JP2014234520A - Method for producing electrogalvanized steel sheet - Google Patents

Method for producing electrogalvanized steel sheet Download PDF

Info

Publication number
JP2014234520A
JP2014234520A JP2013114592A JP2013114592A JP2014234520A JP 2014234520 A JP2014234520 A JP 2014234520A JP 2013114592 A JP2013114592 A JP 2013114592A JP 2013114592 A JP2013114592 A JP 2013114592A JP 2014234520 A JP2014234520 A JP 2014234520A
Authority
JP
Japan
Prior art keywords
steel sheet
zinc
plating
ions
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013114592A
Other languages
Japanese (ja)
Other versions
JP5812041B2 (en
Inventor
土本 和明
Kazuaki Tsuchimoto
和明 土本
妹川 透
Toru Imokawa
透 妹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013114592A priority Critical patent/JP5812041B2/en
Publication of JP2014234520A publication Critical patent/JP2014234520A/en
Application granted granted Critical
Publication of JP5812041B2 publication Critical patent/JP5812041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an electrogalvanized steel sheet having high corrosion resistance.SOLUTION: A plating bath includes Zn ions of 0.2 mol/L or higher and V ions of 0.1 mol/L or higher, the relative flow velocity of the plating liquid in the plating bath to a steel sheet stock is controlled to 0.5 m/s or higher, further, divided energization is performed to the steel sheet stock for two or more times, and, in each time of the divided energization, current density is controlled to 10 A/dmor higher, and also, continuous energization electric quantity is controlled to 5,000 C/mor lower.

Description

本発明は、耐食性に優れる亜鉛系電気めっき鋼板の製造方法に関するものである。   The present invention relates to a method for producing a zinc-based electroplated steel sheet having excellent corrosion resistance.

亜鉛系電気めっき鋼板は、高い耐食性に加え、めっき皮膜の均一性および外観に優れていることから、家電、建材用途等に広く用いられている。
しかし、亜鉛は枯渇性資源の一つであり、今後の価格高騰も予想されることから、亜鉛の使用量を減らすべく、亜鉛めっき付着量の低減や亜鉛めっきに替わる表面処理皮膜の開発が要求されている。
Zinc-based electroplated steel sheets are widely used for home appliances, building materials, and the like because they are excellent in the uniformity and appearance of plating films in addition to high corrosion resistance.
However, since zinc is one of the exhaustible resources and the price is expected to rise in the future, it is necessary to reduce the amount of zinc plating and to develop a surface treatment film that replaces zinc plating in order to reduce the amount of zinc used. Has been.

ここに、亜鉛めっき付着量低減の手法の一つとして、めっき層の耐食性を向上させる技術が挙げられる。めっき層の耐食性が向上すれば、めっき層を薄くすることができるので、亜鉛付着量の低減につながるからである。   Here, a technique for improving the corrosion resistance of the plating layer is mentioned as one of the techniques for reducing the galvanized adhesion amount. This is because if the corrosion resistance of the plating layer is improved, the plating layer can be made thinner, which leads to a reduction in the amount of zinc attached.

従来、高耐食性電気亜鉛めっき皮膜の製造手法として、NiやCoなど、Feより貴な金属とZnとの合金化が検討されてきた。しかし、それらの合金めっきは、使用の初期段階では高い耐食性を示すものが多いが、一旦腐食が始まってしまうと、亜鉛および素材(下地)鋼板の腐食が促進されて、早期に穴あき腐食が発生するという問題があった。   Conventionally, as a method for producing a highly corrosion-resistant electrogalvanized film, alloying of metals such as Ni and Co, which are more precious than Fe, and Zn has been studied. However, many of these alloy platings show high corrosion resistance in the initial stage of use, but once corrosion starts, corrosion of zinc and the material (underlying) steel sheet is promoted, so that perforation corrosion occurs early. There was a problem that occurred.

