JP2014234322A - Hydrogen production apparatus stopping method and hydrogen production apparatus - Google Patents

Hydrogen production apparatus stopping method and hydrogen production apparatus Download PDF

Info

Publication number
JP2014234322A
JP2014234322A JP2013115731A JP2013115731A JP2014234322A JP 2014234322 A JP2014234322 A JP 2014234322A JP 2013115731 A JP2013115731 A JP 2013115731A JP 2013115731 A JP2013115731 A JP 2013115731A JP 2014234322 A JP2014234322 A JP 2014234322A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
reformer
production apparatus
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013115731A
Other languages
Japanese (ja)
Other versions
JP6058472B2 (en
Inventor
行伸 谷口
Yukinobu Taniguchi
行伸 谷口
彰利 藤澤
Akitoshi Fujisawa
彰利 藤澤
脩平 留川
Shuhei Tomekawa
脩平 留川
真一 三浦
Shinichi Miura
真一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013115731A priority Critical patent/JP6058472B2/en
Publication of JP2014234322A publication Critical patent/JP2014234322A/en
Application granted granted Critical
Publication of JP6058472B2 publication Critical patent/JP6058472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen production apparatus stopping method and a hydrogen production apparatus that can shorten the time necessary to completely stop the apparatus while preventing the deterioration of a catalyst in a reformer, and that can reduce the apparatus in size.SOLUTION: This invention provides a stopping method for a hydrogen production apparatus comprising a reformer having a modification section for generating modified gas containing hydrogen and carbon monoxide by steam modification of a hydrocarbon-containing feed gas, and a conversion section for discharging hydrogen-rich converted gas by CO conversion of the modified gas, characterized in that the hydrogen production apparatus further comprises a water electrolysis unit and the supply of the feed gas and the steam to the modifier is stopped as well as the inside of the modifier is purged by the hydrogen gas generated in the water electrolysis unit. This invention also provides a hydrogen production apparatus comprising a modifier for discharging hydrogen-rich converted gas, a water electrolysis unit, and control means for stopping the supply of feed gas and steam to the modifies as well as for purging the inside of the modifier by the hydrogen gas generated in the water electrolysis unit.

Description

本発明は、水素製造装置の停止方法及び水素製造装置に関する。   The present invention relates to a method for stopping a hydrogen production apparatus and a hydrogen production apparatus.

近年、地球環境の改善につながる燃料電池用の燃料として、水素への期待が高まっている。水素製造方法の代表的なものとしては、炭化水素(天然ガス)を燃料とした水蒸気改質法が挙げられる。この水蒸気改質法では、改質器で改質反応及び変成反応によって天然ガスから水素を多く含む改質ガスを生成し、この改質ガスに含まれる水素以外の不純物を改質器の後段に設置される水素精製器で除去する。この水素精製器としては、PSA(Pressure Swing Adsorption)方式のものや、水素吸蔵合金方式のものが挙げられる。   In recent years, there is an increasing expectation for hydrogen as a fuel for fuel cells that leads to improvement of the global environment. A typical hydrogen production method is a steam reforming method using hydrocarbon (natural gas) as a fuel. In this steam reforming method, reforming gas containing a large amount of hydrogen is generated from natural gas by reforming reaction and transformation reaction in the reformer, and impurities other than hydrogen contained in this reformed gas are placed downstream of the reformer. Remove with installed hydrogen purifier. Examples of the hydrogen purifier include a PSA (Pressure Swing Adsorption) type and a hydrogen storage alloy type.

上記水素製造装置において、水素の製造を停止する場合、上記改質器への炭化水素を含む原料ガス及び水蒸気の供給を停止することで改質ガスの生成を停止させる。このとき停止後の改質器において、原料ガスが残留していると熱分解により炭素が触媒層に析出し触媒活性が低下する。そこで、一般には原料ガス停止後、改質器内を水蒸気でパージ(置換)した後、さらにこの水蒸気を不活性ガスでパージする方法が従来から用いられている。このように原料ガスをパージした水蒸気をさらに不活性ガスでパージするのは、改質器内の温度が低下した際、水蒸気の水分凝縮による酸化や結露によって触媒が劣化するのを防ぐためである。   In the hydrogen production apparatus, when the production of hydrogen is stopped, the generation of the reformed gas is stopped by stopping the supply of the raw material gas containing hydrocarbons and the water vapor to the reformer. At this time, if the raw material gas remains in the reformer after stopping, carbon is deposited on the catalyst layer due to thermal decomposition and the catalytic activity is lowered. Therefore, generally, a method of purging (replacement) the interior of the reformer with steam after stopping the raw material gas and further purging the steam with an inert gas has been conventionally used. The reason why the water vapor purged with the raw material gas is further purged with an inert gas is to prevent the catalyst from deteriorating due to oxidation or condensation due to moisture condensation of water vapor when the temperature in the reformer decreases. .

上記不活性ガスでパージする方法の場合、不活性ガスの貯蔵及び供給設備が別途必要となる。そこで、不活性ガスの代わりに原料ガスで改質器内を再度パージする方法が提案されている(特許第3970064号)。この方法は、水蒸気で改質器内をパージした後、原料ガスが熱分解しない温度まで改質器内温度が低下した後に原料ガスで再度パージを行うものである。   In the case of the purge method using the inert gas, an inert gas storage and supply facility is required separately. Therefore, a method has been proposed in which the inside of the reformer is purged again with a raw material gas instead of an inert gas (Japanese Patent No. 3970064). In this method, after purging the inside of the reformer with water vapor, the temperature inside the reformer is lowered to a temperature at which the raw material gas is not thermally decomposed, and then purging is performed again with the raw material gas.

また、不活性ガスの代わりに原料ガスの脱硫時に発生した水素ガスを用いて水蒸気の再パージを行う方法も提案されている(特開2007−70502号)。   In addition, a method of repurging water vapor using hydrogen gas generated during desulfurization of the raw material gas instead of the inert gas has been proposed (Japanese Patent Laid-Open No. 2007-70502).

