JP2014233661A - Method for evaluating catalyst - Google Patents

Method for evaluating catalyst Download PDF

Info

Publication number
JP2014233661A
JP2014233661A JP2013115417A JP2013115417A JP2014233661A JP 2014233661 A JP2014233661 A JP 2014233661A JP 2013115417 A JP2013115417 A JP 2013115417A JP 2013115417 A JP2013115417 A JP 2013115417A JP 2014233661 A JP2014233661 A JP 2014233661A
Authority
JP
Japan
Prior art keywords
catalyst
molecule
energy
adsorbed
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013115417A
Other languages
Japanese (ja)
Other versions
JP6015951B2 (en
Inventor
靖弘 生田
Yasuhiro Ikuta
靖弘 生田
康貴 長井
Yasutaka Nagai
康貴 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2013115417A priority Critical patent/JP6015951B2/en
Publication of JP2014233661A publication Critical patent/JP2014233661A/en
Application granted granted Critical
Publication of JP6015951B2 publication Critical patent/JP6015951B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a new method for evaluating a catalyst, in which the reaction activity of the catalyst can be evaluated by analyzing a route of a catalytic reaction in a comparatively short time without necessitating new experimental acquisition of thermodynamic data.SOLUTION: The method for evaluating the catalyst comprises the steps of: calculating the whole electron energy of an atom X to be adsorbed on the surface Ms of the catalyst; calculating the bond energy per a single bond of the atom X to the surface Ms of the catalyst by using the calculated whole electron energy; introducing the calculated bond energy per the single bond into a relational expression of Bond energy-Bond order (BEBO) to obtain a dissociative adsorption curve of a molecule to be adsorbed on the surface Ms of the catalyst; and analyzing the route of the catalytic reaction of the molecule to be adsorbed thereon on the basis of the obtained dissociative adsorption curve to evaluate the reaction activity of the catalyst.

Description

本発明は、触媒の評価方法に関する。   The present invention relates to a method for evaluating a catalyst.

化学反応に用いられる触媒を評価する方法としては、実際に触媒反応を実施して触媒の活性を評価する方法のほか、従来から、計算による様々な評価方法が提案されている。例えば、J.Catal.、2002年、第209巻、275〜278頁(非特許文献1)に記載の方法によれば、ブレンステッド−エヴァンス−ポランニー関係(BEP法)に基づいて触媒表面に対する吸着分子の吸着エネルギーから吸着分子の活性化エネルギーを求めることができ、この活性化エネルギーに基づいて触媒を評価することができる。また、Surface Sci.、1976年、第55巻、747〜753頁(非特許文献2)に記載の方法によれば、修正したポーリング−イーリーの式に基づいて金属表面と吸着分子を構成する原子との単結合あたりの結合エネルギーを求め、この単結合あたりの結合エネルギーに基づいて化学吸着熱を求めることができる。そして、この化学吸着熱に基づいて触媒を評価することができる。   As a method for evaluating a catalyst used in a chemical reaction, various evaluation methods based on calculations have been proposed in addition to a method of actually performing a catalytic reaction to evaluate the activity of the catalyst. For example, J. et al. Catal. 2002, 209, pp. 275-278 (Non-patent Document 1), the adsorption from the adsorption energy of the adsorbed molecules on the catalyst surface based on the Bronsted-Evans-Polannie relationship (BEP method). The activation energy of the molecule can be determined, and the catalyst can be evaluated based on this activation energy. Also, Surface Sci. 1976, Vol. 55, pp. 747-753 (Non-Patent Document 2), a single bond between a metal surface and an atom constituting an adsorbed molecule based on a modified Pauling-Ely equation. And the heat of chemisorption can be determined based on the bond energy per single bond. And a catalyst can be evaluated based on this chemisorption heat.

しかしながら、非特許文献1に記載のBEP法を用いた触媒の評価方法においては、触媒反応経路のうちの吸着分子の遷移状態のみに基づいて触媒を評価しているため、反応種の吸着と触媒被毒とを区別できないといった問題があった。さらに、遷移状態自体が不安定なため、遷移状態の分子のエネルギーを求めることは、実質的且つ計算上、困難であり、また、求めることができたとしても膨大な計算時間を要するという問題があった。   However, in the catalyst evaluation method using the BEP method described in Non-Patent Document 1, the catalyst is evaluated based only on the transition state of the adsorbed molecule in the catalytic reaction path. There was a problem that the poisoning could not be distinguished. Further, since the transition state itself is unstable, it is substantially difficult to calculate the energy of the molecule in the transition state, and even if it can be obtained, it takes a lot of calculation time. there were.

また、非特許文献2に記載の修正したポーリング−イーリーの式には、実験的に求める必要があるパラメータが含まれているため、熱力学データがない触媒反応については、予め、熱力学データを新たに実験的に求める必要があった。また、触媒そのものについても、特定の表面構造や特定の組成、特定の部位についての熱力学データを実験的に求めることは困難であるため、非特許文献2に記載の方法に基づいて、触媒の特定の表面を評価したり、触媒組成を厳密に評価したり、活性部位を特定したりすることは困難であった。   In addition, since the modified Pauling-Ely equation described in Non-Patent Document 2 includes parameters that need to be obtained experimentally, for catalytic reactions that do not have thermodynamic data, the thermodynamic data is preliminarily stored. It was necessary to obtain a new experiment. Also, since it is difficult to experimentally determine thermodynamic data for a specific surface structure, a specific composition, and a specific site for the catalyst itself, based on the method described in Non-Patent Document 2, It was difficult to evaluate a specific surface, to strictly evaluate the catalyst composition, or to identify an active site.

J.K.Norskovら、J.Catal.、2002年、第209巻、275〜278頁J. et al. K. Norskov et al. Catal. 2002, 209, 275-278. E.Miyazakiら、Surface Sci.、1976年、第55巻、747〜753頁E. Miyazaki et al., Surface Sci. 1976, 55, 747-753.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、熱力学データを新たに実験的に求める必要がなく、比較的短時間で触媒反応の経路を解析して触媒の反応活性を評価することが可能な新たな触媒評価方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and does not require new experimental determination of thermodynamic data, and analyzes the reaction path of the catalyst reaction in a relatively short time. An object of the present invention is to provide a new catalyst evaluation method capable of evaluating the catalyst.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、吸着分子が触媒表面で解離吸着する際の反応熱を用いて触媒表面Msに吸着している原子の全電子エネルギーを求め、この全電子エネルギーに基づいて触媒表面と吸着分子を構成する原子との単結合あたりの結合エネルギーを求め、この単結合あたりの結合エネルギーをBond energy−Bond order(BEBO)の関係式に導入することによって、熱力学データを新たに実験的に求める必要がなく、比較的短時間で触媒反応の経路を解析できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have obtained the total electron energy of atoms adsorbed on the catalyst surface Ms using the heat of reaction when the adsorbed molecules are dissociatively adsorbed on the catalyst surface. Based on this total electron energy, the bond energy per single bond between the catalyst surface and the atoms constituting the adsorbed molecule is obtained, and this bond energy per single bond is introduced into the bond energy-bond order (BEBO) relational expression. As a result, it has been found that the thermodynamic data need not be newly experimentally determined, and the catalytic reaction path can be analyzed in a relatively short time, and the present invention has been completed.

すなわち、本発明の触媒の評価方法は、触媒表面Msに吸着している原子Xの全電子エネルギーを、
(a)触媒表面Msに吸着している等核二原子分子Xに基づいて求める場合には、下記式(1a):
X/Ms=(DX2+E+QX2)/2 (1a)
(式中、Xは原子AまたはBを表し、EX/Msは触媒表面Msに吸着している原子Xの全電子エネルギーを表し、DX2は遊離の等核二原子分子Xの解離エネルギーを表し、Eは触媒Mの全電子エネルギーを表し、QX2は等核二原子分子Xが触媒表面Msで解離吸着する際の反応熱を表す。)
を用いて求め、
(b)触媒表面Msに吸着している異核二原子分子XYに基づいて求める場合には、下記式(1b):
X/Ms=DXY+E+QXY−(DY2+E+QY2)/2 (1b)
(式中、Xは原子AおよびBのうちの一方を表し、Yは原子AおよびBのうちの他方を表し、EX/Msは触媒表面Msに吸着している原子Xの全電子エネルギーを表し、DXYおよびDY2はそれぞれ遊離の異核二原子分子XYおよび遊離の等核二原子分子Yの解離エネルギーを表し、Eは触媒Mの全電子エネルギーを表し、QXYおよびQY2は異核二原子分子XYおよび等核二原子分子Yがそれぞれ触媒表面Msで解離吸着する際の反応熱を表す。)
を用いて求め、
触媒表面Msに対する原子Xの単結合あたりの結合エネルギーを、下記式(2):
Ms−X,s=EX/Ms/n Ms−X (2)
(式中、Xは原子AまたはBを表し、EMs−X,sは前記単結合あたりの結合エネルギーを表し、EX/Msは触媒表面Msに吸着している原子Xの前記全電子エネルギーを表し、n Ms−Xは前記等核二原子分子Xまたは前記異核二原子分子XYが触媒表面Msに吸着した状態における原子Xと触媒表面Msとの結合次数を表す。)
を用いて求め、
触媒表面Msに対する吸着分子の解離吸着曲線を、
(i)吸着分子が異核二原子分子ABの場合には、下記式(3a):
AB=DAB−EAB(nAB)−EMs−A,s×fMs−A(nAB)
−EMs−B,s×fMs−B(nAB) (3a)
(式中、VABは触媒表面Msに対する異核二原子分子ABの解離吸着過程におけるポテンシャルエネルギーを表し、DABは遊離の異核二原子分子ABの解離エネルギーを表し、EMs−A,sおよびEMs−B,sはそれぞれ原子AおよびBの触媒表面Msに対する前記単結合あたりの結合エネルギーを表し、nABは異核二原子分子AB中の原子Aと原子Bとの結合次数を表し、fMs−A(nAB)およびfMs−B(nAB)は触媒表面Msに結合している原子AおよびBのそれぞれについて結合次数保存則に従って決定される結合次数nABの一次関数を表し、EAB(nAB)は結合次数がnABの異核二原子分子ABのポテンシャルエネルギーを表し、下記式(4a):
AB(nAB)=−6×(nAB
+43×(nAB−3×(nAB) (4a)
により求められる。)
を用いて求め、
(ii)吸着分子が等核二原子分子AおよびBのうちの少なくとも一方の場合には、下記式(3b):
X2=DX2−EX2(nX2)−EMs−X,s×fMs−X(nX2) (3b)
(式中、Xは原子AまたはBを表し、VX2は触媒表面Msに対する等核二原子分子Xの解離吸着過程におけるポテンシャルエネルギーを表し、DX2は遊離の等核二原子分子Xの解離エネルギーを表し、EMs−X,sは触媒表面Msに対する原子Xの前記単結合あたりの結合エネルギーを表し、nX2は等核二原子分子X中のX原子間の結合次数を表し、fMs−X(nX2)は触媒表面Msに結合している原子Xについて結合次数保存則に従って決定される結合次数nX2の一次関数を表し、EX2(nX2)は結合次数がnX2の等核二原子分子Xのポテンシャルエネルギーを表し、下記式(4b):
X2(nX2)=−6×(nX2
+43×(nX2−3×(nX2) (4b)
により求められる。)
を用いて求め、
得られた解離吸着曲線に基づいて吸着分子の触媒反応の経路を解析することによって、触媒の反応活性を評価することを特徴とするものである。この触媒の評価方法においては、前記解離吸着曲線に基づいて触媒表面Msに吸着した状態の吸着分子の解離エネルギーを求め、該解離エネルギーに基づいて触媒の反応活性を評価することができる。
That is, the catalyst evaluation method of the present invention uses the total electron energy of the atoms X adsorbed on the catalyst surface Ms as follows:
(A) When obtaining based on the homonuclear diatomic molecule X 2 adsorbed on the catalyst surface Ms, the following formula (1a):
E X / Ms = (D X2 + E M + Q X2 ) / 2 (1a)
( Wherein X represents an atom A or B, E X / Ms represents the total electronic energy of the atom X adsorbed on the catalyst surface Ms, and D X2 represents the dissociation energy of a free equinuclear diatomic molecule X 2 . E M represents the total electron energy of the catalyst M, and Q X2 represents the heat of reaction when the isonuclear diatomic molecule X 2 is dissociatively adsorbed on the catalyst surface Ms.)
Using
(B) When obtaining based on the heteronuclear diatomic molecule XY adsorbed on the catalyst surface Ms, the following formula (1b):
E X / Ms = D XY + E M + Q XY - (D Y2 + E M + Q Y2) / 2 (1b)
( Wherein X represents one of atoms A and B, Y represents the other of atoms A and B, and E X / Ms represents the total electronic energy of atom X adsorbed on catalyst surface Ms. D XY and DY 2 represent the dissociation energy of free heteronuclear diatomic molecule XY and free isonuclear diatomic molecule Y 2 respectively , E M represents the total electronic energy of catalyst M, Q XY and Q Y2 represents the heat of reaction when heteronuclear diatomic molecule XY and homonuclear diatomic molecule Y 2 is dissociative adsorption at each catalyst surface Ms.)
Using
The bond energy per single bond of the atom X to the catalyst surface Ms is expressed by the following formula (2):
E Ms-X, s = EX / Ms / n 0 Ms-X (2)
(Wherein X represents an atom A or B, E Ms-X, s represents a bond energy per single bond, and E X / Ms represents the total electron energy of the atom X adsorbed on the catalyst surface Ms. And n 0 Ms-X represents the bond order between the atom X and the catalyst surface Ms in a state where the homonuclear diatomic molecule X 2 or the heteronuclear diatomic molecule XY is adsorbed on the catalyst surface Ms.)
Using
The dissociative adsorption curve of adsorbed molecules on the catalyst surface Ms
(I) When the adsorbed molecule is a heteronuclear diatomic molecule AB, the following formula (3a):
V AB = D AB −E AB (n AB ) −EMs −A, s × f Ms−A (n AB )
−E Ms-B, s × f Ms-B (n AB ) (3a)
(In the formula, V AB represents the potential energy in the dissociative adsorption process of the heteronuclear diatomic molecule AB with respect to the catalyst surface Ms, D AB represents the dissociation energy of the free heteronuclear diatomic molecule AB, and E Ms-A, s And E Ms-B, s represent the bond energy per single bond to the catalyst surface Ms of atoms A and B, respectively, and n AB represents the bond order of atom A and atom B in heteronuclear diatomic molecule AB. , F Ms-A (n AB ) and f Ms-B (n AB ) are linear functions of bond order n AB determined according to the bond order conservation law for each of atoms A and B bonded to catalyst surface Ms. E AB (n AB ) represents the potential energy of the heteronuclear diatomic molecule AB having a bond order of n AB and is represented by the following formula (4a):
E AB (n AB ) = − 6 × (n AB ) 3
+ 43 × (n AB ) 2 −3 × (n AB ) (4a)
Is required. )
Using
(Ii) in the case of at least one of adsorption molecules of homonuclear diatomic molecules A 2 and B 2, the following formula (3b):
V X2 = D X2 −E X2 (n X2 ) −E Ms−X, s × f Ms−X (n X2 ) (3b)
(Wherein X represents an atom A or B, V X2 represents a potential energy in the dissociative adsorption process of the homonuclear diatomic molecule X 2 with respect to the catalyst surface Ms, and D X2 represents a free isonuclear diatomic molecule X 2 . Represents dissociation energy, E Ms-X, s represents the bond energy per atom of the atom X to the catalyst surface Ms, n X2 represents the bond order between X atoms in the homonuclear diatomic molecule X 2 , f Ms-X (n X2 ) represents a linear function of the bond order n X2 determined according to the bond order conservation law for the atom X bonded to the catalyst surface Ms, and E X2 (n X2 ) represents the bond order n X2 Represents the potential energy of the homonuclear diatomic molecule X 2 of the following formula (4b):
E X2 (n X2 ) = − 6 × (n X2 ) 3
+ 43 × (n X2 ) 2 -3 × (n X2 ) (4b)
Is required. )
Using
The reaction activity of the catalyst is evaluated by analyzing the catalytic reaction path of the adsorbed molecule based on the obtained dissociative adsorption curve. In this catalyst evaluation method, the dissociation energy of the adsorbed molecules adsorbed on the catalyst surface Ms can be obtained based on the dissociation adsorption curve, and the reaction activity of the catalyst can be evaluated based on the dissociation energy.