ここで、上記した問題を解決するために、特許文献1および非特許文献1では、Feより卑な活性金属を含む亜鉛系複合電気めっきの検討が行われている。
すなわち、特許文献1では、0.2mol/L以上のZnイオンと、Al,Sc,Y,La,Ce,Nd,ZrおよびVから選んだ1種以上の金属イオンと、0.0005〜0.1mol/Lの硝酸イオンを含有させためっき浴を用い、鋼板との相対流速が0.6m/s以上で電解を行うことによって、優れた耐食性および外観均一性を有する亜鉛系複合電気めっき鋼板が得られる旨記載されている。
Here, in order to solve the above-described problem, in Patent Document 1 and Non-Patent Document 1, studies are made on zinc-based composite electroplating containing an active metal that is lower than Fe.
That is, in Patent Document 1, 0.2 mol / L or more of Zn ions, one or more metal ions selected from Al, Sc, Y, La, Ce, Nd, Zr and V, and 0.0005 to 0.1 mol / L. It is described that a zinc-based composite electroplated steel sheet having excellent corrosion resistance and appearance uniformity can be obtained by electrolysis at a relative flow rate of 0.6 m / s or more with a steel sheet containing a nitrate ion. ing.

また、非特許文献1には、めっき浴に、Zn2+より低いpHで加水分解するVO2+を電解液に添加し、V元素を含有した電析Zn膜を得る方法が記載されている。この電析Zn膜のV含有率は、めっき浴のpHおよび電流密度が高くなる程増加し、さらに、めっき浴を撹拌すると電析膜のV含有率は低下するものの、V元素の分布の均一性は改善される旨が記載されている。 Non-Patent Document 1 describes a method of obtaining an electrodeposited Zn film containing V element by adding VO 2+ which hydrolyzes at a pH lower than Zn 2+ to an electrolytic solution in a plating bath. . The V content of this electrodeposited Zn film increases as the pH and current density of the plating bath increase. Further, when the plating bath is stirred, the V content of the electrodeposited film decreases, but the distribution of V elements is uniform. It is stated that the property is improved.

特開2011-111633号公報JP 2011-111633 A

中野博昭、大上悟、神崎大輔、小林繁夫、福島久哲「硫酸塩水溶液からのZn-V酸化物複合電析」鉄と鋼;93, 703 (2007)Hiroaki Nakano, Satoru Ogami, Daisuke Kanzaki, Shigeo Kobayashi, Hisatsu Fukushima "Zn-V oxide composite electrodeposition from aqueous sulfate" iron and steel; 93, 703 (2007)

しかしながら、特許文献1に記載の技術では、めっき浴中に硝酸イオンを含むことによって、電解中、浴液のpHが急激に上昇しやすくなって、めっき浴組成や、液流速の条件等が僅かに変化しただけでも、得られためっき皮膜組成が大幅に変化してしまうという問題があった。そのため、安定して連続的に生産するためには硝酸イオンを含まないものが求められていた。   However, in the technique described in Patent Document 1, since the plating bath contains nitrate ions, the pH of the bath solution is likely to increase rapidly during electrolysis, and the plating bath composition, the conditions of the liquid flow rate, etc. are slight. There was a problem that the resulting plating film composition would change drastically even if it was only changed. Therefore, in order to produce stably and continuously, what does not contain a nitrate ion was calculated | required.

一方、非特許文献1では、無撹拌の場合、めっき皮膜中のVの分布が偏在してしまい、均一なめっき皮膜は得られない。また、撹拌を行うと表面は均一になるものの、皮膜中のV含有率が著しく下がってしまうという問題があった。   On the other hand, in Non-Patent Document 1, when there is no stirring, the distribution of V in the plating film is unevenly distributed, and a uniform plating film cannot be obtained. In addition, although the surface becomes uniform when stirring is performed, there is a problem that the V content in the film is remarkably lowered.