しかしながら、上記の原料ガスで再パージを行う従来技術は、改質器内温度が400℃程度以下になるまで待機する時間が必要であるため、装置の停止が完了するまでの時間が長くなる。特に、改質器の容量が10Nm/h以上になると、触媒温度が定格時の約700℃から400℃程度まで低下するのには数時間を要する。また、原料ガスを供給する前に改質器内温度が低下しすぎると水蒸気の凝縮が発生するリスクが生じる。一方で、上記の脱硫時発生水素ガスを用いて再パージを行う従来技術は、脱硫で発生する水素ガスにメタンが含有され易いため、このメタンによって改質器内に炭素析出が生じるおそれがある。また、脱硫時に発生した水素ガスを停止時まで貯蔵しておくホルダや圧送用のポンプ等が必要となるため、設備の大型化が避けられない。 However, in the conventional technique in which the above-described raw material gas is re-purged, it is necessary to wait for the reformer temperature to be about 400 ° C. or lower, so that it takes a long time to stop the apparatus. In particular, when the capacity of the reformer is 10 Nm 3 / h or more, it takes several hours for the catalyst temperature to drop from about 700 ° C. at the rated time to about 400 ° C. In addition, if the temperature inside the reformer is too low before the raw material gas is supplied, there is a risk that condensation of water vapor occurs. On the other hand, in the conventional technique in which re-purging is performed using the hydrogen gas generated at the time of desulfurization, methane is easily contained in the hydrogen gas generated by desulfurization. Therefore, carbon deposition may occur in the reformer due to the methane. . Moreover, since a holder for storing the hydrogen gas generated at the time of desulfurization until the stoppage, a pump for pumping, and the like are necessary, an increase in size of the facility is inevitable.

特許第3970064号公報Japanese Patent No. 3970064 特開2007−70502号公報JP 2007-70502 A

本発明は、前述のような事情に基づいてなされたものであり、改質器内の触媒の劣化を防止しつつ、装置が完全に停止するまでの時間を短縮化でき、かつ装置を小型化できる水素製造装置の停止方法、及び水素製造装置の提供を目的とする。   The present invention has been made based on the circumstances as described above, and can prevent the catalyst in the reformer from deteriorating, shorten the time until the apparatus is completely stopped, and downsize the apparatus. An object of the present invention is to provide a method for stopping a hydrogen production apparatus and a hydrogen production apparatus.

上記課題を解決するためになされた発明は、
炭化水素含有原料ガスの水蒸気改質により水素及び一酸化炭素を含む改質ガスを生成する改質部と、この改質ガスのCO変成により水素リッチな変成ガスを排出する変成部とを有する改質器を備える水素製造装置の停止方法であって、
上記水素製造装置が水電解装置をさらに備え、
上記改質器への原料ガス及び水蒸気の供給を停止すると共に、上記水電解装置で発生した水素ガスにより上記改質器内をパージすることを特徴とする。
The invention made to solve the above problems is
A reforming section that generates reformed gas containing hydrogen and carbon monoxide by steam reforming of the hydrocarbon-containing source gas, and a reforming section that discharges hydrogen-rich modified gas by CO conversion of the reformed gas. A method for stopping a hydrogen production apparatus including a quality device,
The hydrogen production apparatus further comprises a water electrolysis device,
The supply of raw material gas and water vapor to the reformer is stopped, and the interior of the reformer is purged with hydrogen gas generated by the water electrolysis apparatus.

当該水素製造装置の停止方法においては、水電解装置で発生した水素ガスで改質器内をパージ(置換)する。この水素ガスは純度が高く改質器内が高温であっても炭素の析出が起こらないため、従来の方法のように改質器内の温度が低下することを待たずに改質器内をパージすることができる。その結果、改質器内の触媒の劣化を防止しつつ、装置の停止までの時間を短縮化できる。さらに、水素製造装置の停止時に上記水電解装置で必要量の水素ガスを発生させることができ、水素ガスをあらかじめ貯蓄しておく設備等が不要となるため、水素製造装置の小型化が可能となる。さらに、当該水素製造装置の停止方法は、高純度の水素ガスで改質器内を充填するため、酸化した改質器内の触媒を水素ガスによって還元する効果も得ることができる。   In the method for stopping the hydrogen production apparatus, the interior of the reformer is purged (replaced) with hydrogen gas generated by a water electrolysis apparatus. Since this hydrogen gas has a high purity and carbon deposition does not occur even when the temperature inside the reformer is high, it does not wait for the temperature inside the reformer to decrease as in the conventional method. Can be purged. As a result, it is possible to shorten the time until the apparatus is stopped while preventing deterioration of the catalyst in the reformer. Furthermore, when the hydrogen production apparatus is stopped, the water electrolysis apparatus can generate a necessary amount of hydrogen gas, which eliminates the need to store hydrogen gas in advance, and the hydrogen production apparatus can be downsized. Become. Further, since the method for stopping the hydrogen production apparatus fills the reformer with high-purity hydrogen gas, it is possible to obtain an effect of reducing the oxidized catalyst in the reformer with hydrogen gas.

また、上記課題を解決するためになされた別の発明は、
炭化水素含有原料ガスの水蒸気改質により水素及び一酸化炭素を含む改質ガスを生成する改質部と、この改質ガスのCO変成により水素リッチな変成ガスを排出する変成部とを有する改質器を備える水素製造装置であって、
水電解装置と、
上記改質器への原料ガス及び水蒸気の供給を停止すると共に、上記水電解装置で発生した水素ガスにより上記改質器内をパージする制御手段と
をさらに備えることを特徴とする。
Moreover, another invention made in order to solve the said subject is:
A reforming section that generates reformed gas containing hydrogen and carbon monoxide by steam reforming of the hydrocarbon-containing source gas, and a reforming section that discharges hydrogen-rich modified gas by CO conversion of the reformed gas. A hydrogen production apparatus comprising a quality device,
A water electrolysis device,
And a control means for purging the interior of the reformer with hydrogen gas generated by the water electrolysis device while stopping the supply of the raw material gas and water vapor to the reformer.

当該水素製造装置は、上述のように水電解装置で発生した水素ガスで改質器内をパージすることで、改質器内の触媒の劣化を防止しつつ、装置の停止までの時間を短縮化できると共に、水素ガスをあらかじめ貯蓄しておく設備等が不要となるため、装置の小型化が可能となる。   The hydrogen production device purges the interior of the reformer with the hydrogen gas generated in the water electrolysis device as described above, thereby preventing deterioration of the catalyst in the reformer and shortening the time until the device is stopped. In addition, since the equipment for storing hydrogen gas in advance is not necessary, the apparatus can be miniaturized.

上記改質器が酸素含有ガスの酸化により改質反応に必要な熱を得る自己熱型の改質器であり、上記酸素含有ガスとして上記水電解装置で発生した酸素ガスを改質器に供給するとよい。このように改質器を自己熱型とし、この改質器に水電解装置で水素を生成する際に発生する酸素ガスを供給することで、改質器を加熱する設備や、改質器に供給するための酸素ガスを生成又は貯蔵する設備を小型化又は省略することができるため、当該水素製造装置をさらに小型化することができる。   The reformer is a self-heating reformer that obtains the heat required for the reforming reaction by oxidizing the oxygen-containing gas, and supplies the reformer with oxygen gas generated by the water electrolysis device as the oxygen-containing gas. Good. In this way, the reformer is a self-heating type, and oxygen gas generated when hydrogen is generated by the water electrolysis device is supplied to the reformer, thereby heating the reformer and the reformer. Since equipment for generating or storing oxygen gas to be supplied can be downsized or omitted, the hydrogen production apparatus can be further downsized.

