JP2014231777A - Hydraulic power generation device - Google Patents

Hydraulic power generation device Download PDF

Info

Publication number
JP2014231777A
JP2014231777A JP2013112721A JP2013112721A JP2014231777A JP 2014231777 A JP2014231777 A JP 2014231777A JP 2013112721 A JP2013112721 A JP 2013112721A JP 2013112721 A JP2013112721 A JP 2013112721A JP 2014231777 A JP2014231777 A JP 2014231777A
Authority
JP
Japan
Prior art keywords
impeller
flow rate
casing
water
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013112721A
Other languages
Japanese (ja)
Inventor
相森 冨男
Tomio Aimori
冨男 相森
渡邊 美信
Minobu Watanabe
美信 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakayama Iron Works Ltd
Original Assignee
Nakayama Iron Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakayama Iron Works Ltd filed Critical Nakayama Iron Works Ltd
Priority to JP2013112721A priority Critical patent/JP2014231777A/en
Publication of JP2014231777A publication Critical patent/JP2014231777A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydraulic power generation device in which a supporting structure for a component, which changes a cross sectional area of a flow passage part to adjust a flow rate of water, is set as a suitable one to increase the durability, so that frequency of maintenance work can be reduced and power generation can be carried out with reduced cost.SOLUTION: A flow rate adjustment part 20 is installed near an inlet port of a flow passage part of an impeller 10, while the flow rate adjustment part 20 is inclined around the impeller to enable a flow rate of water reaching to the impeller 10 to be adjusted, the flow rate adjustment part 20 is fixed to upper and lower protrusions 56, 57 protruded from a casing to a part around the impeller shaft, it is inclined around the impeller, resulting in that the flow rate adjustment part 20 acts as a part of the casing and moves in respect to the protrusions 56, 57 kept stationary, a relative motion between each of the protrusions and the flow rate adjustment part can be remarkably reduced, a wear at sliding contact part such as a bearing between both of them is hardly produced to enable durability to be increased and a maintenance cost of each of the segments for supporting the flow rate adjustment part 20 can be restricted low.

Description

本発明は、水の力で回転する羽根車を用いた水力発電装置に関し、特に、羽根車が配置される流路部を通過する水の流量を調整する機構を有する装置に関する。   The present invention relates to a hydraulic power generation apparatus using an impeller that rotates by the force of water, and more particularly, to an apparatus having a mechanism that adjusts the flow rate of water that passes through a flow path portion in which the impeller is disposed.

水力発電は、これまで、ダムによる貯水等で得られる大量の水の落差を利用して発電を行う大規模のものが主流であった。しかしながら、従来、水力発電の適用対象外とされてきた、流れる水量の少ない小規模の河川や水路においても、近年、再生可能エネルギーへの注目の高まりを受け、こうした小規模の河川や水路に対応した、小型の水車を用いた水力発電装置が設置、活用されるようになっている。   Until now, hydroelectric power generation has been mainly conducted on a large scale, which generates electricity using a large drop of water obtained by dam storage. However, even in small rivers and waterways that have been excluded from the scope of hydroelectric power generation and have a small amount of flowing water in recent years, in response to growing attention to renewable energy, these small rivers and waterways have been supported. A hydroelectric power generation apparatus using a small water wheel is installed and utilized.

こうした小型の水力発電装置としては、水車、すなわち羽根車の中心に位置する羽根車軸を垂直に支持し、流れる水の中に羽根車を位置させる一方、発電機や、羽根車軸から発電機まで駆動力を伝達する機構は、保守性等を考慮して水上に配設する、立軸形の構造を採用したものが増えている。このような水力発電装置の例として、特開2007−177797号公報に開示されるものがある。   As such a small hydroelectric power generator, the impeller shaft located at the center of the impeller, that is, the impeller is vertically supported, and the impeller is positioned in the flowing water, while the generator or impeller shaft is driven from the impeller to the generator. An increasing number of mechanisms for transmitting force adopt a vertical shaft structure that is arranged on the water in consideration of maintainability and the like. An example of such a hydroelectric generator is disclosed in Japanese Patent Application Laid-Open No. 2007-177797.

特開2007−177797号公報JP 2007-177797 A

従来の水力発電装置は前記特許文献に例示される構成を有しており、特に、実際に使用される場合の羽根車としては、多数の薄板状の羽根を回転中心から所定距離離れた位置に回転軸と平行として配置した、クロスフロー型の羽根車を採用することが多かった。このような小型の水力発電装置の使用に際しては、これを設置される水路が降水量の季節変化などに起因する水量の自然変動を生じるものである場合、発電出力に対するこうした水量の自然変動の影響を緩和するため、水路における水力発電装置の周囲を堰き止め、水路の水が原則として水力発電装置の内部水路を一旦通過するようにして、水力発電装置の前後に水位差を生じさせ、羽根車に達する水量を安定化すると共に、水力発電装置で水の落差分のエネルギーも用いるようにするのが一般的である。   The conventional hydroelectric generator has the configuration exemplified in the above-mentioned patent document. In particular, as an impeller when actually used, a large number of thin blades are placed at a predetermined distance from the rotation center. In many cases, a cross flow type impeller arranged parallel to the rotation axis was employed. When using such a small hydroelectric generator, if the water channel in which it is installed causes natural fluctuations in the amount of water due to seasonal changes in precipitation, etc., the effect of such natural fluctuations in the amount of water on the power generation output In order to alleviate the problem, the area around the hydroelectric generator in the waterway is blocked and the water in the waterway passes through the internal waterway of the hydroelectric generator as a rule to create a water level difference before and after the hydroelectric generator. In general, the amount of water reaching the water level is stabilized, and the energy of the difference in water is also used in the hydroelectric generator.

また、水力発電装置を設置した水路における水の流量が減少した際に、水力発電装置の内部流路を通って水が過剰に流れ、水路における装置前後に十分な水位差を生じさせられなくなって、水の落差で羽根車を回転させる力が弱まることのないよう、装置内を流れる水の流量を調整して装置前面側(流入側)の水位を過剰に下げないようにし、羽根車の回転のための水の落差を維持する流量調整機構も用いられていた。   In addition, when the flow rate of water in the water channel where the hydroelectric generator is installed decreases, water flows excessively through the internal flow path of the hydroelectric generator, and a sufficient water level difference between the front and rear of the device in the water channel cannot be generated. Rotate the impeller by adjusting the flow rate of water flowing through the device so that the water level on the device front side (inflow side) is not lowered excessively so that the force that rotates the impeller is not weakened by a water drop. A flow control mechanism was also used to maintain the head of water for.

クロスフロー型の羽根車を用いた発電装置の場合、流量を調整するための機構としては、取り扱い性や調整のしやすさから、円筒を縦に切断したような湾曲したゲート板を羽根車の外周に沿って動かし、羽根車への水の流入可能な範囲を横方向に調整するものが採用されることが多い。   In the case of a power generation device using a cross-flow type impeller, as a mechanism for adjusting the flow rate, for ease of handling and adjustment, a curved gate plate like a cylinder cut vertically is used for the impeller. It is often used that moves along the outer periphery and adjusts the range in which water can flow into the impeller in the lateral direction.

こうしたゲート板は、羽根車と中心を一致させて傾動させるのが都合がよいことから、これを実現する構造としては、羽根車の中心に位置する羽根車軸をゲート板の支持軸として流用し、羽根車上下に突出する羽根車軸上にゲート板の支持部分を設けるようにすることが容易に発想できる。実際に、このゲート板を羽根車軸で傾動可能に支持する構造が最も簡略な支持構造として採用されていた。   Since it is convenient to tilt the gate plate so that the center coincides with the impeller, as a structure for realizing this, the impeller shaft located at the center of the impeller is diverted as the support shaft of the gate plate, It can be easily conceived to provide a support portion for the gate plate on the impeller shaft protruding up and down the impeller. Actually, the structure in which the gate plate is tiltably supported by the impeller shaft has been adopted as the simplest support structure.

しかしながら、羽根車軸は羽根車の一部として、流路部に水が流れる間中、回転するものであるため、流量調整の際のみ動かして、残りはほとんど静止状態にある流量調整用のゲート板を、例えば軸受等を介して羽根車軸で支持する場合、羽根車軸に対するゲート板側の相対的な回転がほぼ常時生じるものとなり、軸受等で互いに摺接する部品が摩耗しやすいなど、使用条件が厳しく、ゲート板自体の動きは少ないものの、その支持部分のメンテナンスの頻度が高くなり、使用に支障が生じない状態を維持するための保守コストが大きいものになるという課題を有していた。   However, since the impeller shaft rotates as a part of the impeller while water flows through the flow passage, it is moved only when adjusting the flow rate, and the rest is almost stationary. For example, when the bearing is supported by the impeller shaft via a bearing or the like, the relative rotation of the gate plate side with respect to the impeller shaft is almost always generated, and parts that are in sliding contact with the bearing or the like are subject to wear. However, although the movement of the gate plate itself is small, there is a problem that the frequency of maintenance of the supporting portion becomes high, and the maintenance cost for maintaining a state in which use is not hindered becomes large.

一方、羽根車軸とゲート板の支持部との間に、耐久性のある軸受を採用するとメンテナンスの頻度は抑えられるものの、このような軸受は高価であり、また、摺動部分を有する以上、耐久性には限度があり、一定期間ごとの交換はやはり避けられないことから、コスト面でのメリットを得にくく、こうした耐久性のある部品を用いた機構の採用も現実的ではないという課題を有していた。   On the other hand, if a durable bearing is used between the impeller shaft and the gate plate support, the frequency of maintenance can be suppressed, but such a bearing is expensive and durable because it has sliding parts. Since there is a limit to the performance and replacement at regular intervals is still unavoidable, it is difficult to obtain cost advantages, and the adoption of a mechanism using such durable parts is not practical. Was.

本発明は前記課題を解消するためになされたもので、流路部の断面積を変化させて水の流量を調整可能とする部品の支持構造を適切なものとして、耐久性を高めてメンテナンスの頻度を少なくし、コストを抑えて発電を行える、水力発電装置を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and has an appropriate support structure for parts that allows the flow rate of water to be adjusted by changing the cross-sectional area of the flow path portion. An object of the present invention is to provide a hydroelectric power generation device that can reduce the frequency and generate power at a reduced cost.