すなわち、従来技術では、Vを含有し、かつ均一な電気めっき皮膜を得ることは、極めて困難であって、非特許文献1に記載のめっき皮膜のように、Vの偏在した皮膜では、良好な耐食性が得られないという問題が残っていた。   That is, in the prior art, it is extremely difficult to obtain a uniform electroplating film containing V, and the coating film in which V is unevenly distributed, such as the plating film described in Non-Patent Document 1, is good. The problem that the corrosion resistance could not be obtained remained.

本発明は、上記した現状に鑑み開発されたもので、優れた耐食性を有する亜鉛系電気めっき鋼板を得るための製造方法を提供することを目的とする。   The present invention has been developed in view of the above-described present situation, and an object thereof is to provide a manufacturing method for obtaining a zinc-based electroplated steel sheet having excellent corrosion resistance.

発明者らは、上記した課題を解決するために、硝酸イオンを含有せずに、Znイオン:0.2mol/L以上、Vイオン:0.1mol/L以上を含有するめっき浴を用い、素材鋼板とめっき液の相対流速:0.5m/s以上で陰極電解処理を行った。
その結果、以下の知見を得た。
In order to solve the above-mentioned problems, the inventors used a plating bath containing Zn ions: 0.2 mol / L or more and V ions: 0.1 mol / L or more without containing nitrate ions, Cathodic electrolysis was performed at a relative flow rate of the plating solution of 0.5 m / s or more.
As a result, the following knowledge was obtained.

陰極電解処理時には、電解によってZnが析出すると共に、電解時の水素ガス発生に起因する界面pHの上昇によって、V酸化物(V2O3、VO2およびV2O5など)が生成し、それらの複合めっきが形成される。そこで、この複合めっき皮膜に関しさらに研究を進めたところ、連続的に通電をすることでめっき結晶が粗大化することを見出すと同時に、このように結晶が粗大化してしまうと、めっき皮膜中に空乏層が形成されて、より良い耐食性が得られないことを見出した。 At the time of cathodic electrolysis, Zn is deposited by electrolysis, and V oxides (V 2 O 3 , VO 2, V 2 O 5, etc.) are generated due to an increase in interfacial pH caused by hydrogen gas generation during electrolysis. Their composite plating is formed. As a result of further research on this composite plating film, it was found that the plating crystal was coarsened by continuous energization. At the same time, when the crystal was coarsened, the plating film was depleted. It was found that a layer was formed and better corrosion resistance could not be obtained.

次に、結晶の粗大化を防ぐための手段を検討したところ、結晶の粗大化を防ぐためには、分割通電を実施することが有効であって、一回の電解処理での連続通電電気量を5000C/m2以下とし、それを複数回実施することで、めっき結晶の微細化が効果的に達成され、耐食性に優れた亜鉛系電気めっき鋼板が得られることを知見した。
本発明は、上記知見に基づいてなされたものである。
Next, the means for preventing the coarsening of the crystal were examined. In order to prevent the coarsening of the crystal, it is effective to carry out the split energization, and the continuous energization amount of electricity in one electrolytic treatment is reduced. It has been found that by setting it to 5000 C / m 2 or less and performing it a plurality of times, it is possible to effectively reduce the size of the plated crystal and to obtain a zinc-based electroplated steel sheet having excellent corrosion resistance.
The present invention has been made based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.亜鉛含有めっき浴中で、素材鋼板を陰極として電解することで、該素材鋼板の表面に亜鉛系電気めっき皮膜を形成する亜鉛系電気めっき鋼板の製造方法であって、
上記めっき浴は、Znイオンを0.2mol/L以上、Vイオンを0.1mol/L以上含有し、かつ上記素材鋼板に対する上記めっき浴中のめっき液の相対流速を0.5m/s以上とし、さらに、上記めっき浴中で、上記素材鋼板に対し2回以上の分割通電を行うものとし、該分割通電の各回の、電流密度を10A/dm2以上でかつ連続通電電気量を5000C/m2以下とする、亜鉛系電気めっき鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. A method for producing a zinc-based electroplated steel sheet in which a zinc-based electroplated film is formed on the surface of the material steel sheet by electrolyzing the steel sheet as a cathode in a zinc-containing plating bath,
The plating bath contains Zn ions of 0.2 mol / L or more, V ions of 0.1 mol / L or more, and the relative flow rate of the plating solution in the plating bath with respect to the material steel plate is 0.5 m / s or more. In the above plating bath, the material steel plate is split twice or more times, the current density is 10 A / dm 2 or more and the continuous energization electricity is 5000 C / m 2 or less at each split current. A method for producing a zinc-based electroplated steel sheet.