また、本発明の触媒の評価方法においては、前記式(3a)により求められる異核二原子分子ABの解離吸着曲線と前記式(3b)により求められる等核二原子分子AおよびBのうちの少なくとも一方の解離吸着曲線とを組み合わせて、吸着分子が触媒表面Msに吸着して反応し、生成した分子が触媒表面Msから脱離する触媒反応の経路を解析することによって、触媒の反応活性を評価することができる。この評価方法においては、生成した分子の触媒表面Msからの脱離エネルギーを前記解離吸着曲線に基づいて求め、該脱離エネルギーに基づいて触媒の反応活性を評価することができる。 In the catalyst evaluation method of the present invention, the dissociative adsorption curve of the heteronuclear diatomic molecule AB determined by the above formula (3a) and the homonuclear diatomic molecules A 2 and B 2 determined by the above formula (3b) are used. By combining the dissociative adsorption curve of at least one of them, the adsorbed molecules are adsorbed and reacted on the catalyst surface Ms, and the reaction of the catalyst is analyzed by desorbing the generated molecules from the catalyst surface Ms. Activity can be evaluated. In this evaluation method, the desorption energy of the generated molecule from the catalyst surface Ms can be obtained based on the dissociation adsorption curve, and the reaction activity of the catalyst can be evaluated based on the desorption energy.

本発明の触媒の評価方法においては、吸着分子が異核二原子分子ABであり、生成した分子が等核二原子分子AおよびBのうちの少なくとも一方であることが好ましい。 In the evaluation method of the catalyst of the present invention, the adsorbed molecules are heteronuclear diatomic molecule AB, it is preferred product molecules is at least one of a homonuclear diatomic molecules A 2 and B 2.

本発明によれば、熱力学データを新たに実験的に求める必要がなく、比較的短時間で触媒反応の経路を解析して触媒の反応活性を評価することが可能となる。   According to the present invention, it is not necessary to newly obtain thermodynamic data experimentally, and it becomes possible to evaluate the reaction activity of the catalyst by analyzing the path of the catalytic reaction in a relatively short time.

異核二原子分子ABの解離吸着過程を示す模式図である。It is a schematic diagram which shows the dissociative adsorption process of heteronuclear diatomic molecule AB. 等核二原子分子Xの解離吸着過程を示す模式図である。It is a schematic diagram showing an equivalent dissociative adsorption process of nuclear diatomic molecule X 2. 本発明にかかる計算方法により求めた異核二原子分子の解離吸着曲線を示すグラフである。It is a graph which shows the dissociative adsorption curve of the heteronuclear diatomic molecule calculated | required with the calculation method concerning this invention. 本発明にかかる計算方法により求めた等核二原子分子の脱離曲線を示すグラフである。It is a graph which shows the desorption curve of the isonuclear diatomic molecule calculated | required with the calculation method concerning this invention. 各種触媒表面にNO分子が吸着する際のNO分子の解離吸着曲線を示すグラフである。It is a graph which shows the dissociation adsorption curve of NO molecule at the time of NO molecule adsorb | sucking on the surface of various catalysts. 各種触媒表面にN分子が吸着する際のN分子の解離吸着曲線を示すグラフである。Various catalyst surface N 2 molecule is a graph showing the dissociative adsorption curve of N 2 molecules at the time of adsorption. 各種触媒表面にO分子が吸着する際のO分子の解離吸着曲線を示すグラフである。Various catalyst surface O 2 molecule is a graph showing the dissociative adsorption curve of O 2 molecules at the time of adsorption. 各種触媒表面にCO分子が吸着する際のCO分子の解離吸着曲線を示すグラフである。It is a graph which shows the dissociative adsorption curve of CO molecule at the time of CO molecule adsorb | sucking to various catalyst surfaces. NO浄化反応において、反応の進行(NO分子吸着とN分子脱離)に伴うポテンシャルエネルギー変化を示すグラフである。In NO conversion reactions is a graph showing the potential energy change with the progress of the reaction (NO molecular adsorption and N 2 molecules split off). NO浄化反応において、反応の進行(NO分子吸着とO分子脱離)に伴うポテンシャルエネルギー変化を示すグラフである。In NO conversion reactions is a graph showing the potential energy change with the progress of the reaction (NO molecular adsorption and O 2 molecules split off). CO浄化反応において、反応の進行(CO分子吸着とO分子脱離)に伴うポテンシャルエネルギー変化を示すグラフである。In CO conversion reaction is a graph showing the potential energy change with the progress of the reaction (CO molecules adsorbed and O 2 molecules split off).

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明するが、本発明は前記図面に限定されるものではない。なお、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the drawings. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and duplicate descriptions are omitted.

本発明の触媒の評価方法は、等核二原子分子および異核二原子分子のうちの少なくとも一方が触媒表面に解離吸着する過程を含む反応に用いることが可能な触媒の評価に適用することができる。このような触媒反応としては、異核二原子分子ABが触媒表面Msに分子吸着し、原子Aおよび原子Bとして解離吸着する解離吸着過程(図1)や、等核二原子分子X(Xは原子AまたはB)が触媒表面Msに分子吸着し、原子Xとして解離吸着する解離吸着過程(図2)を含む反応などが挙げられる。 The catalyst evaluation method of the present invention can be applied to the evaluation of a catalyst that can be used for a reaction including a process in which at least one of a homonuclear diatomic molecule and a heteronuclear diatomic molecule is dissociated and adsorbed on the catalyst surface. it can. Such catalytic reactions include dissociative adsorption processes in which heteronuclear diatomic molecules AB are molecularly adsorbed on the catalyst surface Ms and dissociatively adsorbed as atoms A and B (FIG. 1), or homonuclear diatomic molecules X 2 (X Includes a reaction including a dissociative adsorption process (FIG. 2) in which atoms A or B) are molecularly adsorbed on the catalyst surface Ms and dissociated and adsorbed as atoms X.

また、前記反応には、解離吸着している原子AおよびBが反応して等核二原子分子AおよびBや異核二原子分子ABが生成し、これらの分子が脱離する過程がさらに含まれていてもよい。例えば、異核二原子分子ABが原子AおよびBとして解離吸着した(解離吸着過程)後、原子A同士および原子B同士が反応してそれぞれ等核二原子分子AおよびBが生成し、これらの等核二原子分子AおよびBが脱離する過程(脱離過程)を含む反応や、等核二原子分子AおよびBがそれぞれ原子AおよびBとして解離吸着した(解離吸着過程)後、原子Aと原子Bとが反応して異核二原子分子ABが生成し、この異核二原子分子ABが脱離する過程(脱離過程)を含む反応などが挙げられる。 The reaction includes a process in which dissociated and adsorbed atoms A and B react to form isonuclear diatomic molecules A 2 and B 2 and heteronuclear diatomic molecules AB, and these molecules desorb. Further, it may be included. For example, after the dissociative adsorption (dissociative adsorption process), each such atom A and between atoms B together reacts nuclear diatomic molecule A 2 and B 2 generates the as heteronuclear diatomic molecules AB atoms A and B, Reactions including a process (desorption process) in which these homonuclear diatomic molecules A 2 and B 2 are desorbed, and isonuclear diatomic molecules A 2 and B 2 are dissociatively adsorbed as atoms A and B (dissociative adsorption), respectively. Examples of the reaction include a process in which the atom A and the atom B react to form a heteronuclear diatomic molecule AB and the heteronuclear diatomic molecule AB is desorbed (desorption process).

本発明の触媒の評価方法においては、先ず、触媒表面Msに吸着している原子Xの全電子エネルギーを求める。すなわち、等核二原子分子Xの熱力学データ(具体的には、遊離分子の解離エネルギーDX2および分子Xが触媒表面Msで解離吸着する際の反応熱QX2)が存在する場合には、この等核二原子分子Xの熱力学データに基づいて原子Xの前記全電子エネルギーを求める(方法(a))。一方、等核二原子分子Xやその熱力学データが存在しない場合には、等核二原子分子Yの熱力学データと異核二原子分子XYの熱力学データとに基づいて原子Xの前記全電子エネルギーを求める(方法(b))。 In the catalyst evaluation method of the present invention, first, the total electron energy of the atoms X adsorbed on the catalyst surface Ms is obtained. That is, when there is thermodynamic data of the homonuclear diatomic molecule X 2 (specifically, the dissociation energy D X2 of the free molecule and the reaction heat Q X2 when the molecule X 2 dissociates and adsorbs on the catalyst surface Ms). Obtains the total electron energy of the atom X based on the thermodynamic data of the homonuclear diatomic molecule X 2 (method (a)). On the other hand, if the homonuclear diatomic molecules X 2 and its thermodynamic data does not exist, etc. nuclear diatomic molecule Y 2 thermodynamic data and heteronuclear diatomic molecule XY thermodynamic data and the atom X based The total electron energy is obtained (method (b)).

(a)等核二原子分子Xの熱力学データに基づいて求める場合:
下記式(1a):
X/Ms=(DX2+E+QX2)/2 (1a)
を用いて、触媒表面Msに吸着している原子Xの全電子エネルギーEX/Msを求める。前記式(1a)中、Xは原子AまたはBを表し、DX2は遊離の等核二原子分子Xの解離エネルギーを表し、Eは触媒Mの全電子エネルギーを表し、QX2は等核二原子分子Xが触媒表面Msで解離吸着する際の反応熱を表す。
(A) When obtaining based on thermodynamic data of the homonuclear diatomic molecule X 2 :
The following formula (1a):
E X / Ms = (D X2 + E M + Q X2 ) / 2 (1a)
Is used to determine the total electron energy EX / Ms of the atom X adsorbed on the catalyst surface Ms. In the formula (1a), X represents an atom A or B, D X2 represents the dissociation energy of a free homonuclear diatomic molecule X 2 , E M represents the total electronic energy of the catalyst M, Q X2 represents nuclear diatomic molecule X 2 represents the heat of reaction at the time of dissociative adsorption at the catalyst surface Ms.