上記変成ガス中の水素以外のガスをPSA方式によって吸着する吸着塔を有する水素精製器をさらに備え、上記吸着塔の洗浄及び/又は昇圧に上記水電解装置で発生した水素ガスを用いるとよい。このように当該水素製造装置にPSA方式の水素精製器を用いる場合、この水素精製器が有する吸着塔の洗浄及び/又は昇圧に上記水電解装置で発生した高純度の水素ガスを用いることで、吸着塔内の純度を向上させて当該水素製造装置で得られる製品水素ガスの純度を高めることができる。また、製品水素ガスの純度が向上することによって、吸着塔を小型化することができるため、吸着塔の圧力変動を低減して水素製造効率を向上させることができる。さらにこの吸着塔の小型化は、当該水素製造装置の一層の小型化に寄与する。   A hydrogen purifier having an adsorption tower that adsorbs a gas other than hydrogen in the metamorphic gas by the PSA method may be further provided, and hydrogen gas generated by the water electrolysis apparatus may be used for cleaning and / or boosting the adsorption tower. Thus, when using a PSA-type hydrogen purifier in the hydrogen production apparatus, by using the high-purity hydrogen gas generated in the water electrolysis apparatus for cleaning and / or boosting the adsorption tower of the hydrogen purifier, The purity of the product hydrogen gas obtained by the hydrogen production apparatus can be increased by improving the purity in the adsorption tower. Further, since the purity of the product hydrogen gas is improved, the adsorption tower can be reduced in size, so that the pressure fluctuation of the adsorption tower can be reduced and the hydrogen production efficiency can be improved. Further, the downsizing of the adsorption tower contributes to further downsizing of the hydrogen production apparatus.

以上説明したように、本発明の水素製造装置の停止方法及び水素製造装置は、改質器内の触媒の劣化を防止しつつ、装置が完全に停止するまでの時間を短縮化でき、かつ装置を小型化できる。つまり、本発明の水素製造装置の停止方法及び水素製造装置によれば、任意のタイミングで水素パージを開始することができ、また炭素析出や水蒸気凝縮による触媒の劣化を防止でき、さらに不活性ガスのガスホルダ等の追加の設備を不要とすることができる。   As described above, the method for stopping a hydrogen production apparatus and the hydrogen production apparatus of the present invention can shorten the time until the apparatus completely stops while preventing deterioration of the catalyst in the reformer, and the apparatus. Can be miniaturized. That is, according to the method for stopping a hydrogen production apparatus and the hydrogen production apparatus of the present invention, hydrogen purge can be started at an arbitrary timing, catalyst deterioration due to carbon deposition and water vapor condensation can be prevented, and an inert gas can be prevented. Additional equipment such as a gas holder can be eliminated.

本発明の一実施形態に係る水素製造装置を示す概略図Schematic which shows the hydrogen production apparatus which concerns on one Embodiment of this invention. 図1の水素製造装置が有する水素精製器を示す概略図Schematic showing the hydrogen purifier of the hydrogen production apparatus of FIG. 本発明の一実施形態に係る水素製造装置の停止方法のフローチャートThe flowchart of the stop method of the hydrogen production device concerning one embodiment of the present invention 図3の水素製造装置の停止方法とは異なる実施形態に係る水素製造装置の停止方法のフローチャートThe flowchart of the stop method of the hydrogen production apparatus which concerns on embodiment different from the stop method of the hydrogen production apparatus of FIG. 図3及び図4の水素製造装置の停止方法とは異なる実施形態に係る水素製造装置の停止方法のフローチャートFlowchart of the hydrogen production apparatus stop method according to an embodiment different from the hydrogen production apparatus stop method of FIGS. 3 and 4

以下、適宜図面を参照しつつ本発明の水素製造装置及び水素製造装置の停止方法の実施形態を詳説する。   Hereinafter, embodiments of a hydrogen production apparatus and a hydrogen production apparatus stop method of the present invention will be described in detail with reference to the drawings as appropriate.

<水素製造装置>
図1の水素製造装置1は、炭化水素含有原料ガスAの水蒸気改質により水素及び一酸化炭素を含む改質ガスを生成する改質部及びこの改質ガスのCO変成により水素リッチな改質ガスCを排出する変成部を有する改質器2と、改質ガスC中の水素以外のガスをPSAによって吸着する水素精製工程を行う水素精製器3と、水電解により高純度水素ガスF及び酸素ガスGを発生する水電解装置4と、制御手段(図示せず)とを備える。
<Hydrogen production equipment>
The hydrogen production apparatus 1 in FIG. 1 includes a reforming unit that generates a reformed gas containing hydrogen and carbon monoxide by steam reforming of a hydrocarbon-containing raw material gas A, and a hydrogen-rich reforming by CO conversion of the reformed gas. A reformer 2 having a shift section that discharges gas C; a hydrogen purifier 3 that performs a hydrogen purification step of adsorbing a gas other than hydrogen in reformed gas C by PSA; and high-purity hydrogen gas F and water by electrolysis A water electrolysis device 4 that generates oxygen gas G and a control means (not shown) are provided.

上記改質器2は、酸素含有ガスの酸化により後述する改質反応に必要な熱を得る自己熱型の改質器(オートサーマル型改質器)である。この改質器2には、上記原料ガスAが原料ガス供給ライン10から供給される他に、改質用の水蒸気Bが水蒸気供給ライン11から供給され、さらに水電解装置4から発生する酸素ガスGが酸素ガス供給ライン15によって供給される。   The reformer 2 is a self-heating reformer (autothermal reformer) that obtains heat necessary for a reforming reaction described later by oxidizing an oxygen-containing gas. In addition to the raw material gas A being supplied from the raw material gas supply line 10, the reformer 2 is supplied with reforming steam B from the steam supply line 11, and oxygen gas generated from the water electrolysis device 4. G is supplied by the oxygen gas supply line 15.