本発明によれば、少ないZn付着量で優れた耐食性の維持が可能となり、全体としてZn付着量を低く抑えたまま、純Zn:10g/m2と同程度の耐食性を持つ亜鉛系電気めっき鋼板を効率的に得ることができる。 According to the present invention, it is possible to maintain excellent corrosion resistance with a small amount of deposited Zn, and a zinc-based electroplated steel sheet having corrosion resistance comparable to that of pure Zn: 10 g / m 2 while keeping the deposited amount of Zn low. Can be obtained efficiently.

実施例に用いた腐食促進試験の要領を示した図である。It is the figure which showed the point of the corrosion acceleration test used for the Example.

以下、本発明を具体的に説明する。
本発明では、浴中のZnイオンを0.2mol/L以上、Vイオンを0.1mol/L以上含有させる必要がある。これは、Znイオン、Vイオン共に、上記範囲に満たないと、陰極界面の各イオンが欠乏し、良好なめっき皮膜が得られないからである。好ましくは、Znイオン:0.5mol/L以上、Vイオン:0.2mol/L以上である。
なお、Znイオン、Vイオン共にその上限濃度に限定はないが、Znイオン:2.0mol/L程度、Vイオン:1.0mol/L程度がそれぞれ好ましい。
Hereinafter, the present invention will be specifically described.
In the present invention, it is necessary to contain Zn ions in the bath at 0.2 mol / L or more and V ions at 0.1 mol / L or more. This is because if both the Zn ion and the V ion are less than the above range, each ion at the cathode interface is deficient and a good plating film cannot be obtained. Preferably, Zn ion: 0.5 mol / L or more, V ion: 0.2 mol / L or more.
The upper limit concentration of both Zn ions and V ions is not limited, but Zn ions: about 2.0 mol / L and V ions: about 1.0 mol / L are preferable, respectively.

さらに、本発明では、めっき液と被めっき鋼板の相対流速は0.5m/s以上とする必要がある。流速:0.5m/s未満では、均一なV含有量を有するめっき皮膜を形成することができないからである。好ましくは流速:1.0m/s以上である。なお、上記相対流速の上限に特に限定はないが、6.0m/s程度が好ましい。   Furthermore, in the present invention, the relative flow rate of the plating solution and the steel plate to be plated needs to be 0.5 m / s or more. This is because a plating film having a uniform V content cannot be formed at a flow rate of less than 0.5 m / s. The flow rate is preferably 1.0 m / s or more. The upper limit of the relative flow velocity is not particularly limited, but is preferably about 6.0 m / s.

そして、陰極電解処理は、2回以上の分割通電(複数回処理)とし、その処理の際の電流密度を10A/dm2以上とする必要がある。
というのは、分割通電時の電流密度が10A/dm2未満では、陰極界面のpHが上昇しづらくなり、均一なV含有量のめっき皮膜下層を得ることができないからである。一方、この電流密度の上限に特に限定はないが、150A/dm2程度が好ましい。なお、陰極電解処理回数は、2回以上であれば問題はないが、生産性や品質安定性の観点から、4〜10回程度が好ましい。
The cathodic electrolysis treatment needs to be divided into two or more divided energizations (multiple treatments), and the current density during the treatment must be 10 A / dm 2 or more.
This is because if the current density during divided energization is less than 10 A / dm 2 , the pH at the cathode interface is difficult to increase, and a plating film lower layer having a uniform V content cannot be obtained. On the other hand, the upper limit of the current density is not particularly limited, but is preferably about 150 A / dm 2 . The number of cathodic electrolysis treatments is not a problem as long as it is 2 times or more, but is preferably about 4 to 10 times from the viewpoint of productivity and quality stability.