本発明に係る水力発電装置は、ケーシングを貫通して設けられた流路部を通る水の流れの力で羽根車を回転させ、羽根車から発電機に駆動力を伝えて発電を行う水力発電装置において、前記ケーシングが、内側の流路部を取り囲む略箱状体として形成され、前記羽根車が、ケーシング内側の流路部に回転中心軸を水の流れ方向と略直角となる上下方向に向けて配設され、前記発電機が、ケーシングにおける流路部の外側となる部位に羽根車で駆動可能として配設され、前記羽根車の回転中心位置で羽根車と一体に取付けられ、ケーシングにおける前記流路部を挟む上下両側の所定箇所でそれぞれ回転可能に支持される羽根車軸と、前記羽根車の回転作動する範囲の最外周部をなす仮想略円筒面に沿う湾曲面を有する略板状体で形成され、前記仮想略円筒面外側近傍に羽根車と同じ回転中心軸を中心として所定角度範囲傾動可能に配設される流量調整部とを備え、前記ケーシングの流路部上側部分のうち、羽根車軸に近い一部が、羽根車軸周囲を取り囲む略円筒状の上側突出部として、下方へ所定長さ突出形成され、前記ケーシングの流路部下側部分のうち、羽根車軸に近い一部が、羽根車軸周囲を取り囲む略円筒状の下側突出部として、上方へ所定長さ突出形成され、前記流量調整部が、上下端部から羽根車の回転中心側に向けてそれぞれ突出形成される支持部を有し、上側の支持部がケーシングの前記上側突出部に回動可能に支持されると共に、下側の支持部がケーシングの前記下側突出部に回動可能に支持されて、傾動可能な状態とされてなるものである。   The hydroelectric power generator according to the present invention is a hydroelectric power generator that rotates an impeller with the force of the flow of water passing through a flow passage provided through a casing, and transmits power to the generator from the impeller to generate power. In the apparatus, the casing is formed as a substantially box-like body surrounding the inner flow path portion, and the impeller is arranged in a vertical direction in which the rotation center axis is substantially perpendicular to the water flow direction in the flow path section inside the casing. The generator is arranged to be driven by an impeller at a portion that is outside the flow path portion in the casing, and is attached integrally with the impeller at the rotational center position of the impeller. A substantially plate-like shape having an impeller shaft rotatably supported at predetermined positions on both upper and lower sides sandwiching the flow path portion, and a curved surface along a virtual substantially cylindrical surface forming the outermost peripheral portion of the range in which the impeller rotates. Formed by the body, said A flow rate adjusting unit arranged to be tiltable within a predetermined angle range about the same rotation center axis as the impeller, in the vicinity of the outer side of the substantially cylindrical surface. Is formed as a substantially cylindrical upper projecting portion that surrounds the periphery of the impeller shaft, and protrudes downward by a predetermined length, and a portion near the impeller shaft of the lower portion of the flow path portion of the casing surrounds the periphery of the impeller shaft As a substantially cylindrical lower protrusion, a predetermined length protrudes upward, and the flow rate adjusting part has a support part that protrudes from the upper and lower ends toward the rotation center side of the impeller, The support portion is pivotably supported by the upper protrusion portion of the casing, and the lower support portion is pivotally supported by the lower protrusion portion of the casing so as to be tiltable. Is.

このように本発明によれば、羽根車の外側に位置して傾動可能とされる流量調整部を配設し、水路の水位変化等に対して、流量調整部を羽根車周りに傾動させて、羽根車に到達する水の流量を調整可能とする中、流量調整部をケーシングから羽根車軸周囲に突出させた上下の突出部に取り付けて、羽根車と同じ中心軸周りに傾動させるようにすることにより、流量調整部がケーシングの一部として静止状態の突出部に対して動く状態となって、突出部と流量調整部支持部相互間の相対的な動きを極めて少なくすることができ、両者間の軸受など摺接部での摩耗を生じにくくして耐久性を高められ、流量調整部の支持に係る各部のメンテナンスの頻度を少なくして、保守コストを小さく抑えられる。   As described above, according to the present invention, the flow rate adjustment unit that is positioned outside the impeller and can be tilted is disposed, and the flow rate adjustment unit is tilted around the impeller in response to a change in the water level of the water channel. While the flow rate of water reaching the impeller can be adjusted, the flow rate adjusting part is attached to the upper and lower protruding parts protruding from the casing around the impeller shaft so as to tilt around the same central axis as the impeller. As a result, the flow rate adjusting part is in a state of moving with respect to the stationary protruding part as a part of the casing, and relative movement between the protruding part and the flow rate adjusting part supporting part can be extremely reduced. Durability is enhanced by making it less likely to cause wear at sliding contact portions such as a bearing between them, maintenance frequency of each part related to support of the flow rate adjusting unit is reduced, and maintenance cost can be reduced.

また、本発明に係る水力発電装置は必要に応じて、前記ケーシングにおける流路部より上側で且つ前記上側突出部の上方となる所定位置に設けられて羽根車軸上部を支持する上側軸受を備え、前記上側突出部と羽根車軸の間に、水の上方への移動を抑える止水部を設けるものである。   Further, the hydraulic power generation apparatus according to the present invention is provided with an upper bearing that supports the upper part of the impeller shaft provided at a predetermined position above the flow path part in the casing and above the upper protruding part, if necessary. A water stop portion that suppresses the upward movement of water is provided between the upper protrusion and the impeller shaft.

このように本発明によれば、上側軸受がケーシングの流路部外側となる箇所に配設されると共に、羽根車の上側で羽根車軸とその周囲の上側突出部との間に止水部を設けて、流路部を流れる水が羽根車軸と上側突出部との間を通って上方の上側軸受に向かうのを途中で阻止することにより、上側軸受に水を到達させず、水の浸入を考慮せずに上側軸受を選定でき、必ずしも耐水性を有する軸受を用いる必要はなく、装置のコストを抑えることができる。   As described above, according to the present invention, the upper bearing is disposed at a location on the outside of the flow path portion of the casing, and the water stop portion is provided between the impeller shaft and the upper protruding portion around the impeller on the upper side of the impeller. And preventing the water flowing through the flow path from passing through the impeller shaft and the upper protrusion to the upper bearing on the way, thereby preventing water from reaching the upper bearing and preventing water from entering. The upper bearing can be selected without consideration, and it is not always necessary to use a bearing having water resistance, and the cost of the apparatus can be reduced.

また、本発明に係る水力発電装置は必要に応じて、前記止水部の少なくとも一部として、羽根車軸から径方向に鍔状に突出する形状の鍔状部が設けられると共に、当該鍔状部の直下に前記上側突出部の内周面内径を鍔状部の外径より小さくした小径部が設けられ、前記上側突出部における前記小径部の外側部分が、上側突出部全体で最も外径を小さく形成されて、前記流量調整部の支持部を支持する部位とされるものである。   In addition, the hydroelectric power generator according to the present invention is provided with a hook-shaped portion having a shape protruding in a radial shape from the impeller shaft as at least a part of the water stopping portion, and the hook-shaped portion. A small-diameter portion in which the inner diameter of the upper protrusion is smaller than the outer diameter of the bowl-shaped portion is provided immediately below the outer protrusion, and the outer portion of the small-diameter portion in the upper protrusion has the largest outer diameter in the entire upper protrusion. It is formed small and is a part that supports the support part of the flow rate adjusting part.

このように本発明によれば、上側軸受の下方に位置する上側突出部と羽根車軸との間の止水部として、羽根車軸から外側に突出する鍔状部を設けると共に、その下側に鍔状部外周位置より羽根車軸寄りに上側突出部内周面が位置する小径部を設け、さらにこの小径部の外側を上側突出部で最も小さい外径部分として流量調整部支持部の支持位置とすることにより、羽根車軸側と上側突出部側との接触を要しない簡略な構造ながら両者間の隙間形状を適切に与えて確実に水を上側軸受側に進行させない状態を得られることとなり、羽根車軸の回転に及ぼす影響もなく、上側軸受を水から適切に保護できる状態を得られる。また、上側突出部の羽根車軸に寄せて外径を小さくした小径部をそのまま流量調整部の支持部を支持する部位として用いることで、流量調整部の支持部と上側突出部との間の軸受など、摺接する部品を可能な限り小さくして、コストを抑えることができる。   As described above, according to the present invention, as the water stop portion between the upper projecting portion located below the upper bearing and the impeller shaft, the hook-shaped portion projecting outward from the impeller shaft is provided, and the hook is disposed on the lower side thereof. Provide a small diameter part where the inner peripheral surface of the upper protruding part is located closer to the impeller shaft than the outer peripheral position of the shaped part, and further make the outside of this small diameter part the smallest outer diameter part of the upper protruding part as the support position of the flow rate adjusting part supporting part By this, a simple structure that does not require contact between the impeller shaft side and the upper protruding portion side can provide a state in which the gap shape between the two is appropriately given to ensure that water does not advance to the upper bearing side, and the impeller shaft The upper bearing can be properly protected from water without affecting the rotation. In addition, a bearing between the support part of the flow rate adjustment unit and the upper projection part is used by using the small diameter part whose outer diameter is reduced toward the impeller shaft of the upper projection part as it is as a part that supports the support part of the flow rate adjustment part. For example, it is possible to reduce the cost by reducing the parts in sliding contact as much as possible.

また、本発明に係る水力発電装置は必要に応じて、前記羽根車が、回転中心軸方向に平行な略板状の羽根体を軸周りに多数配設されるクロスフロー型の羽根車とされ、多数の羽根体の端部をそれぞれ一体に取り付けられると共に羽根体に囲まれる中間の空間部分を塞ぐ円板状の二つの支持板を、上下に所定間隔で配設されてなり、前記ケーシングの上側突出部下端部が羽根車の上側の支持板近傍に達する、及び/又は、下側突出部上端部が羽根車の下側の支持板近傍に達するものである。   In addition, the hydroelectric generator according to the present invention is a cross-flow type impeller in which the impeller includes a large number of substantially plate-shaped impellers parallel to the rotation center axis direction. Two end plates of a plurality of blades are integrally attached and two disk-shaped support plates that close an intermediate space surrounded by the blades are arranged vertically at a predetermined interval, The lower end of the upper protrusion reaches the vicinity of the upper support plate of the impeller, and / or the upper end of the lower protrusion reaches the vicinity of the lower support plate of the impeller.