(b)異核二原子分子XYの熱力学データに基づいて求める場合:
下記式(1b):
X/Ms=DXY+E+QXY−(DY2+E+QY2)/2 (1b)
を用いて、触媒表面Msに吸着している原子Xの全電子エネルギーEX/Msを求める。前記式(1b)中、Xは原子AおよびBのうちの一方を表し、Yは原子AおよびBのうちの他方を表し、DXYは遊離の異核二原子分子XYの解離エネルギーを表し、DY2は遊離の等核二原子分子Yの解離エネルギーを表し、Eは触媒Mの全電子エネルギーを表し、QXYは異核二原子分子XYが触媒表面Msで解離吸着する際の反応熱を表し、QY2は等核二原子分子Yが触媒表面Msで解離吸着する際の反応熱を表す。
(B) When obtaining based on thermodynamic data of heteronuclear diatomic molecule XY:
The following formula (1b):
E X / Ms = D XY + E M + Q XY - (D Y2 + E M + Q Y2) / 2 (1b)
Is used to determine the total electron energy EX / Ms of the atom X adsorbed on the catalyst surface Ms. In the formula (1b), X represents one of atoms A and B, Y represents the other of atoms A and B, D XY represents the dissociation energy of free heteronuclear diatomic molecule XY, D Y2 represents an equal dissociation energy of nuclear diatomic molecule Y 2 free, E M represents the total electron energy of the catalyst M, Q XY reaction when heteronuclear diatomic molecule XY is dissociative adsorption at the catalyst surface Ms Q Y2 represents heat of reaction when the isonuclear diatomic molecule Y 2 is dissociatively adsorbed on the catalyst surface Ms.

前記式(1b)を用いることによって、原子Xについて等核二原子分子Xやその熱力学データが存在しない場合であっても、異核二原子分子XYの熱力学データと等核二原子分子Yの熱力学データとが存在すれば、これらの熱力学データから、触媒表面Msに吸着している原子Xの全電子エネルギーを求めることができる。 By using the above formula (1b), even when there is no homonuclear diatomic molecules X 2 and its thermodynamic data for atoms X, heteronuclear diatomic molecule XY thermodynamic data and homonuclear diatomic molecules if there is a Y 2 thermodynamic data can be obtained from these thermodynamic data, determine the total electron energy of atoms X adsorbed on the catalyst surface Ms.

なお、前記式(1a)および(1b)は以下のように導かれる。すなわち、二原子分子xyが触媒表面Msで解離吸着する際の反応熱Qxyは下記式(1c):
xy=Ex/Ms+Ey/Ms−Dxy−E (1c)
で表される。前記式(1c)中、Ex/Msは触媒表面Msに吸着している原子xの全電子エネルギーを表し、Ey/Msは触媒表面Msに吸着している原子yの全電子エネルギーを表し、DXYは遊離の二原子分子xyの解離エネルギーを表し、Eは触媒Mの全電子エネルギーを表す。
The above formulas (1a) and (1b) are derived as follows. That is, the reaction heat Q xy when the diatomic molecule xy is dissociatively adsorbed on the catalyst surface Ms is represented by the following formula (1c):
Q xy = E x / Ms + E y / Ms -D xy -E M (1c)
It is represented by In the formula (1c), E x / Ms represents the total electron energy of the atom x adsorbed on the catalyst surface Ms, and E y / Ms represents the total electron energy of the atom y adsorbed on the catalyst surface Ms. , D XY represents the dissociation energy of the free diatomic molecule xy, and E M represents the total electronic energy of the catalyst M.

二原子分子xyが等核二原子分子Xの場合、x=y=Xであるので、前記式(1c)から、下記式(1d):
X2=2×EX/Ms−DX2−E (1d)
が導かれ、これを変形すると前記式(1a)が導かれる。
When diatomic molecules xy is homonuclear diatomic molecule X 2, because it is x = y = X, from the formula (1c), the following formula (1d):
Q X2 = 2 × E X / Ms -D X2 -E M (1d)
When this is transformed, the formula (1a) is derived.

また、二原子分子xyが異核二原子分子XYの場合、前記式(1c)にx=Xおよびy=Yを代入すると、下記式(1e):
XY=EX/Ms+EY/Ms−DXY−E (1e)
が導かれる。ここで、触媒表面Msに吸着している原子Yの全電子エネルギーEY/Msは、前記式(1a)と同様に、遊離の等核二原子分子Yの解離エネルギーDY2、触媒Mの全電子エネルギーEおよび等核二原子分子Yが触媒表面Msで解離吸着する際の反応熱QY2を用いて、
Y/Ms=(DY2+E+QY2)/2 (1f)
と表されるので、これを前記式(1e)に代入すると、下記式(1g):
XY=EX/Ms−DXY−E+(DY2+E+QY2)/2 (1e)
が導かれ、これを変形すると前記式(1b)が導かれる。
When the diatomic molecule xy is a heteronuclear diatomic molecule XY, substituting x = X and y = Y into the formula (1c), the following formula (1e):
Q XY = E X / Ms + E Y / Ms -D XY -E M (1e)
Is guided. Here, the total electron energy E Y / Ms of the atom Y adsorbed on the catalyst surface Ms is the dissociation energy D Y2 of the free homonuclear diatomic molecule Y 2 , as in the formula (1a), Using the reaction heat Q Y2 when the total electron energy E M and the homonuclear diatomic molecule Y 2 are dissociatively adsorbed on the catalyst surface Ms,
E Y / Ms = (D Y 2 + E M + Q Y 2 ) / 2 (1f)
Therefore, when this is substituted into the formula (1e), the following formula (1g):
Q XY = E X / Ms -D XY -E M + (D Y2 + E M + Q Y2) / 2 (1e)
When this is transformed, the formula (1b) is derived.

前記式(1a)および(1b)において用いる、遊離分子の解離エネルギーの値は、例えば、Johnston,H.S.、Gas Phase Reaction Rate Theory、Ronald Press、New York、1996年などに記載の文献値を採用することができる。ここで、遊離分子とは、触媒表面Msに吸着していない分子を意味する。また、触媒の全電子エネルギーの値は、第一原理計算を用いて求めることができる。さらに、分子が触媒表面で解離吸着する際の反応熱の値は、例えば、D.Brennanら、Phil.Trans.R.Soc.A、1965年、第258巻、第347頁〜第373頁などに記載の文献値を採用することができる。   The value of the dissociation energy of free molecules used in the above formulas (1a) and (1b) is described in, for example, Johnston, H. et al. S. Literature values described in, Gas Phase Reaction Rate Theory, Ronald Press, New York, 1996, and the like can be adopted. Here, the free molecule means a molecule that is not adsorbed on the catalyst surface Ms. Further, the value of the total electron energy of the catalyst can be obtained by using the first principle calculation. Furthermore, the value of the reaction heat when molecules dissociate and adsorb on the catalyst surface is, for example, D.E. Brennan et al., Phil. Trans. R. Soc. A, 1965, Vol. 258, pages 347 to 373, etc., can be used.

次に、このようにして求めた触媒表面Msに吸着している原子Xの全電子エネルギーEX/Msを、下記式(2):
Ms−X,s=EX/Ms/n Ms−X (2)
に代入して、触媒表面Msに対する原子Xの単結合あたりの結合エネルギーEMs−X,sを求める。前記式(2)中、Xは原子AまたはBを表し、EX/Msは触媒表面Msに吸着している原子Xの前記全電子エネルギーを表す。また、n Ms−Xは前記等核二原子分子Xまたは前記異核二原子分子XYが触媒表面Msに吸着した状態における原子Xと触媒表面Msとの結合次数を表す。
Next, the total electron energy E X / Ms of the atoms X adsorbed on the catalyst surface Ms thus obtained is expressed by the following formula (2):
E Ms-X, s = EX / Ms / n 0 Ms-X (2)
Then, the bond energy E Ms-X, s per single bond of the atom X with respect to the catalyst surface Ms is obtained. In the formula (2), X represents an atom A or B, and EX / Ms represents the total electron energy of the atom X adsorbed on the catalyst surface Ms. N 0 Ms-X represents the bond order between the atom X and the catalyst surface Ms in a state where the homonuclear diatomic molecule X 2 or the heteronuclear diatomic molecule XY is adsorbed on the catalyst surface Ms.

次に、このようにして得られた単結合あたりの結合エネルギーEMs−X,sを、Bond energy−Bond orderの式(BEBO式)に導入して、触媒表面Msに対する吸着分子の解離吸着曲線を求める。 Next, the bond energy E Ms-X, s per single bond thus obtained is introduced into the bond energy - bond order formula (BEBO formula), and the dissociative adsorption curve of the adsorbed molecules with respect to the catalyst surface Ms. Ask for.

(i)吸着分子が異核二原子分子ABの場合:
下記式(2a):
AB=DAB−EAB(nAB)−EMs−A,s×fMs−A(nAB)
−EMs−B,s×fMs−B(nAB) (3a)
で表されるBEBO式を用いて解離吸着曲線を求める。前記式(3a)中、VABは触媒表面Msに対する異核二原子分子ABの解離吸着過程におけるポテンシャルエネルギーを表し、DABは遊離の異核二原子分子ABの解離エネルギーを表し、EMs−A,sおよびEMs−B,sはそれぞれ原子AおよびBの触媒表面Msに対する前記単結合あたりの結合エネルギーを表し、nABは異核二原子分子AB中の原子Aと原子Bとの結合次数を表す。また、fMs−A(nAB)およびfMs−B(nAB)は触媒表面Msに結合している原子AおよびBのそれぞれについて結合次数保存則に従って決定される結合次数nABの一次関数を表す。さらに、EAB(nAB)は結合次数がnABの異核二原子分子ABのポテンシャルエネルギーを表し、下記式(4a):
AB(nAB)=−6×(nAB
+43×(nAB−3×(nAB) (4a)
により求められるものである。
(I) When the adsorbed molecule is a heteronuclear diatomic molecule AB:
The following formula (2a):
V AB = D AB −E AB (n AB ) −EMs −A, s × f Ms−A (n AB )
−E Ms-B, s × f Ms-B (n AB ) (3a)
The dissociation adsorption curve is obtained using the BEBO equation represented by In the formula (3a), V AB represents the potential energy in the dissociative adsorption process of the heteronuclear diatomic molecule AB with respect to the catalyst surface Ms, D AB represents the dissociation energy of the free heteronuclear diatomic molecule AB, and E Ms − A, s and E Ms-B, s represent the bond energy per said single bond with respect to the catalyst surface Ms of atoms A and B, respectively, and n AB represents the bond between atom A and atom B in heteronuclear diatomic molecule AB. Represents the order. F Ms-A (n AB ) and f Ms-B (n AB ) are linear functions of bond order n AB determined according to the bond order conservation law for each of atoms A and B bonded to catalyst surface Ms. Represents. Further, E AB (n AB ) represents the potential energy of the heteronuclear diatomic molecule AB having a bond order of n AB and is represented by the following formula (4a):
E AB (n AB ) = − 6 × (n AB ) 3
+ 43 × (n AB ) 2 −3 × (n AB ) (4a)
Is required.

なお、前記式(3a)は以下のように導かれる。すなわち、原子Aと原子Bとの結合指数がnABであり且つ触媒表面Msと原子Aおよび原子Bとの結合次数がそれぞれnMs−AおよびnMs−Bである異核二原子分子ABの解離吸着過程におけるポテンシャルエネルギーVABは下記式(5a)で表される。
AB=DAB−EAB(nAB)
−EMs−A,s×nMs−A−EMs−B,s×nMs−B (5a)
(式(5a)中のVAB、DAB、EMs−A,s、EMs−B,s、EAB(nAB)は、それぞれ前記式(3a)中のVAB、DAB、EMs−A,s、EMs−B,s、EAB(nAB)と同義である。)
触媒表面Msに対する異核二原子分子ABの解離吸着過程においては、結合次数が保存されるという法則(結合次数保存則)により、下記式(6a):
Ms−A+nMs−B=λAB(n AB−nAB) (6a)
(式(6a)中、n ABは遊離の異核二原子分子ABの原子Aと原子Bとの結合次数を表し、λABは比例定数である。)
が成立するので、nMs−AおよびnMs−Bはそれぞれ下記式(7a)および(8a):
Ms−A=λAB(n AB−nAB)−nMs−B
=fMs−A(nAB) (7a)
Ms−B=λAB(n AB−nAB)−nMs−A
=fMs−B(nAB) (8a)
で表されるように、nABの一次関数として表され、これらを前記式(5a)に代入することによって、前記式(3a)が導かれる。
The formula (3a) is derived as follows. That is, the heteronuclear diatomic molecule AB in which the bond index between the atom A and the atom B is n AB and the bond order between the catalyst surface Ms, the atom A, and the atom B is n Ms-A and n Ms-B , respectively. The potential energy V AB in the dissociative adsorption process is represented by the following formula (5a).
V AB = D AB -E AB (n AB )
−E Ms-A, s × n Ms-A −E Ms-B, s × n Ms-B (5a)
(V AB , D AB , E Ms-A, s , E Ms-B, s , E AB (n AB ) in the formula (5a) are respectively V AB , D AB , E in the formula (3a). Ms-A, s , E Ms-B, s , and E AB (n AB ).
In the dissociative adsorption process of the heteronuclear diatomic molecule AB with respect to the catalyst surface Ms, the following equation (6a) is obtained by the law that the bond order is conserved (bond order conservation law):
n Ms-A + n Ms- B = λ AB (n 0 AB -n AB) (6a)
(In formula (6a), n 0 AB represents the bond order between atom A and atom B of free heteronuclear diatomic molecule AB, and λ AB is a proportionality constant.)
Therefore, n Ms-A and n Ms-B are represented by the following formulas (7a) and (8a):
n Ms−A = λ AB (n 0 AB −n AB ) −n Ms−B
= F Ms-A (n AB ) (7a)
n Ms-B = λ AB ( n 0 AB -n AB) -n Ms-A
= F Ms-B (n AB ) (8a)
Expressed as in, expressed as a linear function of n AB, by substituting these into the equation (5a), the formula (3a) is derived.