上記原料ガスAとしては、天然ガス等の炭化水素を含有するガスを用いることができる。上記改質器2における原料ガスAの水蒸気改質及びCO変成は、それぞれ以下の化学式で表される改質反応及び変成反応で構成される。
(1)改質反応
+nHO→nCO+(m/2+n)H
(2)変成反応
CO+HO→CO+H
As the source gas A, a gas containing a hydrocarbon such as natural gas can be used. Steam reforming and CO conversion of the raw material gas A in the reformer 2 are constituted by a reforming reaction and a conversion reaction represented by the following chemical formulas, respectively.
(1) reforming reaction C n H m + nH 2 O → nCO + (m / 2 + n) H 2
(2) Metamorphic reaction CO + H 2 O → CO 2 + H 2

改質器2では、原料ガス供給ライン10から供給される原料ガスAを改質部で改質反応により水蒸気Bで改質して水素及び一酸化炭素を主成分とするガスとした後(上記式(1))、さらに変成部でこのガスを水蒸気Bで変成し水素リッチな改質ガスCを生成し排出する(上記式(2))。また、改質器2では、水電解装置4で発生した酸素ガスGと原料ガスAとの酸化反応に伴う発熱によって吸熱反応である上記改質反応が促進される。上記改質ガスC中には、水素の他、一酸化炭素、二酸化炭素、メタン等の未反応の天然ガス成分、水などの不純物が含まれる。   In the reformer 2, after the raw material gas A supplied from the raw material gas supply line 10 is reformed with steam B by a reforming reaction in the reforming section to be a gas mainly composed of hydrogen and carbon monoxide (the above-mentioned Further, this gas is transformed with water vapor B at the transformation section to produce and discharge a hydrogen-rich reformed gas C (formula (2) above). In the reformer 2, the reforming reaction, which is an endothermic reaction, is promoted by the heat generated by the oxidation reaction between the oxygen gas G and the raw material gas A generated in the water electrolysis apparatus 4. The reformed gas C contains hydrogen, unreacted natural gas components such as carbon monoxide, carbon dioxide, and methane, and impurities such as water.

改質器2から排出される改質ガスCは、改質ガス供給ライン12を通して水素精製器3に供給される。ただし、当該水素製造装置1の起動直後、すなわち改質器2への原料ガスAの供給開始直後は、改質器2内の温度が低く、吸熱反応である改質反応の進行が鈍く水素濃度の低い改質ガスCが排出される。この水素濃度の低い改質ガスCは改質ガス回収ライン13を通してオフガスとして回収される。   The reformed gas C discharged from the reformer 2 is supplied to the hydrogen purifier 3 through the reformed gas supply line 12. However, immediately after the start-up of the hydrogen production apparatus 1, that is, immediately after the start of the supply of the raw material gas A to the reformer 2, the temperature in the reformer 2 is low and the reforming reaction, which is an endothermic reaction, proceeds slowly and the hydrogen concentration is low. A low reformed gas C is discharged. The reformed gas C having a low hydrogen concentration is recovered as off-gas through the reformed gas recovery line 13.

上記水素精製器3は、図2に示すように改質ガスC中の上記不純物を吸着する吸着剤を充填した複数の吸着塔5a,5b,5cを有し、高純度の水素ガスDを排出する。これらの吸着塔5a,5b,5cは、それぞれ吸着、減圧、洗浄、昇圧、吸着の一連の工程を順次切り替えて運転される。吸着塔内の圧力を減圧する工程及び高純度水素ガスFで洗浄する工程により、吸着した不純物を除去し、吸着塔内の吸着剤が再生される。その後、吸着剤を再生した吸着塔を再び昇圧し水素精製に再び供する。当該水素製造装置1の運転中、いずれかの吸着塔が吸着工程となるように上記一連の工程をずらして切り替えることで、吸着と再生とを異なる吸着塔で同時に行うことが可能となり、連続的に水素ガスDを製造できる。   The hydrogen purifier 3 has a plurality of adsorption towers 5a, 5b, 5c filled with an adsorbent that adsorbs the impurities in the reformed gas C as shown in FIG. To do. These adsorption towers 5a, 5b, and 5c are operated by sequentially switching a series of steps of adsorption, depressurization, washing, pressurization, and adsorption. The adsorbed impurities are removed and the adsorbent in the adsorption tower is regenerated by reducing the pressure in the adsorption tower and washing with the high purity hydrogen gas F. Thereafter, the adsorption tower in which the adsorbent has been regenerated is pressurized again and subjected to hydrogen purification again. During the operation of the hydrogen production apparatus 1, it is possible to perform adsorption and regeneration simultaneously in different adsorption towers by shifting the above series of steps so that one of the adsorption towers becomes an adsorption step, and continuously. Hydrogen gas D can be produced.

吸着塔5a,5b,5cには、改質ガスCの主な不純物である一酸化炭素、二酸化炭素及びメタンを吸着可能な吸着剤が充填される。この吸着剤は各不純物をPSAで吸着可能なものであれば特に限定されない。メタンと二酸化炭素との双方を吸着可能な吸着剤としては、炭素系の吸着剤を挙げることができ、具体的には例えば活性炭、CMS(カーボンモレキュラーシーブ)等を用いることができる。また、一酸化炭素の吸着剤としては、例えばゼオライト、シリカ、アルミナ、ポリスチレン系樹脂等を用いることができるが、特に多孔質シリカ、多孔質アルミナ、ポリスチレン系樹脂のうち1種以上の担体に、ハロゲン化銅(I)及び/又はハロゲン化銅(II)を担持させた材料、又はこの材料を還元処理したものを用いることが好ましい。このような材料は、一酸化炭素の吸着性能が大きいため、吸着剤使用量を削減できると共に、水素回収率の向上を図ることが出来る。   The adsorption towers 5a, 5b, and 5c are filled with an adsorbent capable of adsorbing carbon monoxide, carbon dioxide, and methane, which are main impurities of the reformed gas C. This adsorbent is not particularly limited as long as each impurity can be adsorbed by PSA. Examples of the adsorbent capable of adsorbing both methane and carbon dioxide include carbon-based adsorbents, and specifically, for example, activated carbon, CMS (carbon molecular sieve) and the like can be used. Further, as the carbon monoxide adsorbent, for example, zeolite, silica, alumina, polystyrene-based resin, etc. can be used. Particularly, one or more kinds of carriers among porous silica, porous alumina, polystyrene-based resin, It is preferable to use a material supporting copper (I) halide and / or copper (II) halide, or a material obtained by reducing this material. Since such a material has a large carbon monoxide adsorption performance, the amount of adsorbent used can be reduced and the hydrogen recovery rate can be improved.

改質ガス導入ライン101は改質器2から排出された改質ガスCを水素精製器3へ導入するためのラインである。改質ガス導入ライン101と3つの吸着塔5a,5b,5cとはそれぞれ改質ガス導入弁V101,V102,V103を介して接続される。   The reformed gas introduction line 101 is a line for introducing the reformed gas C discharged from the reformer 2 into the hydrogen purifier 3. The reformed gas introduction line 101 and the three adsorption towers 5a, 5b, 5c are connected via reformed gas introduction valves V101, V102, V103, respectively.