このように本発明によれば、クロスフロー型の羽根車における羽根体の両端部を固定支持する上下の支持板を設け、この羽根車の支持板近傍にケーシングの突出部の端部を位置させて、突出部と羽根車間の隙間を小さくすることにより、突出部の内側に、流路部を流れる水や水中に含まれる異物が進入するのを抑制でき、羽根車軸の回転への悪影響をより小さくすることができる。   As described above, according to the present invention, the upper and lower support plates for fixing and supporting the both end portions of the blade body in the cross flow type impeller are provided, and the end portion of the protruding portion of the casing is positioned in the vicinity of the support plate of the impeller. Thus, by reducing the gap between the protrusion and the impeller, it is possible to suppress the water flowing through the flow path and the foreign matter contained in the water from entering the inside of the protrusion, thereby further adversely affecting the rotation of the impeller shaft. Can be small.

また、本発明に係る水力発電装置は必要に応じて、前記ケーシングにおける流路部より下側で且つ前記下側突出部の下方となる所定位置に設けられて羽根車軸下部を支持する下側軸受を備え、前記羽根車軸における下側軸受の直上部位に、羽根車軸から径方向に鍔状に突出する形状の鍔状部が設けられるものである。   In addition, the hydroelectric generator according to the present invention is provided with a lower bearing that supports the lower portion of the impeller shaft provided at a predetermined position below the flow path portion in the casing and below the lower protruding portion, if necessary. And a hook-shaped portion having a shape protruding in a hook shape in the radial direction from the impeller shaft is provided at a position directly above the lower bearing of the impeller shaft.

このように本発明によれば、下側軸受近傍の羽根車軸の外周位置から径方向に突出する鍔状部を設け、鍔状部が下側軸受上端に沿うようにして、鍔状部と下側軸受との間に横方向の狭い隙間を生じさせることにより、下側突出部上部から下側軸受に通じる隙間を複雑な形状にでき、流路部を流れる水中に含まれる異物が下側突出部と羽根車軸との間を通って下側軸受に進入しようとするのを抑制でき、異物の下側軸受への悪影響を防いで、羽根車軸の回転をスムーズ且つ安定したものとすることができる。   As described above, according to the present invention, the hook-like portion that protrudes in the radial direction from the outer peripheral position of the impeller shaft in the vicinity of the lower bearing is provided, and the hook-like portion extends along the upper end of the lower bearing, By creating a narrow gap in the lateral direction with the side bearing, the gap leading from the upper part of the lower protruding part to the lower bearing can be made into a complicated shape, and foreign matter contained in the water flowing through the flow path part protrudes downward It is possible to suppress the entry to the lower bearing through between the head portion and the impeller shaft, to prevent adverse effects on the lower bearing of the foreign matter, and to make the rotation of the impeller shaft smooth and stable. .

本発明の一実施形態に係る水力発電装置の斜視図である。It is a perspective view of the hydroelectric generator concerning one embodiment of the present invention. 本発明の一実施形態に係る水力発電装置の正面図である。It is a front view of the hydroelectric generator concerning one embodiment of the present invention. 本発明の一実施形態に係る水力発電装置の背面図である。It is a rear view of the hydraulic power unit concerning one embodiment of the present invention. 図2のA−A断面図である。It is AA sectional drawing of FIG. 本発明の一実施形態に係る水力発電装置における流量調整部全開状態での水通過状態説明図である。It is a water passage state explanatory view in the flow rate adjustment part full open state in the hydroelectric generator concerning one embodiment of the present invention. 本発明の一実施形態に係る水力発電装置における要部の断面図である。It is sectional drawing of the principal part in the hydraulic power unit which concerns on one Embodiment of this invention. 本発明の一実施形態に係る水力発電装置における羽根車及び流量調整部の概略斜視図である。1 is a schematic perspective view of an impeller and a flow rate adjusting unit in a hydroelectric generator according to an embodiment of the present invention. 本発明の一実施形態に係る水力発電装置における上側軸受及び上側突出部の概略断面図である。It is a schematic sectional drawing of the upper side bearing and upper side protrusion part in the hydraulic power unit concerning one embodiment of the present invention. 本発明の一実施形態に係る水力発電装置における下側軸受及び下側突出部の概略断面図である。It is a schematic sectional drawing of the lower side bearing and lower side protrusion part in the hydraulic power unit which concerns on one Embodiment of this invention. 本発明の一実施形態に係る水力発電装置における流量調整部の全開位置配置状態説明図である。It is a fully open position arrangement state explanatory view of the flow volume adjustment part in the hydroelectric generator concerning one embodiment of the present invention. 本発明の一実施形態に係る水力発電装置における流量調整部の閉じ側限界位置配置状態説明図である。It is a closed side limit position arrangement state explanatory view of the flow volume adjustment part in the hydroelectric generator concerning one embodiment of the present invention. 本発明の一実施形態に係る水力発電装置における流量調整状態の正面図である。It is a front view of the flow volume adjustment state in the hydroelectric generator concerning one embodiment of the present invention.

以下、本発明の一実施形態に係る水力発電装置を前記図1ないし図12に基づいて説明する。本実施形態においては、河川や用水路等の小規模水路内に、装置周囲を堰き止めつつ設置される小型の水力発電装置の例について説明する。   Hereinafter, a hydroelectric generator according to an embodiment of the present invention will be described with reference to FIGS. 1 to 12. In the present embodiment, an example of a small hydroelectric generator installed in a small-scale water channel such as a river or an irrigation channel while damming the periphery of the device will be described.

前記各図において本実施形態に係る水力発電装置1は、内側の流路部51を取り囲む略箱状体として形成されるケーシング50と、ケーシング50内側の流路部51に回転可能として配設されるクロスフロー型の羽根車10と、ケーシング50における流路部51の外側となる部位に羽根車10で駆動可能として配設される発電機40と、羽根車10の回転中心位置に羽根車10と一体に取付けられる羽根車軸15と、湾曲面を有する略板状体で形成され、羽根車10の外側近傍に羽根車10の中心軸を中心として傾動可能に配設される流量調整部20とを備える構成であり、ケーシング50の流路部51を通る水の流れの力で羽根車10を回転させ、羽根車10から発電機40に駆動力を伝えて発電を行うものである。   In each of the drawings, the hydroelectric generator 1 according to the present embodiment is disposed in a casing 50 that is formed as a substantially box-like body that surrounds the inner flow path 51 and is rotatable in the flow path 51 inside the casing 50. The cross flow type impeller 10, the generator 40 disposed so as to be driven by the impeller 10 in a portion of the casing 50 outside the flow path portion 51, and the impeller 10 at the rotational center position of the impeller 10. An impeller shaft 15 that is attached integrally with the flow wheel, and a flow rate adjusting unit 20 that is formed of a substantially plate-like body having a curved surface and is disposed in the vicinity of the outside of the impeller 10 so as to be tiltable about the central axis of the impeller 10. The impeller 10 is rotated by the force of the flow of water passing through the flow path portion 51 of the casing 50, and the driving force is transmitted from the impeller 10 to the generator 40 to generate power.

この水力発電装置1は、発電機40を上部、羽根車10を下部にそれぞれ配置して、羽根車10の回転中心軸が垂直向きとなっている立軸形であり、水の流れ方向に対し直交する横方向に羽根車10を二つ並べた構造を有する。また、ケーシング50の上部に、各羽根車10でそれぞれ駆動される発電機40が横に二つ並べて設けられる。   This hydroelectric generator 1 is a vertical shaft type in which the generator 40 is arranged at the upper part and the impeller 10 is arranged at the lower part, and the rotation center axis of the impeller 10 is vertical, and is orthogonal to the water flow direction. It has the structure which arranged two impellers 10 in the horizontal direction. In addition, two generators 40 respectively driven by the respective impellers 10 are provided side by side on the upper portion of the casing 50.

そして、この水力発電装置1は、用水路等の小さな水路90内における流れのある水中にケーシング50が一部没した状態で設置され、ケーシング50を前後に貫通する流路部51に水流を導くことで、二つ並んだ羽根車10が水流を受けてそれぞれ回転し、各羽根車10から伝達される駆動力で各発電機40を作動させ、発電を行う仕組みである。水は、ケーシング50の流路部51における前面側の開口(流入口51a)から流入して、二つの羽根車10をそれぞれ回転させた後、ケーシング50の後面側の開口(流出口51b)から出ていくこととなる。   The hydroelectric generator 1 is installed in a state where the casing 50 is partially submerged in the flowing water in a small water channel 90 such as an irrigation channel, and guides the water flow to the flow path portion 51 penetrating the casing 50 back and forth. Thus, the two impellers 10 arranged side by side receive the water flow and rotate, and each generator 40 is operated by the driving force transmitted from each impeller 10 to generate electricity. Water flows in from the opening (inlet 51a) on the front surface side in the flow path portion 51 of the casing 50 and rotates the two impellers 10 respectively, and then from the opening (outlet 51b) on the rear surface side of the casing 50. It will go out.

このケーシング50の流路部51上側部分のうち、羽根車軸15に近い一部が、下方へ所定長さ突出する形状で、且つ羽根車軸周囲を取り囲む略円筒形状の上側突出部56とされる。また、ケーシング50の流路部51下側部分のうち、羽根車軸15に近い一部が、上方へ所定長さ突出する形状で、且つ、羽根車軸周囲を取り囲む略円筒形状の下側突出部57とされる。   Of the upper part of the flow path 51 of the casing 50, a part close to the impeller shaft 15 has a shape that protrudes downward by a predetermined length and is a substantially cylindrical upper protrusion 56 that surrounds the periphery of the impeller shaft. In addition, of the lower part of the flow path 51 of the casing 50, a part close to the impeller shaft 15 projects upward by a predetermined length, and the substantially cylindrical lower projecting portion 57 that surrounds the periphery of the impeller shaft. It is said.

この他、ケーシング50の流路部51における流入口近傍には、開口端からケーシング内側へ向かって徐々に流路を狭めて水の流速を増大させつつ、水を流路部51中央に案内する縮小流路を生じさせる、上側案内板52、下側案内板53、及び左右の横案内板54がそれぞれ流路部51の上下左右の所定範囲に設けられる。これら各案内板が、横に並んだ二つの羽根車10に対し、水の流れ方向のより上流側に位置する配置となって、一種のガイドベーンの役割を果している。   In addition, in the vicinity of the inlet of the flow path 51 of the casing 50, water is guided to the center of the flow path 51 while gradually increasing the flow rate of water by gradually narrowing the flow path from the open end toward the inside of the casing. An upper guide plate 52, a lower guide plate 53, and left and right lateral guide plates 54 that generate a reduced flow path are provided in predetermined ranges on the upper, lower, left, and right sides of the flow path portion 51, respectively. Each of these guide plates is arranged on the upstream side in the water flow direction with respect to the two impellers 10 arranged side by side, and plays a role of a kind of guide vane.