(ii)吸着分子が等核二原子分子AおよびBのうちの少なくとも一方の場合:
下記式(3b):
X2=DX2−EX2(nX2)−EMs−X,s×fMs−X(nX2) (3b)
で表されるBEBO式を用いて解離吸着曲線を求める。前記式(3b)中、Xは原子AまたはBを表し、VX2は触媒表面Msに対する等核二原子分子Xの解離吸着過程におけるポテンシャルエネルギーを表し、DX2は遊離の等核二原子分子Xの解離エネルギーを表し、EMs−X,sは触媒表面Msに対する原子Xの前記単結合あたりの結合エネルギーを表し、nX2は等核二原子分子X中のX原子間の結合次数を表す。また、fMs−X(nX2)は触媒表面Msに結合している原子Xについて結合次数保存則に従って決定される結合次数nX2の一次関数を表す。さらに、EX2(nX2)は結合次数がnX2の等核二原子分子Xのポテンシャルエネルギーを表し、下記式(4b):
X2(nX2)=−6×(nX2
+43×(nX2−3×(nX2) (4b)
により求められるものである。
(Ii) When the adsorbed molecule is at least one of the homonuclear diatomic molecules A 2 and B 2 :
The following formula (3b):
V X2 = D X2 −E X2 (n X2 ) −E Ms−X, s × f Ms−X (n X2 ) (3b)
The dissociation adsorption curve is obtained using the BEBO equation represented by In the formula (3b), X represents an atom A or B, V X2 represents potential energy in the dissociative adsorption process of the homonuclear diatomic molecule X 2 with respect to the catalyst surface Ms, and D X2 represents a free isonuclear diatomic molecule. X 2 represents the dissociation energy of X 2 , E Ms-X, s represents the bond energy per atom of the atom X to the catalyst surface Ms, and n X2 represents the bond order between the X atoms in the homonuclear diatomic molecule X 2. Represents. F Ms-X (n X2 ) represents a linear function of the bond order n X2 determined according to the bond order conservation law for the atom X bonded to the catalyst surface Ms. Further, E X2 (n X2 ) represents the potential energy of the homonuclear diatomic molecule X 2 having a bond order of n X2 and is represented by the following formula (4b):
E X2 (n X2 ) = − 6 × (n X2 ) 3
+ 43 × (n X2 ) 2 -3 × (n X2 ) (4b)
Is required.

なお、前記式(3b)は以下のように導かれる。すなわち、X原子間の結合次数がnX2であり且つ触媒表面Msと原子Xとの結合次数がnMs−Xである等核二原子分子Xの解離吸着過程におけるポテンシャルエネルギーVABは、下記式(5b)で表される。
X2=DX2−EX2(nX2)−EMs−X,s×nMs−X (5b)
(式(5b)中のVX2、DX2、EMs−X,s、EX2(nX2)は、それぞれ前記式(3b)中のVX2、DX2、EMs−X,s、EX2(nX2)と同義である。)
触媒表面Msに対する等核二原子分子Xの解離吸着過程においても同様に、結合次数が保存されるという法則(結合次数保存則)により、下記式(6b):
Ms−X=λX2(n X2−nX2) (6b)
(式(6b)中、n X2は遊離の異核二原子分子XのX原子間の結合次数を表し、λX2は比例定数である。)
が成立するので、nMs−Xは下記式(7b):
Ms−X=λX2(n X2−nX2
=fMs−X(nX2) (7b)
で表されるように、nX2の一次関数として表され、これを前記式(5b)に代入することによって、前記式(3b)が導かれる。
The formula (3b) is derived as follows. That is, the potential energy V AB in the dissociative adsorption process of the homonuclear diatomic molecule X 2 in which the bond order between X atoms is n X2 and the bond order between the catalyst surface Ms and the atom X is n Ms-X is It is represented by Formula (5b).
V X2 = D X2 −E X2 (n X2 ) −E Ms−X, s × n Ms−X (5b)
(V X2, D X2, E Ms-X in formula (5b), s, E X2 (n X2) is, V X2, D X2, E Ms-X in each of the formulas (3b), s, E Synonymous with X2 (n X2 ).)
Similarly in dissociative adsorption process of homonuclear diatomic molecules X 2 to catalyst surface Ms, according to the law (bond order conservation law) that bond order is saved, the following formula (6b):
n Ms-X = λ X2 ( n 0 X2 -n X2) (6b)
(In formula (6b), n 0 X2 represents the bond order between the X atoms of the free heteronuclear diatomic molecule X 2 , and λ X2 is a proportionality constant.)
Therefore, n Ms-X is expressed by the following formula (7b):
n Ms-X = λ X2 ( n 0 X2 -n X2)
= F Ms−X (n X2 ) (7b)
This is expressed as a linear function of n X2 and is substituted into the equation (5b) to derive the equation (3b).

前記式(3a)および(3b)において用いる遊離分子の解離エネルギーの値は、例えば、Johnston,H.S.、Gas Phase Reaction Rate Theory、Ronald Press、New York、1996年などに記載の文献値を採用することができる。ここで、遊離分子とは、触媒表面Msに吸着していない分子を意味する。   The value of the dissociation energy of the free molecule used in the formulas (3a) and (3b) is described in, for example, Johnston, H. et al. S. Literature values described in, Gas Phase Reaction Rate Theory, Ronald Press, New York, 1996, and the like can be adopted. Here, the free molecule means a molecule that is not adsorbed on the catalyst surface Ms.

本発明の触媒の評価方法は、このようにして求めた解離吸着曲線に基づいて吸着分子の触媒反応の経路を解析することによって、触媒の反応活性を評価する方法である。例えば、前記解離吸着曲線に基づいて吸着分子の解離吸着過程の反応経路解析を行うことによって、触媒の反応活性を評価することができる。この場合、反応活性の評価の指標としては特に制限はないが、例えば、前記解離吸着曲線に基づいて触媒表面Msに吸着している吸着分子の解離エネルギーを求め、この解離エネルギーを指標として、所望の反応に対する触媒の有利・不利を判定することができる。   The catalyst evaluation method of the present invention is a method for evaluating the reaction activity of a catalyst by analyzing the catalytic reaction path of adsorbed molecules based on the dissociation adsorption curve thus obtained. For example, the reaction activity of the catalyst can be evaluated by analyzing the reaction path of the dissociative adsorption process of adsorbed molecules based on the dissociative adsorption curve. In this case, the evaluation index of the reaction activity is not particularly limited. For example, the dissociation energy of the adsorbed molecule adsorbed on the catalyst surface Ms is obtained based on the dissociation adsorption curve, and the desired dissociation energy is used as an index. The advantage / disadvantage of the catalyst for this reaction can be determined.

以下に、吸着分子の解離吸着過程の反応経路解析に基づいて触媒の反応活性を評価する方法を、触媒にNO分子をN原子とO原子として解離吸着させる場合やCO分子をC原子とO原子として解離吸着させる場合を例として説明する。   The following is a method for evaluating the reaction activity of the catalyst based on the analysis of the reaction path of the dissociative adsorption process of the adsorbed molecule. When the NO molecule is dissociated and adsorbed as N and O atoms on the catalyst, the CO molecule is C atom and O atom. As an example, a case of dissociative adsorption will be described.

(a)NO分子をN原子とO原子として解離吸着させる場合:
先ず、触媒表面Msに吸着しているN原子およびO原子の全電子エネルギーEN/MsおよびEO/Msを求める。ここで、N原子およびO原子については、いずれも等核二原子分子のN分子およびO分子が存在するので、これらの遊離分子の解離エネルギーDN2およびDO2、これらの分子が触媒表面Msで解離吸着する際の反応熱QN2およびQO2を、前記式(1a)に代入して、前記全電子エネルギーEN/MsおよびEO/Msを求める。
(A) When NO molecules are dissociatively adsorbed as N and O atoms:
First, the total electron energies E N / Ms and E 2 O / Ms of N atoms and O atoms adsorbed on the catalyst surface Ms are obtained. Here, as for N atom and O atom, both N 2 molecule and O 2 molecule of homonuclear diatomic molecule exist, so the dissociation energy D N2 and D O2 of these free molecules, these molecules are on the catalyst surface the heat of reaction Q N2 and Q O2 when dissociative adsorption at ms, by substituting the formula (1a), determining the total electron energy E N / ms and E O / ms.

次に、得られた全電子エネルギーEN/MsおよびEO/Msを、前記式(2)に代入して、触媒表面Msに対するN原子およびO原子の単結合あたりの結合エネルギーEMs−N,sおよびEMs−O,sを求める。そして、単結合あたりの結合エネルギーEMs−N,sおよびEMs−O,sをBEBO式に導入して、触媒表面Msに対するNO分子の解離吸着曲線を求める。このとき、NO分子は異核二原子分子であるので、前記式(3a)および(4a)を使用する。なお、NO分子中のN原子とO原子との結合次数nNOの範囲は0(解離吸着状態)〜2.5(気体状態)である。 Next, the obtained total electron energies E N / Ms and E O / Ms are substituted into the formula (2), and the binding energy E Ms-N per single bond of N atoms and O atoms with respect to the catalyst surface Ms. , S and E Ms-O, s . Then, the bond energies E Ms-N, s and E Ms-O, s per single bond are introduced into the BEBO equation to obtain a NO molecule dissociation adsorption curve for the catalyst surface Ms. At this time, since the NO molecule is a heteronuclear diatomic molecule, the above formulas (3a) and (4a) are used. Incidentally, the scope of the bond order n NO to the N atom and O atom in the NO molecule is zero (dissociative adsorption state) 2.5 (gaseous state).

(b)CO分子をC原子とO原子として解離吸着させる場合:
先ず、触媒表面Msに吸着しているC原子およびO原子の全電子エネルギーEC/MsおよびEO/Msを求める。ここで、O原子については、前記(a)と同様にして前記全電子エネルギーEO/Msを求める。一方、C原子については、等核二原子分子が存在しないので、遊離のCO分子およびO分子の解離エネルギーDCOおよびDO2、これらの分子が触媒表面Msで解離吸着する際の反応熱QCOおよびQO2を、前記式(1b)に代入して、前記全電子エネルギーEC/Msを求める。
(B) When dissociating and adsorbing CO molecules as C and O atoms:
First, the total electron energies E C / Ms and E 2 O / Ms of C atoms and O atoms adsorbed on the catalyst surface Ms are obtained. Here, for the O atom, the total electron energy E O / Ms is obtained in the same manner as in (a). On the other hand, for C atoms, since there are no equinuclear diatomic molecules, the dissociation energies D CO and D O2 of free CO molecules and O 2 molecules, and the heat of reaction Q when these molecules dissociate and adsorb on the catalyst surface Ms. By substituting CO and QO2 into the formula (1b), the total electron energy E C / Ms is obtained.

次に、得られた全電子エネルギーEC/MsおよびEO/Msを、前記式(2)に代入して、触媒表面Msに対するC原子およびO原子の単結合あたりの結合エネルギーEMs−C,sおよびEMs−O,sを求める。そして、単結合あたりの結合エネルギーEMs−C,sおよびEMs−O,sをBEBO式に導入して、触媒表面Msに対するCO分子の解離吸着曲線を求める。このとき、CO分子は異核二原子分子であるので、前記式(3a)および(4a)を使用する。なお、CO分子中のC原子とO原子との結合次数nCOの範囲は0(解離吸着状態)〜3(気体状態)である。 Next, the obtained total electron energies E C / Ms and E 2 O / Ms are substituted into the formula (2), and the binding energy E Ms-C per single bond of C atoms and O atoms with respect to the catalyst surface Ms. , S and E Ms-O, s . Then, the bond energy E Ms-C, s and E Ms-O, s per single bond is introduced into the BEBO equation, and the dissociative adsorption curve of CO molecules with respect to the catalyst surface Ms is obtained. At this time, since the CO molecule is a heteronuclear diatomic molecule, the above formulas (3a) and (4a) are used. The range of bond order n CO of C and O atoms in the CO molecule is 0 (dissociative adsorption state) to 3 (gaseous state).

このように本発明の触媒の評価方法においては、触媒表面に解離吸着する異核二原子分子が、一方の原子が等核二原子分子が存在しない原子である場合でも、解離吸着曲線を求めることができ、吸着分子の解離吸着過程の反応経路解析を幅広く実施することができる。   Thus, in the catalyst evaluation method of the present invention, the dissociative adsorption curve is obtained even when the heteronuclear diatomic molecule that dissociates and adsorbs on the catalyst surface is an atom in which no homonuclear diatomic molecule exists. It is possible to carry out a wide range of reaction path analysis of the dissociative adsorption process of adsorbed molecules.