オフガス排出ライン102は吸着塔5a,5b,5c内を減圧するために用いるラインである。オフガス排出ライン102は、3つの吸着塔5a,5b,5cとオフガス排出弁V104,V105,V106をそれぞれ介して接続される。このオフガス排出ライン102の下流には吸着塔5a,5b,5cの再生時に大気圧以下まで減圧するための真空ポンプ(図示せず)が接続される。   The off-gas discharge line 102 is a line used for depressurizing the inside of the adsorption towers 5a, 5b, and 5c. The off-gas discharge line 102 is connected to the three adsorption towers 5a, 5b, and 5c and the off-gas discharge valves V104, V105, and V106, respectively. Downstream of the off-gas discharge line 102 is connected a vacuum pump (not shown) for reducing the pressure to below atmospheric pressure when the adsorption towers 5a, 5b, 5c are regenerated.

吸着塔5a,5b,5cの再生時の排出ガスは、オフガス排出ライン102からオフガスEとして排出される。   The exhaust gas at the time of regeneration of the adsorption towers 5a, 5b, 5c is discharged as off-gas E from the off-gas discharge line 102.

水素ガス回収ライン103は吸着塔5a,5b,5cで改質ガスCの不純物を除去して得た水素ガスDの回収ラインであり、3つの吸着塔5a,5b,5cとはそれぞれ水素ガス回収弁V107,V108,V109を介して接続される。回収した水素ガスDはバッファタンク等に一時的に貯蔵され、適宜使用に供される。なお、当該水素製造装置1の起動後、水素純度が安定する(一定値に達する)前の水素ガスDは、オフガスEとして回収される。   The hydrogen gas recovery line 103 is a recovery line for hydrogen gas D obtained by removing impurities of the reformed gas C in the adsorption towers 5a, 5b, and 5c. The three adsorption towers 5a, 5b, and 5c are respectively hydrogen gas recovery lines. They are connected via valves V107, V108, V109. The recovered hydrogen gas D is temporarily stored in a buffer tank or the like and used as appropriate. Note that the hydrogen gas D before the hydrogen purity is stabilized (reached a certain value) after the hydrogen production apparatus 1 is started is recovered as off-gas E.

高純度水素ガス供給ライン14は水電解装置4で水電解により発生した高純度水素ガスFを各吸着塔に供給するラインであり、3つの吸着塔5a,5b,5cとはそれぞれ水素ガス供給弁V110,V111,V112を介して接続される。この高純度水素ガス供給ライン14から供給される高純度水素ガスFは、各吸着塔の洗浄及び昇圧に用いられる。   The high-purity hydrogen gas supply line 14 is a line for supplying high-purity hydrogen gas F generated by water electrolysis in the water electrolysis apparatus 4 to each adsorption tower, and the three adsorption towers 5a, 5b, and 5c are respectively hydrogen gas supply valves. They are connected via V110, V111, and V112. The high-purity hydrogen gas F supplied from the high-purity hydrogen gas supply line 14 is used for cleaning and boosting each adsorption tower.

各吸着塔には上記水素ガス回収ライン103が上記水素ガス回収弁を介して接続され、高純度水素ガス供給ライン14が上記水素ガス供給弁を介して接続されているため、1つの吸着塔から水素ガスDを回収しながら、他の1つの吸着塔に対して高純度水素ガスFを供給して、洗浄及び昇圧を行うことができる。例えば第一の吸着塔5aがこれから再生工程に入る場合、第二の吸着塔5bに改質ガスCが供給され、不純物が除去された水素ガスDが第二の吸着塔5bの水素ガス回収弁V108を通して水素ガス回収ライン103から回収され続ける。一方で、第一の吸着塔5aでは、第一の吸着塔5a内のガスを第一の吸着塔5aのオフガス排出弁V104を通して排出することで第一の吸着塔5aを減圧した後、水素ガス供給弁V110から高純度水素ガスFを第一の吸着塔5aに供給することにより、第一の吸着塔5aの洗浄及び昇圧が行われる。この第一の吸着塔5aの洗浄中はオフガス排出弁V104を通して不純物を含んだガスをオフガスEとして排出する。一方、第三の吸着塔5cでは改質ガス導入弁V103を開けることにより改質ガスCを導入して改質ガスCの不純物の吸着除去を開始する。なお、適宜バッファタンクを設け高純度水素ガスFを貯留し、このバッファタンクから高純度水素ガスFを供給して各吸着塔の洗浄及び昇圧を行ってもよい。   The hydrogen gas recovery line 103 is connected to each adsorption tower via the hydrogen gas recovery valve, and the high-purity hydrogen gas supply line 14 is connected via the hydrogen gas supply valve. While recovering the hydrogen gas D, the high-purity hydrogen gas F can be supplied to the other one adsorption tower to perform washing and pressure increase. For example, when the first adsorption tower 5a enters the regeneration process, the reformed gas C is supplied to the second adsorption tower 5b, and the hydrogen gas D from which impurities have been removed is the hydrogen gas recovery valve of the second adsorption tower 5b. Recovery from the hydrogen gas recovery line 103 continues through V108. On the other hand, in the first adsorption tower 5a, the gas in the first adsorption tower 5a is discharged through the off-gas discharge valve V104 of the first adsorption tower 5a to depressurize the first adsorption tower 5a, and then the hydrogen gas By supplying the high-purity hydrogen gas F from the supply valve V110 to the first adsorption tower 5a, the first adsorption tower 5a is cleaned and boosted. During the cleaning of the first adsorption tower 5a, the gas containing impurities is discharged as off-gas E through the off-gas discharge valve V104. On the other hand, in the third adsorption tower 5c, the reformed gas C is introduced by opening the reformed gas introduction valve V103, and the adsorption removal of the impurities of the reformed gas C is started. A buffer tank may be provided as appropriate to store the high-purity hydrogen gas F, and the high-purity hydrogen gas F may be supplied from the buffer tank to clean and pressurize each adsorption tower.

水電解装置4は、水電解により高純度の水素及び酸素を発生し、上記改質器2及び水素精製器3に供給する。水電解装置4としては、例えばプロトン伝導高分子膜を用いた固体高分子水電解装置やアルカリ水電解装置等を用いることができる。   The water electrolysis apparatus 4 generates high-purity hydrogen and oxygen by water electrolysis and supplies the hydrogen and oxygen to the reformer 2 and the hydrogen purifier 3. As the water electrolysis device 4, for example, a solid polymer water electrolysis device using a proton conducting polymer membrane, an alkaline water electrolysis device, or the like can be used.

当該水素製造装置1が備える制御手段は、後述する水素製造装置の停止方法を実行する制御装置であり、具体的には、改質器2への原料ガスA及び水蒸気Bの供給を停止すると共に、水電解装置4で発生した高純度水素ガスFにより改質器2内をパージするように制御する装置である。この制御装置としては公知のものを用いることができる。   The control means provided in the hydrogen production apparatus 1 is a control apparatus that executes a hydrogen production apparatus stop method, which will be described later. Specifically, the supply means A and the steam B are stopped from being supplied to the reformer 2. This is a device for controlling the interior of the reformer 2 to be purged with the high purity hydrogen gas F generated in the water electrolysis device 4. A known device can be used as this control device.

<水素製造装置の停止方法>
本発明の水素製造装置の停止方法は、図3に示すように改質器2への原料ガスA及び水蒸気Bの供給停止後に上記改質器2に水電解装置4で発生した高純度水素ガスFを供給する手順で行われる。すなわち、まず改質器2への酸素ガスGの供給を停止し、改質器2の加熱を停止する(手順S10)。続いて、原料ガスAの供給を停止し、改質器2内の改質反応を停止させる(手順S20)。この時点では改質器2内へは水蒸気Bのみが供給され、改質器2内は徐々に水蒸気で置換される。次に、改質器2から排出されるオフガスにおける原料ガス濃度が十分低下した時点で、水蒸気Bの供給を停止し(手順S30)、水電解装置4で発生した高純度水素ガスFを改質器2内に供給開始する(手順S40)。その後、水分凝縮を避けられる圧力までオフガスにおける水蒸気の分圧が低下した時点で、高純度水素ガスFの供給を停止する(手順S50)。
<Method for stopping hydrogen production equipment>
As shown in FIG. 3, the hydrogen production apparatus stopping method of the present invention is a high-purity hydrogen gas generated in the water electrolysis apparatus 4 in the reformer 2 after the supply of the raw material gas A and the water vapor B to the reformer 2 is stopped. It is performed in the procedure of supplying F. That is, first, supply of the oxygen gas G to the reformer 2 is stopped, and heating of the reformer 2 is stopped (procedure S10). Subsequently, the supply of the raw material gas A is stopped, and the reforming reaction in the reformer 2 is stopped (procedure S20). At this time, only the steam B is supplied into the reformer 2, and the interior of the reformer 2 is gradually replaced with steam. Next, when the concentration of the raw material gas in the off-gas discharged from the reformer 2 is sufficiently lowered, the supply of the steam B is stopped (step S30), and the high-purity hydrogen gas F generated in the water electrolysis apparatus 4 is reformed. Supply is started in the container 2 (step S40). After that, when the partial pressure of water vapor in the off gas is reduced to a pressure at which moisture condensation can be avoided, the supply of the high purity hydrogen gas F is stopped (procedure S50).

上記手順S30において、水蒸気Bの供給を停止する際のオフガスにおける原料ガス濃度は、使用する触媒の種類、運転温度、改質器容量、蒸気流量等の条件に合わせて適宜設計される。水蒸気Bの供給を停止する際のオフガスにおける原料ガス濃度の上限としては、10mol%が好ましく、1mol%がより好ましい。上記オフガスにおける原料ガス濃度が上記上限を超える場合、改質器2内の原料ガス濃度が高くなり高純度水素ガスFでパージするまでの間に改質器2内に炭素が析出するおそれがある。   In the procedure S30, the raw material gas concentration in the off-gas when the supply of the water vapor B is stopped is appropriately designed according to conditions such as the type of catalyst used, the operating temperature, the reformer capacity, and the steam flow rate. The upper limit of the raw material gas concentration in the off gas when the supply of the water vapor B is stopped is preferably 10 mol%, and more preferably 1 mol%. When the raw material gas concentration in the off gas exceeds the upper limit, the raw material gas concentration in the reformer 2 becomes high and carbon may be deposited in the reformer 2 until the high purity hydrogen gas F is purged. .

また上記手順S50において、高純度水素ガスFの供給を停止する際のオフガスにおける水蒸気の分圧は、改質器2の停止後の温度(保温温度)に合わせて適宜設計される。高純度水素ガスFの供給を停止する際のオフガスにおける水蒸気の分圧の上限としては、50kPaが好ましく、2kPaがより好ましい。上記オフガスにおける水蒸気の分圧が上記上限を超える場合、水分凝縮が発生し、改質器2内の触媒が劣化するおそれがある。   Further, in the procedure S50, the partial pressure of water vapor in the off-gas when the supply of the high purity hydrogen gas F is stopped is appropriately designed according to the temperature after the reformer 2 is stopped (heat retention temperature). The upper limit of the partial pressure of water vapor in the off gas when the supply of the high purity hydrogen gas F is stopped is preferably 50 kPa, and more preferably 2 kPa. When the partial pressure of water vapor in the off-gas exceeds the upper limit, moisture condensation occurs and the catalyst in the reformer 2 may be deteriorated.

なお、上記水電解装置4から発生する高純度水素ガスFは水電解装置4の耐圧以下の圧力を有するため、改質器2内の運転圧が水電解装置4の耐圧(例えば1MPa)以下であれば高純度水素ガスFを圧送するポンプは不要とすることができる。   In addition, since the high purity hydrogen gas F generated from the water electrolysis apparatus 4 has a pressure not higher than the pressure resistance of the water electrolysis apparatus 4, the operating pressure in the reformer 2 is not higher than the pressure resistance (for example, 1 MPa) of the water electrolysis apparatus 4. If it exists, the pump which pumps the high purity hydrogen gas F can be made unnecessary.

<その他の実施形態>
本発明の水素製造装置の停止方法は、上記実施形態に限定されるものではない。上記水素製造装置の停止方法では改質器への原料ガス及び水蒸気の供給停止後に改質器に水電解装置で発生した高純度水素ガスを供給したが、本発明の水素製造装置の停止方法は、図4及び図5に示すように水蒸気の供給停止前に改質器に水電解装置で発生した高純度水素ガスを供給することも可能である。この場合、高純度水素ガスの供給開始は原料ガスの供給停止前後の任意のタイミングで行うことができ、水蒸気の供給停止タイミングは上記実施形態と同様に、オフガスにおける原料ガス濃度が一定値以下となった場合とすることができる。
<Other embodiments>
The method for stopping the hydrogen production apparatus of the present invention is not limited to the above embodiment. In the method for stopping the hydrogen production apparatus, the high purity hydrogen gas generated in the water electrolysis apparatus was supplied to the reformer after the supply of the raw material gas and steam to the reformer was stopped. As shown in FIGS. 4 and 5, it is also possible to supply high-purity hydrogen gas generated in the water electrolysis apparatus to the reformer before stopping the supply of water vapor. In this case, the supply of high-purity hydrogen gas can be started at an arbitrary timing before and after the supply of the raw material gas is stopped. It can be the case.

また、当該水素製造装置の停止方法で用いる水素製造装置は、上記実施形態のものに限定されず、例えば水素精製器が有する吸着塔の数は3に限定されず、2又は4以上であってもよい。但し、均圧操作によって効率よく吸着塔の再生及び昇圧を行うためには3以上の吸着塔を設けることが好ましい。   Further, the hydrogen production apparatus used in the method for stopping the hydrogen production apparatus is not limited to the one in the above embodiment. For example, the number of adsorption towers included in the hydrogen purifier is not limited to 3, and is 2 or 4 or more. Also good. However, it is preferable to provide three or more adsorption towers in order to efficiently regenerate and raise the pressure of the adsorption towers by pressure equalizing operation.

なお、水素精製器は2段以上に分かれていてもよく、例えば一酸化炭素を吸着する第一の吸着塔群と、一酸化炭素以外の不純物を吸着する第二の吸着塔群とを有し、改質ガスをこの第一の吸着塔群及び第二の吸着塔群に直列で供給することで不純物を除去する方法を採用することもできる。   The hydrogen purifier may be divided into two or more stages, and has, for example, a first adsorption tower group that adsorbs carbon monoxide and a second adsorption tower group that adsorbs impurities other than carbon monoxide. A method of removing impurities by supplying the reformed gas in series to the first adsorption tower group and the second adsorption tower group may be employed.

さらに、水素精製器の吸着塔の洗浄又は昇圧は、水電解装置から発生しる高純度水素ガス以外に、他の吸着塔から発生する水素ガスを用いて行うこともできる。   Furthermore, the washing or pressurization of the adsorption tower of the hydrogen purifier can be performed using hydrogen gas generated from another adsorption tower in addition to the high-purity hydrogen gas generated from the water electrolysis apparatus.

また、本発明の水素製造装置の停止方法及び水素製造装置は、自己熱型の改質器の代わりに酸化反応を利用せず外部加熱によって水蒸気改質を行う改質器を用いてもよい。   The hydrogen production apparatus stopping method and the hydrogen production apparatus of the present invention may use a reformer that performs steam reforming by external heating without using an oxidation reaction, instead of the self-heating type reformer.

さらに、当該水素製造装置の停止方法は上述の制御装置により自動化して行うことが好適であるが、手動で行ってもよい。   Furthermore, although it is preferable that the method for stopping the hydrogen production apparatus is automated by the above-described control apparatus, it may be performed manually.

以上説明したように、当該水素製造装置の停止方法は、改質器内の触媒の劣化を防止しつつ、装置が完全に停止するまでの時間を短縮化でき、かつ装置を小型化できるため、燃料電池等に水素を供給する水素製造装置に好適に用いることができる。また、当該水素製造装置は、このような水素製造装置として好適に用いることができる。   As described above, the method for stopping the hydrogen production apparatus can reduce the time until the apparatus completely stops while preventing deterioration of the catalyst in the reformer, and can reduce the size of the apparatus. It can be suitably used in a hydrogen production apparatus that supplies hydrogen to a fuel cell or the like. Moreover, the said hydrogen production apparatus can be used suitably as such a hydrogen production apparatus.

1 水素製造装置
2 改質器
3 水素精製器
4 水電解装置
5a,5b,5c 吸着塔
10 原料ガス供給ライン
11 水蒸気供給ライン
12 改質ガス供給ライン
13 改質ガス回収ライン
14 高純度水素ガス供給ライン
15 酸素ガス供給ライン
101 改質ガス導入ライン
102 オフガス排出ライン
103 水素ガス回収ライン
A 原料ガス
B 水蒸気
C 改質ガス
D 水素ガス
E オフガス
F 高純度水素ガス
G 酸素ガス
DESCRIPTION OF SYMBOLS 1 Hydrogen production apparatus 2 Reformer 3 Hydrogen purifier 4 Water electrolysis apparatus 5a, 5b, 5c Adsorption tower 10 Raw material gas supply line 11 Steam supply line 12 Reformed gas supply line 13 Reformed gas recovery line 14 High purity hydrogen gas supply Line 15 Oxygen gas supply line 101 Reformed gas introduction line 102 Off gas discharge line 103 Hydrogen gas recovery line A Raw material gas B Water vapor C Reformed gas D Hydrogen gas E Off gas F High purity hydrogen gas G Oxygen gas

Claims (4)

炭化水素含有原料ガスの水蒸気改質により水素及び一酸化炭素を含む改質ガスを生成する改質部と、この改質ガスのCO変成により水素リッチな変成ガスを排出する変成部とを有する改質器を備える水素製造装置の停止方法であって、
上記水素製造装置が水電解装置をさらに備え、
上記改質器への原料ガス及び水蒸気の供給を停止すると共に、上記水電解装置で発生した水素ガスにより上記改質器内をパージすることを特徴とする水素製造装置の停止方法。
A reforming section that generates reformed gas containing hydrogen and carbon monoxide by steam reforming of the hydrocarbon-containing source gas, and a reforming section that discharges hydrogen-rich modified gas by CO conversion of the reformed gas. A method for stopping a hydrogen production apparatus including a quality device,
The hydrogen production apparatus further comprises a water electrolysis device,
A method for stopping a hydrogen production apparatus, wherein the supply of raw material gas and water vapor to the reformer is stopped, and the interior of the reformer is purged with hydrogen gas generated in the water electrolysis apparatus.
炭化水素含有原料ガスの水蒸気改質により水素及び一酸化炭素を含む改質ガスを生成する改質部と、この改質ガスのCO変成により水素リッチな変成ガスを排出する変成部とを有する改質器を備える水素製造装置であって、
水電解装置と、
上記改質器への原料ガス及び水蒸気の供給を停止すると共に、上記水電解装置で発生した水素ガスにより上記改質器内をパージする制御手段と
をさらに備えることを特徴とする水素製造装置。
A reforming section that generates reformed gas containing hydrogen and carbon monoxide by steam reforming of the hydrocarbon-containing source gas, and a reforming section that discharges hydrogen-rich modified gas by CO conversion of the reformed gas. A hydrogen production apparatus comprising a quality device,
A water electrolysis device,
And a control means for stopping supply of the raw material gas and water vapor to the reformer and purging the interior of the reformer with hydrogen gas generated by the water electrolysis apparatus.
上記改質器が酸素含有ガスの酸化により改質反応に必要な熱を得る自己熱型の改質器であり、
上記酸素含有ガスとして上記水電解装置で発生した酸素ガスを改質器に供給する請求項2に記載の水素製造装置。
The above reformer is a self-heating type reformer that obtains heat necessary for the reforming reaction by oxidizing the oxygen-containing gas,
The hydrogen production apparatus according to claim 2, wherein oxygen gas generated in the water electrolysis apparatus is supplied to the reformer as the oxygen-containing gas.
上記変成ガス中の水素以外のガスをPSA方式によって吸着する吸着塔を有する水素精製器をさらに備え、
上記吸着塔の洗浄及び/又は昇圧に上記水電解装置で発生した水素ガスを用いる請求項2又は請求項3に記載の水素製造装置。
A hydrogen purifier having an adsorption tower for adsorbing a gas other than hydrogen in the metamorphic gas by the PSA method;
The hydrogen production apparatus according to claim 2 or 3, wherein hydrogen gas generated in the water electrolysis apparatus is used for cleaning and / or increasing the pressure of the adsorption tower.
JP2013115731A 2013-05-31 2013-05-31 Method of using hydrogen production apparatus and hydrogen production apparatus Active JP6058472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013115731A JP6058472B2 (en) 2013-05-31 2013-05-31 Method of using hydrogen production apparatus and hydrogen production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013115731A JP6058472B2 (en) 2013-05-31 2013-05-31 Method of using hydrogen production apparatus and hydrogen production apparatus

Publications (2)

Publication Number Publication Date
JP2014234322A true JP2014234322A (en) 2014-12-15
JP6058472B2 JP6058472B2 (en) 2017-01-11

Family

ID=52137285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013115731A Active JP6058472B2 (en) 2013-05-31 2013-05-31 Method of using hydrogen production apparatus and hydrogen production apparatus

Country Status (1)

Country Link
JP (1) JP6058472B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100462A1 (en) * 2018-11-12 2020-05-22 東京瓦斯株式会社 Multiple cylindrical type reformer and hydrogen production apparatus
JP2020105024A (en) * 2018-12-26 2020-07-09 パナソニックIpマネジメント株式会社 Hydrogen generation system, and operation method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236003A (en) * 1985-08-05 1987-02-17 Kyodo Sanso Kk Cleaning method for adsorption device in hydrogen production
JPH02117072A (en) * 1988-10-26 1990-05-01 Toyo Eng Corp Fuel cell power generation system
JP2000285944A (en) * 1999-03-31 2000-10-13 Osaka Gas Co Ltd Operation method for fuel cell power generation device and fuel cell power generation device
JP2001325981A (en) * 2000-05-15 2001-11-22 Takuma Co Ltd Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method
JP2004131746A (en) * 2002-10-08 2004-04-30 Denso Corp Gaseous hydrogen feeder
JP2005509261A (en) * 2001-11-06 2005-04-07 ユーティーシー フューエル セルズ,エルエルシー Stopping method for a fuel cell fuel processing system
JP2005179082A (en) * 2003-12-16 2005-07-07 Nippon Oil Corp Hydrogen producing apparatus, fuel cell system and method for driving the same
JP2006008418A (en) * 2004-06-22 2006-01-12 Idemitsu Kosan Co Ltd Apparatus for producing hydrogen and fuel cell system
JP2008217999A (en) * 2007-02-28 2008-09-18 Nippon Oil Corp Operation method of high temperature type fuel cell system
JP2010118204A (en) * 2008-11-12 2010-05-27 Toshiba Corp Fuel cell electric power generation system and its operation method
JP2010143778A (en) * 2008-12-17 2010-07-01 Kobe Steel Ltd High purity hydrogen production apparatus
JP2011225410A (en) * 2010-04-22 2011-11-10 Panasonic Corp Hydrogen generating apparatus, fuel cell system with the same and method of operating hydrogen generating apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236003A (en) * 1985-08-05 1987-02-17 Kyodo Sanso Kk Cleaning method for adsorption device in hydrogen production
JPH02117072A (en) * 1988-10-26 1990-05-01 Toyo Eng Corp Fuel cell power generation system
JP2000285944A (en) * 1999-03-31 2000-10-13 Osaka Gas Co Ltd Operation method for fuel cell power generation device and fuel cell power generation device
JP2001325981A (en) * 2000-05-15 2001-11-22 Takuma Co Ltd Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method
JP2005509261A (en) * 2001-11-06 2005-04-07 ユーティーシー フューエル セルズ,エルエルシー Stopping method for a fuel cell fuel processing system
JP2004131746A (en) * 2002-10-08 2004-04-30 Denso Corp Gaseous hydrogen feeder
JP2005179082A (en) * 2003-12-16 2005-07-07 Nippon Oil Corp Hydrogen producing apparatus, fuel cell system and method for driving the same
JP2006008418A (en) * 2004-06-22 2006-01-12 Idemitsu Kosan Co Ltd Apparatus for producing hydrogen and fuel cell system
JP2008217999A (en) * 2007-02-28 2008-09-18 Nippon Oil Corp Operation method of high temperature type fuel cell system
JP2010118204A (en) * 2008-11-12 2010-05-27 Toshiba Corp Fuel cell electric power generation system and its operation method
JP2010143778A (en) * 2008-12-17 2010-07-01 Kobe Steel Ltd High purity hydrogen production apparatus
JP2011225410A (en) * 2010-04-22 2011-11-10 Panasonic Corp Hydrogen generating apparatus, fuel cell system with the same and method of operating hydrogen generating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100462A1 (en) * 2018-11-12 2020-05-22 東京瓦斯株式会社 Multiple cylindrical type reformer and hydrogen production apparatus
JP2020079177A (en) * 2018-11-12 2020-05-28 東京瓦斯株式会社 Multi-cylinder reformer and hydrogen production apparatus
JP2020105024A (en) * 2018-12-26 2020-07-09 パナソニックIpマネジメント株式会社 Hydrogen generation system, and operation method
JP7065276B2 (en) 2018-12-26 2022-05-12 パナソニックIpマネジメント株式会社 Hydrogen generation system and its operation method

Also Published As

Publication number Publication date
JP6058472B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6523134B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP5280824B2 (en) High purity hydrogen production equipment
JP2006342014A (en) Method for producing high purity hydrogen
WO2016091636A1 (en) A process for the preparation of ultra-high purity carbon monoxide
JP6571588B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP5690165B2 (en) PSA high purity hydrogen production method
JP6667382B2 (en) Hydrogen gas production method and hydrogen gas production device
JP4814024B2 (en) PSA equipment for high-purity hydrogen gas production
JP6058472B2 (en) Method of using hydrogen production apparatus and hydrogen production apparatus
JP5101540B2 (en) Argon purification method and argon purification apparatus
JP6068148B2 (en) Method for starting hydrogen production apparatus and hydrogen production apparatus
JP2011148652A (en) Method for manufacturing high purity hydrogen
JP5357465B2 (en) High purity hydrogen production method
JP2005256899A (en) Hydrogen storage and/or derivation device
JP6640660B2 (en) Hydrogen gas production method and hydrogen gas production device
JP4187569B2 (en) Hydrogen production equipment
JP2001347125A (en) Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP4236500B2 (en) Hydrogen production apparatus and hydrogen production method
JP6646526B2 (en) Hydrogen gas production method and hydrogen gas production device
JP5237870B2 (en) High purity hydrogen production method
JP4326248B2 (en) Operation method of hydrogen production equipment
JP3867082B2 (en) Method for stopping household fuel gas production equipment
JP4771668B2 (en) Hydrogen production method and apparatus
JP7117962B2 (en) Carbon monoxide gas production apparatus and carbon monoxide gas production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R150 Certificate of patent or registration of utility model

Ref document number: 6058472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150