前記羽根車10は、細長い羽根体11をその長手方向が回転中心軸方向と平行になるようにして軸周りに多数配設されるクロスフロー型とされ、回転軸方向における上下両端部には、各羽根体11端部を一体に取り付けられてこれらを支持する円板状の支持板13、14を配設される構成である。そして、この羽根車10の回転中心となる位置を貫通するようにして、羽根車軸15が支持板13、14に一体に固定して配設される。支持板13、14は単純な板状となっており、各羽根体11に囲まれる中央の空間部分及び各羽根体11間の隙間部分を、羽根車10の上側や下側の空間から隔離している。   The impeller 10 is a cross-flow type in which a large number of elongated blade bodies 11 are arranged around an axis so that the longitudinal direction thereof is parallel to the rotation center axis direction. It is the structure by which the disk-shaped support plates 13 and 14 which are attached integrally and support these each blade | wing body 11 are arrange | positioned. Then, the impeller shaft 15 is disposed so as to be integrally fixed to the support plates 13 and 14 so as to pass through the position serving as the rotation center of the impeller 10. The support plates 13 and 14 have a simple plate shape, and the central space portion surrounded by each blade body 11 and the gap portion between each blade body 11 are isolated from the space above and below the impeller 10. ing.

この羽根車10は、羽根車10の回転中心位置で羽根車10と一体化している羽根車軸15を、ケーシング50に設けた上側軸受31及び下側軸受32で回転可能に支持することで、ケーシング50内側の流路部51に回転中心軸を水の流れ方向と直角となる向きとして回転可能に配置される。   The impeller 10 is configured such that the impeller shaft 15 integrated with the impeller 10 at the rotational center position of the impeller 10 is rotatably supported by an upper bearing 31 and a lower bearing 32 provided in the casing 50. The rotation center axis is rotatably arranged in the flow path portion 51 on the inner side 50 with the direction perpendicular to the water flow direction.

羽根車10の回転は、流路部51の外側のケーシング50内で、羽根車10と一体の羽根車軸15から、直接、あるいはベルト等の伝動手段を介して、発電機40に伝達される。なお、羽根車10から発電機40への駆動力の伝達に際しては、羽根車軸15の回転を増速した状態で発電機40側に伝える増速機構を介在させる構成とすることもできる。   The rotation of the impeller 10 is transmitted from the impeller shaft 15 integral with the impeller 10 to the generator 40 directly or via a transmission means such as a belt in the casing 50 outside the flow path portion 51. When transmitting the driving force from the impeller 10 to the generator 40, a speed increasing mechanism for transmitting the driving force to the generator 40 in a state where the rotation of the impeller shaft 15 is increased may be interposed.

この羽根車10の上下には、ケーシング50の上側突出部56と下側突出部57が位置しており、上側突出部56下端が羽根車10の上側の支持板13近傍に所定間隔をなして存在し、また、下側突出部57上端が、羽根車10の下側の支持板14近傍に所定間隔をなして存在する状態となっている(図8、図9参照)。   An upper protrusion 56 and a lower protrusion 57 of the casing 50 are positioned above and below the impeller 10, and a lower end of the upper protrusion 56 forms a predetermined interval in the vicinity of the upper support plate 13 of the impeller 10. In addition, the upper ends of the lower protrusions 57 are present in the vicinity of the support plate 14 on the lower side of the impeller 10 at a predetermined interval (see FIGS. 8 and 9).

羽根車軸15と上側突出部56の間には、水の上方への移動を抑える止水部として、羽根車軸15から径方向に鍔状に突出する形状の鍔状部16が、羽根車軸15に一体に取り付けられて設けられると共に、この鍔状部16のすぐ下側における上側突出部56と羽根車軸15との隙間部分を鍔状部16の外周縁より内方に位置させるようにしている。詳細には、上側突出部56のうち、鍔状部16のすぐ下側に位置する部分を、鍔状部16の外径より内周面の内径を小さくした小径部56aとすると共に、この上側突出部56の小径部56aと羽根車軸15とが所定間隔をなすようにそれぞれを配置する構成である(図8参照)。   Between the impeller shaft 15 and the upper protruding portion 56, a hook-like portion 16 having a shape protruding in a radial shape from the impeller shaft 15 is provided on the impeller shaft 15 as a water stop portion that suppresses upward movement of water. The gap portion between the upper protruding portion 56 and the impeller shaft 15 just below the flange-shaped portion 16 is positioned inward from the outer peripheral edge of the flange-shaped portion 16. Specifically, a portion of the upper protrusion 56 that is located immediately below the flange-shaped portion 16 is a small-diameter portion 56a in which the inner diameter of the inner peripheral surface is smaller than the outer diameter of the flange-shaped portion 16, and the upper side. This is a configuration in which the small-diameter portion 56a of the protruding portion 56 and the impeller shaft 15 are arranged so as to form a predetermined interval (see FIG. 8).

また、上側突出部56の小径部56aは、その外側部分が上側突出部56の他部分よりも小さく形成されており、この小径部56aの外側に流量調整部20の支持部21を配設して、上側突出部56で支持部21を回動可能に支持する仕組みである。   Further, the small-diameter portion 56a of the upper protruding portion 56 has an outer portion formed smaller than the other portion of the upper protruding portion 56, and the support portion 21 of the flow rate adjusting unit 20 is disposed outside the small-diameter portion 56a. Thus, the support portion 21 is rotatably supported by the upper protruding portion 56.

前記上側軸受31は、玉軸受等の公知の軸受であり、流路部51の上側で上側突出部56の上方となるケーシング50の上部所定位置に設けられ、羽根車軸15の上端部寄りの所定箇所を回動可能に支持するものである。   The upper bearing 31 is a known bearing such as a ball bearing, and is provided at a predetermined upper position of the casing 50 on the upper side of the flow path portion 51 and above the upper protruding portion 56, and is closer to the upper end portion of the impeller shaft 15. The part is rotatably supported.

この上側軸受31は、ケーシング50における流路部51の外に配設されると共に、軸受下側の上側突出部56と羽根車軸15との間に、止水部としての鍔状部16や、上側突出部56と羽根車軸15との間の狭く曲がった隙間部分を設けて、水が上側軸受31に極めて到達しにくくなっていることから、水の浸入を考慮した耐水性のある軸受とする必要はなく、汎用的な軸受を用いることができ、軸受のコストを抑えられる。   The upper bearing 31 is disposed outside the flow path portion 51 in the casing 50, and between the upper protrusion 56 on the lower side of the bearing and the impeller shaft 15, the hook-shaped portion 16 as a water stop portion, A narrow bent gap between the upper protrusion 56 and the impeller shaft 15 is provided, and water is extremely difficult to reach the upper bearing 31, so that the bearing is water-resistant in consideration of water intrusion. There is no need, and a general-purpose bearing can be used, and the cost of the bearing can be reduced.

前記下側軸受32は、流路部51の下側で下側突出部57の下方となるケーシング50の下部所定位置に設けられ、羽根車軸15の下端部を回動可能に支持するものである。この下側軸受32は、ほぼ常時水と接触する状況に対応するものとして、ケーシング50側に固定される軸受ハウジング32aと、羽根車軸15下端部表面部分に一体に取り付けられて、軸受ハウジング32aの内面と摺接するブシュ32bとを備える構成である。
また、下側軸受32の直上部分には、羽根車軸側から外方に鍔状に突出する鍔状部32cが、ブシュ32b上部に一体化されて羽根車軸と一体に回動する状態で設けられる。
The lower bearing 32 is provided at a predetermined lower position of the casing 50 below the flow path portion 51 and below the lower protrusion 57, and rotatably supports the lower end portion of the impeller shaft 15. . The lower bearing 32 corresponds to a situation in which the lower bearing 32 is in constant contact with water, and is integrally attached to a bearing housing 32a fixed to the casing 50 side and a lower end surface portion of the impeller 15 so that the bearing housing 32a The bush 32b is in sliding contact with the inner surface.
Further, a hook-like portion 32c that protrudes outwardly from the impeller shaft side in a hook shape is provided on the portion directly above the lower bearing 32 so as to be integrated with the upper portion of the bush 32b and rotated integrally with the impeller shaft. .

前記流量調整部20は、羽根車10の回転作動する範囲の最外周部をなす仮想略円筒面に沿う湾曲面を有する略板状体で形成され、前記仮想略円筒面外側近傍に羽根車10と同じ回転中心軸を中心として所定角度範囲傾動可能に配設される構成である。   The flow rate adjusting unit 20 is formed of a substantially plate-like body having a curved surface along a virtual substantially cylindrical surface that forms the outermost peripheral portion of the range in which the impeller 10 rotates, and the impeller 10 is located near the outside of the virtual substantially cylindrical surface. It is the structure arrange | positioned so that a predetermined angle range can be tilted centering | focusing on the same rotation center axis | shaft.

この流量調整部20は、流路部51前方部分に対し、横案内板54と共に、羽根車10外周を一部覆って、流路部51の水の羽根車10内への流れ込みが適切な範囲で行われるようにする。そして、流量調整部20は、その傾動により、横案内板54に覆われる流路部51の外方寄り位置から、羽根車10の流路部51中央に位置する部位までの範囲で移動し、流路部51における最小断面積部分の開口幅を定義している、流量調整部20の流路部中央寄りとなる側端位置を変えて(図12参照)、流路部51を通過する水の流量を調整できる仕組みである。   The flow rate adjusting unit 20 covers a part of the outer periphery of the impeller 10 together with the lateral guide plate 54 with respect to the front portion of the flow channel 51, and the flow of the flow channel 51 into the impeller 10 is appropriate. To be done in. Then, the flow rate adjustment unit 20 is moved in a range from the position closer to the outer side of the flow channel unit 51 covered by the lateral guide plate 54 to a portion located in the center of the flow channel unit 51 of the impeller 10 due to the tilt, The water passing through the flow path 51 is changed by changing the side end position near the center of the flow path of the flow rate adjuster 20 that defines the opening width of the minimum cross-sectional area portion in the flow path 51 (see FIG. 12). It is a mechanism that can adjust the flow rate.