図3は、NO分子やCO分子のような異核二原子分子の解離吸着過程におけるポテンシャルエネルギーを前記異核二原子分子中の各原子間の結合次数に対してプロットして得た解離吸着曲線を示す。図3に示したように、気体状態の異核二原子分子(最大結合次数)のポテンシャルエネルギーと解離吸着過程における異核二原子分子のポテンシャルエネルギーの極小値との差から触媒表面Msに対する異核二原子分子の吸着エネルギーを求めることができる。また、解離吸着過程における異核二原子分子のポテンシャルエネルギーの極小値と極大値との差から触媒表面Msに吸着している異核二原子分子の解離エネルギーを求めることができる。さらに、気体状態の異核二原子分子(最大結合次数)のポテンシャルエネルギーと触媒表面Msに解離吸着している異核二原子分子(最小結合次数)のポテンシャルエネルギーとの差から遊離の異核二原子分子と触媒表面Msとの反応熱を求めることができる。   FIG. 3 shows dissociative adsorption curves obtained by plotting the potential energy in the dissociative adsorption process of heteronuclear diatomic molecules such as NO molecules and CO molecules against the bond orders between the atoms in the heteronuclear diatomic molecules. Indicates. As shown in FIG. 3, the heteronuclear relative to the catalyst surface Ms is determined from the difference between the potential energy of the heteronuclear diatomic molecule (maximum bond order) in the gaseous state and the minimum value of the potential energy of the heteronuclear diatomic molecule in the dissociative adsorption process. The adsorption energy of diatomic molecules can be determined. Further, the dissociation energy of the heteronuclear diatomic molecule adsorbed on the catalyst surface Ms can be obtained from the difference between the minimum value and the maximum value of the potential energy of the heteronuclear diatomic molecule in the dissociative adsorption process. Furthermore, from the difference between the potential energy of the gas state heteronuclear diatomic molecule (maximum bond order) and the potential energy of the heteronuclear diatomic molecule dissociated and adsorbed on the catalyst surface Ms (minimum bond order), The heat of reaction between the atomic molecules and the catalyst surface Ms can be determined.

このようにして求めた触媒表面Msに吸着している異核二原子分子の解離エネルギーの大小によって、所望の反応に対する触媒の有利・不利を判定することができる。すなわち、前記解離エネルギーが小さいほど、所望の反応に対して有利な触媒と判定することができる。   Based on the magnitude of the dissociation energy of the heteronuclear diatomic molecules adsorbed on the catalyst surface Ms thus obtained, the advantage / disadvantage of the catalyst for the desired reaction can be determined. That is, the smaller the dissociation energy, the more favorable the catalyst for the desired reaction.

このような触媒の評価方法は、触媒にNO分子やCO分子などの異核二原子分子を吸着させる場合に限定して適用されるものではなく、N分子やO分子などの等核二原子分子を吸着させる場合にも、前記式(3a)および(4a)の代わりに前記式(3b)および(4b)を用いることによって、適用することができる。 Evaluation of such catalysts are catalysts not intended to limit to be applied when adsorbing the heteronuclear diatomic molecules such as NO molecules and CO molecules, homonuclear such as N 2 molecules and O 2 molecules two Also in the case of adsorbing atoms and molecules, it can be applied by using the formulas (3b) and (4b) instead of the formulas (3a) and (4a).

また、本発明の触媒の評価方法においては、上記のようにして求められる2種以上の解離吸着曲線を組み合わせることによって、解離吸着過程と脱離過程といった多段階過程の触媒反応経路を解析して、触媒の反応活性を評価することもできる。例えば、前記式(3a)により求められる異核二原子分子ABの解離吸着曲線と前記式(3b)により求められる等核二原子分子AおよびBのうちの少なくとも一方の解離吸着曲線とを組み合わせて、吸着分子が触媒表面Msに吸着して反応し、生成した分子が触媒表面Msから脱離する触媒反応の経路を解析することによって、触媒の反応活性を評価することができる。この場合、反応活性の評価の指標としては特に制限はないが、上述した触媒表面Msに吸着している吸着分子の解離エネルギーのほかに、例えば、生成した分子の触媒表面Msからの脱離エネルギーを前記解離吸着曲線に基づいて求め、この脱離エネルギーを指標として、所望の反応に対する触媒の有利・不利を判定することができる。 Further, in the catalyst evaluation method of the present invention, by combining two or more types of dissociative adsorption curves obtained as described above, a multi-step catalytic reaction path such as a dissociative adsorption process and a desorption process is analyzed. The reaction activity of the catalyst can also be evaluated. For example, the dissociative adsorption curve of the heteronuclear diatomic molecule AB obtained by the formula (3a) and the dissociative adsorption curve of at least one of the homonuclear diatomic molecules A 2 and B 2 obtained by the formula (3b) In combination, the reaction activity of the catalyst can be evaluated by analyzing the path of the catalytic reaction in which the adsorbed molecule adsorbs and reacts with the catalyst surface Ms and the generated molecule desorbs from the catalyst surface Ms. In this case, the evaluation index of the reaction activity is not particularly limited. For example, in addition to the dissociation energy of the adsorbed molecule adsorbed on the catalyst surface Ms described above, for example, the desorption energy of the generated molecule from the catalyst surface Ms. Can be determined based on the dissociation adsorption curve, and the advantage / disadvantage of the catalyst for a desired reaction can be determined using this desorption energy as an index.

以下に、生成した分子の脱離過程の反応経路解析に基づいて触媒の反応活性を評価する方法を、触媒に解離吸着しているO原子からO分子を生成させ、このO分子を脱離させる場合を例として説明する。すなわち、先ず、前記(a)と同様にして、触媒表面Msに吸着しているO原子の全電子エネルギーEO/Msを求める。そして、得られた全電子エネルギーEO/Msを、前記式(2)に代入して、触媒表面Msに対するO原子の単結合あたりの結合エネルギーEMs−O,sを求める。 The following is a method for evaluating the reaction activity of the catalyst based on the analysis of the reaction pathway of the generated molecule desorption process. O 2 molecules are generated from O atoms dissociated and adsorbed on the catalyst, and the O 2 molecules are desorbed. The case where it leaves | separates is demonstrated as an example. That is, first, as in (a), the total electron energy E O / Ms of the O atoms adsorbed on the catalyst surface Ms is obtained. Then, the obtained total electron energy E O / Ms is substituted into the equation (2) to obtain the bond energy E Ms-O, s per single bond of O atoms with respect to the catalyst surface Ms.

次に、単結合あたりの結合エネルギーEMs−O,sをBEBO式に導入して、触媒表面Msに対するO分子の解離吸着曲線を求める。このとき、O分子は等核二原子分子であるので、前記式(3b)および(4b)を使用する。なお、O分子中のO原子間の結合次数nO2の範囲は0(解離吸着状態)〜3(気体状態)である。そして、得られたO分子の解離吸着曲線の結合次数軸を反転させることによりO分子の脱離曲線が得られる。 Next, bond energy E Ms-O, s per single bond is introduced into the BEBO equation, and a dissociative adsorption curve of O 2 molecules with respect to the catalyst surface Ms is obtained. At this time, since the O 2 molecule is a homonuclear diatomic molecule, the above formulas (3b) and (4b) are used. The range of the bond order n O2 between O atoms in the O 2 molecule is 0 (dissociative adsorption state) to 3 (gas state). The desorption curve of O 2 molecules by inverting the bond order axis of dissociative adsorption curve of the O 2 molecule obtained is obtained.

図4は、O分子などの等核二原子分子の脱離過程におけるポテンシャルエネルギーを前記等核二原子分子中の各原子間の結合次数に対してプロットして得た脱離曲線を示す。図4に示したように、解離吸着している等核二原子分子(最小結合次数)のポテンシャルエネルギーと脱離過程における等核二原子分子のポテンシャルエネルギーの極大値との差から触媒表面Msからの等核二原子分子の脱離エネルギーを求めることができる。 FIG. 4 shows a desorption curve obtained by plotting the potential energy in the desorption process of a homonuclear diatomic molecule such as an O 2 molecule against the bond order between each atom in the homonuclear diatomic molecule. As shown in FIG. 4, from the difference between the potential energy of the dissociatively adsorbed homonuclear diatomic molecule (minimum bond order) and the maximum value of the potential energy of the isonuclear diatomic molecule in the desorption process, from the catalyst surface Ms. It is possible to obtain the desorption energy of the equinuclear diatomic molecule.

このようにして求めた触媒表面Msからの等核二原子分子の脱離エネルギーの大小によって、所望の反応に対する触媒の有利・不利を判定することができる。すなわち、前記脱離エネルギーが小さいほど、所望の反応に対して有利な触媒と判定することができる。   The advantage / disadvantage of the catalyst for the desired reaction can be determined based on the magnitude of the desorption energy of the homonuclear diatomic molecules from the catalyst surface Ms thus obtained. That is, the smaller the desorption energy, the more advantageous the catalyst for the desired reaction.

このような触媒の評価方法は、触媒からO分子などの等核二原子分子を脱離させる場合に限定して適用されるものではなく、NO分子やCO分子などの異核二原子分子を脱離させる場合にも、前記式(3b)および(4b)の代わりに前記式(3a)および(4a)を用いることによって、適用することができる。 Such a method for evaluating a catalyst is not limited to the case where isonuclear diatomic molecules such as O 2 molecules are desorbed from the catalyst, but heteronuclear diatomic molecules such as NO molecules and CO molecules are used. The desorption can be applied by using the formulas (3a) and (4a) instead of the formulas (3b) and (4b).

特に、本発明の触媒の評価方法は、NO分子やCO分子などの異核二原子分子を触媒に解離吸着させた後、O分子などの等核二原子分子を触媒から脱離させる場合に限定して適用されるものではなく、N分子やO分子などの等核二原子分子を触媒に解離吸着させた後、NO分子などの等異核二原子分子を触媒から脱離させる場合にも、適用することが可能である。 In particular, the catalyst evaluation method of the present invention is used in the case where heteronuclear diatomic molecules such as NO molecules and CO molecules are dissociated and adsorbed on the catalyst and then denuclear diatomic molecules such as O 2 molecules are desorbed from the catalyst. This is not a limited application. When isonuclear diatomic molecules such as N 2 molecules and O 2 molecules are dissociated and adsorbed onto the catalyst, isonuclear diatomic molecules such as NO molecules are desorbed from the catalyst. It is also possible to apply.

本発明の触媒の評価方法においては、遊離の二原子分子の解離エネルギー、触媒の全電子エネルギー、ならびに二原子分子が触媒表面で解離吸着する際の反応熱から、触媒表面に吸着している原子の全電子エネルギーを求めることから、本発明の触媒の評価方法を触媒の特定の表面や特定の組成を有する触媒に適用することが可能である。   In the catalyst evaluation method of the present invention, the atoms adsorbed on the catalyst surface are determined from the dissociation energy of free diatomic molecules, the total electron energy of the catalyst, and the reaction heat when the diatomic molecules dissociate and adsorb on the catalyst surface. Therefore, it is possible to apply the method for evaluating a catalyst of the present invention to a specific surface of the catalyst or a catalyst having a specific composition.

また、本発明の触媒の評価方法においては、吸着分子の解離吸着曲線に基づいて触媒反応の経路を解析しているため、触媒被毒を考慮して触媒の反応活性を評価することができる。さらに、複数種の吸着分子の解離吸着曲線を組み合わせることによって、多段階過程の反応経路を有する触媒や、二元系、三元系の触媒の評価にも本発明の触媒の評価方法を適用することが可能である。   In the catalyst evaluation method of the present invention, the catalytic reaction path is analyzed on the basis of the dissociative adsorption curve of the adsorbed molecules, so that the reaction activity of the catalyst can be evaluated in consideration of catalyst poisoning. Furthermore, the catalyst evaluation method of the present invention can be applied to the evaluation of catalysts having multi-step reaction paths, binary systems, and ternary systems by combining dissociative adsorption curves of a plurality of types of adsorbed molecules. It is possible.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
ジニトロジアンミン白金の硝酸水溶液にイオン交換水を加えた後、市販のアルミナ(γ−Al)担体を混合して、アルミナ担体にジニトロジアンミン白金の硝酸水溶液を含浸させた。固形分を回収して、大気中、500℃で3時間焼成し、白金の担持量が1.0質量%のPt担持アルミナ触媒を得た。
Example 1
After adding ion-exchange water to the nitric acid aqueous solution of dinitrodiammine platinum, a commercially available alumina (γ-Al 2 O 3 ) support was mixed, and the alumina support was impregnated with the nitric acid aqueous solution of dinitrodiammine platinum. The solid content was collected and calcined in the atmosphere at 500 ° C. for 3 hours to obtain a Pt-supported alumina catalyst having a platinum loading of 1.0 mass%.

(実施例2)
ジニトロジアンミン白金の硝酸水溶液の代わりに硝酸ロジウム溶液を用いた以外は実施例1と同様にして、ロジウム担持量が0.5質量%のRh担持アルミナ触媒を得た。
(Example 2)
An Rh-supported alumina catalyst having a rhodium support amount of 0.5 mass% was obtained in the same manner as in Example 1 except that a rhodium nitrate solution was used instead of the nitric acid aqueous solution of dinitrodiammine platinum.

(実施例3)
ジニトロジアンミン白金の硝酸水溶液の代わりに硝酸パラジウム溶液を用いた以外は実施例1と同様にして、パラジウム担持量が1.0質量%のPd担持アルミナ触媒を得た。
Example 3
A Pd-supported alumina catalyst having a palladium loading of 1.0% by mass was obtained in the same manner as in Example 1 except that a palladium nitrate solution was used instead of the nitric acid aqueous solution of dinitrodiammine platinum.

(実施例4)
Au3+イオン、Ni2+イオンおよびポリビニルピロリドンを含有するテトラエチレングリコール溶液にNaBHを添加して還元反応を行い、Au−Ni合金溶液を調製した。この溶液からAu−Ni合金を分離回収し、エタノールに再分散させた。この分散液に、市販のアルミナ(γ−Al)担体を混合して、アルミナ担体にAu−Ni合金を含浸させた。固形分を回収して、大気中、300℃で1時間焼成し、金担持量が0.98質量%、ニッケル担持量が0.56質量%のAu−Ni担持アルミナ触媒を得た。
Example 4
A reduction reaction was performed by adding NaBH 4 to a tetraethylene glycol solution containing Au 3+ ions, Ni 2+ ions and polyvinyl pyrrolidone to prepare an Au—Ni alloy solution. The Au—Ni alloy was separated and recovered from this solution and redispersed in ethanol. A commercial alumina (γ-Al 2 O 3 ) support was mixed with this dispersion, and the alumina support was impregnated with an Au—Ni alloy. The solid content was recovered and calcined at 300 ° C. for 1 hour in the air to obtain an Au—Ni supported alumina catalyst having a gold loading amount of 0.98 mass% and a nickel loading amount of 0.56 mass%.

