる。
また、各素子5,6,7は、図示しない配線により、受光した光量に基づき濁度を演算したり、測定値を表示あるいは出力したりする測定部(図示省略)や電源(図示省略)等に接続されている。
As a result, the amount of light detected by the light receiving surface 11 of the compensating light receiving element 7 is reduced as compared with the case where the light receiving surface 11 is arranged in parallel to the flat surface 5b of the light emitting element 5. As a result, the compensation light-receiving element 7 can suppress the detected light amount even if the light leaking outside the irradiation angle range θ of the light-emitting element 5 is directly detected without using a light control means such as a diaphragm. It is possible to have the same light receiving characteristic as that of the light receiving element for detection 6 that detects with high sensitivity scattered light having a light amount much smaller than the light leaked from the element 5.
In addition, each element 5, 6 and 7 uses a wiring (not shown) to calculate a turbidity based on the amount of received light, display or output a measured value, a power supply (not shown), a power supply (not shown), etc. It is connected to the.

各開口8,9は、発光素子5から照射角度範囲θで射出させる光が、開口9に入射して検出用受光素子6により直接光として検出されないように、一定間隔(例えば、1.0mm以上。)を空けて隣接配置されている。好ましくは、小型化するためには、間隔は狭い方が良い。
各素子5,6と各開口8,9との間の空洞部2,3内には、エポキシ樹脂12が充填されている。
Each of the openings 8 and 9 has a constant interval (for example, 1.0 mm or more) so that light emitted from the light emitting element 5 in the irradiation angle range θ is incident on the opening 9 and is not directly detected by the detection light receiving element 6. .) Are placed adjacent to each other. Preferably, in order to reduce the size, the interval should be narrow.
The cavities 2 and 3 between the elements 5 and 6 and the openings 8 and 9 are filled with an epoxy resin 12.

エポキシ樹脂12は、660〜960nmの波長範囲の光を透過する光学的に透明な樹脂である。エポキシ樹脂12は発光素子5の頭部5aの表面に密着するように充填されることにより、発光素子5の指向性を損なうことなく光を開口8から射出させることができる。   The epoxy resin 12 is an optically transparent resin that transmits light in the wavelength range of 660 to 960 nm. The epoxy resin 12 is filled so as to be in close contact with the surface of the head 5 a of the light emitting element 5, so that light can be emitted from the opening 8 without impairing the directivity of the light emitting element 5.

空洞部2,3の内周壁2a,3aは、少なくともエポキシ樹脂12が充填されている部分において吸光色である黒色に着色されている。これにより、発光素子5から射出された光および試料液中から入射した散乱光が、空洞部2,3の内周壁2a,3aに入射すると、反射されることなく吸収されるようになっている。   The inner peripheral walls 2a and 3a of the cavities 2 and 3 are colored black, which is a light-absorbing color, at least in a portion where the epoxy resin 12 is filled. As a result, when the light emitted from the light emitting element 5 and the scattered light incident from the sample liquid enter the inner peripheral walls 2a and 3a of the cavities 2 and 3, they are absorbed without being reflected. .

このように構成された第1の実施形態に係る濁度センサ1の作用について説明する。
第1の実施形態に係る濁度センサ1を用いて、検出対象である試料液の濁度を測定するには、試料液中にセンサ本体4の一端面4aを浸漬させた状態で、発光素子5から光を射出させる。
The operation of the turbidity sensor 1 according to the first embodiment configured as described above will be described.
In order to measure the turbidity of the sample liquid that is the detection target using the turbidity sensor 1 according to the first embodiment, the light emitting element is obtained by immersing the one end surface 4a of the sensor body 4 in the sample liquid. 5 emits light.

発光素子5から前方に発せられた光は、発光素子5の頭部5aのさらに前方の空間を埋めるように充填されているエポキシ樹脂12を経由して開口8から試料液中に射出される。試料液中に射出された光は試料液中の濁質成分により散乱され、その一部の散乱光が開口9から空洞部3内のエポキシ樹脂12を経由して検出用受光素子6により受光される。これにより、受光された光量に基づいて試料液中の濁度を測定することができる。   The light emitted forward from the light emitting element 5 is emitted from the opening 8 into the sample solution through the epoxy resin 12 filled so as to fill the space ahead of the head 5 a of the light emitting element 5. The light emitted into the sample liquid is scattered by the turbid component in the sample liquid, and a part of the scattered light is received by the detection light receiving element 6 from the opening 9 via the epoxy resin 12 in the cavity 3. The Thereby, the turbidity in a sample liquid can be measured based on the received light quantity.