また、流量調整部20は、羽根車10の外側におけるこの流量調整部20位置で、流路部51の水の羽根車10内への流れ込みを規制することで、流路部51における水の流れを維持しつつ、羽根車10の回転の可否を制御できることとなる。   Further, the flow rate adjustment unit 20 regulates the flow of water into the impeller 10 of the flow channel unit 51 at the position of the flow rate adjustment unit 20 outside the impeller 10, thereby allowing the flow of water in the flow channel unit 51. Thus, whether or not the impeller 10 can be rotated can be controlled.

この流量調整部20は、その上下端部から羽根車軸15側にそれぞれ突出形成される略板状の支持部21、22を有する。上側の支持部21は、ケーシング50の流路部51上側の上側突出部56における小径部56aに、羽根車10の回転中心と回動の中心位置を一致させる位置関係として回動可能に支持される。また、下側の支持部22は、ケーシング50の流路部51下側の下側突出部57に、羽根車10の回転中心と回動の中心位置を一致させる位置関係として回動可能に支持される。   The flow rate adjusting part 20 has substantially plate-like support parts 21 and 22 that are formed to project from the upper and lower ends to the impeller shaft 15 side. The upper support portion 21 is rotatably supported by a small diameter portion 56a of the upper protrusion portion 56 on the upper side of the flow path portion 51 of the casing 50 as a positional relationship that matches the rotation center of the impeller 10 and the rotation center position. The Further, the lower support portion 22 is rotatably supported by the lower projecting portion 57 below the flow path portion 51 of the casing 50 as a positional relationship in which the rotation center of the impeller 10 and the rotation center position coincide with each other. Is done.

流量調整部20の上側の支持部21と上側突出部56との間、また、流量調整部20の下側の支持部22と下側突出部57との間には、流量調整部20の傾動時における各支持部と突出部間の摩擦を軽減する公知のブシュ、滑り軸受等の摩擦抑制部材が設けられる。   The flow rate adjusting unit 20 is tilted between the upper support portion 21 and the upper protruding portion 56 of the flow rate adjusting unit 20 and between the lower support portion 22 and the lower protruding portion 57 of the flow rate adjusting unit 20. A friction suppressing member such as a well-known bush or a sliding bearing that reduces friction between each support portion and the protruding portion at the time is provided.

流量調整部20における上側の支持部21を支持する部分として、上側突出部56のうち外径を小さく形成した小径部56aを用いることから、支持部21と上側突出部56との間における軸受等の摺接が生じる部品を、可能な限り小さいものとすることができ、摺接部分を小さくして信頼性の向上が図れると共に、部品のコストを低く抑えることができる。   Since the small diameter part 56a which formed the outer diameter small among the upper protrusion parts 56 is used as a part which supports the upper support part 21 in the flow volume adjustment part 20, the bearing etc. between the support part 21 and the upper protrusion part 56 are used. The parts that cause the sliding contact can be made as small as possible, and the sliding part can be made small to improve the reliability, and the cost of the parts can be kept low.

なお、上側の支持部21には、流量調整部20の傾動中心を中心とする所定角度範囲の円弧状の規制孔21aが設けられる。一方、ケーシング50の流路部51上側部分には、この支持部21の規制孔21aを通るように下方へ所定長さ突出する形状として形成される傾動規制部材58が固定配設される。規制孔21aと傾動規制部材58との位置関係は、例えば流量調整部20が、流路部内方への傾動限界位置まで達した場合に、規制孔21aの一の端部に傾動規制部材58aが接触して、流量調整部20がさらに内方へ傾動できないよう傾動規制部材58の拘束を受ける状態となり、また、流量調整部20が、流路部外方への傾動限界位置まで達した場合に、規制孔21aの他の端部に傾動規制部材58が接触して、流量調整部20がさらに外方へ傾動できないよう傾動規制部材58の拘束を受ける状態となるものとされる(図10、図11参照)。   The upper support portion 21 is provided with an arc-shaped restriction hole 21a having a predetermined angle range centered on the tilting center of the flow rate adjusting portion 20. On the other hand, on the upper part of the flow passage 51 of the casing 50, a tilt restricting member 58 formed in a shape protruding downward by a predetermined length so as to pass through the restricting hole 21a of the support 21 is fixedly disposed. The positional relationship between the regulation hole 21a and the tilt regulation member 58 is such that, for example, when the flow rate adjusting unit 20 reaches the tilt limit position inward of the flow path part, the tilt regulation member 58a is provided at one end of the regulation hole 21a. When the flow regulating unit 20 is restrained by the tilt regulating member 58 so that the flow regulating unit 20 cannot tilt further inward, and the flow regulating unit 20 reaches the tilt limit position to the outside of the flow path unit. The tilt regulating member 58 comes into contact with the other end of the regulating hole 21a, and the flow regulating unit 20 is restrained by the tilt regulating member 58 so that it cannot tilt further outward (FIG. 10, FIG. 11).

こうして、傾動規制部材58が規制孔21a内に常に位置して、傾動規制部材58をこの規制孔21aの外まで移行させようとする動きを拘束することで、流量調整部20の傾動は所定の角度範囲内に確実に規制される。このように、流量調整部20ごとに、ケーシング50側から突出する一つの傾動規制部材58を設けると共に、これを通す規制孔21aを支持部21に設けるのみで、各流量調整部20の傾動範囲を確実に限定でき、必要最小限の部品による簡略な構成でコストを抑えつつ流量調整部20を無理なく安全に作動させられる。   In this way, the tilt regulating member 58 is always positioned in the regulation hole 21a, and the movement of the tilt regulation member 58 to be moved to the outside of the regulation hole 21a is restrained. It is reliably regulated within the angular range. Thus, for each flow rate adjustment unit 20, only one tilt restriction member 58 that protrudes from the casing 50 side is provided, and only the restriction hole 21 a that passes therethrough is provided in the support portion 21. The flow rate adjusting unit 20 can be operated safely and comfortably while suppressing the cost with a simple configuration with the minimum necessary parts.

この他、流量調整部20には、上端部の最外周部分に形成された多数の歯からなる歯部24を有しており、この歯部24に駆動用の歯車25を噛み合わせて、この歯車25を上方の手動駆動用のハンドル26又は電動機等の駆動部55で回転させ、流量調整部20を駆動して所定角度位置に傾動させる仕組みである。このように流量調整部20の上端部外周側に歯部24を設けて、上方のケーシング50上側部分からこの歯部24に駆動力を与えるようにして、羽根車10に対する流量調整部20の位置を調整することで、駆動力を効率よく強力に流量調整部に伝達して流量調整部20を傾動させられ、流路部51を流れる水の勢いが強く流量調整部20に加わる抵抗力が大きい場合でも、確実に流量調整部20の調整が行える。   In addition, the flow rate adjusting portion 20 has a tooth portion 24 formed of a large number of teeth formed on the outermost peripheral portion of the upper end portion, and a gear 25 for driving is meshed with the tooth portion 24, The gear 25 is rotated by an upper manual driving handle 26 or a driving unit 55 such as an electric motor, and the flow rate adjusting unit 20 is driven to tilt to a predetermined angular position. In this way, the tooth portion 24 is provided on the outer peripheral side of the upper end portion of the flow rate adjusting unit 20, and the driving force is applied to the tooth portion 24 from the upper portion of the upper casing 50 so that the position of the flow rate adjusting unit 20 with respect to the impeller 10. By adjusting the flow rate, the driving force can be transmitted efficiently and powerfully to the flow rate adjustment unit to tilt the flow rate adjustment unit 20, and the force of water flowing through the flow path unit 51 is strong and the resistance force applied to the flow rate adjustment unit 20 is large. Even in this case, the flow rate adjusting unit 20 can be adjusted with certainty.

また、左右二つの羽根車10にそれぞれ対応する左右二つの流量調整部20がケーシング50内に配設された状態で、二つの流量調整部20の歯部24を直接噛み合わせるか、これら二つの歯部24に噛み合う所定の連動用歯車を配設するようにしてもよく、左右二つの流量調整部20が直接又は連動用歯車を介して連動して傾動することで、流量調整部20を対称に移動させて流量調整部20間の開口幅を偏り無く調整できると共に、一方の流量調整部20に駆動力を与えて傾動させると、他方の流量調整部も追随して傾動させられ、二つの流量調整部20を傾動させるのに、駆動力の付与を一方の流量調整部20のみに対し行えば済むこととなる。   Further, in the state where the two left and right flow rate adjusting units 20 corresponding to the two left and right impellers 10 are disposed in the casing 50, the teeth 24 of the two flow rate adjusting units 20 are directly meshed with each other. A predetermined interlocking gear meshing with the tooth portion 24 may be disposed, and the two flow rate adjusting parts 20 on the left and right are tilted directly or interlocked via the interlocking gear so that the flow rate adjusting part 20 is symmetrical. The opening width between the flow rate adjusting units 20 can be adjusted without deviation, and when one of the flow rate adjusting units 20 is tilted by applying a driving force, the other flow rate adjusting unit is also tilted following the two, In order to tilt the flow rate adjustment unit 20, it is only necessary to apply the driving force to only one flow rate adjustment unit 20.

水力発電装置を設ける水路90は、水の流量が季節変化で少なくなる場合でも発電が行えるように、水力発電装置1の周囲を堰き止め板91で堰き止めて水の流れを制限し、水路における水力発電装置の前面位置と後面位置に所定の水位差が生じるようにしている。ただし、水路90における水の流量が少ない場合、水力発電装置1の流路部51を通過させる単位時間あたりの水量を制限しないと、水の流れ過ぎで装置前面位置の水位が過度に下がり、羽根車10に至る水の落差を十分に与えられなくなって、水路内の水自体が適度な流速をもって流れるものでないと、羽根車10を回転させるのに必要な水のエネルギーが得られないおそれがある。   The water channel 90 provided with the hydroelectric power generation device restricts the flow of water by damming the periphery of the hydroelectric power generation device 1 with a damming plate 91 so that power can be generated even when the flow rate of water decreases due to seasonal changes. A predetermined water level difference is generated between the front surface position and the rear surface position of the hydroelectric generator. However, when the flow rate of water in the water channel 90 is small, unless the amount of water per unit time passing through the flow path portion 51 of the hydroelectric generator 1 is limited, the water level at the front surface of the device is excessively lowered due to excessive water flow, and the blades If the water drop leading to the car 10 cannot be given sufficiently and the water in the water channel itself does not flow at an appropriate flow rate, there is a risk that the water energy required to rotate the impeller 10 cannot be obtained. .