(比較例1)
Au3+イオンを使用しなかった以外は実施例4と同様にして、ニッケル担持量が0.80質量%のNi担持アルミナ触媒を得た。
(Comparative Example 1)
A nickel supported alumina catalyst having a nickel supported amount of 0.80% by mass was obtained in the same manner as in Example 4 except that Au 3+ ions were not used.

(比較例2)
Ni2+イオンを使用しなかった以外は実施例4と同様にして、金担持量が0.82質量%のAu担持アルミナ触媒を得た。
(Comparative Example 2)
An Au-supported alumina catalyst having a gold-supported amount of 0.82% by mass was obtained in the same manner as in Example 4 except that Ni 2+ ions were not used.

<触媒活性評価>
得られた触媒0.6gを流通型反応器(直径:1.5cm、長さ:10cm)に充填し、触媒入りガス温度を50℃から600℃まで20℃/minで昇温しながら、NO(3000ppm)、CO(3000ppm)、N(残り)からなる混合ガスを流量1L/minで供給し、各ガス温度での触媒入りガス中および触媒出ガス中のNO濃度を測定してNO浄化率を求めた。得られたNO浄化率を触媒入りガス温度に対してプロットしてNO浄化率曲線を作成し、NO浄化率が20%に到達した温度(以下、「NO20%浄化温度」という。)を求めた。また、NO20%浄化温度が300℃以下の場合を「良」、300℃超過の場合を「不良」と判定して触媒の反応活性を評価した。これらの結果を表1に示す。
<Catalyst activity evaluation>
The obtained catalyst (0.6 g) was charged into a flow reactor (diameter: 1.5 cm, length: 10 cm), and the temperature of the gas containing the catalyst was increased from 50 ° C. to 600 ° C. at 20 ° C./min. (3000ppm), CO (3000ppm), N 2 (remaining) mixed gas is supplied at a flow rate of 1L / min, and NO concentration in the gas containing the catalyst and the catalyst outgas at each gas temperature is measured to purify NO The rate was determined. The obtained NO purification rate is plotted against the catalyst-containing gas temperature to create a NO purification rate curve, and the temperature at which the NO purification rate reaches 20% (hereinafter referred to as “NO 20% purification temperature”) was obtained. . Further, when the NO20% purification temperature was 300 ° C. or lower, it was judged as “good”, and when it was over 300 ° C., it was judged as “bad”, and the reaction activity of the catalyst was evaluated. These results are shown in Table 1.

<触媒反応の経路解析(1)>
先ず、各種触媒Mの表面Msに吸着しているN分子またはO分子に基づいて、下記式(1a−1)および(1a−2):
N/Ms=(DN2+E+QN2)/2 (1a−1)
O/Ms=(DO2+E+QO2)/2 (1a−2)
を用いて、触媒表面Msに吸着しているN原子およびO原子の全電子エネルギーEN/MsおよびEO/Msを求めた。なお、遊離のN分子およびO分子の解離エネルギーDN2およびDO2はそれぞれ226kcal/molおよび118kcal/molとした。
<Path analysis of catalytic reaction (1)>
First, based on N 2 molecules or O 2 molecules adsorbed on the surface Ms of various catalysts M, the following formulas (1a-1) and (1a-2):
E N / Ms = (D N2 + E M + Q N2 ) / 2 (1a-1)
E O / Ms = (D O2 + E M + Q O2 ) / 2 (1a-2)
Was used to determine the total electron energies E N / Ms and E 2 O / Ms of the N and O atoms adsorbed on the catalyst surface Ms. The dissociation energies DN 2 and D O2 of free N 2 molecules and O 2 molecules were 226 kcal / mol and 118 kcal / mol, respectively.

また、各種触媒Mの表面Msに吸着しているCO分子に基づいて、下記式(1b−1):
C/Ms=DCO+E+QCO−(DO2+E+QO2)/2 (1b−1)
を用いて、触媒表面Msに吸着しているC原子の全電子エネルギーEC/Msを求めた。なお、遊離のCO分子およびO分子の解離エネルギーDCOおよびDO2はそれぞれ256kcal/molおよび118kcal/molとした。
Further, based on CO molecules adsorbed on the surface Ms of various catalysts M, the following formula (1b-1):
E C / Ms = D CO + E M + Q CO - (D O2 + E M + Q O2) / 2 (1b-1)
Was used to determine the total electron energy E C / Ms of C atoms adsorbed on the catalyst surface Ms. The dissociation energies D CO and D O2 of free CO molecules and O 2 molecules were 256 kcal / mol and 118 kcal / mol, respectively.

得られた全電子エネルギーEN/Ms、EO/MsおよびEC/Msを、下記式(2−1)〜(2−3):
Ms−N,s=EN/Ms/n Ms−N (2−1)
Ms−O,s=EO/Ms/n Ms−O (2−2)
Ms−C,s=EC/Ms/n Ms−C (2−3)
に代入して、触媒表面Msに対するN原子、O原子およびC原子の単結合あたりの結合エネルギーEMs−N,s、EMs−O,sおよびEMs−C,sを求めた。その結果を表1に示す。なお、結合次数n Ms−N、n Ms−Oおよびn Ms−Cは表1に示した値を用いた。
The obtained total electron energies E N / Ms , E O / Ms and E C / Ms are represented by the following formulas (2-1) to (2-3):
E Ms-N, s = E N / Ms / n 0 Ms-N (2-1)
E Ms-O, s = E O / Ms / n 0 Ms-O (2-2)
E Ms-C, s = E C / Ms / n 0 Ms-C (2-3)
Then, the bond energies E Ms-N, s , E Ms-O, s and E Ms-C, s per single bond of N atom, O atom and C atom with respect to the catalyst surface Ms were determined. The results are shown in Table 1. Note that bond order n 0 Ms-N, n 0 Ms-O and n 0 Ms-C was used the values shown in Table 1.

次に、単結合あたりの結合エネルギーEMs−N,sおよびEMs−O,s、ならびに下記式(3a−1)および(4a−1):
NO=DNO−ENO(nNO)−EMs−N,s×fMs−N(nNO)
−EMs−O,s×fMs−O(nNO) (3a−1)
NO(nNO)=−6×(nNO
+43×(nNO−3×(nNO) (4a−1)
を用いて、触媒表面Msに対するNO分子の解離吸着曲線を求めた。なお、遊離のNO分子の解離エネルギーDNOは151kcal/molとした。また、NO分子中のN原子とO原子との結合次数nNOの範囲は0(解離吸着状態)〜2.5(気体状態)とした。さらに、fMs−N(nNO)およびfMs−O(nNO)はそれぞれ下記式:
Ms−N(nNO)=2×(2.5−nNO) (nNO≧1で定義される。)
Ms−O(nNO)=2×(1−nNO) (nNO≦1で定義される。)
を用いた。各種触媒表面Msに対するNO分子の解離吸着曲線を図5に示す。
Next, the binding energy E Ms-N, s and E Ms-O, s per single bond, and the following formulas (3a-1) and (4a-1):
V NO = D NO -E NO ( n NO) -E Ms-N, s × f Ms-N (n NO)
-E Ms-O, s xf Ms-O ( nNO ) (3a-1)
E NO (n NO ) = − 6 × (n NO ) 3
+ 43 * ( nNO ) 2-3 * ( nNO ) (4a-1)
Was used to determine the dissociative adsorption curve of NO molecules on the catalyst surface Ms. The dissociation energy D NO of free NO molecules was 151 kcal / mol. In addition, the range of the bond order n NO between the N atom and the O atom in the NO molecule was set to 0 (dissociative adsorption state) to 2.5 (gas state). Further, f Ms-N (n NO ) and f Ms-O (n NO ) are respectively represented by the following formulas:
f Ms−N (n NO ) = 2 × (2.5−n NO ) (defined by n NO ≧ 1)
f Ms−O (n NO ) = 2 × (1−n NO ) (defined by n NO ≦ 1)
Was used. FIG. 5 shows dissociative adsorption curves of NO molecules on various catalyst surfaces Ms.

また、単結合あたりの結合エネルギーEMs−N,s、ならびに下記式(3b−1)および(4b−1):
N2=DN2−EN2(nN2)
−EMs−N,s×fMs−N(nN2) (3b−1)
N2(nN2)=−6×(nN2
+43×(nN2−3×(nN2) (4b−1)
を用いて、触媒表面Msに対するN分子の解離吸着曲線を求めた。なお、遊離のN分子の解離エネルギーDN2は226kcal/molとした。また、N分子中のN原子間の結合次数nN2の範囲は0(解離吸着状態)〜3(気体状態)とした。さらに、fMs−N(nN2)は下記式:
Ms−N(nN2)=2×(3−nN2)
を用いた。各種触媒表面Msに対するN分子の解離吸着曲線を図6に示す。
Moreover, the binding energy E Ms-N, s per single bond, and the following formulas (3b-1) and (4b-1):
V N2 = D N2 −E N2 (n N2 )
-E Ms-N, s * f Ms-N (n N2 ) (3b-1)
E N2 (n N2 ) = − 6 × (n N2 ) 3
+ 43 × (n N2 ) 2 −3 × (n N2 ) (4b-1)
Was used to determine the dissociative adsorption curve of N 2 molecules with respect to the catalyst surface Ms. Incidentally, the dissociation energy D N2 of free N 2 molecules was 226kcal / mol. Further, the range of bond order n N2 between N atoms in the N 2 molecule was 0 (dissociative adsorption state) to 3 (gaseous state). Further, f Ms-N (n N2 ) is represented by the following formula:
f Ms−N (n N2 ) = 2 × (3-n N2 )
Was used. FIG. 6 shows dissociative adsorption curves of N 2 molecules with respect to various catalyst surfaces Ms.

さらに、単結合あたりの結合エネルギーEMs−O,s、ならびに下記式(3b−2)および(4b−2):
O2=DO2−EO2(nO2)
−EMs−O,s×fMs−O(nO2) (3b−2)
O2(nO2)=−6×(nO2
+43×(nO2−3×(nO2) (4b−2)
を用いて、触媒表面Msに対するO分子の解離吸着曲線を求めた。なお、遊離のO分子の解離エネルギーDO2は118kcal/molとした。また、O分子中のO原子間の結合次数nO2の範囲は0(解離吸着状態)〜2(気体状態)とした。さらに、fMs−O(nO2)は下記式:
Ms−O(nO2)=2×(2−nO2
を用いた。各種触媒表面Msに対するO分子の解離吸着曲線を図7に示す。
Furthermore, the binding energy E Ms-O, s per single bond, and the following formulas (3b-2) and (4b-2):
V O2 = D O2 −E O2 (n O2 )
-E Ms-O, s xf Ms-O ( nO2 ) (3b-2)
E O2 (n O2 ) = − 6 × (n O2 ) 3
+ 43 * ( nO2 ) 2-3 * ( nO2 ) (4b-2)
Was used to determine the dissociative adsorption curve of O 2 molecules with respect to the catalyst surface Ms. The dissociation energy D O2 of free O 2 molecules was 118 kcal / mol. The range of the bond order n O2 between O atoms in the O 2 molecule was set to 0 (dissociative adsorption state) to 2 (gas state). Further, f Ms-O (n O2 ) is represented by the following formula:
fMs-O ( nO2 ) = 2 * (2- nO2 )
Was used. FIG. 7 shows the dissociative adsorption curves of O 2 molecules with respect to various catalyst surfaces Ms.

また、単結合あたりの結合エネルギーEMs−C,sおよびEMs−O,s、ならびに下記式(3a−2)および(4a−2):
CO=DCO−ECO(nCO)−EMs−C,s×fMs−C(nCO)
−EMs−O,s×fMs−O(nCO) (3a−2)
CO(nCO)=−6×(nCO
+43×(nCO−3×(nCO) (4a−2)
を用いて、触媒表面Msに対するCO分子の解離吸着曲線を求めた。なお、遊離のCO分子の解離エネルギーDCOは256kcal/molとした。また、CO分子中のC原子とO原子との結合次数nCOの範囲は0(解離吸着状態)〜3(気体状態)とした。さらに、fMs−C(nCO)およびfMs−O(nCO)はそれぞれ下記式:
Ms−C(nCO)=1.667×(3−nCO) (nCO<1.2のとき)
Ms−C(nCO)=3 (nCO≧1.2のとき)
Ms−O(nCO)=0 (nCO<1.2のとき)
Ms−O(nCO)=1.667×(nCO−1.2) (nCO≧1.2のとき)
を用いた。各種触媒表面Msに対するCO分子の解離吸着曲線を図8に示す。
Moreover, the binding energy E Ms-C, s and E Ms-O, s per single bond, and the following formulas (3a-2) and (4a-2):
V CO = D CO -E CO ( n CO) -E Ms-C, s × f Ms-C (n CO)
-E Ms-O, s xf Ms-O ( nCO ) (3a-2)
E CO (n CO ) = − 6 × (n CO ) 3
+ 43 × (n CO ) 2 -3 × (n CO ) (4a-2)
Was used to determine the dissociative adsorption curve of CO molecules with respect to the catalyst surface Ms. Incidentally, the dissociation energy D CO of free CO molecules was 256kcal / mol. In addition, the range of the bond order n CO between C atom and O atom in the CO molecule was set to 0 (dissociative adsorption state) to 3 (gas state). Further, f Ms-C (n CO ) and f Ms-O (n CO ) are respectively represented by the following formulas:
f Ms-C (n CO ) = 1.667 × (3-n CO ) (when n CO <1.2)
f Ms−C (n CO ) = 3 (when n CO ≧ 1.2)
f Ms-O (n CO ) = 0 (when n CO <1.2)
f Ms-O (n CO ) = 1.667 × (n CO −1.2) (when n CO ≧ 1.2)
Was used. FIG. 8 shows the dissociative adsorption curves of CO molecules with respect to various catalyst surfaces Ms.