上記分割通電での連続通電電気量は、それぞれ5000C/m2以下とする必要がある。各連続通電電気量が5000C/m2を超えると、結晶が粗大化してしまい、良好な耐食性が得られないからである。なお、必要に応じて、上記各電解処理工程(分割通電)の後に、通常の亜鉛めっき処理を施すこともできる。 The amount of electricity continuously energized in the divided energization needs to be 5000 C / m 2 or less. This is because, if each continuous energization electricity amount exceeds 5000 C / m 2 , the crystal becomes coarse, and good corrosion resistance cannot be obtained. In addition, a normal galvanization process can also be given after each said electrolytic treatment process (divided energization) as needed.

ここに、前記めっき浴のpHは1.5〜3.0が好ましい。pHが1.5以上であれば陰極界面pHを十分に上昇させることができ、めっき皮膜中にVを取り込むことができる。一方で、pHが3.0以下であれば、電解時に界面のpHが上がり過ぎることがなく、均一なV含有量のめっき皮膜が形成されるからである。   Here, the pH of the plating bath is preferably 1.5 to 3.0. If the pH is 1.5 or more, the cathode interface pH can be sufficiently increased, and V can be taken into the plating film. On the other hand, if the pH is 3.0 or less, the pH of the interface does not rise too much during electrolysis, and a plating film having a uniform V content is formed.

浴温は、特に限定しないが、定温保持性の観点から40〜65℃程度が好ましい。
また、Zn付着量は、特に限定しないが、片面当たり3g/m2以上10g/m2以下が好ましい。3g/m2以上であれば十分な耐食性が得られ、10g/m2以下であればZn量の低減に繋がり、亜鉛の使用量を低減できるからである。
The bath temperature is not particularly limited, but is preferably about 40 to 65 ° C. from the viewpoint of constant temperature retention.
Further, the Zn adhesion amount is not particularly limited, but is preferably 3 g / m 2 or more and 10 g / m 2 or less per side. This is because if it is 3 g / m 2 or more, sufficient corrosion resistance can be obtained, and if it is 10 g / m 2 or less, the amount of zinc can be reduced and the amount of zinc used can be reduced.

亜鉛系電気めっき処理後、必要により、耐食性、耐疵付き性および加工性等の各種性能の更なる向上を目的として、クロメート又はクロメートフリー型の各種化成処理皮膜(塗布型、反応型および電解型)、更には、その上に樹脂被覆処理等を実施することができる。なお、これらの処理を施した鋼板についても、本発明の効果が得られることはいうまでもない。   After the zinc-based electroplating treatment, if necessary, various chemical conversion coatings (coating type, reaction type and electrolytic type) of chromate or chromate-free type are provided for the purpose of further improving various performances such as corrosion resistance, scratch resistance and workability. Further, a resin coating treatment or the like can be performed thereon. Needless to say, the effects of the present invention can also be obtained for steel sheets subjected to these treatments.

めっき原板として冷延鋼板(板厚:0.7mm)を使用し、これをアルカリで電解脱脂処理、水洗および酸洗処理(硫酸濃度:70g/L、液温:25〜40℃、5秒浸漬)を施した。次いで、表1に示すめっき浴およびめっき条件で亜鉛系電気めっき処理を行い、亜鉛系電気めっき鋼板を製造した。
かくして得られた亜鉛系電気めっき鋼板に対して、蛍光X線分析を用いて、付着量が既知の標準板測定により得られた検量線を使用し、電気亜鉛めっき層の片面当たりのZn付着量(g/m2)を測定した。耐食性は、塩水噴霧試験と比べてより実環境に近い図1に示す腐食促進試験とした。
Cold-rolled steel sheet (thickness: 0.7 mm) is used as the plating plate, and this is subjected to electrolytic degreasing treatment, water washing and pickling treatment (sulfuric acid concentration: 70 g / L, liquid temperature: 25 to 40 ° C., immersion for 5 seconds). Was given. Next, a zinc-based electroplating treatment was performed using a plating bath and plating conditions shown in Table 1 to produce a zinc-based electroplated steel sheet.
For the zinc-based electroplated steel sheet thus obtained, the amount of Zn deposited on one side of the electrogalvanized layer using a calibration curve obtained by standard plate measurement with a known amount of adhesion using fluorescent X-ray analysis (G / m 2 ) was measured. Corrosion resistance was a corrosion acceleration test shown in FIG. 1 that is closer to the actual environment than the salt spray test.

<評価項目>
I 耐食性
得られた亜鉛系電気めっき鋼板に対して、図1に示した腐食促進試験により耐食性を評価した。試験片は55mm×70mmを用い、7日経過ごとに目視観察して、素材鋼板である冷延鋼板に発生した腐食(赤錆)の面積率が、評価面積(45mm×60mm)の5%以上となるまでに要する日数(日)計測することで、耐食性の評価を行った。
◎:42日以上
○:35日以上42日未満
×:35日未満
<Evaluation items>
I Corrosion resistance The obtained zinc-based electroplated steel sheet was evaluated for corrosion resistance by the corrosion acceleration test shown in FIG. The test piece is 55mm x 70mm, and is visually observed every 7 days. The area ratio of corrosion (red rust) generated on the cold-rolled steel sheet is 5% or more of the evaluation area (45mm x 60mm). Corrosion resistance was evaluated by measuring the number of days (days) required to become.
◎: More than 42 days ○: More than 35 days and less than 42 days ×: Less than 35 days

Figure 2014234520
Figure 2014234520

以上の結果より、本発明に従う亜鉛系電気めっき鋼板(試験No.6〜15)は、付着量4〜8g/m2で、通常のZnめっき10g/m2(試験No.1)より優れる耐食性が認められており、有効にZn量の低減が可能となることが分かる。 Above results, the zinc-based electroplated steel sheet according to the present invention (Test Nanba6~15) is corrosion-resistant coating weight 4~8g / m 2, superior to ordinary Zn-plated 10 g / m 2 (Test No.1) It can be seen that Zn content can be effectively reduced.

本発明の亜鉛系電気めっき鋼板は、耐食性に優れているので、家電製品、自動車および建材等の広範な用途での使用が可能となる。   Since the zinc-based electroplated steel sheet of the present invention has excellent corrosion resistance, it can be used in a wide range of applications such as home appliances, automobiles, and building materials.

Claims (1)

亜鉛含有めっき浴中で、素材鋼板を陰極として電解することで、該素材鋼板の表面に亜鉛系電気めっき皮膜を形成する亜鉛系電気めっき鋼板の製造方法であって、
上記めっき浴は、Znイオンを0.2mol/L以上、Vイオンを0.1mol/L以上含有し、かつ上記素材鋼板に対する上記めっき浴中のめっき液の相対流速を0.5m/s以上とし、さらに、上記めっき浴中で、上記素材鋼板に対し2回以上の分割通電を行うものとし、該分割通電の各回の、電流密度を10A/dm2以上でかつ連続通電電気量を5000C/m2以下とする、亜鉛系電気めっき鋼板の製造方法。
A method for producing a zinc-based electroplated steel sheet in which a zinc-based electroplated film is formed on the surface of the material steel sheet by electrolyzing the steel sheet as a cathode in a zinc-containing plating bath,
The plating bath contains Zn ions of 0.2 mol / L or more, V ions of 0.1 mol / L or more, and the relative flow rate of the plating solution in the plating bath with respect to the material steel plate is 0.5 m / s or more. In the above plating bath, the material steel plate is split twice or more times, the current density is 10 A / dm 2 or more and the continuous energization electricity is 5000 C / m 2 or less at each split current. A method for producing a zinc-based electroplated steel sheet.
JP2013114592A 2013-05-30 2013-05-30 Method for producing zinc-based electroplated steel sheet Active JP5812041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013114592A JP5812041B2 (en) 2013-05-30 2013-05-30 Method for producing zinc-based electroplated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013114592A JP5812041B2 (en) 2013-05-30 2013-05-30 Method for producing zinc-based electroplated steel sheet

Publications (2)

Publication Number Publication Date
JP2014234520A true JP2014234520A (en) 2014-12-15
JP5812041B2 JP5812041B2 (en) 2015-11-11

Family

ID=52137449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013114592A Active JP5812041B2 (en) 2013-05-30 2013-05-30 Method for producing zinc-based electroplated steel sheet

Country Status (1)

Country Link
JP (1) JP5812041B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199852A1 (en) * 2015-06-09 2016-12-15 新日鐵住金株式会社 Surface-treated steel sheet
WO2017010406A1 (en) * 2015-07-10 2017-01-19 新日鐵住金株式会社 Surface treated steel sheet
JP7397305B2 (en) 2020-01-31 2023-12-13 日本製鉄株式会社 Method for producing plating solution, plating solution, and method for producing plated steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199852A1 (en) * 2015-06-09 2016-12-15 新日鐵住金株式会社 Surface-treated steel sheet
JPWO2016199852A1 (en) * 2015-06-09 2018-01-25 新日鐵住金株式会社 Surface-treated steel sheet
WO2017010406A1 (en) * 2015-07-10 2017-01-19 新日鐵住金株式会社 Surface treated steel sheet
JP7397305B2 (en) 2020-01-31 2023-12-13 日本製鉄株式会社 Method for producing plating solution, plating solution, and method for producing plated steel sheet

Also Published As

Publication number Publication date
JP5812041B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
CN105051239B (en) Hot-dip Al-Zn system&#39;s steel plates and its manufacturing method
JP6806152B2 (en) Sn-based alloy plated steel sheet
JP5812041B2 (en) Method for producing zinc-based electroplated steel sheet
JP4862445B2 (en) Method for producing electrogalvanized steel sheet
JP5861662B2 (en) Zinc-based electroplated steel sheet and method for producing the same
JP2011111633A (en) Method for producing zinc based composite electroplated steel sheet
JP2013185199A (en) Zinc-based electroplated steel sheet and method for manufacturing the same
JP6098763B2 (en) Sn-plated steel sheet, chemical conversion-treated steel sheet, and production methods thereof
JP4862484B2 (en) Method for producing electrogalvanized steel sheet
JP5994960B1 (en) Steel plate for container and method for producing steel plate for container
JP7400766B2 (en) Zinc-based electroplated steel sheet and its manufacturing method
CN108728746A (en) A kind of novel galvanizing steel plate and its processing method
JP2013079422A (en) Production method for zinc-electroplated steel sheet
JP2011236471A (en) Composite electrogalvanized steel sheet, and method for producing the same
JP2010270353A (en) Plated steel material excellent in glossy appearance and corrosion resistance, and method of manufacturing the same
JP6197772B2 (en) Method for producing zinc-based electroplated steel sheet having excellent fingerprint resistance and whiteness
JP5915294B2 (en) Method for producing electrogalvanized steel sheet
JP6066030B2 (en) Steel plate for container and method for producing steel plate for container
JP2011042826A (en) Electrogalvanized steel sheet
Narasimhamurthy et al. Physico-Chemical Properties of Zn-Ni Alloy from Alkaline Sulphate Bath Containing Tartrate
JP2002194567A (en) Electrogalvanized sheet steel
JPH08170195A (en) Production of zinc-chromium-alumina composite plated steel sheet
JPH08170196A (en) Production of zinc-chromium-iron family metal-alumina composite plated steel sheet
JPH0128840B2 (en)
KR20100012597A (en) Manufacture formula of ag-zn-cr antibiotic steel plate complex coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R150 Certificate of patent or registration of utility model

Ref document number: 5812041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250