こうした発電装置上流側の水路90内における水の状況に対応して、流量調整部20の位置を傾動により変化させ、流量調整部20が流路部51を閉じる範囲を調整して、水の流路部51を通過する流量を変えられるようにしている。例えば、水路90における水の流量が少ない場合、流量調整部20を流路部中央、すなわち内方に傾動させ、流量調整部20により流路部51を閉じる範囲を大きくして、流量調整部20のある流路部51における最小断面積部分の開口幅を狭くすることで、流路部51を通過する単位時間あたりの流量を制限して、水路90の発電装置前面位置での水位を過度に下げないようにすることができる。   Corresponding to the state of water in the water channel 90 on the upstream side of the power generation device, the position of the flow rate adjustment unit 20 is changed by tilting, and the range in which the flow rate adjustment unit 20 closes the flow path unit 51 is adjusted to The flow rate passing through the path portion 51 can be changed. For example, when the flow rate of water in the water channel 90 is small, the flow rate adjustment unit 20 is tilted in the center of the flow channel unit, that is, inward, and the range in which the flow channel unit 51 is closed by the flow rate adjustment unit 20 is increased. The flow rate per unit time passing through the flow path 51 is limited by narrowing the opening width of the minimum cross-sectional area portion in the flow path 51 with the excess, and the water level at the front position of the power generation device in the water channel 90 is excessive. It can be prevented from lowering.

ただし、流量調整部20は、流路部51に対し羽根車10外周を覆う範囲を調整して、水の羽根車10内への進入度合いを変えられるものでもあることから、流量調整部20を内方に傾動させて、流量調整部20により羽根車10外周を覆う範囲を所定割合以上大きくして、水の羽根車10内への進入を過剰に抑えた状態とした場合、羽根車10の羽根体11間を通って羽根体11に囲まれた内側の空間に達し、さらに羽根体11間を抜けて羽根車10外に達する、クロスフロー型羽根車特有の水の流れが有効に生じなくなり、羽根車10が有効に作動せず発電機40を駆動できない状態に至る。このため、通常はこれより外側の範囲で流量調整部20の調整を行う。   However, the flow rate adjustment unit 20 can also adjust the range of the outer periphery of the impeller 10 with respect to the flow path unit 51 to change the degree of water entering the impeller 10. When the impeller 10 is tilted inwardly and the range of the outer periphery of the impeller 10 covered by the flow rate adjusting unit 20 is increased by a predetermined ratio or more to prevent water from entering the impeller 10 excessively, The flow of water peculiar to the cross-flow type impeller, which passes through the blade bodies 11 and reaches the inner space surrounded by the blade bodies 11 and further passes through the blade bodies 11 and reaches the outside of the impeller 10 ceases to occur effectively. The impeller 10 does not operate effectively, and the generator 40 cannot be driven. For this reason, normally, the flow volume adjustment part 20 is adjusted in the range outside this.

流量調整部20の傾動は、流路部外側となるケーシング50上部に設けたハンドル26、又は電動機等の駆動部55と、流量調整部20上端の歯部24とを、歯車25を介して連動させ、例えば外部から駆動部55を作動させてこの駆動部55で流量調整部20に回転力を伝達することで実現させるようにしている。なお、駆動部55等の駆動源から流量調整部20の歯部24への駆動力の伝達は、単一の歯車25に限らず、複数の歯車からなる歯車列を用いるようにしてもよく、この場合使用状況や駆動源の種類に応じて適宜減速比又は増速比を設定することができる。   The tilting of the flow rate adjusting unit 20 is linked to the handle 26 provided on the casing 50 on the outer side of the flow channel unit or the driving unit 55 such as an electric motor and the tooth portion 24 at the upper end of the flow rate adjusting unit 20 via a gear 25. For example, the driving unit 55 is operated from the outside, and the driving unit 55 transmits the rotational force to the flow rate adjusting unit 20 to realize this. The transmission of the driving force from the driving source such as the driving unit 55 to the tooth portion 24 of the flow rate adjusting unit 20 is not limited to the single gear 25, and a gear train including a plurality of gears may be used. In this case, the speed reduction ratio or speed increase ratio can be set as appropriate according to the use situation and the type of drive source.

こうした流量調整部20の調整に係る傾動に際しては、水路90内の水位などの状況に応じて作業者が外部から駆動部55を作動させる操作を行って、流量調整部20を傾動させる仕組みとする他、水位検出用のセンサ等を別途設置して装置前面位置での水位を検出し、この検出される水位がほぼ一定となるように流量調整部20を駆動部55で傾動させる、詳細には、水位が上がった際には流量調整部20を外方に傾動させ、また、水位が下がった際には流量調整部20を内方に傾動させ、流量を調整する、といった調整制御を、水位が変化しなくなるまで自動的に行う仕組みを採用することもできる。   When tilting according to the adjustment of the flow rate adjustment unit 20, the operator operates the drive unit 55 from the outside according to the situation such as the water level in the water channel 90 to tilt the flow rate adjustment unit 20. In addition, a water level detection sensor or the like is separately installed to detect the water level at the front of the apparatus, and the flow rate adjustment unit 20 is tilted by the drive unit 55 so that the detected water level is substantially constant. When the water level rises, the flow rate adjustment unit 20 is tilted outward, and when the water level falls, the flow rate adjustment unit 20 is tilted inward to adjust the flow rate. It is also possible to adopt a mechanism that automatically performs until no changes occur.

こうして水位がほぼ一定となるように流量調整部20を自動制御で細かく調整すると、季節変化より短い時間間隔で生じる水の流量の変化に対しても適切に対応して羽根車10の回転を安定化させることができ、発電出力の変動を抑えられる。   If the flow rate adjustment unit 20 is finely adjusted by automatic control so that the water level becomes substantially constant in this way, the rotation of the impeller 10 can be stabilized appropriately in response to the change in the flow rate of water that occurs at a time interval shorter than the seasonal change. And fluctuations in power generation output can be suppressed.

なお、水路90を流れる水の流量に季節変化は生じるものの、短期の変動はほとんど無く、流量調整部20の調整を頻繁に行わずに済み、水の流量の季節変化への対応として年に数回程度の調整で十分である場合には、流量調整部20の傾動調整に係る機構を作業者の直接の操作により調整可能なもの、例えば、流量調整部20と連動する歯車25をケーシング50上のハンドル26操作で回転させて、流量調整部20を傾動させる機構としてもよく、手動操作を前提とした簡略な機構の採用で、装置のコストダウンが図れることとなる。   In addition, although the seasonal change occurs in the flow rate of the water flowing through the water channel 90, there is almost no short-term fluctuation, and it is not necessary to frequently adjust the flow rate adjustment unit 20, and several years a year as a response to the seasonal change in the water flow rate. When the adjustment of about once is sufficient, a mechanism for adjusting the tilt of the flow rate adjusting unit 20 can be adjusted by a direct operation of the operator, for example, a gear 25 interlocked with the flow rate adjusting unit 20 is mounted on the casing 50. It may be a mechanism for tilting the flow rate adjusting unit 20 by rotating the handle 26, and by adopting a simple mechanism premised on manual operation, the cost of the apparatus can be reduced.

次に、前記構成に基づく水力発電装置における発電時の羽根車及び流量調整部の状態について説明する。前提として、水路90における水力発電装置1の前面側周囲は堰き止め板91で堰き止められて、水路90の装置前面位置での水位が装置後面位置での水位より高い状態が生じるようにされており、また、水路90における装置前面位置の水位は、水力発電装置の流入口51aより上側に位置すると共に、装置後面位置の水位は、流出口51b上縁より下側に位置するものとする。   Next, the state of the impeller and the flow rate adjusting unit during power generation in the hydroelectric generator based on the above configuration will be described. As a premise, the front side periphery of the hydroelectric generator 1 in the water channel 90 is blocked by a blocking plate 91 so that the water level at the front surface position of the water channel 90 is higher than the water level at the device rear surface position. In addition, the water level at the front side of the apparatus in the water channel 90 is located above the inlet 51a of the hydroelectric generator, and the water level at the rear side of the apparatus is located below the upper edge of the outlet 51b.

水力発電装置の通常の使用状態では、水路90を流れる水が、流入口51a側からケーシング50の流路部51に流入し、各案内板間を通過して羽根車10に達して、この水の、水路90の装置前後における水位の差に基づく流れの作用で羽根車10が回転し、羽根車軸15等を介して駆動力が発電機40に伝えられて発電機40が作動し、発電が行われる。   In a normal use state of the hydroelectric generator, water flowing through the water channel 90 flows into the flow channel portion 51 of the casing 50 from the inlet 51a side, passes between the guide plates, reaches the impeller 10, and this water The impeller 10 is rotated by the action of the flow based on the difference in the water level before and after the water channel 90, the driving force is transmitted to the generator 40 via the impeller shaft 15 and the like, and the generator 40 is operated to generate power. Done.

こうして発電が行われる中、水路90における水量が十分で、水が羽根車10を回転させながら流れる点以外で何の制限も受けることなくそのまま流路部51を通過しても、水路90の装置前面位置での水位変化がほとんど生じない場合は、流量調整部20を必要に応じ傾動させ、流路部51におけるより外方に位置させるようにする。これにより、流路部51に流入した水は、羽根車10の流量調整部20で覆われず開放されている前面部分に到達、進入でき、羽根車10に力を与えてこれをスムーズに回転させることができる。   Even if the water amount in the water channel 90 is sufficient during power generation in this way and the water passes through the flow channel unit 51 without any limitation other than the point where the water flows while rotating the impeller 10, the device of the water channel 90 When there is almost no change in the water level at the front position, the flow rate adjusting unit 20 is tilted as necessary so as to be positioned more outward in the flow path unit 51. As a result, the water that has flowed into the flow path 51 can reach and enter the open front portion that is not covered by the flow rate adjusting unit 20 of the impeller 10, and applies force to the impeller 10 to rotate it smoothly. Can be made.

一方、水路90を流れる水の流量が少なく、水がそのまま流路部51を通過すると、装置前面位置での水位が下がり、水の落差も小さくなるような場合には、流路調整部20を流路部51の内方に傾動させて、流路調整部20をより流路部中央に近付ける(図12参照)。これにより、流路部51における二つの流路調整部20の間の最小開口断面積部分は、流路調整部20の傾動前より小さくなって、これを通過できる水の流量が減ることとなる。   On the other hand, when the flow rate of the water flowing through the water channel 90 is small and the water passes through the flow channel unit 51 as it is, the water level at the front surface of the apparatus is lowered and the water drop is also reduced. The flow path adjustment section 20 is tilted inward of the flow path section 51 to bring the flow path adjustment section 20 closer to the center of the flow path section (see FIG. 12). Thereby, the minimum opening cross-sectional area part between the two flow-path adjustment parts 20 in the flow-path part 51 becomes smaller than before the inclination of the flow-path adjustment part 20, and the flow volume of the water which can pass this will reduce. .

こうして、水の下流側への移動を抑えることで、装置前面位置の水位が過剰に低下するのを阻止できる。そして、水位の低下を抑えるようにして水の落差を確保することで、流路部51に流入して羽根車10の流路調整部20に覆われていない部分に到達した水は、水のエネルギーで確実に羽根車10を回転させられ、無理なく発電を行える。   Thus, by suppressing the movement of water downstream, it is possible to prevent the water level at the front surface of the apparatus from being excessively lowered. And the water which flowed into the flow-path part 51 and reached | attained the part which is not covered with the flow-path adjustment part 20 of the impeller 10 by ensuring the drop of water so that the fall of a water level may be suppressed The impeller 10 can be reliably rotated by energy, and power can be generated without difficulty.

このような流路調整部20の流路部51外方又は内方への位置調整において、流量調整部20はこれを支持するケーシング50の上側突出部56及び下側突出部57に対し動くこととなる。
流量調整部20を支持する上下の突出部56、57のうち、上側突出部56の下端部と羽根車10の支持板13が接近し、且つ上側突出部56の小径部56a内周面と羽根車軸15も接近しており、この上側突出部56の小径部56a内周面と羽根車軸15が接近する箇所のすぐ上側では、鍔状部16が小径部56a内周面を超える外径として配置されており、上側突出部56と羽根車10の支持板13や羽根車軸15との間に生じている隙間は極めて小さく、且つ複数箇所で曲がりのある隙間形状となっていることから、水や極小の異物がこうした移動に係る抵抗の大きい隙間を通過して上側軸受31側に向かうような事態は極めて起こりにくく、上側軸受31の、流路部51を通る水との接触を防止できる。
In such adjustment of the position of the flow path adjustment unit 20 outward or inward, the flow rate adjustment unit 20 moves with respect to the upper protrusion 56 and the lower protrusion 57 of the casing 50 that supports the flow adjustment unit 20. It becomes.
Of the upper and lower protrusions 56, 57 that support the flow rate adjusting unit 20, the lower end of the upper protrusion 56 and the support plate 13 of the impeller 10 approach each other, and the inner peripheral surface of the small diameter part 56 a of the upper protrusion 56 and the blade The axle 15 is also approaching, and the hook-like portion 16 is arranged as an outer diameter exceeding the inner peripheral surface of the small diameter portion 56a just above the inner peripheral surface of the small diameter portion 56a of the upper protruding portion 56 and the portion where the impeller shaft 15 approaches. The gap formed between the upper protruding portion 56 and the support plate 13 and the impeller shaft 15 of the impeller 10 is extremely small and has a bent gap shape at a plurality of locations. It is extremely difficult for a very small foreign object to pass through a gap having a large resistance related to such movement and go to the upper bearing 31 side, and contact of the upper bearing 31 with water passing through the flow path portion 51 can be prevented.

加えて、下側突出部57の上端部と羽根車10の下側の支持板14を接近させ、且つ下側突出部57と羽根車軸15との間隔を小さくし、また、下側軸受32近傍の羽根車軸15の外周位置から径方向に突出する鍔状部32cを、軸受上端に沿うようにして設けて、下側突出部57と支持板14や羽根車軸15との間に生じる隙間は小さく、さらに鍔状部32cと下側軸受32との間の隙間も小さいことから、流路部を流れる水中に含まれる異物が下側突出部57の内側を通って下側軸受32の摺動部分に進入するのを阻止することができ、異物の軸受への悪影響を防いで、羽根車軸15及びこれと一体の羽根車10の回転をスムーズ且つ安定したものとすることができる。   In addition, the upper end portion of the lower protrusion 57 and the lower support plate 14 of the impeller 10 are brought close to each other, the distance between the lower protrusion 57 and the impeller shaft 15 is reduced, and the vicinity of the lower bearing 32 A flange-like portion 32c protruding radially from the outer peripheral position of the impeller shaft 15 is provided along the upper end of the bearing, and a gap generated between the lower protruding portion 57 and the support plate 14 or the impeller shaft 15 is small. Further, since the gap between the flange portion 32c and the lower bearing 32 is also small, the foreign matter contained in the water flowing through the flow path portion passes through the inside of the lower protrusion 57 and the sliding portion of the lower bearing 32 , The adverse effect of the foreign matter on the bearing can be prevented, and the rotation of the impeller shaft 15 and the impeller 10 integrated therewith can be made smooth and stable.

このように、本実施形態に係る水力発電装置においては、羽根車10の流路部流入口寄り側に位置して傾動可能とされる湾曲板状の流量調整部20を配設し、水路の水位変化等に対して、流量調整部20を羽根車10周りに傾動させて、羽根車10に到達する水の流量を調整可能とする中、流量調整部20をケーシング50から羽根車軸15周囲に突出させた上下の突出部56、57に取り付けて、羽根車10と同じ中心軸周りに傾動させるようにすることから、流量調整部20がケーシング50の一部として静止状態の突出部56、57に対して動く状態となって、突出部56、57と流量調整部20の支持部21、22相互間の相対的な動きを極めて少なくすることができ、両者間の軸受など摺接部での摩耗を生じにくくして耐久性を高められ、流量調整部20の支持に係る各部のメンテナンスの頻度を少なくして、保守コストを小さく抑えられる。   As described above, in the hydroelectric generator according to the present embodiment, the curved plate-like flow rate adjustment unit 20 that is positioned near the flow channel inlet of the impeller 10 and that can be tilted is disposed, and the water channel While the flow rate adjustment unit 20 is tilted around the impeller 10 to adjust the flow rate of water reaching the impeller 10 with respect to a change in the water level or the like, the flow rate adjustment unit 20 is moved from the casing 50 around the impeller shaft 15. Since it is attached to the projecting upper and lower projecting portions 56, 57 and tilted around the same central axis as the impeller 10, the flow rate adjusting unit 20 is part of the casing 50 and is in a stationary state. The relative movement between the projecting portions 56 and 57 and the support portions 21 and 22 of the flow rate adjusting portion 20 can be extremely reduced. High durability with less wear It is, by reducing the frequency of maintenance of each part of the support of the flow control unit 20, be kept small maintenance costs.

なお、前記実施形態に係る水力発電装置においては、上側突出部56と羽根車軸15との間の止水部として、鍔状部16を設けると共に、この鍔状部16位置から下側の、上側突出部56の小径部56aと羽根車軸15との間の狭い隙間を生じさせるようにする構成としているが、この他、上側突出部56と羽根車軸15との間に、上側突出部内周面に水密維持状態で固定されると共に、羽根車軸外周面に羽根車軸の回転を許容する状態で接しつつ水密維持状態を確保する公知のシール部材を一又は複数設ける構成とすることもでき、より一層上側軸受の側に水を進みにくくして、上側軸受の水浸入による悪影響を阻止できることとなる。   In the hydroelectric generator according to the above embodiment, the hook-shaped portion 16 is provided as a water stop portion between the upper protruding portion 56 and the impeller shaft 15, and the lower upper side from the position of the hook-shaped portion 16 is provided. A narrow gap between the small-diameter portion 56a of the projecting portion 56 and the impeller shaft 15 is generated. In addition to this, between the upper projecting portion 56 and the impeller shaft 15, an inner peripheral surface of the upper projecting portion is provided. In addition to being fixed in a watertight state, one or a plurality of known sealing members that secure the watertight state can be provided while being in contact with the outer peripheral surface of the impeller shaft while allowing the rotation of the impeller shaft. This makes it difficult for water to travel to the bearing side, thereby preventing adverse effects due to water intrusion of the upper bearing.

また、前記実施形態に係る水力発電装置においては、ケーシング50内側の流路部51に羽根車10を配置し、羽根車10の上方となるケーシング50上に発電機40を露出状態で配設する構成としているが、これに限らず、発電機を流路部の外側に位置するケーシングの内部スペースに内蔵する構成とすることもでき、河川や用水路をはじめとする発電装置の設置箇所の状況や発電機の形状等に応じて、装置のレイアウトを適宜選択できる。   In the hydroelectric generator according to the embodiment, the impeller 10 is disposed in the flow path portion 51 inside the casing 50, and the generator 40 is disposed on the casing 50 above the impeller 10 in an exposed state. However, the present invention is not limited to this, and the generator can be built in the internal space of the casing located outside the flow path section. The layout of the device can be appropriately selected according to the shape of the generator.

1 水力発電装置
10 羽根車
11 羽根体
13、14 支持板
15 羽根車軸
16 鍔状部
20 流量調整部
21、22 支持部
21a 規制孔
24 歯部
25 歯車
26 ハンドル
31 上側軸受
32 下側軸受
32a 軸受ハウジング
32b ブシュ
32c 鍔状部
40 発電機
50 ケーシング
51 流路部
51a 流入口
51b 流出口
52 上側案内板
53 下側案内板
54 横案内板
55 駆動部
56 上側突出部
56a 小径部
57 下側突出部
58 傾動規制部材
90 水路
91 堰き止め板
DESCRIPTION OF SYMBOLS 1 Hydroelectric power generation device 10 Impeller 11 Impeller body 13, 14 Support plate 15 Impeller shaft 16 Gutter-shaped portion 20 Flow rate adjusting portion 21, 22 Support portion 21a Restriction hole 24 Tooth portion 25 Gear 26 Handle 31 Upper bearing 32 Lower bearing 32a Bearing Housing 32b Bush 32c Gutter 40 Generator 50 Casing 51 Flow path 51a Inlet 51b Outlet 52 Upper guide plate 53 Lower guide plate 54 Lateral guide plate 55 Drive portion 56 Upper projection 56a Small diameter portion 57 Lower projection 58 Tilt restricting member 90 Waterway 91 Dam plate

Claims (5)

ケーシングを貫通して設けられた流路部を通る水の流れの力で羽根車を回転させ、羽根車から発電機に駆動力を伝えて発電を行う水力発電装置において、
前記ケーシングが、内側の流路部を取り囲む略箱状体として形成され、
前記羽根車が、ケーシング内側の流路部に回転中心軸を水の流れ方向と略直角となる上下方向に向けて配設され、
前記発電機が、ケーシングにおける流路部の外側となる部位に羽根車で駆動可能として配設され、
前記羽根車の回転中心位置で羽根車と一体に取付けられ、ケーシングにおける前記流路部を挟む上下両側の所定箇所でそれぞれ回転可能に支持される羽根車軸と、
前記羽根車の回転作動する範囲の最外周部をなす仮想略円筒面に沿う湾曲面を有する略板状体で形成され、前記仮想略円筒面外側近傍に羽根車と同じ回転中心軸を中心として所定角度範囲傾動可能に配設される流量調整部とを備え、
前記ケーシングの流路部上側部分のうち、羽根車軸に近い一部が、羽根車軸周囲を取り囲む略円筒状の上側突出部として、下方へ所定長さ突出形成され、
前記ケーシングの流路部下側部分のうち、羽根車軸に近い一部が、羽根車軸周囲を取り囲む略円筒状の下側突出部として、上方へ所定長さ突出形成され、
前記流量調整部が、上下端部から羽根車の回転中心側に向けてそれぞれ突出形成される支持部を有し、上側の支持部がケーシングの前記上側突出部に回動可能に支持されると共に、下側の支持部がケーシングの前記下側突出部に回動可能に支持されて、傾動可能な状態とされてなることを
特徴とする水力発電装置。
In the hydroelectric power generator that rotates the impeller with the force of the flow of water passing through the flow path provided through the casing and transmits power from the impeller to the generator to generate power,
The casing is formed as a substantially box-like body surrounding the inner flow path portion,
The impeller is disposed in the flow path portion inside the casing with the rotation center axis facing the vertical direction that is substantially perpendicular to the water flow direction,
The generator is disposed so as to be driven by an impeller at a portion that is outside the flow path portion in the casing,
An impeller attached integrally with the impeller at the rotational center position of the impeller, and supported rotatably at predetermined locations on both upper and lower sides sandwiching the flow path portion in the casing;
The impeller is formed of a substantially plate-like body having a curved surface along the virtual substantially cylindrical surface that forms the outermost peripheral portion of the rotational operation range, and the rotation center axis that is the same as that of the impeller is centered on the outside of the virtual substantially cylindrical surface. A flow rate adjusting unit arranged to be tiltable within a predetermined angle range,
Of the upper part of the flow path part of the casing, a part close to the impeller shaft is formed as a substantially cylindrical upper protrusion that surrounds the periphery of the impeller shaft and protrudes downward by a predetermined length.
Of the lower portion of the flow path portion of the casing, a part close to the impeller shaft is formed as a substantially cylindrical lower protrusion that surrounds the periphery of the impeller shaft and protrudes upward by a predetermined length.
The flow rate adjusting part has a support part that protrudes from the upper and lower end parts toward the rotation center side of the impeller, and the upper support part is rotatably supported by the upper protrusion part of the casing. The hydroelectric power generator is characterized in that the lower support portion is rotatably supported by the lower protrusion portion of the casing so as to be tiltable.
前記請求項1に記載の水力発電装置において、
前記ケーシングにおける流路部より上側で且つ前記上側突出部の上方となる所定位置に設けられて羽根車軸上部を支持する上側軸受を備え、
前記上側突出部と羽根車軸の間に、水の上方への移動を抑える止水部を設けることを
特徴とする水力発電装置。
The hydroelectric generator according to claim 1,
An upper bearing that is provided at a predetermined position above the flow path portion in the casing and above the upper protruding portion and supports the upper portion of the impeller shaft;
A hydroelectric power generation device characterized in that a water stop portion is provided between the upper projecting portion and the impeller shaft to suppress the upward movement of water.
前記請求項2に記載の水力発電装置において、
前記止水部の少なくとも一部として、羽根車軸から径方向に鍔状に突出する形状の鍔状部が設けられると共に、当該鍔状部の直下に前記上側突出部の内周面内径を鍔状部の外径より小さくした小径部が設けられ、
前記上側突出部における前記小径部の外側部分が、上側突出部全体で最も外径を小さく形成されて、前記流量調整部の支持部を支持する部位とされることを
特徴とする水力発電装置。
The hydroelectric generator according to claim 2,
As at least a part of the water stop portion, a hook-like portion having a shape protruding in a radial shape from the impeller shaft is provided, and the inner diameter of the inner peripheral surface of the upper protruding portion is a hook shape immediately below the hook-like portion. A small-diameter part smaller than the outer diameter of the part is provided,
The hydroelectric generator according to claim 1, wherein an outer portion of the small-diameter portion in the upper protruding portion is formed to have the smallest outer diameter in the entire upper protruding portion, and is a portion that supports the support portion of the flow rate adjusting portion.
前記請求項1ないし3のいずれかに記載の水力発電装置において、
前記羽根車が、回転中心軸方向に平行な略板状の羽根体を軸周りに多数配設されるクロスフロー型の羽根車とされ、多数の羽根体の端部をそれぞれ一体に取り付けられると共に羽根体に囲まれる中間の空間部分を塞ぐ円板状の二つの支持板を、上下に所定間隔で配設されてなり、
前記ケーシングの上側突出部下端部が羽根車の上側の支持板近傍に達する、及び/又は、下側突出部上端部が羽根車の下側の支持板近傍に達する、ことを
特徴とする水力発電装置。
The hydroelectric generator according to any one of claims 1 to 3,
The impeller is a cross-flow type impeller in which a large number of substantially plate-like blade bodies parallel to the rotation center axis direction are arranged around the axis, and the end portions of the many blade bodies are respectively attached integrally. Two disk-shaped support plates that close the middle space surrounded by the blades are arranged at predetermined intervals in the vertical direction,
Hydroelectric power generation characterized in that the lower end of the upper protruding portion of the casing reaches the vicinity of the upper support plate of the impeller and / or the upper end of the lower protrusion reaches the vicinity of the lower support plate of the impeller. apparatus.
前記請求項1ないし4のいずれかに記載の水力発電装置において、
前記ケーシングにおける流路部より下側で且つ前記下側突出部の下方となる所定位置に設けられて羽根車軸下部を支持する下側軸受を備え、
前記羽根車軸における下側軸受の直上部位に、羽根車軸から径方向に鍔状に突出する形状の鍔状部が設けられることを
特徴とする水力発電装置。
The hydroelectric generator according to any one of claims 1 to 4,
A lower bearing that supports the lower portion of the impeller shaft provided at a predetermined position below the flow path portion in the casing and below the lower protruding portion;
A hydroelectric generator having a hook-shaped portion protruding in a radial shape from the impeller shaft in a portion directly above the lower bearing of the impeller shaft.
JP2013112721A 2013-05-29 2013-05-29 Hydraulic power generation device Pending JP2014231777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013112721A JP2014231777A (en) 2013-05-29 2013-05-29 Hydraulic power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013112721A JP2014231777A (en) 2013-05-29 2013-05-29 Hydraulic power generation device

Publications (1)

Publication Number Publication Date
JP2014231777A true JP2014231777A (en) 2014-12-11

Family

ID=52125315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013112721A Pending JP2014231777A (en) 2013-05-29 2013-05-29 Hydraulic power generation device

Country Status (1)

Country Link
JP (1) JP2014231777A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR455660A (en) * 1913-03-18 1913-08-06 Onesimus Rees Hydrodynamic engine
JPS5985487A (en) * 1982-11-05 1984-05-17 Hitachi Ltd Hydraulic machine
US4474529A (en) * 1983-03-21 1984-10-02 Kinsey Lewis R Windmill
JPS60124586U (en) * 1984-01-31 1985-08-22 株式会社明電舎 Once-through water turbine
JPS62193195U (en) * 1986-05-30 1987-12-08
JP2007177797A (en) * 2007-04-06 2007-07-12 Seabell International Co Ltd Hydraulic power generating device
WO2012157131A1 (en) * 2011-05-18 2012-11-22 Unno Yuji Hydroelectric generator device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR455660A (en) * 1913-03-18 1913-08-06 Onesimus Rees Hydrodynamic engine
JPS5985487A (en) * 1982-11-05 1984-05-17 Hitachi Ltd Hydraulic machine
US4474529A (en) * 1983-03-21 1984-10-02 Kinsey Lewis R Windmill
JPS60124586U (en) * 1984-01-31 1985-08-22 株式会社明電舎 Once-through water turbine
JPS62193195U (en) * 1986-05-30 1987-12-08
JP2007177797A (en) * 2007-04-06 2007-07-12 Seabell International Co Ltd Hydraulic power generating device
WO2012157131A1 (en) * 2011-05-18 2012-11-22 Unno Yuji Hydroelectric generator device

Similar Documents

Publication Publication Date Title
CN102959232B (en) Hydroelectric generator device
JP5919596B2 (en) Hydroelectric generator
US8616830B2 (en) Hydraulic power generating apparatus
TWI573934B (en) Water truck power generation unit
ES2685747T3 (en) Hydraulic turbine generator
KR101200458B1 (en) Hydraulic power generating apparatus
KR101765188B1 (en) Floodgate equipped with Hydro Power Generation
JP2014231777A (en) Hydraulic power generation device
TR201814852T4 (en) WATER MILL ASSEMBLY AND PRODUCTION METHOD OF ELECTRICAL ENERGY WITH THIS ASSEMBLY
JP5399325B2 (en) Water intake equipment
JP2008169734A (en) Water power device
JP5919590B2 (en) Fluid power generator
GB2612497A (en) Stormwater treatment device
KR101493005B1 (en) Flow energy harvesting apparatus by adjusting conditions of drainage pipe
JP2011157872A (en) Transportable hydraulic power generating device
JP5921495B2 (en) Hydroelectric generator
JP2020079503A (en) Movable weir
KR102206476B1 (en) Tidal power plant
JP5972204B2 (en) Hydroelectric generator
JP3834227B2 (en) Rotary gate
KR102514615B1 (en) New concept intelligence type movable weir system
KR101350878B1 (en) Float type hydraulic power generator
Nuernbergk Inlet and Outlet
JP4722711B2 (en) Drainage equipment
JP5973757B2 (en) Watermill equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208