図5〜図8に示した結果から、各種触媒表面に吸着しているNO分子およびCO分子の解離エネルギー、各種触媒表面MsからのN分子およびO分子の脱離エネルギーを求めた。その結果を表1に示す。 From the results shown in FIGS. 5 to 8, the dissociation energy of NO molecules and CO molecules adsorbed on various catalyst surfaces and the desorption energy of N 2 molecules and O 2 molecules from various catalyst surfaces Ms were obtained. The results are shown in Table 1.

Figure 2014233661
Figure 2014233661

NOの浄化(NOの還元)は、先ず、触媒表面にNO分子が解離吸着してN原子とO原子が生成し、次に、N原子同士およびO原子同士が反応してN分子およびO分子が生成し、これらの分子が触媒表面から脱離することによって進行すると考えられる。また、COの浄化(COの還元)は、先ず、触媒表面にCO分子が解離吸着してC原子とO原子が生成し、次に、O原子同士が反応してO分子が生成し、このO分子が触媒表面から脱離することによって進行すると考えられる。 In the purification of NO (NO reduction), first, NO molecules are dissociated and adsorbed on the catalyst surface to generate N atoms and O atoms, and then N atoms and O atoms react to react with N 2 molecules and O atoms. It is considered that two molecules are produced and proceed by desorption from these catalyst surfaces. Further, the purification of CO (reduction of CO) first involves the dissociation and adsorption of CO molecules on the catalyst surface to generate C atoms and O atoms, and then the O atoms react to generate O 2 molecules, This O 2 molecule is considered to proceed by desorption from the catalyst surface.

表1に示した結果から明らかなように、触媒種としてAuを用いた場合(比較例2)には、他の触媒種に比べて、NO分子およびCO分子の解離エネルギーが著しく高い値となった。吸着分子の解離エネルギーが低い方が解離吸着しやすいことから、NO分子およびCO分子の解離吸着過程においては、Pt(実施例1)、Rh(実施例2)、Pd(実施例3)、Au−Ni(実施例4)、Ni(比較例1)が、Au(比較例2)に比べて有利であることがわかった。なお、NO分子およびCO分子の解離エネルギーの値から、触媒種としてAuを用いてもNO分子およびCO分子は解離吸着しにくいと予想される。   As is apparent from the results shown in Table 1, when Au is used as the catalyst type (Comparative Example 2), the dissociation energy of NO molecules and CO molecules is significantly higher than that of other catalyst types. It was. In the process of dissociative adsorption of NO molecules and CO molecules, the lower the dissociative energy of the adsorbed molecules, the easier it is to dissociate and adsorb, so in the dissociative adsorption process of NO molecules and CO molecules, -Ni (Example 4) and Ni (Comparative Example 1) were found to be more advantageous than Au (Comparative Example 2). From the values of dissociation energy of NO molecules and CO molecules, it is expected that NO molecules and CO molecules are difficult to dissociate and adsorb even if Au is used as the catalyst species.

また、触媒種としてNiを用いた場合(比較例1)には、他の触媒種に比べて、O分子の脱離エネルギーが高い値となった。生成した分子の脱離エネルギーが低い方が脱離しやすいことから、脱離過程においては、Pt(実施例1)、Rh(実施例2)、Pd(実施例3)、Au−Ni(実施例4)、Au(比較例2)が、Ni(比較例1)に比べて有利であることがわかった。なお、O分子の脱離エネルギーの値から、触媒種としてNiを用いてもO分子は脱離しにくいと予想される。 Further, when Ni was used as the catalyst species (Comparative Example 1), the O 2 molecule desorption energy was higher than that of the other catalyst species. In the desorption process, Pt (Example 1), Rh (Example 2), Pd (Example 3), Au-Ni (Example), since the generated molecule having a lower desorption energy is more easily desorbed. 4) It was found that Au (Comparative Example 2) is more advantageous than Ni (Comparative Example 1). Incidentally, the value of the desorption energy of the O 2 molecules, O 2 molecules even using Ni as the catalyst species is expected to be difficult elimination.

NO浄化(NO還元)やCO浄化(CO還元)の活性は、触媒表面でのNO分子やCO分子の解離吸着のしやすさと、触媒表面からのO分子の脱離のしやすさとのバランスによって決まると考えられる。以上の計算結果を総合すると、NO浄化やCO浄化においては、Pt(実施例1)、Rh(実施例2)、Pd(実施例3)、Au−Ni(実施例4)が触媒種として有利であり、Ni(比較例1)、Au(比較例2)は触媒活性が低いと予想される。 The activity of NO purification (NO reduction) and CO purification (CO reduction) balances the ease of dissociative adsorption of NO and CO molecules on the catalyst surface with the ease of desorption of O 2 molecules from the catalyst surface. It is thought that it is decided by. Summing up the above calculation results, Pt (Example 1), Rh (Example 2), Pd (Example 3), and Au-Ni (Example 4) are advantageous as catalyst types in NO purification and CO purification. Ni (Comparative Example 1) and Au (Comparative Example 2) are expected to have low catalytic activity.

そこで、これらの計算結果と、実際のNO浄化試験の結果とを対比したところ、表1に示した結果から明らかなように、Pt(実施例1)、Rh(実施例2)、Pd(実施例3)、Au−Ni(実施例4)は、NO20%浄化温度が300℃以下と低い(すなわち、触媒活性が高い)ものであり、Ni(比較例1)、Au(比較例2)は、NO20%浄化温度が300℃超過と高い(すなわち、触媒活性が低い)ものであった。   Therefore, when these calculation results were compared with the actual NO purification test results, as is clear from the results shown in Table 1, Pt (Example 1), Rh (Example 2), Pd (Implementation) Example 3), Au—Ni (Example 4) has a NO20% purification temperature as low as 300 ° C. or lower (ie, high catalytic activity), and Ni (Comparative Example 1) and Au (Comparative Example 2) are The NO20% purification temperature was as high as exceeding 300 ° C. (that is, the catalytic activity was low).

このように、本発明の触媒の評価方法による結果は、実際の触媒の評価結果と一致しており、本発明にかかる触媒反応の経路解析によって、触媒の反応活性を評価できることが確認された。   As described above, the result of the catalyst evaluation method of the present invention is consistent with the actual catalyst evaluation result, and it was confirmed that the reaction activity of the catalyst can be evaluated by the path analysis of the catalyst reaction according to the present invention.

<多段階過程への適用性>
次に、図6および図7のグラフの結合次数軸(x軸)を反転させ、これらのグラフと図5のグラフとにおいて、ポテンシャルエネルギーが連続するように、すなわち、結合次数0においてポテンシャルエネルギーが一致するように、グラフを補正して組み合わせた。その結果を図9および図10に示す。
<Applicability to multi-step process>
Next, the bond order axis (x-axis) of the graphs of FIGS. 6 and 7 is inverted so that the potential energy is continuous in these graphs and the graph of FIG. The graphs were corrected and combined to match. The results are shown in FIG. 9 and FIG.

図8および図9に示した結果から明らかなように、NO分子、N分子、O分子の解離吸着曲線を組み合わせることによって、NO浄化反応の進行に伴うポテンシャルエネルギー変化を示すグラフが得られ、NO浄化の反応経路を容易に解析できることが確認された。 As is apparent from the results shown in FIGS. 8 and 9, a graph showing the potential energy change accompanying the progress of the NO purification reaction is obtained by combining the dissociative adsorption curves of NO molecules, N 2 molecules, and O 2 molecules. It was confirmed that the reaction path of NO purification can be easily analyzed.

また、図7のグラフの結合次数軸(x軸)を反転させ、このグラフと図8のグラフとにおいて、ポテンシャルエネルギーが連続するように、すなわち、結合次数0においてポテンシャルエネルギーが一致するように、グラフを補正して組み合わせた。その結果を図11に示す。   Further, the bond order axis (x-axis) of the graph of FIG. 7 is inverted, and in this graph and the graph of FIG. 8, the potential energy is continuous, that is, the potential energy is the same at the bond order of 0. The graph was corrected and combined. The result is shown in FIG.

図11に示した結果から明らかなように、CO分子、O分子の解離吸着曲線を組み合わせることによって、CO浄化反応の進行に伴うポテンシャルエネルギー変化を示すグラフが得られ、CO浄化の反応経路を容易に解析できることが確認された。 As is apparent from the results shown in FIG. 11, by combining the dissociative adsorption curves of CO molecules and O 2 molecules, a graph showing the potential energy change accompanying the progress of the CO purification reaction can be obtained, and the reaction path of CO purification can be obtained. It was confirmed that it can be easily analyzed.

以上の結果から、複数の吸着分子の解離吸着曲線を組み合わせることによって、多段階過程の触媒反応の経路を解析することが可能となり、複雑な反応に用いられる触媒も評価することが可能であると考えられる。   From the above results, by combining dissociative adsorption curves of a plurality of adsorbed molecules, it becomes possible to analyze the catalytic reaction path in a multi-step process, and it is also possible to evaluate the catalyst used for complex reactions. Conceivable.

以上説明したように、本発明によれば、熱力学データを新たに実験的に求める必要がなく、比較的短時間で触媒反応の経路を解析して触媒の反応活性を評価することが可能となる。   As described above, according to the present invention, it is not necessary to newly obtain thermodynamic data experimentally, and it is possible to analyze the catalyst reaction path and evaluate the reaction activity of the catalyst in a relatively short time. Become.

したがって、本発明の触媒の評価方法は、触媒の評価にかかるコストを削減できる方法として有用であり、さらに、熱力学データがない触媒反応系であっても、比較的容易に触媒の反応活性を評価することができる点で工業的にも有利である。   Therefore, the catalyst evaluation method of the present invention is useful as a method that can reduce the cost for catalyst evaluation. Furthermore, even in a catalyst reaction system without thermodynamic data, the reaction activity of the catalyst can be relatively easily achieved. It is industrially advantageous in that it can be evaluated.

Claims (5)