一方、発光素子5の半導体素子10から後方に漏出した光は、発光素子5の後方に配置されている補償用受光素子7によって検出される。発光素子5からその照射角度範囲θ外に漏出する光は、照射角度範囲θ内に射出されて散乱光の検出に利用される光と同様に、発光素子5の温度影響や劣化の程度に比例してその光量が変化する。この特性を利用し、補償用受光素子7によって検出された光量が所定の閾値を下回った場合は、発光素子5への電圧を上げるなどして、散乱光の検出に利用される光量を一定範囲に保つようにし、発光素子5の温度影響や劣化による光量の変動を補償することができる。   On the other hand, the light leaked backward from the semiconductor element 10 of the light emitting element 5 is detected by the compensating light receiving element 7 disposed behind the light emitting element 5. The light leaking out of the irradiation angle range θ from the light emitting element 5 is proportional to the temperature influence and the degree of deterioration of the light emitting element 5, similarly to the light emitted within the irradiation angle range θ and used for detecting scattered light. The amount of light changes. When the amount of light detected by the compensation light receiving element 7 falls below a predetermined threshold using this characteristic, the amount of light used for detection of scattered light is set within a certain range by increasing the voltage to the light emitting element 5 or the like. Thus, fluctuations in the amount of light due to temperature effects and deterioration of the light emitting element 5 can be compensated.

本実施形態においては、従来の濁度センサのような、補償用の光を検出するために空洞部や切替機構を配置するスペースを発光ダイオードとフォトダイオードとの間に設けずに済む。その結果、従来の濁度センサを小型化しつつ、簡単な構成で、発光素子5の温度影響や劣化による光量変化を補償して濁度を精度よく検出することができるという利点がある。   In the present embodiment, unlike the conventional turbidity sensor, it is not necessary to provide a space between the light emitting diode and the photodiode for arranging the cavity and the switching mechanism in order to detect compensation light. As a result, there is an advantage that the turbidity can be detected with high accuracy by compensating for the change in the amount of light due to the temperature effect and deterioration of the light emitting element 5 with a simple configuration while downsizing the conventional turbidity sensor.

また、本実施形態においては、図3に示されるように、射出軸Lに直交する平面5bに対して補償用受光素子7の受光面11を傾斜させることにより、受光面11で検出する光量を配置される傾斜角度によって調節している。これにより、補償用受光素子7を最適な角度に調節して、検出される光量を調節することにより、従来のような絞りやシャッタが不必要となり、構造を簡易にすることができるとともに、省スペースを図って濁度センサ1を小型化することができる。   In the present embodiment, as shown in FIG. 3, the amount of light detected by the light receiving surface 11 is increased by inclining the light receiving surface 11 of the compensation light receiving element 7 with respect to the plane 5 b orthogonal to the emission axis L. It is adjusted according to the inclination angle. As a result, the compensation light-receiving element 7 is adjusted to an optimum angle, and the amount of light detected is adjusted, so that a conventional diaphragm and shutter are not required, and the structure can be simplified and saved. The turbidity sensor 1 can be reduced in size to save space.

また、絞りやシャッタを用いなくても、光量の少ない散乱光を感度よく検出する検出用受光素子6と同一の受光特性を有するものを補償用受光素子7として使用することができるため、コストを抑えつつ、部品調達や組み立て時の取り違えミスを予防することができる。   In addition, even if a diaphragm or a shutter is not used, a light receiving element 7 having the same light receiving characteristics as the detecting light receiving element 6 that detects scattered light with a small amount of light can be used as the compensation light receiving element 7. While suppressing, it is possible to prevent mistakes during parts procurement and assembly.

次に、本発明の第2の実施形態に係る濁度センサ15について、図面を参照にして以下に説明する。
本実施形態の説明において、上述した第1の実施形態に係る濁度センサ1と構成を共通とする箇所には同一符号を付して説明を省略する。
Next, a turbidity sensor 15 according to a second embodiment of the present invention will be described below with reference to the drawings.
In the description of the present embodiment, portions having the same configuration as those of the turbidity sensor 1 according to the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

本実施形態に係る濁度センサ15は、図4に示されるように、補償用受光手段の一例である、光を伝播する光ファイバ16と該光ファイバ16により伝播された光の光量を調節する絞り17と、該絞り17を通過した光を検出する補償用受光素子7とを備えている。   As shown in FIG. 4, the turbidity sensor 15 according to this embodiment adjusts the amount of light propagated by the optical fiber 16 that propagates light and the optical fiber 16, which is an example of a light receiving unit for compensation. A diaphragm 17 and a compensation light receiving element 7 for detecting light that has passed through the diaphragm 17 are provided.

光ファイバ16は、図5に示されるように、センサ本体4に設けられた空洞部2の発光素子5が配置されている位置に開口するように形成された孔内に挿入されている。光ファイバ16の一端16aは、空洞部2内の発光素子5の側方に向かって配置され、その光軸Sが、発光素子5内部の輝点Pを通過するように配置されている。また、光ファイバ16の他端16bは、センサ本体4の外部に配置されている補償用受光素子7の受光面11に光軸が直交するように配置されている。   As shown in FIG. 5, the optical fiber 16 is inserted into a hole formed so as to open at a position where the light emitting element 5 of the cavity 2 provided in the sensor body 4 is disposed. One end 16 a of the optical fiber 16 is arranged toward the side of the light emitting element 5 in the cavity 2, and its optical axis S is arranged so as to pass through the bright spot P inside the light emitting element 5. The other end 16 b of the optical fiber 16 is disposed so that the optical axis is orthogonal to the light receiving surface 11 of the compensating light receiving element 7 disposed outside the sensor body 4.

このように構成された本実施形態に係る濁度センサ15の作用について以下に説明する。
本実施形態に係る濁度センサ15によれば、発光素子5からその側方(照射角度範囲θ外)に漏出した光が光ファイバ16により伝播されて補償用受光素子7によって受光される。発光素子5からその側方に漏出した光も、第1の実施形態において説明したような後方に漏出した光と同様、その光量を基に発光素子5の温度影響や劣化による光量変化を補償することができる。
The operation of the turbidity sensor 15 according to this embodiment configured as described above will be described below.
According to the turbidity sensor 15 according to the present embodiment, light leaked from the light emitting element 5 to the side thereof (outside the irradiation angle range θ) is propagated by the optical fiber 16 and received by the compensating light receiving element 7. The light leaked to the side of the light emitting element 5 is compensated for the change in the light quantity due to the temperature effect or deterioration of the light emitting element 5 based on the light quantity, as in the light leaked backward as described in the first embodiment. be able to.

また、本実施形態に係る濁度センサ15によれば、空洞部2内に補償用受光素子7を配置するスペースを確保せずに済むとともに、発光素子5の側方にスペースをとらない細径の光ファイバ16を配置し、かつ、絞り17および補償用受光素子7を外部に配置しているので、濁度センサ15のさらなる小型化を図ることができるという利点がある。   In addition, according to the turbidity sensor 15 according to the present embodiment, it is not necessary to secure a space for disposing the compensation light receiving element 7 in the cavity 2, and a small diameter that does not occupy a side of the light emitting element 5. The optical fiber 16 is disposed, and the diaphragm 17 and the compensation light receiving element 7 are disposed outside. Therefore, there is an advantage that the turbidity sensor 15 can be further reduced in size.

なお、上述した実施形態においては、発光素子5後方あるいは側方に射出される光を補償用の光として検出したが、これらに限定されるものではなく、照射角度範囲θ外の光であれば、発光素子5の射出軸Lに交差するいずれの方向に射出される光についても散乱光検出用の光(発光素子5から試料液に向けて射出される照射角度範囲θの光)をさえぎることなく、補償用の光として利用することができる。   In the above-described embodiment, the light emitted to the rear or side of the light emitting element 5 is detected as the compensation light. However, the present invention is not limited to this, and the light is outside the irradiation angle range θ. In addition, for light emitted in any direction crossing the emission axis L of the light emitting element 5, light for detecting scattered light (light in the irradiation angle range θ emitted from the light emitting element 5 toward the sample liquid) is blocked. And can be used as compensation light.

また、上述した第2の実施形態においては、光ファイバ16の光軸上に発光素子5の輝点Pが配置されないように、光ファイバ16の一端16aが傾斜して配置されてもよい。
このようにすることで、光ファイバ16内に入射する光量を低下させることができ、絞り17のような調光手段をなくしても、補償用受光素子7を検出用受光素子6と同一の受光特性を有するものとすることができる。
In the second embodiment described above, the one end 16a of the optical fiber 16 may be inclined and arranged so that the bright spot P of the light emitting element 5 is not arranged on the optical axis of the optical fiber 16.
In this way, the amount of light incident on the optical fiber 16 can be reduced, and the compensation light-receiving element 7 can receive the same light as the detection light-receiving element 6 without the dimming means such as the diaphragm 17. It can have properties.

また、上述した第2の実施形態においては、補償用受光素子7はセンサ本体4の外部に配置したが、これに限定されるものではなく、スペースが確保できる場合には、センサ本体4内部に配置してもよい。これにより、濁度センサ15全体を小型化することができる。   Further, in the second embodiment described above, the compensation light receiving element 7 is arranged outside the sensor main body 4. However, the present invention is not limited to this, and the space inside the sensor main body 4 is not limited to this. You may arrange. Thereby, the whole turbidity sensor 15 can be reduced in size.

1,15 濁度センサ
2,3 空洞部
4 センサ本体
5 発光素子
6 検出用受光素子
7 補償用受光素子
8,9 開口
10 半導体素子
11 受光面
16 光ファイバ

DESCRIPTION OF SYMBOLS 1,15 Turbidity sensor 2,3 Cavity part 4 Sensor main body 5 Light emitting element 6 Light receiving element for detection 7 Light receiving element for compensation 8, 9 Aperture 10 Semiconductor element 11 Light receiving surface 16 Optical fiber

Claims (6)

間隔を空けて隣接配置された開口を備える2つの空洞部を備え、遮光性を有するセンサ本体と、
一方の前記空洞部内に配置され、その開口方向に向かって所定の照射角度範囲に光を射出する半導体素子を備える発光素子と、
他方の前記空洞部内に配置され、その開口から入射してきた光を受光する検出用受光素子と、
少なくともその一部が、一方の前記空洞部内に配置され、前記発光素子の前記照射角度範囲外に漏出した光を受光する補償用受光手段とを備える濁度センサ。
A sensor body having two light-shielding portions, each having an opening disposed adjacently at a distance, and having a light shielding property;
A light-emitting element including a semiconductor element disposed in one of the hollow portions and emitting light in a predetermined irradiation angle range toward the opening direction;
A light receiving element for detection, which is disposed in the other cavity and receives light incident from the opening;
A turbidity sensor comprising: at least a part thereof disposed in one of the hollow portions, and a compensation light receiving unit configured to receive light leaked outside the irradiation angle range of the light emitting element.
前記発光素子が、光を射出する半導体素子を透明樹脂によりモールドしてなる砲弾型LEDである請求項1に記載の濁度センサ。   The turbidity sensor according to claim 1, wherein the light emitting element is a bullet-type LED formed by molding a semiconductor element that emits light with a transparent resin. 前記補償用受光手段が、前記発光素子の光の射出方向の後方に、その射出軸に直交する平面に対して受光面を傾斜させて配置される受光素子である請求項1または請求項2に記載の濁度センサ。   3. The light receiving element according to claim 1, wherein the compensation light receiving unit is a light receiving element arranged with a light receiving surface inclined with respect to a plane orthogonal to an emission axis behind the light emitting direction of the light emitting element. The turbidity sensor described. 前記補償用受光手段が、前記発光素子の射出軸に交差する方向に配置される受光素子である請求項1または請求項2に記載の濁度センサ。   3. The turbidity sensor according to claim 1, wherein the compensation light receiving means is a light receiving element arranged in a direction intersecting with an emission axis of the light emitting element. 前記補償用受光手段が、前記発光素子が配置される空洞部内の前記発光素子の側方に一端を配置した光ファイバと、
前記光ファイバにより伝播されその他端から射出される光を検出する受光素子からなる請求項1、請求項2および請求項4のいずれかに記載の濁度センサ。
An optical fiber having one end disposed on the side of the light emitting element in the cavity where the light emitting element is disposed;
The turbidity sensor according to any one of claims 1, 2, and 4, comprising a light receiving element that detects light propagated by the optical fiber and emitted from the other end.
前記光ファイバの一端が、光ファイバの光軸上に発光素子の輝点が配置されないように傾斜して配置される請求項5に記載の濁度センサ。

The turbidity sensor according to claim 5, wherein one end of the optical fiber is disposed so as to be inclined so that a bright spot of the light emitting element is not disposed on the optical axis of the optical fiber.

JP2013116195A 2013-05-31 2013-05-31 Turbidity sensor Pending JP2014235061A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013116195A JP2014235061A (en) 2013-05-31 2013-05-31 Turbidity sensor
CN201410222367.8A CN104215609A (en) 2013-05-31 2014-05-23 Turbidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013116195A JP2014235061A (en) 2013-05-31 2013-05-31 Turbidity sensor

Publications (1)

Publication Number Publication Date
JP2014235061A true JP2014235061A (en) 2014-12-15

Family

ID=52097329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013116195A Pending JP2014235061A (en) 2013-05-31 2013-05-31 Turbidity sensor

Country Status (2)

Country Link
JP (1) JP2014235061A (en)
CN (1) CN104215609A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11009457B2 (en) * 2017-09-01 2021-05-18 Ushio Denki Kabushiki Kaisha Microplate reader

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629146A (en) * 1979-08-20 1981-03-23 Toshiba Corp Photometric sensor of immersion type
JPS60216245A (en) * 1984-04-11 1985-10-29 Tokai Rika Co Ltd Water drip sensor
JPS6258746U (en) * 1985-10-01 1987-04-11
JPS6285806A (en) * 1985-07-08 1987-04-20 カ−ル・エム・フレツク Fiber optical system reflection sensor and manufacture thereof
JPS62251661A (en) * 1986-04-25 1987-11-02 Setsuo Takatani Method for measuring degree of oxygen saturation of hemoglobin and reflected light sensor used therein
JPH08248274A (en) * 1995-03-08 1996-09-27 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor module
US5589935A (en) * 1995-05-25 1996-12-31 Honeywell, Inc. Turbidity sensor with the capability of regulating the intensity of a light source
JPH09500724A (en) * 1993-07-30 1997-01-21 バイオルーミン・コーポレーション Multi-function photometer with movable linkage for passing optical fiber
JP2000189404A (en) * 1998-12-25 2000-07-11 Mitsui Mining & Smelting Co Ltd Blood-sugar level measurement and device therefor
JP2002148117A (en) * 2000-11-14 2002-05-22 Yamatake Corp Optical sensor
JP2003344267A (en) * 2002-05-22 2003-12-03 Aloka Co Ltd Light source for analyzer
JP2004294072A (en) * 2003-03-25 2004-10-21 Minolta Co Ltd Multiwavelength light source device and optical measuring apparatus
JP2005091252A (en) * 2003-09-19 2005-04-07 Ricoh Co Ltd Optical sensor
JP2006510015A (en) * 2002-12-10 2006-03-23 アプライズ テクノロジーズ,インコーポレーテッド Turbidity sensor
JP2006145529A (en) * 2004-11-18 2006-06-08 Apprise Technologies Inc Turbidity sensor
US20060198761A1 (en) * 2005-03-03 2006-09-07 Eugene Tokhtuev Portable multi-channel device for optically testing a liquid sample
JP2007248337A (en) * 2006-03-17 2007-09-27 Ntn Corp Lubricant deterioration detection device
JP2008051678A (en) * 2006-08-25 2008-03-06 Kansai Electric Power Co Inc:The Liquid inspection device
US20110043807A1 (en) * 2008-04-11 2011-02-24 Endress + Hauser Conducta Gesellschaft Fur Mess- Und Regeltechnik Mbh + Co. Kg Method and apparatus for turbidity measurement
US20120113427A1 (en) * 2010-11-05 2012-05-10 Emz-Hanauer Gmbh & Co. Kgaa Optical sensor for mounting to a washing machine or dish washer

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629146A (en) * 1979-08-20 1981-03-23 Toshiba Corp Photometric sensor of immersion type
JPS60216245A (en) * 1984-04-11 1985-10-29 Tokai Rika Co Ltd Water drip sensor
JPS6285806A (en) * 1985-07-08 1987-04-20 カ−ル・エム・フレツク Fiber optical system reflection sensor and manufacture thereof
JPS6258746U (en) * 1985-10-01 1987-04-11
JPS62251661A (en) * 1986-04-25 1987-11-02 Setsuo Takatani Method for measuring degree of oxygen saturation of hemoglobin and reflected light sensor used therein
JPH09500724A (en) * 1993-07-30 1997-01-21 バイオルーミン・コーポレーション Multi-function photometer with movable linkage for passing optical fiber
JPH08248274A (en) * 1995-03-08 1996-09-27 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor module
US5589935A (en) * 1995-05-25 1996-12-31 Honeywell, Inc. Turbidity sensor with the capability of regulating the intensity of a light source
JP2000189404A (en) * 1998-12-25 2000-07-11 Mitsui Mining & Smelting Co Ltd Blood-sugar level measurement and device therefor
JP2002148117A (en) * 2000-11-14 2002-05-22 Yamatake Corp Optical sensor
JP2003344267A (en) * 2002-05-22 2003-12-03 Aloka Co Ltd Light source for analyzer
JP2006510015A (en) * 2002-12-10 2006-03-23 アプライズ テクノロジーズ,インコーポレーテッド Turbidity sensor
JP2004294072A (en) * 2003-03-25 2004-10-21 Minolta Co Ltd Multiwavelength light source device and optical measuring apparatus
JP2005091252A (en) * 2003-09-19 2005-04-07 Ricoh Co Ltd Optical sensor
JP2006145529A (en) * 2004-11-18 2006-06-08 Apprise Technologies Inc Turbidity sensor
US20060198761A1 (en) * 2005-03-03 2006-09-07 Eugene Tokhtuev Portable multi-channel device for optically testing a liquid sample
JP2007248337A (en) * 2006-03-17 2007-09-27 Ntn Corp Lubricant deterioration detection device
JP2008051678A (en) * 2006-08-25 2008-03-06 Kansai Electric Power Co Inc:The Liquid inspection device
US20110043807A1 (en) * 2008-04-11 2011-02-24 Endress + Hauser Conducta Gesellschaft Fur Mess- Und Regeltechnik Mbh + Co. Kg Method and apparatus for turbidity measurement
US20120113427A1 (en) * 2010-11-05 2012-05-10 Emz-Hanauer Gmbh & Co. Kgaa Optical sensor for mounting to a washing machine or dish washer

Also Published As

Publication number Publication date
CN104215609A (en) 2014-12-17

Similar Documents

Publication Publication Date Title
ES2368839T3 (en) LIGHTING SYSTEM.
JP2008284030A5 (en)
KR101088360B1 (en) Optical wave guide having multiple independent optical path and ndir gas sensor using that
US9715053B2 (en) Light guide, illuminating device and image reading apparatus
US11287317B2 (en) Optical measurement device including internal spectral reference
ATE533188T1 (en) OPTICAL ARRANGEMENT WITH AN OPTICAL ELEMENT AND PRODUCTION METHOD THEREOF
RU2014101493A (en) PHOTOELECTRIC SMOKE SENSOR
JPWO2020240664A5 (en)
CN114910432A (en) Optical gas sensor with LED emitter for emitting light of narrow bandwidth
RU2363073C1 (en) Light-emitting diode device and optical detector, made using light-emitting diode device, for banknote identification device
KR101759497B1 (en) Uv curing device for controlling irradiation light by using guided light
US11067433B2 (en) Optical detection system with light sampling
KR100781968B1 (en) Variable light-path gas density sensor
JP2014235061A (en) Turbidity sensor
US7869048B2 (en) Photoelectonic sensor
JP2018181191A (en) Optical sensor for smoke sensor
WO2011040467A1 (en) Light emitting device
TWI509328B (en) Transparent display device and backlight module used therein
CN110234968A (en) Electron optic elements and method for detecting environment light
US20180274770A1 (en) Headlight, vehicle with headlight and method for monitoring a headlight
JP2014099324A (en) Lamp for vehicle
JP7393753B2 (en) concentration measuring device
JP2005164261A (en) Coaxial reflective photoelectric sensor
US20130208277A1 (en) Laser scan device
KR101651320B1 (en) Multi channel photo sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208