触媒表面Msに吸着している原子Xの全電子エネルギーを、
(a)触媒表面Msに吸着している等核二原子分子Xに基づいて求める場合には、下記式(1a):
X/Ms=(DX2+E+QX2)/2 (1a)
(式中、Xは原子AまたはBを表し、EX/Msは触媒表面Msに吸着している原子Xの全電子エネルギーを表し、DX2は遊離の等核二原子分子Xの解離エネルギーを表し、Eは触媒Mの全電子エネルギーを表し、QX2は等核二原子分子Xが触媒表面Msで解離吸着する際の反応熱を表す。)
を用いて求め、
(b)触媒表面Msに吸着している異核二原子分子XYに基づいて求める場合には、下記式(1b):
X/Ms=DXY+E+QXY−(DY2+E+QY2)/2 (1b)
(式中、Xは原子AおよびBのうちの一方を表し、Yは原子AおよびBのうちの他方を表し、EX/Msは触媒表面Msに吸着している原子Xの全電子エネルギーを表し、DXYおよびDY2はそれぞれ遊離の異核二原子分子XYおよび遊離の等核二原子分子Yの解離エネルギーを表し、Eは触媒Mの全電子エネルギーを表し、QXYおよびQY2は異核二原子分子XYおよび等核二原子分子Yがそれぞれ触媒表面Msで解離吸着する際の反応熱を表す。)
を用いて求め、
触媒表面Msに対する原子Xの単結合あたりの結合エネルギーを、下記式(2):
Ms−X,s=EX/Ms/n Ms−X (2)
(式中、Xは原子AまたはBを表し、EMs−X,sは前記単結合あたりの結合エネルギーを表し、EX/Msは触媒表面Msに吸着している原子Xの前記全電子エネルギーを表し、n Ms−Xは前記等核二原子分子Xまたは前記異核二原子分子XYが触媒表面Msに吸着した状態における原子Xと触媒表面Msとの結合次数を表す。)
を用いて求め、
触媒表面Msに対する吸着分子の解離吸着曲線を、
(i)吸着分子が異核二原子分子ABの場合には、下記式(3a):
AB=DAB−EAB(nAB)−EMs−A,s×fMs−A(nAB)
−EMs−B,s×fMs−B(nAB) (3a)
(式中、VABは触媒表面Msに対する異核二原子分子ABの解離吸着過程におけるポテンシャルエネルギーを表し、DABは遊離の異核二原子分子ABの解離エネルギーを表し、EMs−A,sおよびEMs−B,sはそれぞれ原子AおよびBの触媒表面Msに対する前記単結合あたりの結合エネルギーを表し、nABは異核二原子分子AB中の原子Aと原子Bとの結合次数を表し、fMs−A(nAB)およびfMs−B(nAB)は触媒表面Msに結合している原子AおよびBのそれぞれについて結合次数保存則に従って決定される結合次数nABの一次関数を表し、EAB(nAB)は結合次数がnABの異核二原子分子ABのポテンシャルエネルギーを表し、下記式(4a):
AB(nAB)=−6×(nAB
+43×(nAB−3×(nAB) (4a)
により求められる。)
を用いて求め、
(ii)吸着分子が等核二原子分子AおよびBのうちの少なくとも一方の場合には、下記式(3b):
X2=DX2−EX2(nX2)−EMs−X,s×fMs−X(nX2) (3b)
(式中、Xは原子AまたはBを表し、VX2は触媒表面Msに対する等核二原子分子Xの解離吸着過程におけるポテンシャルエネルギーを表し、DX2は遊離の等核二原子分子Xの解離エネルギーを表し、EMs−X,sは触媒表面Msに対する原子Xの前記単結合あたりの結合エネルギーを表し、nX2は等核二原子分子X中のX原子間の結合次数を表し、fMs−X(nX2)は触媒表面Msに結合している原子Xについて結合次数保存則に従って決定される結合次数nX2の一次関数を表し、EX2(nX2)は結合次数がnX2の等核二原子分子Xのポテンシャルエネルギーを表し、下記式(4b):
X2(nX2)=−6×(nX2
+43×(nX2−3×(nX2) (4b)
により求められる。)
を用いて求め、
得られた解離吸着曲線に基づいて吸着分子の触媒反応の経路を解析することによって、触媒の反応活性を評価することを特徴とする触媒の評価方法。
The total electron energy of atom X adsorbed on the catalyst surface Ms is
(A) When obtaining based on the homonuclear diatomic molecule X 2 adsorbed on the catalyst surface Ms, the following formula (1a):
E X / Ms = (D X2 + E M + Q X2 ) / 2 (1a)
( Wherein X represents an atom A or B, E X / Ms represents the total electronic energy of the atom X adsorbed on the catalyst surface Ms, and D X2 represents the dissociation energy of a free equinuclear diatomic molecule X 2 . E M represents the total electron energy of the catalyst M, and Q X2 represents the heat of reaction when the isonuclear diatomic molecule X 2 is dissociatively adsorbed on the catalyst surface Ms.)
Using
(B) When obtaining based on the heteronuclear diatomic molecule XY adsorbed on the catalyst surface Ms, the following formula (1b):
E X / Ms = D XY + E M + Q XY - (D Y2 + E M + Q Y2) / 2 (1b)
( Wherein X represents one of atoms A and B, Y represents the other of atoms A and B, and E X / Ms represents the total electronic energy of atom X adsorbed on catalyst surface Ms. D XY and DY 2 represent the dissociation energy of free heteronuclear diatomic molecule XY and free isonuclear diatomic molecule Y 2 respectively , E M represents the total electronic energy of catalyst M, Q XY and Q Y2 represents the heat of reaction when heteronuclear diatomic molecule XY and homonuclear diatomic molecule Y 2 is dissociative adsorption at each catalyst surface Ms.)
Using
The bond energy per single bond of the atom X to the catalyst surface Ms is expressed by the following formula (2):
E Ms-X, s = EX / Ms / n 0 Ms-X (2)
(Wherein X represents an atom A or B, E Ms-X, s represents a bond energy per single bond, and E X / Ms represents the total electron energy of the atom X adsorbed on the catalyst surface Ms. And n 0 Ms-X represents the bond order between the atom X and the catalyst surface Ms in a state where the homonuclear diatomic molecule X 2 or the heteronuclear diatomic molecule XY is adsorbed on the catalyst surface Ms.)
Using
The dissociative adsorption curve of adsorbed molecules on the catalyst surface Ms
(I) When the adsorbed molecule is a heteronuclear diatomic molecule AB, the following formula (3a):
V AB = D AB −E AB (n AB ) −EMs −A, s × f Ms−A (n AB )
−E Ms-B, s × f Ms-B (n AB ) (3a)
(In the formula, V AB represents the potential energy in the dissociative adsorption process of the heteronuclear diatomic molecule AB with respect to the catalyst surface Ms, D AB represents the dissociation energy of the free heteronuclear diatomic molecule AB, and E Ms-A, s And E Ms-B, s represent the bond energy per single bond to the catalyst surface Ms of atoms A and B, respectively, and n AB represents the bond order of atom A and atom B in heteronuclear diatomic molecule AB. , F Ms-A (n AB ) and f Ms-B (n AB ) are linear functions of bond order n AB determined according to the bond order conservation law for each of atoms A and B bonded to catalyst surface Ms. E AB (n AB ) represents the potential energy of the heteronuclear diatomic molecule AB having a bond order of n AB and is represented by the following formula (4a):
E AB (n AB ) = − 6 × (n AB ) 3
+ 43 × (n AB ) 2 −3 × (n AB ) (4a)
Is required. )
Using
(Ii) in the case of at least one of adsorption molecules of homonuclear diatomic molecules A 2 and B 2, the following formula (3b):
V X2 = D X2 −E X2 (n X2 ) −E Ms−X, s × f Ms−X (n X2 ) (3b)
(Wherein X represents an atom A or B, V X2 represents a potential energy in the dissociative adsorption process of the homonuclear diatomic molecule X 2 with respect to the catalyst surface Ms, and D X2 represents a free isonuclear diatomic molecule X 2 . Represents dissociation energy, E Ms-X, s represents the bond energy per atom of the atom X to the catalyst surface Ms, n X2 represents the bond order between X atoms in the homonuclear diatomic molecule X 2 , f Ms-X (n X2 ) represents a linear function of the bond order n X2 determined according to the bond order conservation law for the atom X bonded to the catalyst surface Ms, and E X2 (n X2 ) represents the bond order n X2 Represents the potential energy of the homonuclear diatomic molecule X 2 of the following formula (4b):
E X2 (n X2 ) = − 6 × (n X2 ) 3
+ 43 × (n X2 ) 2 -3 × (n X2 ) (4b)
Is required. )
Using
A method for evaluating a catalyst, characterized in that the reaction activity of a catalyst is evaluated by analyzing a catalytic reaction path of adsorbed molecules based on the obtained dissociative adsorption curve.
前記解離吸着曲線に基づいて触媒表面Msに吸着した状態の吸着分子の解離エネルギーを求め、該解離エネルギーに基づいて触媒の反応活性を評価することを特徴とする請求項1に記載の触媒の評価方法。   2. The catalyst evaluation according to claim 1, wherein the dissociation energy of the adsorbed molecules adsorbed on the catalyst surface Ms is obtained based on the dissociation adsorption curve, and the reaction activity of the catalyst is evaluated based on the dissociation energy. Method. 前記式(3a)により求められる異核二原子分子ABの解離吸着曲線と前記式(3b)により求められる等核二原子分子AおよびBのうちの少なくとも一方の解離吸着曲線とを組み合わせて、吸着分子が触媒表面Msに吸着して反応し、生成した分子が触媒表面Msから脱離する触媒反応の経路を解析することによって、触媒の反応活性を評価することを特徴とする請求項1または2に記載の触媒の評価方法。 In combination with at least one of the dissociative adsorption curve of the type or the like obtained by the equation dissociative adsorption curve of heteronuclear diatomic molecules AB obtained by (3a) (3b) nuclear diatomic molecules A 2 and B 2 2. The reaction activity of the catalyst is evaluated by analyzing the path of the catalytic reaction in which the adsorbed molecule adsorbs and reacts with the catalyst surface Ms and the generated molecule desorbs from the catalyst surface Ms. Or the evaluation method of the catalyst of 2. 生成した分子の触媒表面Msからの脱離エネルギーを前記解離吸着曲線に基づいて求め、該脱離エネルギーに基づいて触媒の反応活性を評価することを特徴とする請求項3に記載の触媒の評価方法。   4. The catalyst evaluation according to claim 3, wherein a desorption energy of the generated molecule from the catalyst surface Ms is obtained based on the dissociation adsorption curve, and a reaction activity of the catalyst is evaluated based on the desorption energy. Method. 吸着分子が異核二原子分子ABであり、生成した分子が等核二原子分子AおよびBのうちの少なくとも一方であることを特徴とする請求項3または4に記載の触媒の評価方法。 Adsorbed molecules is heteronuclear diatomic molecule AB, method of evaluating catalyst according to claim 3 or 4, wherein the resulting molecule is at least one of a homonuclear diatomic molecules A 2 and B 2 .
JP2013115417A 2013-05-31 2013-05-31 Catalyst evaluation method Expired - Fee Related JP6015951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013115417A JP6015951B2 (en) 2013-05-31 2013-05-31 Catalyst evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013115417A JP6015951B2 (en) 2013-05-31 2013-05-31 Catalyst evaluation method

Publications (2)

Publication Number Publication Date
JP2014233661A true JP2014233661A (en) 2014-12-15
JP6015951B2 JP6015951B2 (en) 2016-10-26

Family

ID=52136785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013115417A Expired - Fee Related JP6015951B2 (en) 2013-05-31 2013-05-31 Catalyst evaluation method

Country Status (1)

Country Link
JP (1) JP6015951B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210375A (en) * 2001-01-19 2002-07-30 Toyota Motor Corp Method for designing catalyst structure
JP2009189915A (en) * 2008-02-13 2009-08-27 Hitachi Ltd Nitrogen oxide cleaning catalyst and nitrogen oxide cleaning method
JP2009202127A (en) * 2008-02-29 2009-09-10 Hitachi Ltd Catalyst for removing nitrogen oxide
US20110009679A1 (en) * 2006-08-07 2011-01-13 Rappe Andrew M Tunable ferroelectric supported catalysts and method and uses thereof
JP2013039556A (en) * 2011-07-21 2013-02-28 Osaka Univ Nitrogen oxide purifying catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210375A (en) * 2001-01-19 2002-07-30 Toyota Motor Corp Method for designing catalyst structure
US20110009679A1 (en) * 2006-08-07 2011-01-13 Rappe Andrew M Tunable ferroelectric supported catalysts and method and uses thereof
JP2009189915A (en) * 2008-02-13 2009-08-27 Hitachi Ltd Nitrogen oxide cleaning catalyst and nitrogen oxide cleaning method
JP2009202127A (en) * 2008-02-29 2009-09-10 Hitachi Ltd Catalyst for removing nitrogen oxide
JP2013039556A (en) * 2011-07-21 2013-02-28 Osaka Univ Nitrogen oxide purifying catalyst

Also Published As

Publication number Publication date
JP6015951B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
EP2358465B2 (en) Method for the catalytic decomposition of n2o and prparation of the catalyst
Greenaway et al. Detection of key transient Cu intermediates in SSZ-13 during NH 3-SCR deNO x by modulation excitation IR spectroscopy
Wang et al. Catalytic reduction of NO by CO over NiO/CeO2 catalyst in stoichiometric NO/CO and NO/CO/O2 reaction
Talib et al. Chromium single-atom catalyst with graphyne support: a theoretical study of NO oxidation and reduction
Bai et al. Mechanistic study of nitric oxide reduction by hydrogen on Pt (100)(I): a DFT analysis of the reaction network
Song et al. Insight into the Origin of Excellent SO2 Tolerance and de-NO x Performance of quasi-Mn-BTC in the Low-Temperature Catalytic Reduction of Nitrogen Oxide
Burch et al. A combined transient and computational study of the dissociation of N2O on platinum catalysts
Chan et al. Zeolite-catalyzed hydrogenation of carbon dioxide and ethene
JP5958758B2 (en) Catalyst evaluation method
Jiang et al. The first non-precious metal passive NOx adsorber for cold-start applications
Liu et al. Reduction of N2O by H2 Catalyzed by Keggin–Type Phosphotungstic Acid Supported Single-Atom Catalysts: An Insight from Density Functional Theory Calculations
Karásková et al. N2O catalytic decomposition and temperature programmed desorption tests on alkali metals promoted Co–Mn–Al mixed oxide
Burch et al. A Transient Kinetic Study of the Mechanism of the NO/C3H6/O2Reaction over Pt–SiO2Catalysts: Part 2: Steady-State Isotopic Transient Kinetic Analysis
Akamatsu et al. Stable high-purity hydrogen production by dehydrogenation of cyclohexane using a membrane reactor with neither carrier gas nor sweep gas
JP6015951B2 (en) Catalyst evaluation method
Arve et al. Kinetic considerations of H2 assisted hydrocarbon selective catalytic reduction of NO over Ag/Al2O3: I. Kinetic behaviour
JP6107487B2 (en) N2O decomposition catalyst and N2O-containing gas decomposition method using the same
Aslam et al. A comparative study of LHHW and ER kinetic models for NO oxidation over Co3O4 catalyst
US20120087851A1 (en) P/s-tm-comprising zeolites for decomposition of n2o
Kumar et al. NO decomposition and reduction on Pt/Al2O3 powder and monolith catalysts using the TAP reactor
Kim et al. Experimental and Theoretical Studies of Pd Cation Reduction and Oxidation During NO Adsorption on and Desorption from Pd/H–CHA
Backman et al. Kinetic considerations of H2 assisted hydrocarbon selective catalytic reduction of NO over Ag/Al2O3: II. Kinetic modelling
Rhodes et al. Hydrogen-assisted 1, 2-dichloroethane dechlorination catalyzed by Pt–Sn/SiO2 catalysts of different preparations
Rac et al. Complementary approach to the adsorption of CO and N2O on bimetallic ion exchanged ZMS-5 zeolite: Microcalorimetric and FTIR spectroscopy study
Gracia et al. The preferential oxidation of CO: selective combinatorial activity and infrared studies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6015951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees