JP2014231067A - Aluminum alloy and manufacturing method thereof, bonding material and manufacturing method thereof, structure of rolling stock, and vehicle body structure of traffic transportation means - Google Patents

Aluminum alloy and manufacturing method thereof, bonding material and manufacturing method thereof, structure of rolling stock, and vehicle body structure of traffic transportation means Download PDF

Info

Publication number
JP2014231067A
JP2014231067A JP2013112269A JP2013112269A JP2014231067A JP 2014231067 A JP2014231067 A JP 2014231067A JP 2013112269 A JP2013112269 A JP 2013112269A JP 2013112269 A JP2013112269 A JP 2013112269A JP 2014231067 A JP2014231067 A JP 2014231067A
Authority
JP
Japan
Prior art keywords
aluminum alloy
bonding
joining
manufacturing
friction stir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013112269A
Other languages
Japanese (ja)
Other versions
JP6153160B2 (en
Inventor
久史 森
Hisashi Mori
久史 森
太郎 辻村
Taro Tsujimura
太郎 辻村
弘道 石塚
Hiromichi Ishizuka
弘道 石塚
武 石川
Takeshi Ishikawa
武 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Japan Transport Engineering Co
Original Assignee
Railway Technical Research Institute
Japan Transport Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Japan Transport Engineering Co filed Critical Railway Technical Research Institute
Priority to JP2013112269A priority Critical patent/JP6153160B2/en
Publication of JP2014231067A publication Critical patent/JP2014231067A/en
Application granted granted Critical
Publication of JP6153160B2 publication Critical patent/JP6153160B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide aluminum alloys and the manufacturing method thereof, bonding materials and manufacturing method thereof, the structure of rolling stocks, and vehicle body structure of traffic transportation means in which the bonding condition become a wide range, the joint hardness of the bonding part increase, and high-quality bonding can be performed.SOLUTION: A nano treatment process #200 is a nano organizing process of metallographic structure of aluminum alloys. A recrystallization treatment process #400 is a process to organize the aluminum alloys in recoverable. In the recrystallization treatment process #400, since high deformation resistance of the aluminum alloys due to distortion in a rolling process #300, the recrystallization process is carried out in order to reduce the deformation resistance. A bonding process #500 is a process of friction stir welding of aluminum alloys. In the bonding process #500, by accumulating the frictional heat in the bonding to provide a temperature gradient at a bonding part so as to adjust the precipitates of aluminum alloy metal structure by utilizing frictional heat to achieve the refinement of the metal structure due to the temperature gradient.

Description

この発明は、機械的強度が向上されたアルミニウム合金とその製造方法、このアルミニウム合金を接合した接合材とその製造方法、鉄道車両の構体及び交通輸送手段の構体に関する。   The present invention relates to an aluminum alloy with improved mechanical strength and a method for manufacturing the same, a bonding material bonded with the aluminum alloy and a method for manufacturing the same, a structure of a railway vehicle, and a structure of a transportation means.

新幹線(登録商標)の速度向上に伴って車両の軽量化が進められており、車両構体の軽量化においてはアルミニウム合金の適用が検討され、新幹線車両においても200系新幹線電車以降、構体全体にアルミニウム合金が使われている。アルミニウム合金の密度は、2.7g/cm3であり鉄と比較して小さい。また、アルミニウム合金は、加工しやすく、熱処理によって性質を調整することができる特徴があり、軽量化を検討するための金属材料として有望である。しかし、アルミニウム合金は、材料物性において熱伝導率が大きいことや酸化被膜の存在で溶接が難しいとされている。例えば、7000系アルミニウム合金のような高強度アルミニウム合金は、溶接組立時の熱影響による強度低下が著しく、応力腐食割れが生じるために薄肉化が難しいとされてきた。また、車両組立においては、溶接熱による変形や熱影響による材料組織の変形に伴う強度低下が生じるなど、溶接施工の難しい材料である。特に、高強度アルミニウム合金は、材料組織変化が複雑であり、溶接や接合が極めて難しい。一方、摩擦撹拌接合は、英国溶接研究所で開発された接合方法で、アーク溶接で認められる溶接部の熱影響や熱変形が軽微である特徴を有している。このことから、摩擦撹拌接合はアルミニウム合金の接合に有効であると考えられており、車両の製造に適用されている。 As the speed of the Shinkansen (registered trademark) has increased, the weight of the vehicle has been reduced, and the application of aluminum alloy has been considered for reducing the weight of the vehicle structure. Alloy is used. The density of the aluminum alloy is 2.7 g / cm 3, which is smaller than that of iron. In addition, aluminum alloys are easy to work and have the characteristics that properties can be adjusted by heat treatment, and are promising as metal materials for studying weight reduction. However, it is said that aluminum alloys are difficult to weld due to their high thermal conductivity in material properties and the presence of oxide films. For example, a high-strength aluminum alloy such as a 7000 series aluminum alloy has been considered to be difficult to reduce in thickness due to a significant decrease in strength due to thermal effects during welding assembly and stress corrosion cracking. Further, in vehicle assembly, it is a difficult material to weld, such as deformation due to welding heat or a decrease in strength due to deformation of the material structure due to thermal effects. In particular, a high-strength aluminum alloy has a complicated material structure change and is extremely difficult to weld or join. Friction stir welding, on the other hand, is a joining method developed at the Welding Laboratory in the UK, and has the characteristic that the thermal effect and thermal deformation of the welded portion observed in arc welding are slight. For this reason, friction stir welding is considered effective for joining aluminum alloys, and is applied to the manufacture of vehicles.

鈴木信行、他1名,「7475アルミニウム合金の超塑性成形に伴う摩擦撹拌接合部の変形」,軽金属,一般社団法人軽金属学会,2004年12月30日,第54巻,第12号,p.551-555Nobuyuki Suzuki and one other, “Deformation of friction stir welded joints due to superplastic forming of 7475 aluminum alloy”, Light Metal, Japan Society for Light Metals, December 30, 2004, Vol. 54, No. 12, p. 551-555

摩擦撹拌接合は、回転工具(ツール)の回転に伴う塑性変形と摩擦発熱によって接合される。このため、摩擦撹拌接合の接合状態の良否は、ツールの材質、ツールの挿入深さ、回転数、送り速度や、ショルダ形状、ツールへの負荷荷重が影響することになる。ここで、プローブの挿入深さは一定に制御されるので、実質的には接合ツールの回転数、ツールの送り速度、ツールの材質が主な課題となる。しかし、高強度アルミニウム合金は、近年盛んに適用されつつある摩擦撹拌接合の適用が難しい材料であるとされている。例えば、従来の高強度アルミニウム合金の摩擦撹拌接合方法では、ツールの送り速度とツールの回転数との組み合わせが不適である際には、図13に示すように摩擦撹拌接合の接合部の接合線においてかじりの欠陥発生が認められる問題点がある(非特許文献1参照)。また、従来の高強度アルミニウム合金の摩擦撹拌接合方法では、ツールの鉄がアルミニウム合金の接合部に残留し、その残留鉄が腐食等に影響を及ぼす問題点がある。このため、高強度アルミニウム合金に対する摩擦撹拌接合の適用については、材料組織、接合条件及び継手形状などの点から検討することが必要になる。   Friction stir welding is performed by plastic deformation and frictional heat generation accompanying the rotation of a rotating tool (tool). For this reason, the quality of the friction stir welding is affected by the material of the tool, the insertion depth of the tool, the rotational speed, the feed speed, the shoulder shape, and the load applied to the tool. Here, since the insertion depth of the probe is controlled to be constant, the number of rotations of the welding tool, the feed speed of the tool, and the material of the tool are the main issues. However, high-strength aluminum alloys are considered to be difficult materials for friction stir welding, which has been actively applied in recent years. For example, in the conventional high-strength aluminum alloy friction stir welding method, when the combination of the feed rate of the tool and the number of rotations of the tool is inappropriate, as shown in FIG. There is a problem in which the occurrence of galling defects is recognized (see Non-Patent Document 1). Further, in the conventional high-strength aluminum alloy friction stir welding method, there is a problem that iron of the tool remains in the aluminum alloy joint, and the residual iron affects corrosion and the like. For this reason, it is necessary to examine the application of friction stir welding to a high-strength aluminum alloy in terms of material structure, joining conditions, joint shape, and the like.

この発明の課題は、接合条件が広範囲になり接合部の継手硬さが増加し高品質の接合を行うことができるアルミニウム合金とその製造方法、接合材とその製造方法、鉄道車両の構体及び交通輸送手段の構体を提供することである。   An object of the present invention is to provide an aluminum alloy and its manufacturing method, a bonding material and its manufacturing method, a railway vehicle structure, and a traffic that can perform high-quality bonding by increasing the joint hardness in a wide range of bonding conditions. It is to provide a transport structure.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、図4に示すように、機械的強度が向上されたアルミニウム合金(3a)を接合した接合材(3)の製造方法であって、7000系アルミニウム合金の金属組織をナノ組織化するナノ処理工程(#200)と、前記7000系アルミニウム合金を再結晶化処理する再結晶処理工程(#400)と、前記7000系アルミニウム合金を摩擦撹拌接合する接合工程(#500)とを含み、前記再結晶化処理工程は、前記7000系アルミニウム合金を373〜573Kで60〜180秒間加熱する工程を含むことを特徴とする接合材の製造方法(#100)である。
The present invention solves the above-mentioned problems by the solving means described below.
In addition, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this embodiment.
As shown in FIG. 4, the invention of claim 1 is a method for producing a bonding material (3) in which an aluminum alloy (3a) with improved mechanical strength is bonded. Nano-processing step (# 200) for organizing, recrystallization treatment step (# 400) for recrystallization treatment of the 7000 series aluminum alloy, and joining step (# 500) for friction stir welding of the 7000 series aluminum alloy And the recrystallization treatment step includes a step of heating the 7000 series aluminum alloy at 373 to 573 K for 60 to 180 seconds (# 100).

請求項2の発明は、請求項1に記載の接合材の製造方法において、図2及び図3に示すように、前記接合工程は、セラミックス製の回転ツール(5)によって前記7000系アルミニウム合金を摩擦撹拌接合する工程を含むことを特徴とする接合材の製造方法である。   According to a second aspect of the present invention, in the method for manufacturing a bonding material according to the first aspect, as shown in FIGS. 2 and 3, the bonding step is performed by using the ceramic rotating tool (5) to bond the 7000 series aluminum alloy. It is a manufacturing method of the joining material characterized by including the process of carrying out friction stir welding.

請求項3の発明は、請求項1又は請求項2に記載の接合材の製造方法において、図2及び図3に示すように、前記接合工程は、セラミックス製又は金属製の裏当て部(6)によって前記7000系アルミニウム合金の摩擦熱を蓄積させる工程を含むことを特徴とする接合材の製造方法である。   According to a third aspect of the present invention, in the method for manufacturing a bonding material according to the first or second aspect, as shown in FIGS. 2 and 3, the bonding step is performed by using a ceramic or metal backing (6). ), And a process for accumulating the frictional heat of the 7000 series aluminum alloy.

請求項4の発明は、機械的強度が向上されたアルミニウム合金(3a)の製造方法であって、7000系アルミニウム合金の金属組織をナノ組織化するナノ処理工程(#200)と、前記7000系アルミニウム合金を再結晶化処理する再結晶処理工程(#400)とを含み、前記再結晶化処理工程は、前記7000系アルミニウム合金を373〜573Kで60〜180秒間加熱する工程を含むことを特徴とするアルミニウム合金の製造方法である。   The invention of claim 4 is a method for producing an aluminum alloy (3a) with improved mechanical strength, comprising a nano-processing step (# 200) for nano-organizing the metal structure of a 7000 series aluminum alloy, and the 7000 series A recrystallization treatment step (# 400) for recrystallizing the aluminum alloy, and the recrystallization treatment step includes a step of heating the 7000 series aluminum alloy at 373 to 573 K for 60 to 180 seconds. It is a manufacturing method of the aluminum alloy to make.

請求項5の発明は、図2〜図4に示すように、機械的強度が向上されたアルミニウム合金(3a)を接合した接合材であって、7000系アルミニウム合金の金属組織をナノ組織化した後に、この7000系アルミニウム合金を373〜573Kで60〜180秒間加熱して再結晶化処理し、この7000系アルミニウム合金を摩擦撹拌接合していることを特徴とする接合材(3)である。   As shown in FIGS. 2 to 4, the invention of claim 5 is a bonding material obtained by bonding an aluminum alloy (3 a) with improved mechanical strength, and the metal structure of the 7000 series aluminum alloy is nanostructured. Later, this 7000 series aluminum alloy is recrystallized by heating at 373 to 573 K for 60 to 180 seconds, and this 7000 series aluminum alloy is friction stir welded (3).

請求項6の発明は、機械的強度が向上されたアルミニウム合金であって、図2〜図4に示すように、7000系アルミニウム合金の金属組織をナノ組織化した後に、この7000系アルミニウム合金を373〜573Kで60〜180秒間加熱して再結晶化処理していることを特徴とするアルミニウム合金(3a)である。   The invention of claim 6 is an aluminum alloy with improved mechanical strength, and as shown in FIGS. 2 to 4, after the metallographic structure of the 7000 series aluminum alloy is nano-structured, the 7000 series aluminum alloy is The aluminum alloy (3a) is characterized by being recrystallized by heating at 373 to 573 K for 60 to 180 seconds.

請求項7の発明は、図1に示すように、請求項5に記載の接合材を備える鉄道車両(1)の構体(2)である。   The invention of claim 7 is a structure (2) of a railway vehicle (1) provided with the bonding material according to claim 5, as shown in FIG.

請求項8の発明は、図1に示すように、請求項5に記載の接合材を備える交通輸送手段(1)の構体(2)である。   The invention of claim 8 is a structure (2) of a transportation means (1) comprising the bonding material according to claim 5 as shown in FIG.

この発明によると、接合条件が広範囲になり接合部の継手硬さが増加し高品質の接合を行うことができる。   According to the present invention, the joining conditions become wide, the joint hardness of the joint portion increases, and high-quality joining can be performed.

この発明の実施形態に係る接合材を備える交通輸送手段の構体の一部を破断して示す斜視図である。It is a perspective view which fractures | ruptures and shows a part of structure of a traffic transport means provided with the joining material which concerns on embodiment of this invention. この発明の実施形態に係る接合材の一部を破断して示す斜視図である。It is a perspective view which fractures | ruptures and shows a part of joining material which concerns on embodiment of this invention. この発明の実施形態に係る接合材の一部を破断して示す断面図である。It is sectional drawing which fractures | ruptures and shows a part of joining material which concerns on embodiment of this invention. この発明の実施形態に係る接合材の製造方法の工程図である。It is process drawing of the manufacturing method of the joining material which concerns on embodiment of this invention. この発明の実施例に係る試験材の鋳造したままの素材の金属組織を示す画像であり、(A)は結晶粒の状態を示す画像であり、(B)は析出物の状態を示す画像である。It is an image which shows the metal structure of the raw material as cast of the test material which concerns on the Example of this invention, (A) is an image which shows the state of a crystal grain, (B) is an image which shows the state of a precipitate. is there. この発明の実施例に係る473K処理材の金属組織の画像であり、(A)は結晶粒の状態を示す画像であり、(B)は析出物の状態を示す画像である。It is an image of the metal structure of the 473K processing material which concerns on the Example of this invention, (A) is an image which shows the state of a crystal grain, (B) is an image which shows the state of a precipitate. この発明の実施例に係る573K処理材の金属組織の画像であり、(A)は結晶粒の状態を示す画像であり、(B)は析出物の状態を示す画像である。It is an image of the metal structure of the 573K processing material which concerns on the Example of this invention, (A) is an image which shows the state of a crystal grain, (B) is an image which shows the state of a precipitate. この発明の実施例に係る473K処理材及び573K処理材を接合速度500mm/minで接合したときの接合線の外観を示す画像であり、(A)は473K処理材の接合線の外観を示す画像であり、(B)は573K処理材の接合線の外観を示す画像である。It is an image which shows the external appearance of the joining line when joining the 473K processing material and 573K processing material which concern on the Example of this invention at the joining speed of 500 mm / min, (A) is an image which shows the external appearance of the joining line of a 473K processing material. (B) is an image showing the appearance of the joining line of the 573K treated material. この発明の実施例に係る473K処理材を接合速度500mm/minで接合したときの接合部の断面の金属組織を示す画像である。It is an image which shows the metal structure of the cross section of a junction part when joining the 473K processing material which concerns on the Example of this invention at the joining speed of 500 mm / min. この発明の実施例に係る473K処理材を接合速度750mm/minで接合したときの接合部の断面のマクロ組織を示す画像であり、(A)は断面のマクロ組織の画像であり、(B)は欠陥部の画像である。It is an image which shows the macro structure of the cross section of a junction part when the 473K processing material which concerns on the Example of this invention is joined by joining speed 750mm / min, (A) is an image of the macro structure of a cross section, (B) Is an image of a defective part. この発明の実施例に係る573K処理材を接合したときの接合部の断面のマクロ組織を示す画像であり、(A)は接合速度500mm/minのときの断面のマクロ組織の画像であり、(B)は接合速度1250mm/minのときの断面のマクロ組織の画像である。It is an image which shows the macro structure of the cross section of the junction part when joining the 573K processing material which concerns on the Example of this invention, (A) is an image of the macro structure of the cross section when the joining speed is 500 mm / min, ( B) is an image of a macro structure of a cross section when the joining speed is 1250 mm / min. この発明の実施例に係る473K処理材及び573K処理材の断面硬さの測定結果を示すグラフであり、(A)は473K処理材の断面硬さの測定結果を示すグラフであり、(B)は573K処理材の断面硬さの測定結果を示すグラフである。It is a graph which shows the measurement result of the cross-sectional hardness of the 473K processing material which concerns on the Example of this invention, and a 573K processing material, (A) is a graph which shows the measurement result of the cross-sectional hardness of a 473K processing material, (B) These are graphs showing the measurement results of the cross-sectional hardness of the 573K treated material. 従来の7000系アルミニウム合金を摩擦撹拌接合によって接合したときの接合線の外観を示す画像である。It is an image which shows the external appearance of a joining line when joining the conventional 7000 series aluminum alloy by friction stir welding.

以下、図面を参照して、この発明の実施形態について詳しく説明する。
図1に示す交通輸送手段1は、電車又は気動車などの鉄道車両である。構体2は、交通輸送手段1の主構造である。構体2は、図1に示すように、乗客又は貨物などの重量を支持し車体の床部分又は台枠を構成する床構え2aと、この床構え2aの両縁に固定され車体の側面部分を構成する一対の側構え2b,2cと、この一対の側構え2b,2cの上縁に固定され車体の屋根部分を構成する屋根構え2dと、車両の両端部分を構成する図示しない妻構えなどを備えている。構体2は、例えば、接合材3によって形成された車外面板と室内面板とをトラス又はリブによって結合したダブルスキン構体である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The transportation means 1 shown in FIG. 1 is a railway vehicle such as a train or a train. The structure 2 is the main structure of the traffic transportation means 1. As shown in FIG. 1, the structure 2 supports a weight of a passenger or a cargo and constitutes a floor portion or a frame of the vehicle body, and a floor structure 2a fixed to both edges of the floor structure 2a and a side surface portion of the vehicle body. A pair of side supports 2b, 2c to be configured, a roof support 2d that is fixed to the upper edges of the pair of side supports 2b, 2c and that constitutes the roof portion of the vehicle body, and a wife pose (not shown) that constitutes both ends of the vehicle. I have. The structure 2 is, for example, a double skin structure in which a vehicle outer surface plate and an indoor surface plate formed by the bonding material 3 are coupled by a truss or a rib.

図1〜図3に示す接合材3は、機械的強度が向上されたアルミニウム合金3aを接合した部材である。接合材3は、図2及び図3に示すように、アルミニウム合金(母材)3aと接合部3bとから構成されており、アルミニウム合金3aの端部同志を突き合わせた状態で摩擦撹拌接合によって突合せ溶接された板材である。接合材3は、7000系アルミニウム合金の金属組織をナノ組織化した後に、この7000系アルミニウム合金を373〜573Kで60〜180秒間加熱して再結晶化処理し、この7000系アルミニウム合金を摩擦撹拌接合している。接合材3は、例えば、鉄道車両の構体2を構成する車外面板又は室内面板と同じ厚さに形成している。   The bonding material 3 shown in FIGS. 1 to 3 is a member obtained by bonding an aluminum alloy 3a having improved mechanical strength. As shown in FIGS. 2 and 3, the bonding material 3 is composed of an aluminum alloy (base material) 3a and a bonding portion 3b, and is butt-matched by friction stir welding in a state where the ends of the aluminum alloy 3a are butted together. It is a welded plate. The bonding material 3 is a nanostructure of the metal structure of the 7000 series aluminum alloy, and this 7000 series aluminum alloy is recrystallized by heating at 373 to 573 K for 60 to 180 seconds, and the 7000 series aluminum alloy is frictionally stirred. It is joined. The joining material 3 is formed to have the same thickness as, for example, a vehicle outer surface plate or an indoor surface plate constituting the structure 2 of the railway vehicle.

図2及び図3に示すアルミニウム合金3aは、機械的強度が向上された高強度アルミニウム合金である。アルミニウム合金3aは、亜鉛を主要合金元素とする7000系アルミニウム合金である。このような7000系アルミニウム合金としては、アルミニウム合金の中で最も高強度であり、組成がZnを5.5%、Mgを2.5%、Cuを1.6%含み、その他に微量のCrを含むAl-Zn-Mg-Cu系合金である7075合金のような超々ジュラルミンである。アルミニウム合金3aは、7000系アルミニウム合金の金属組織をナノ組織化した後に、この7000系アルミニウム合金を373〜573Kで60〜180秒間加熱して再結晶化処理している。アルミニウム合金3aは、金属組織がナノ組織化された後に熱処理されている。アルミニウム合金3aは、素材組織の前処理としてナノ組織化し、その後に熱処理を加えて回復組織化した後に摩擦撹拌接合が実施される。   The aluminum alloy 3a shown in FIGS. 2 and 3 is a high-strength aluminum alloy with improved mechanical strength. The aluminum alloy 3a is a 7000 series aluminum alloy having zinc as a main alloy element. As such a 7000 series aluminum alloy, Al-Zn-, which has the highest strength among aluminum alloys, contains 5.5% Zn, 2.5% Mg, 1.6% Cu, and a trace amount of Cr. Ultra-duralumin like 7075 alloy which is Mg-Cu alloy. In the aluminum alloy 3a, the metal structure of the 7000 series aluminum alloy is nano-structured, and then this 7000 series aluminum alloy is heated at 373 to 573K for 60 to 180 seconds and recrystallized. The aluminum alloy 3a is heat-treated after the metal structure is nano-structured. The aluminum alloy 3a is nano-structured as a pretreatment of the raw material structure, and then subjected to a heat treatment to form a recovery structure, followed by friction stir welding.

図2及び図3に示す接合部3bは、摩擦撹拌接合によって接合された部分である。接合部3bは、アルミニウム合金3aの端部同志を突き合せた状態で摩擦撹拌接合(摩擦撹拌溶接)(Friction Stir Welding(FSW))によって溶接して、アルミニウム合金3aの端部同志が接合される。接合部3bは、図2に示すように、アルミニウム合金3aの表面に対して直交する平坦な接合面3cを備えており、アルミニウム合金3aの接合面3c同志を突き合せた状態で溶接される。接合部3bには、図3に示すように、回転ツール5のプローブ部5aの回転による摩擦熱によって生成されてこのプローブ部5aの形状に相当する摩擦撹拌層3dと、プローブ部5aの回転による摩擦熱によって素材を固相のまま塑性流動させて生成される塑性流動層3eと、プローブ部5aの回転による摩擦熱によって素材が軟化して生成される熱影響層3fとが形成される。   2 and 3 is a portion joined by friction stir welding. The joining portion 3b is welded by Friction Stir Welding (FSW) in a state in which the ends of the aluminum alloy 3a are abutted, and the ends of the aluminum alloy 3a are joined. . As shown in FIG. 2, the joint portion 3b includes a flat joint surface 3c orthogonal to the surface of the aluminum alloy 3a, and is welded in a state where the joint surfaces 3c of the aluminum alloy 3a are in contact with each other. As shown in FIG. 3, the joint 3b is generated by frictional heat generated by the rotation of the probe unit 5a of the rotary tool 5 and corresponds to the shape of the probe unit 5a, and by the rotation of the probe unit 5a. A plastic fluidized layer 3e generated by plastically flowing the material in a solid phase by frictional heat and a heat-affected layer 3f generated by softening the material by frictional heat due to rotation of the probe portion 5a are formed.

図1〜図3に示す溶接装置4は、アルミニウム合金3aを溶接する装置である。溶接装置4は、回転する木ねじ状の工具を被接合材の接合部に挿入し、この接合部の材料そのものを撹拌して接合する摩擦撹拌接合装置である。溶接装置4は、摩擦撹拌接合によって接合部の金属組織を加工組織とし、疲労強度や破壊抵抗を溶接前よりも増加させる特徴を有する。溶接装置4は、図2及び図3に示すように、回転ツール5と裏当て部6などを備えている。   The welding apparatus 4 shown in FIGS. 1-3 is an apparatus which welds the aluminum alloy 3a. The welding device 4 is a friction stir welding device that inserts a rotating wood screw-like tool into a joint portion of a material to be joined and stirs and joins the material itself of the joint portion. The welding device 4 has a feature that the metal structure of the joint is made into a processed structure by friction stir welding, and the fatigue strength and fracture resistance are increased more than before welding. As shown in FIGS. 2 and 3, the welding device 4 includes a rotary tool 5 and a backing portion 6.

図2及び図3に示す回転ツール5は、中心軸回りに回転する回転工具である。回転ツール5は、図示しない駆動装置によって中心軸回りに回転する硬質な丸棒であり、接合線Lに沿って水平方向に移動する際には垂直軸に対して3〜5°程度傾斜した前進角が付与される。回転ツール5は、熱伝導が小さく接合部3bに十分熱を蓄積可能であり、かつ、熱勾配の制御が容易であるセラミックス製ツールであり、このようなセラミックス製ツールとしては蓄熱性の高い窒化珪素製ツールが好ましい。回転ツール5は、プローブ部(ピン部)5aとショルダ部5bとを備えており、アルミニウム合金3aの接合面3cにプローブ部5aを挿入して、摩擦熱により軟化した部分を撹拌することによって接合する。プローブ部5aは、接合面3cを摩擦撹拌する機能を有する突起部であり、回転ツール5の先端部に形成されておりこのプローブ部5aの外周面にはねじ部5cが形成されている。プローブ部5aの長さは、アルミニウム合金3aに侵入可能なように、このアルミニウム合金3aの厚さと同一又は僅かに短く設計されている。ショルダ部5bは、プローブ部5aによって撹拌されたアルミニウム合金3aを押さえ込む機能を有する段差部である。ショルダ部5bは、回転ツール5の先端の段差部に形成されており、図3に示すようにショルダ部5bには中心軸側よりも外周部側の方が僅かに高くなるように中心軸から外周に向かってテーパ面が形成されている。   A rotary tool 5 shown in FIGS. 2 and 3 is a rotary tool that rotates around a central axis. The rotary tool 5 is a hard round bar that is rotated around the central axis by a drive device (not shown), and when moving in the horizontal direction along the joining line L, the rotary tool 5 is advanced by about 3 to 5 ° with respect to the vertical axis. A corner is given. The rotary tool 5 is a ceramic tool that has low heat conduction and can accumulate heat sufficiently in the joint 3b and that can easily control the thermal gradient. As such a ceramic tool, nitriding with high heat storage is possible. A silicon tool is preferred. The rotary tool 5 includes a probe part (pin part) 5a and a shoulder part 5b. The probe part 5a is inserted into the joining surface 3c of the aluminum alloy 3a, and the part softened by frictional heat is agitated. To do. The probe portion 5a is a protrusion having a function of frictionally stirring the joint surface 3c, and is formed at the distal end portion of the rotary tool 5. A screw portion 5c is formed on the outer peripheral surface of the probe portion 5a. The length of the probe portion 5a is designed to be the same as or slightly shorter than the thickness of the aluminum alloy 3a so as to be able to enter the aluminum alloy 3a. The shoulder portion 5b is a step portion having a function of pressing down the aluminum alloy 3a stirred by the probe portion 5a. The shoulder portion 5b is formed at a step portion at the tip of the rotary tool 5, and as shown in FIG. 3, the shoulder portion 5b is slightly higher on the outer peripheral side than on the central axis side. A tapered surface is formed toward the outer periphery.

図2及び図3に示す裏当て部6は、回転ツール5との間でアルミニウム合金3aを挟み込む部材である。裏当て部6は、回転ツール5からの摩擦圧力に耐え得るバックアップ材(ベース)として機能する定盤である。裏当て部6は、熱伝導率が小さく接合部3bに十分に熱を蓄積可能であり、かつ、熱勾配の制御が容易であるセラミックス製又は金属製ツールであり、熱伝導の小さいSUS304ステンレス鋼板が好ましい。   The backing portion 6 shown in FIGS. 2 and 3 is a member that sandwiches the aluminum alloy 3 a with the rotary tool 5. The backing portion 6 is a surface plate that functions as a backup material (base) that can withstand the frictional pressure from the rotary tool 5. The backing portion 6 is a SUS304 stainless steel plate having a low thermal conductivity and is a ceramic or metal tool that can store heat sufficiently in the joint portion 3b and that can easily control the thermal gradient. Is preferred.

次に、この発明の実施形態に係る接合材の製造方法について説明する。
図4に示す製造方法#100は、機械的強度が向上されたアルミニウム合金3aを接合した接合材3の製造方法である。製造方法#100は、アルミニウム合金3aの素材組織の前処理としてアルミニウム合金3aを加工熱処理して析出物をナノ組織化し、その後にアルミニウム合金3aに熱処理を加えてアルミニウム合金3aを回復組織化した後に、アルミニウム合金3aに摩擦撹拌接合を実施する。ナノ処理工程#200は、図4に示すように、圧延工程#300と、再結晶処理工程#400と、接合工程#500とを含む。製造方法#100では、欠陥の発生がなく接合部3bの硬さが向上するように、材質の金属組織に存在する析出物を予め微細に制御し、その後に再結晶処理によって変形抵抗を下げ、接合中の摩擦熱を利用して析出物を整える。
Next, the manufacturing method of the joining material which concerns on embodiment of this invention is demonstrated.
Manufacturing method # 100 shown in FIG. 4 is a manufacturing method of the joining material 3 which joined the aluminum alloy 3a with improved mechanical strength. In the manufacturing method # 100, as a pretreatment of the material structure of the aluminum alloy 3a, the aluminum alloy 3a is processed and heat-treated to form nanostructures of precipitates, and then the aluminum alloy 3a is heat treated to recover the aluminum alloy 3a. Then, friction stir welding is performed on the aluminum alloy 3a. As shown in FIG. 4, the nano treatment process # 200 includes a rolling process # 300, a recrystallization treatment process # 400, and a joining process # 500. In the manufacturing method # 100, the precipitates present in the metal structure of the material are finely controlled in advance so that no defects are generated and the hardness of the joint portion 3b is improved, and then the deformation resistance is lowered by recrystallization treatment, The frictional heat during joining is used to prepare the precipitate.

ナノ処理工程#200は、アルミニウム合金3aの金属組織をナノ組織化する工程である。ナノ処理工程#200では、鋳造したままの素材の状態におけるアルミニウム合金3aの金属組織が不均一であるため、圧延加工後にみられる素材内の析出物の寸法をナノスケールで細かく分散させる。ナノ処理工程#200では、鋳造したままの素材に溶体化処理と時効処理とを実施することによって、アルミニウム合金3aの金属組織の析出物をナノレベルで制御する。ナノ処理工程#200は、溶体化処理工程#210と時効処理工程#220とを含む。   Nano treatment process # 200 is a process of nano-organizing the metal structure of aluminum alloy 3a. In the nano-processing step # 200, since the metal structure of the aluminum alloy 3a in the state of the as-cast material is non-uniform, the size of precipitates in the material seen after rolling is finely dispersed on the nanoscale. In the nano treatment step # 200, the precipitate of the metal structure of the aluminum alloy 3a is controlled at the nano level by performing the solution treatment and the aging treatment on the raw material as cast. Nano treatment process # 200 includes solution treatment process # 210 and aging treatment process # 220.

溶体化処理工程#210は、アルミニウム合金3aを溶解度線以上の温度で加熱した後に、このアルミニウム合金3aを室温に急冷して過飽和固溶体を作る工程である。溶体化処理工程#210では、アルミニウム合金3aを加熱保持後に急冷し、このアルミニウム合金3aの材料組織を均一化して一度準安定状態にする。溶体化処理工程#200は、処理温度が373Kを下回ると均質化の問題があり、900Kを超えると割れの問題があるため、処理温度を373〜900Kに設定することが好ましい。溶体化処理工程#200は、処理時間が0.5時間を下回ると均質化の問題があり、3時間を超えると金属組織の成長に問題があるため、処理時間を0.5〜3時間に設定することが好ましい。   The solution treatment step # 210 is a step in which after heating the aluminum alloy 3a at a temperature equal to or higher than the solubility line, the aluminum alloy 3a is rapidly cooled to room temperature to form a supersaturated solid solution. In the solution treatment step # 210, the aluminum alloy 3a is rapidly cooled after being heated, and the material structure of the aluminum alloy 3a is made uniform to be once metastable. In the solution treatment step # 200, there is a problem of homogenization when the processing temperature is lower than 373K, and there is a problem of cracking when the processing temperature is higher than 900K. Therefore, the processing temperature is preferably set to 373 to 900K. In the solution treatment step # 200, there is a problem of homogenization when the treatment time is less than 0.5 hours, and there is a problem in the growth of the metal structure when the treatment time is more than 3 hours, so the treatment time may be set to 0.5 to 3 hours. preferable.

時効処理工程#220は、溶体化処理工程#210後のアルミニウム合金3aを所定温度に保持し、時間の経過に伴ってこのアルミニウム合金3aの硬さが変化する時効現象を利用してアルミニウム合金3aの性質を調整する処理である。時効処理工程#220は、溶体化処理工程#210における準安定状態ではアルミニウム合金3aの機械的性質が低いため、このアルミニウム合金3aを引き続き所定温度に加熱保持して、このアルミニウム合金3aの金属組織を目的とする性質に調質する調質処理である。時効処理工程#220では、アルミニウム合金3aの過飽和固溶体を固溶度曲線よりも低い温度に保持することによって、アルミニウム合金3aの硬度を時間とともに上昇させる。時効処理工程#220は、処理温度が373Kを下回ると未時効で強度が増加しない問題があり、873Kを超えると過時効の問題があるため、処理温度を373〜873Kに設定することが好ましい。時効処理工程#220は、処理時間が0.1時間を下回ると未時効の問題があり、5時間を超えると過時効による軟化の問題があるため、処理時間を0.1〜5時間に設定することが好ましい。   The aging treatment step # 220 maintains the aluminum alloy 3a after the solution treatment step # 210 at a predetermined temperature, and utilizes the aging phenomenon in which the hardness of the aluminum alloy 3a changes with the passage of time. Is a process for adjusting the properties of In the aging treatment step # 220, since the mechanical properties of the aluminum alloy 3a are low in the metastable state in the solution treatment step # 210, the aluminum alloy 3a is continuously heated to a predetermined temperature, and the metal structure of the aluminum alloy 3a is maintained. It is a tempering process that tempers the target properties. In the aging treatment step # 220, the hardness of the aluminum alloy 3a is increased with time by maintaining the supersaturated solid solution of the aluminum alloy 3a at a temperature lower than the solid solubility curve. In the aging treatment step # 220, when the treatment temperature is lower than 373K, there is a problem that the strength does not increase due to unaging, and when it exceeds 873K, there is a problem of overaging, and therefore, the treatment temperature is preferably set to 373 to 873K. In the aging treatment step # 220, there is an unaged problem when the treatment time is less than 0.1 hour, and there is a problem of softening due to overaging when the treatment time is more than 5 hours. Therefore, the treatment time is preferably set to 0.1 to 5 hours. .

圧延工程#300は、複数の回転するロールの間にアルミニウム合金3aを通過させて、断面積を減少させながら所定の形状寸法の型材に加工する工程である。圧延工程#300では、時効処理工程#220後のアルミニウム合金3aを再結晶温度以上の温度で熱間加工することによって塑性変形させる。圧延工程#300は、圧延温度が273Kを下回るとナノ組織の制御が不可能であるという問題があり、573Kを超えると熱間割れの問題があるため、圧延温度を273〜573Kに設定することが好ましい。圧延工程#300は、圧下率が10%を下回るとナノ組織の制御が不可能であるという問題があり、96%を超えると熱間割れの問題があるため、圧下率を10〜96%に設定することが好ましい。   The rolling process # 300 is a process in which the aluminum alloy 3a is passed between a plurality of rotating rolls and processed into a mold having a predetermined shape and dimension while reducing the cross-sectional area. In the rolling process # 300, the aluminum alloy 3a after the aging treatment process # 220 is plastically deformed by hot working at a temperature equal to or higher than the recrystallization temperature. The rolling process # 300 has a problem that the nano-structure cannot be controlled when the rolling temperature is lower than 273K. When the rolling temperature is higher than 573K, there is a problem of hot cracking, so the rolling temperature is set to 273 to 573K. Is preferred. The rolling process # 300 has a problem that the nano-structure cannot be controlled if the rolling reduction is less than 10%, and if it exceeds 96%, there is a problem of hot cracking, so the rolling reduction is reduced to 10 to 96%. It is preferable to set.

再結晶処理工程#400は、アルミニウム合金3aを回復組織化する工程である。再結晶処理工程#400では、圧延工程#300による歪みによってアルミニウム合金3aの変形抵抗が高いため、この変形抵抗を下げるために再結晶化処理を実施する。再結晶処理工程#400では、圧延工程#300において塑性加工されたアルミニウム合金3aを加熱してこのアルミニウム合金3aの内部に蓄えられた歪みエネルギーを解放して歪みのない結晶粒(再結晶粒)を発生させ、アルミニウム合金3aの金属組織を再結晶化させ加工前の状態に回復させる。再結晶処理工程#400は、処理温度が373Kを下回ると再結晶が生じず、573Kを超えると金属組織の粗大化の問題があるため、処理温度を373〜573Kに設定することが好ましい。再結晶処理工程#400は、処理時間が60秒を下回ると再結晶が生じず、180秒を超えると組織粗大化や2次再結晶が生じるため、処理時間を60〜180に設定することが好ましい。   The recrystallization process # 400 is a process for recovering and organizing the aluminum alloy 3a. In the recrystallization process # 400, since the deformation resistance of the aluminum alloy 3a is high due to the strain caused by the rolling process # 300, the recrystallization process is performed to reduce the deformation resistance. In the recrystallization treatment step # 400, the aluminum alloy 3a plastically processed in the rolling step # 300 is heated to release the strain energy stored in the aluminum alloy 3a, thereby causing no crystal grains (recrystallized grains). And the metal structure of the aluminum alloy 3a is recrystallized to recover the state before processing. In the recrystallization treatment step # 400, recrystallization does not occur when the treatment temperature is lower than 373K, and there is a problem of coarsening of the metal structure when the treatment temperature is higher than 573K. Therefore, the treatment temperature is preferably set to 373 to 573K. In the recrystallization treatment step # 400, recrystallization does not occur when the treatment time is less than 60 seconds, and coarsening and secondary recrystallization occur when the treatment time exceeds 180 seconds. Therefore, the treatment time may be set to 60 to 180. preferable.

接合工程#500は、アルミニウム合金3aを摩擦撹拌接合する工程である。接合工程#500では、摩擦撹拌接合による接合中の摩擦熱を利用してアルミニウム合金3aの金属組織の析出物を整えるために、接合中の摩擦熱を蓄積して接合部3bで温度勾配を持たせ、熱勾配によって金属組織の微細化を図る。接合工程#500では、図2及び図3に示すように、セラミックス製の回転ツール5とセラミックス製又は金属製の裏当て部6とによって再結晶処理工程#400後のアルミニウム合金3aを摩擦撹拌接合する。接合工程#500は、接合速度が500mm/minを下回ると欠陥発生の問題があり、1250mm/minを超えると割れの問題があるため、接合速度を500〜1250mm/minに設定することが好ましい。   The joining step # 500 is a step of friction stir welding the aluminum alloy 3a. In the joining process # 500, in order to prepare the precipitate of the metal structure of the aluminum alloy 3a by using the frictional heat during the joining by the friction stir welding, the frictional heat during the joining is accumulated to have a temperature gradient at the joining part 3b. And refine the metal structure by thermal gradient. In the joining step # 500, as shown in FIGS. 2 and 3, the aluminum alloy 3a after the recrystallization treatment step # 400 is friction stir welded by the ceramic rotary tool 5 and the ceramic or metal backing portion 6. To do. In the joining step # 500, there is a problem of defects when the joining speed is less than 500 mm / min, and there is a problem of cracking when the joining speed is more than 1250 mm / min. Therefore, the joining speed is preferably set to 500 to 1250 mm / min.

この発明の実施形態に係るアルミニウム合金とその製造方法、接合材とその製造方法には、以下に記載するような効果がある。
(1) この実施形態では、アルミニウム合金3aの金属組織をナノ処理工程#200でナノ組織化し、このアルミニウム合金3aを再結晶処理工程#400で再結晶化処理し、このアルミニウム合金3aを接合工程#500で摩擦撹拌接合し、アルミニウム合金3aを373〜573Kで60〜180秒間加熱する工程を再結晶化処理工程#400が含む。また、この実施形態では、アルミニウム合金3aの金属組織をナノ組織化した後に、このアルミニウム合金3aを373〜573Kで60〜180秒間加熱して再結晶化処理し、このアルミニウム合金3aを摩擦撹拌接合している。このため、摩擦撹拌接合が困難である7000系アルミニウム合金を欠陥の発生がなく接合部3bの硬さが向上するように接合することができる。その結果、接合条件が広範囲になって接合部3bの継手硬さが増加し、高品質の接合をすることができる。
The aluminum alloy and the manufacturing method thereof, the bonding material and the manufacturing method thereof according to the embodiment of the present invention have the following effects.
(1) In this embodiment, the metal structure of the aluminum alloy 3a is nanostructured in the nanoprocessing step # 200, the aluminum alloy 3a is recrystallized in the recrystallization processing step # 400, and the aluminum alloy 3a is bonded to the aluminum alloy 3a. The recrystallization treatment step # 400 includes a step of friction stir welding at # 500 and heating the aluminum alloy 3a at 373 to 573 K for 60 to 180 seconds. In this embodiment, after the metallographic structure of the aluminum alloy 3a is nano-structured, the aluminum alloy 3a is recrystallized by heating at 373 to 573K for 60 to 180 seconds, and the aluminum alloy 3a is friction stir welded. doing. For this reason, it is possible to join the 7000 series aluminum alloy, which is difficult to friction stir welding, so as not to generate defects and to improve the hardness of the joint portion 3b. As a result, the joining conditions become wide, the joint hardness of the joint 3b increases, and high-quality joining can be performed.

(2) この実施形態では、セラミックス製の回転ツール5によってアルミニウム合金3aを摩擦撹拌接合する工程を接合工程#500が含む。このため、施工時に蓄熱性のあるセラミックス製の回転ツール5を用いることによって、熱伝導を小さくし接合部3bに十分に熱を蓄積させることができる。 (2) In this embodiment, the joining step # 500 includes a step of friction stir welding the aluminum alloy 3a with the ceramic rotary tool 5. For this reason, by using the rotary tool 5 made of ceramics having a heat storage property at the time of construction, heat conduction can be reduced and heat can be sufficiently accumulated in the joint portion 3b.

(3) この実施形態では、セラミックス製又は金属製の裏当て部6によってアルミニウム合金3aの摩擦熱を蓄積させる工程を接合工程#500が含む。このため、施工時に蓄熱性のあるセラミックス製又は金属製の裏当て部6を用いることによって、摩擦撹拌接合時に発生する摩擦熱を裏当て部6側に放出させ、温度勾配を発生させることができる。 (3) In this embodiment, the joining step # 500 includes a step of accumulating the frictional heat of the aluminum alloy 3a by the ceramic or metal backing portion 6. For this reason, by using the ceramic or metal backing part 6 having heat storage during construction, the frictional heat generated during the friction stir welding can be released to the backing part 6 side, and a temperature gradient can be generated. .

次に、この発明の実施例について説明する。
(試験材)
試験材は、7000系アルミニウム合金として表1に示す化学成分の7075合金を用いた。表1に示す単位は、質量パーセントである。試験材は、精密鋳造法によって作成した。試験材の金属組織は、図5(A)に示すように、結晶粒径が100μm以上であり、図5(B)に示すように粒界に最大1μm程度の析出物が見られる状態であった。
Next, examples of the present invention will be described.
(Test material)
As a test material, a 7075 alloy having chemical components shown in Table 1 was used as a 7000 series aluminum alloy. The unit shown in Table 1 is mass percent. The test material was prepared by a precision casting method. As shown in FIG. 5A, the metal structure of the test material was such that the crystal grain size was 100 μm or more and precipitates of up to about 1 μm were observed at the grain boundaries as shown in FIG. 5B. It was.

(試験材のナノ処理)
表1に示す試験材に対する摩擦撹拌接合の適用を検討するために、試験材の金属組織の析出物をナノレベルで制御した。試験材に対するナノ処理は一般的な処理温度よりも低めに設定し、試験材に対する溶体化処理を743Kで1時間行った後に、試験材に対する時効処理を673Kで8時間行った。時効処理後の圧延加工としては、圧延温度を373Kで圧下率を96%として熱間加工で行った。その後、熱間加工による変形抵抗を下げるために再結晶処理を行った。再結晶処理では、完全な再結晶状態と未完全な再結晶状態とを比較するために、加熱温度が473Kで一部分が再結晶化した状態の処理材(以下、473K処理材という)と、加熱温度が573Kで完全に再結晶化した状態の処理材(以下、573K処理材という)とを用意した。再結晶化処理は熱間圧延した材料を加熱炉に入れて行った。加熱時間は、析出物の粗大化を防ぐために180秒とした。
(Nano-treatment of test materials)
In order to examine the application of friction stir welding to the test materials shown in Table 1, the metal structure precipitates of the test materials were controlled at the nano level. The nano-treatment for the test material was set to be lower than the general treatment temperature, and the solution treatment for the test material was performed at 743 K for 1 hour, and then the aging treatment for the test material was performed at 673 K for 8 hours. The rolling process after the aging treatment was performed by hot working at a rolling temperature of 373 K and a reduction rate of 96%. Thereafter, a recrystallization treatment was performed to reduce deformation resistance due to hot working. In the recrystallization treatment, in order to compare a complete recrystallization state and an incomplete recrystallization state, a treatment material in a state where a heating temperature is 473 K and a part is recrystallized (hereinafter referred to as a 473 K treatment material), a heating A treatment material in a state of being completely recrystallized at a temperature of 573K (hereinafter referred to as a 573K treatment material) was prepared. The recrystallization treatment was performed by putting the hot-rolled material in a heating furnace. The heating time was 180 seconds to prevent coarsening of the precipitate.

(試験材の金属組織観察)
再結晶化処理した473K処理材及び573K処理材の金属組織について観察した。観察試料は、473K処理材及び573K処理材を精密切断で切り出した後に研磨と腐食処理とを行って、レーザ顕微鏡を用いて観察を行った。また、析出物の状態を調べるために透過型電子顕微鏡(Transmission Electron Microscope(TEM))による観察を行った。TEMの観察試料は、レーザ顕微鏡による金属組織観察片を用い、電解研磨及びツインジェット研磨機を用いて処理を行った。
(Metal structure observation of test material)
The metal structures of the recrystallized 473K treated material and 573K treated material were observed. The observation sample was subjected to polishing and corrosion treatment after cutting the 473K treated material and the 573K treated material by precision cutting, and observed using a laser microscope. Further, in order to examine the state of the precipitate, observation was performed using a transmission electron microscope (TEM). The observation sample of TEM was processed using electrolytic polishing and a twin jet polishing machine using a metal structure observation piece by a laser microscope.

(摩擦撹拌接合の施工)
接合は、再結晶化処理を行った試験材に対して、図2及び図3に示す摩擦撹拌接合によって行った。摩擦撹拌接合は、蓄熱性の高い窒化珪素製の回転ツールを用いるとともに、熱伝導の小さいSUS304ステンレス鋼板の裏当て板を用いて試験材を接合した。回転ツールの形状は、プローブ部の外径が6mmであり、プローブ部の長さが3mmであり、ショルダ部の外径が12mmである。回転ツールの寿命を延ばすためにプローブ部には凸形のテーパ形状に設計されているものを用いた。接合条件は、回転ツールの挿入角度を接合面3cに対して3°の傾斜を与え、回転ツールの回転数を1000rpm、接合速度を500〜1500mm/min、接合長さを150mmとした。接合は、473K処理材及び573K処理材の長手方向に対して行った。
(Construction of friction stir welding)
Joining was performed by friction stir welding shown in FIGS. 2 and 3 on the test material subjected to the recrystallization treatment. In the friction stir welding, a rotating tool made of silicon nitride having high heat storage property was used, and a test material was joined using a backing plate of a SUS304 stainless steel plate having a small heat conductivity. As for the shape of the rotary tool, the outer diameter of the probe part is 6 mm, the length of the probe part is 3 mm, and the outer diameter of the shoulder part is 12 mm. In order to extend the life of the rotating tool, a probe portion designed to have a convex taper shape was used. The joining conditions were such that the insertion angle of the rotating tool was 3 ° with respect to the joining surface 3c, the rotational speed of the rotating tool was 1000 rpm, the joining speed was 500-1500 mm / min, and the joining length was 150 mm. Bonding was performed in the longitudinal direction of the 473K treated material and the 573K treated material.

(接合材の観察)
接合後に接合部の外観観察を行い、接合断面の金属組織を観察した。接合断面の金属組織の観察は、接合材の接合線に対する垂直断面について行い、観察試験片は精密切断機によって切断後、研磨及び腐食処理を行って得た。観察は、光学顕微鏡を用いた。また、接合速度500,1000,1250mm/minの接合材に対して、この接合材の断面に対してビッカース硬さ試験を接合後に行った。測定面は、接合方向と垂直な面とし、接合中心部から板厚中心方向に水平方向に0.5mm間隔で片側10mmまで測定を行った。測定には、微小硬度試験機を用いて測定荷重1.96N、荷重保持時間10秒で行った。
(Observation of bonding material)
After bonding, the appearance of the bonded portion was observed, and the metal structure of the bonded cross section was observed. The observation of the metal structure of the bonding cross section was performed on a vertical cross section with respect to the bonding line of the bonding material, and the observation test piece was obtained by cutting and polishing treatment with a precision cutting machine. Observation was performed using an optical microscope. Further, a Vickers hardness test was performed on the cross-section of the bonding material having a bonding speed of 500, 1000, and 1250 mm / min after bonding. The measurement surface was a surface perpendicular to the joining direction, and measurement was performed from the center of the joint to the center of the plate thickness in the horizontal direction at intervals of 0.5 mm up to 10 mm on one side. The measurement was performed using a micro hardness tester with a measurement load of 1.96 N and a load holding time of 10 seconds.

摩擦撹拌接合に用いた473K処理材及び573K処理材の金属組織を図6及び図7に示す。図6(A)及び図7(A)は、レーザ顕微鏡で金属組織のミクロ観察を行った結果であり、図6(B)及び図7(B)はTEMで析出物の状態を観察した結果である。473K処理材及び573K処理材の結晶粒は、図6(A)及び図7(A)に示すように、図5(A)に示す鋳造したままの素材と比べて微細であることが確認された。473K処理材及び573K処理材における結晶粒の大きさには大きな差が認められなかった。しかし、図6(B)及び図7(B)に示すように、析出物の大きさには処理温度の差が認められ、473K処理材の方が573K処理材よりも析出物の大きさが大きいことが確認された。   The metal structures of the 473K treated material and the 573K treated material used for friction stir welding are shown in FIGS. 6 (A) and 7 (A) are the results of micro observation of the metal structure with a laser microscope, and FIGS. 6 (B) and 7 (B) are the results of observation of the state of precipitates with TEM. It is. As shown in FIGS. 6A and 7A, the crystal grains of the 473K treated material and the 573K treated material are confirmed to be finer than the as-cast material shown in FIG. 5A. It was. There was no significant difference in crystal grain size between the 473K treated material and the 573K treated material. However, as shown in FIG. 6 (B) and FIG. 7 (B), a difference in the treatment temperature is recognized in the size of the precipitate, and the size of the precipitate is larger in the 473K treated material than in the 573K treated material. It was confirmed to be large.

図8に示すように、接合線には一般的な摩擦撹拌接合による接合材と同様に、回転ツールの回転痕跡が認められた。また、接合線の端部には、金属のバリの発生が認められたが、バリはブラシで除去できる状態のものであった。図8に示すように、いずれの接合速度の条件で接合した接合材の接合線も、図13に示すようなかじりは認められなかった。   As shown in FIG. 8, the rotation trace of the rotary tool was recognized by the joining line similarly to the joining material by general friction stir welding. Moreover, although generation | occurrence | production of the metal burr | flash was recognized by the edge part of a joining line, the burr | flash was a thing of the state which can be removed with a brush. As shown in FIG. 8, no galling as shown in FIG. 13 was observed in the joining lines of the joining materials joined under any joining speed conditions.

一般的に、摩擦撹拌接合の接合部の断面の金属組織には、摩擦撹拌層、塑性流動層及び熱影響層が認められ、摩擦撹拌層内に介在物が凝集した「オニオンリング」と呼ばれる介在物の凝集組織が認められる。図9に示すように、473K処理材の摩擦撹拌接合による接合部の断面を観察した結果、一般的な摩擦撹拌接合による接合材で見られる摩擦撹拌層、塑性流動層及び熱影響層が認められた。しかし、一般的な摩擦撹拌接合による接合材で見られるオニオンリングは認められず、図9に示すように組織変化がワイングラスのような形で接合上面に広がっている状態が認められた。また、摩擦撹拌接合では、回転ツールの回転運動の接線方向が接合方向と一致する場合に最も大きな速度成分となり、反対側では速度成分が最小値となる。ここで、最大速度成分を与える側を前進側(Advancing Side(AS側))と呼び、反対側を後退側(Retreating Side(RS側))と呼ぶ。被接合材の塑性流動は、この速度成分の影響を受け、形成される接合領域はAS側とRS側とで非対称な形状となるのが一般的である。473K処理材でも、AS側とRS側とでは接合領域が非対称であることが確認された。   Generally, in the metal structure of the cross section of the joint of friction stir welding, a friction stir layer, a plastic fluidized layer, and a heat-affected layer are observed, and an inclusion called an “onion ring” in which inclusions aggregate in the friction stir layer. An aggregated structure of the object is observed. As shown in FIG. 9, as a result of observing the cross section of the joint portion by friction stir welding of the 473K treated material, a friction stir layer, a plastic fluidized layer, and a heat-affected layer found in the joint material by general friction stir welding are observed. It was. However, the onion ring seen in the joining material by general friction stir welding was not recognized, but the state where the structure change spreads on the joining upper surface in the shape of a wine glass as shown in FIG. 9 was recognized. Further, in the friction stir welding, when the tangential direction of the rotary motion of the rotary tool coincides with the welding direction, the maximum speed component is obtained, and the speed component is the minimum value on the opposite side. Here, the side that gives the maximum speed component is called the forward side (Advancing Side (AS side)), and the opposite side is called the backward side (Retreating Side (RS side)). The plastic flow of the materials to be joined is affected by this velocity component, and the joining region formed is generally asymmetrical between the AS side and the RS side. Even in the 473K treated material, it was confirmed that the joining region was asymmetric between the AS side and the RS side.

473K処理材を接合速度500mm/minで接合したときの接合部の断面のマクロ組織を観察すると良好な接合断面が認められた。しかし、473K処理材を接合速度750mm/minで接合したときの接合部の断面のマクロ組織を観察すると、図10に示すように界面部に欠陥が認められた。また、473K処理材を接合速度1000mm/min以上で摩擦撹拌接合を行った際に、接合層内に流動不良が認められた。一方、573K処理材を接合速度500mm/minで接合したときの断面のマクロ組織を観察すると、図11に示すように473K処理材に比べて欠陥の発生がなく、良好な接合断面が認められた。また、573K処理材を接合速度500mm/min以上1250mm/min以下で摩擦撹拌接合を行った際にも、欠陥の発生がなく、良好な接合断面が認められたが、573K処理材を接合速度1500mm/minで摩擦撹拌接合を行った際には欠陥が認められた。接合速度500mm/minの場合と接合速度1250mm/minの場合とで573K処理材を比較すると、接合部の断面に認められる熱影響部の幅は、接合速度500mm/minの場合には広いが、接合速度1250mm/minの場合には狭い状態であることが確認された。一方、撹拌部の幅は、接合速度1250mm/minの場合の方が接合速度500mm/minの場合よりも広く、接合部の断面の金属組織が接合速度の影響を受けることが確認された。   When the macrostructure of the cross section of the bonded portion when the 473K treated material was bonded at a bonding speed of 500 mm / min was observed, a good bonded cross section was observed. However, when the macrostructure of the cross section of the bonded portion when the 473K treated material was bonded at a bonding speed of 750 mm / min was observed, defects were recognized at the interface as shown in FIG. In addition, when the 473K treated material was friction stir welded at a joining speed of 1000 mm / min or more, a flow failure was observed in the joining layer. On the other hand, when observing the macro structure of the cross section when the 573K treated material was joined at a joining speed of 500 mm / min, as shown in FIG. . Also, when friction stir welding was performed on a 573K treated material at a joining speed of 500 mm / min to 1250 mm / min, there was no defect and a good cross section was observed. Defects were observed when friction stir welding was performed at / min. When comparing the 573K treated material between the welding speed of 500mm / min and the welding speed of 1250mm / min, the width of the heat-affected zone observed in the cross section of the joint is wide when the welding speed is 500mm / min. It was confirmed that the bonding speed was 1250 mm / min. On the other hand, the width of the agitating part was wider when the joining speed was 1250 mm / min than when the joining speed was 500 mm / min, and it was confirmed that the metal structure of the cross section of the joined part was affected by the joining speed.

(断面硬さ測定結果)
図12に示す縦軸は、ビッカース硬さ(Hv)であり、横軸は接合中心部からの距離(mm)である。図12には、回転ツールのショルダ径の外側及びプローブ径範囲を同時に示している。平均母材硬さは、473K処理材が113Hvであり、573K処理材が97Hvである。撹拌部の硬さは、母材の硬さに依存せずにほぼ同等の値を示すことが確認された。また、断面硬さ分布は、接合部を中心に上に凸の分布を示すことが確認された。図12に示すように、プローブ部の形状に相当する摩擦撹拌層を中心とする接合部のビッカース硬さが140〜160Hvであり、接合速度にかかわらず強度が向上されている。一般的な7075合金の摩擦撹拌接合による接合材の断面硬さ分布は、微細析出物が再固溶するために下に凸の分布を示す。しかし、473K処理材及び573K処理材の断面硬さ分布は、図12に示すように、結晶粒の微細化又は微細析出物の増加のため接合部の断面硬さ分布が接合部を中心に上に凸の分布を示し、接合部の硬さが増加することが確認された。
(Cross section hardness measurement result)
The vertical axis shown in FIG. 12 is the Vickers hardness (Hv), and the horizontal axis is the distance (mm) from the joint center. FIG. 12 simultaneously shows the outside of the shoulder diameter of the rotary tool and the probe diameter range. The average base material hardness is 113Hv for the 473K treated material and 97Hv for the 573K treated material. It was confirmed that the hardness of the stirring portion shows almost the same value without depending on the hardness of the base material. In addition, it was confirmed that the cross-sectional hardness distribution shows a convex distribution upward with the joint at the center. As shown in FIG. 12, the Vickers hardness of the joint centered on the friction stir layer corresponding to the shape of the probe part is 140 to 160 Hv, and the strength is improved regardless of the joining speed. The cross-sectional hardness distribution of the joint material by friction stir welding of a general 7075 alloy shows a downward convex distribution because fine precipitates are re-dissolved. However, as shown in FIG. 12, the cross-sectional hardness distribution of the 473K treated material and the 573K treated material is such that the cross-sectional hardness distribution of the joint is increased centering on the joint due to the refinement of crystal grains or the increase in fine precipitates. Convex distribution was shown, and it was confirmed that the hardness of a junction part increased.

以上より、粗大な析出物が存在する473K処理材では、空隙や流動不良の内部欠陥が認められたが、析出物が微細に分散した573K処理材では欠陥の発生が認められなかった。また、473K処理材及び573K処理材の断面硬さ分布が接合部で増加し、一般的な断面硬さ分布の傾向とは逆の傾向が認められた。さらに、析出物をナノ微細分散した後に完全再結晶化を行い、摩擦撹拌接合時に蓄熱性のあるセラミックスツールを用いることにより、高強度アルミニウム合金の摩擦撹拌接合による接合性を向上可能であることが確認された。   As described above, voids and internal defects such as poor flow were observed in the 473K treated material with coarse precipitates, but no defects were observed in the 573K treated material in which the precipitates were finely dispersed. Moreover, the cross-sectional hardness distribution of the 473K treated material and the 573K treated material increased at the joint, and a tendency opposite to the general tendency of the cross-sectional hardness distribution was recognized. Furthermore, it is possible to improve the bondability of high-strength aluminum alloy by friction stir welding by using nano-dispersed precipitates and then performing complete recrystallization and using a ceramic tool with heat storage during friction stir welding. confirmed.

この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
この実施形態では、鉄道車両の構体2に接合材3を適用した場合を例に挙げて説明したが、自動車、船舶、航空機又は飛翔体などの他の交通輸送手段の構体についてもこの発明を適用することができる。また、この実施形態では、アルミニウム合金3aを突き合せた状態で摩擦撹拌接合する場合を例に挙げて説明したが、アルミニウム合金3aを重ね合せた状態で摩擦撹拌接合する場合についてもこの発明を適用することができる。さらに、この実施形態では、プローブ部5aがねじ部5cを有し、ショルダ部5bがテーパ面を有する場合を例に挙げて説明したがこれに限定するものではない。例えば、プローブ部5aをテーパ状にしたりねじ部5cを省略したりショルダ部5bを水平面にしたりすることもできる。
The present invention is not limited to the embodiment described above, and various modifications or changes can be made as described below, and these are also within the scope of the present invention.
In this embodiment, the case where the bonding material 3 is applied to the structure 2 of the railway vehicle has been described as an example. However, the present invention is also applied to the structure of other transportation means such as an automobile, a ship, an aircraft, or a flying object. can do. In this embodiment, the case where the friction stir welding is performed in a state where the aluminum alloy 3a is abutted is described as an example. However, the present invention is also applied to the case where the friction stir welding is performed while the aluminum alloy 3a is overlapped. can do. Furthermore, in this embodiment, the case where the probe portion 5a has the screw portion 5c and the shoulder portion 5b has a tapered surface has been described as an example, but the present invention is not limited to this. For example, the probe portion 5a can be tapered, the screw portion 5c can be omitted, or the shoulder portion 5b can be a horizontal surface.

1 交通輸送手段(鉄道車両)
2 構体
3 接合材
3a アルミニウム合金(7000系アルミニウム合金)
3b 接合部
3c 接合面
3d 摩擦撹拌層
3e 塑性流動層
3f 熱影響層
4 溶接装置
5 回転ツール
5a プローブ部
5b ショルダ部
5c ねじ部
6 裏当て部
1 Transportation means (railcar)
2 Structure 3 Bonding material 3a Aluminum alloy (7000 series aluminum alloy)
3b Joined portion 3c Joined surface 3d Friction stir layer 3e Plastic fluidized bed 3f Heat-affected layer 4 Welding device 5 Rotating tool 5a Probe portion 5b Shoulder portion 5c Screw portion 6 Backing portion

Claims (8)

機械的強度が向上されたアルミニウム合金を接合した接合材の製造方法であって、
7000系アルミニウム合金の金属組織をナノ組織化するナノ処理工程と、
前記7000系アルミニウム合金を再結晶化処理する再結晶処理工程と、
前記7000系アルミニウム合金を摩擦撹拌接合する接合工程とを含み、
前記再結晶化処理工程は、前記7000系アルミニウム合金を373〜573Kで60〜180秒間加熱する工程を含むこと、
を特徴とする接合材の製造方法。
A method of manufacturing a bonding material obtained by bonding an aluminum alloy with improved mechanical strength,
A nano-treatment process for nano-organizing the metal structure of 7000 series aluminum alloy;
A recrystallization treatment step for recrystallization treatment of the 7000 series aluminum alloy;
A step of friction stir welding the 7000 series aluminum alloy,
The recrystallization treatment step includes heating the 7000 series aluminum alloy at 373 to 573 K for 60 to 180 seconds;
The manufacturing method of the joining material characterized by these.
請求項1に記載の接合材の製造方法において、
前記接合工程は、セラミックス製の回転ツールによって前記7000系アルミニウム合金を摩擦撹拌接合する工程を含むこと、
を特徴とする接合材の製造方法。
In the manufacturing method of the joining material according to claim 1,
The joining step includes a step of friction stir welding the 7000 series aluminum alloy with a ceramic rotary tool;
The manufacturing method of the joining material characterized by these.
請求項1又は請求項2に記載の接合材の製造方法において、
前記接合工程は、セラミックス製又は金属製の裏当て部によって前記7000系アルミニウム合金の摩擦熱を蓄積させる工程を含むこと、
を特徴とする接合材の製造方法。
In the manufacturing method of the joining material according to claim 1 or claim 2,
The joining step includes a step of accumulating frictional heat of the 7000 series aluminum alloy by a ceramic or metal backing portion;
The manufacturing method of the joining material characterized by these.
機械的強度が向上されたアルミニウム合金の製造方法であって、
7000系アルミニウム合金の金属組織をナノ組織化するナノ処理工程と、
前記7000系アルミニウム合金を再結晶化処理する再結晶処理工程とを含み、
前記再結晶化処理工程は、前記7000系アルミニウム合金を373〜573Kで60〜180秒間加熱する工程を含むこと、
を特徴とするアルミニウム合金の製造方法。
A method for producing an aluminum alloy with improved mechanical strength,
A nano-treatment process for nano-organizing the metal structure of a 7000 series aluminum alloy;
A recrystallization treatment step of recrystallizing the 7000 series aluminum alloy,
The recrystallization treatment step includes heating the 7000 series aluminum alloy at 373 to 573 K for 60 to 180 seconds;
A method for producing an aluminum alloy characterized by
機械的強度が向上されたアルミニウム合金を接合した接合材であって、
7000系アルミニウム合金の金属組織をナノ組織化した後に、この7000系アルミニウム合金を373〜573Kで60〜180秒間加熱して再結晶化処理し、この7000系アルミニウム合金を摩擦撹拌接合していること、
を特徴とする接合材。
A bonding material obtained by bonding an aluminum alloy with improved mechanical strength,
After the metallographic structure of the 7000 series aluminum alloy is nano-structured, this 7000 series aluminum alloy is recrystallized by heating at 373 to 573 K for 60 to 180 seconds, and the 7000 series aluminum alloy is friction stir welded. ,
A bonding material characterized by
機械的強度が向上されたアルミニウム合金であって、
7000系アルミニウム合金の金属組織をナノ組織化した後に、この7000系アルミニウム合金を373〜573Kで60〜180秒間加熱して再結晶化処理していること、
を特徴とするアルミニウム合金。
An aluminum alloy with improved mechanical strength,
After the metallographic structure of the 7000 series aluminum alloy is nano-structured, the 7000 series aluminum alloy is recrystallized by heating at 373 to 573 K for 60 to 180 seconds,
Aluminum alloy characterized by
請求項5に記載の接合材を備える鉄道車両の構体。   A structure of a railway vehicle comprising the bonding material according to claim 5. 請求項5に記載の接合材を備える交通輸送手段の構体。   A structure of traffic transportation means comprising the bonding material according to claim 5.
JP2013112269A 2013-05-28 2013-05-28 Aluminum alloy and method for manufacturing the same, joining material and method for manufacturing the same, structure of railway vehicle, and structure of transportation means Expired - Fee Related JP6153160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013112269A JP6153160B2 (en) 2013-05-28 2013-05-28 Aluminum alloy and method for manufacturing the same, joining material and method for manufacturing the same, structure of railway vehicle, and structure of transportation means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013112269A JP6153160B2 (en) 2013-05-28 2013-05-28 Aluminum alloy and method for manufacturing the same, joining material and method for manufacturing the same, structure of railway vehicle, and structure of transportation means

Publications (2)

Publication Number Publication Date
JP2014231067A true JP2014231067A (en) 2014-12-11
JP6153160B2 JP6153160B2 (en) 2017-06-28

Family

ID=52124795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013112269A Expired - Fee Related JP6153160B2 (en) 2013-05-28 2013-05-28 Aluminum alloy and method for manufacturing the same, joining material and method for manufacturing the same, structure of railway vehicle, and structure of transportation means

Country Status (1)

Country Link
JP (1) JP6153160B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346770A (en) * 2001-05-24 2002-12-04 Hitachi Ltd Aluminum-based bonded structure
JP2004141946A (en) * 2002-10-25 2004-05-20 Mitsubishi Heavy Ind Ltd Double skin panel manufactured by traction swirling joining and method for manufacturing broad panel using the panel
JP2005131679A (en) * 2003-10-30 2005-05-26 Sumitomo Light Metal Ind Ltd Friction stir welding method for heat treatment type aluminum alloy, and welded blank for press forming obtained by method
US20070215676A1 (en) * 2006-03-08 2007-09-20 Sapa Profiler Ab Adjustable overlap joint and structure produced thereby
JP2008155277A (en) * 2006-12-26 2008-07-10 Osaka Univ Method for joining metallic material
JP2009113085A (en) * 2007-11-07 2009-05-28 Sumitomo Light Metal Ind Ltd Method for producing joined product, and joined structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346770A (en) * 2001-05-24 2002-12-04 Hitachi Ltd Aluminum-based bonded structure
JP2004141946A (en) * 2002-10-25 2004-05-20 Mitsubishi Heavy Ind Ltd Double skin panel manufactured by traction swirling joining and method for manufacturing broad panel using the panel
JP2005131679A (en) * 2003-10-30 2005-05-26 Sumitomo Light Metal Ind Ltd Friction stir welding method for heat treatment type aluminum alloy, and welded blank for press forming obtained by method
US20070215676A1 (en) * 2006-03-08 2007-09-20 Sapa Profiler Ab Adjustable overlap joint and structure produced thereby
JP2008155277A (en) * 2006-12-26 2008-07-10 Osaka Univ Method for joining metallic material
JP2009113085A (en) * 2007-11-07 2009-05-28 Sumitomo Light Metal Ind Ltd Method for producing joined product, and joined structure

Also Published As

Publication number Publication date
JP6153160B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
Sejani et al. Stationary shoulder friction stir welding–low heat input joining technique: a review in comparison with conventional FSW and bobbin tool FSW
Rose et al. Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy
Reshad Seighalani et al. Investigations on the effects of the tool material, geometry, and tilt angle on friction stir welding of pure titanium
Ilangovan et al. Microstructure and tensile properties of friction stir welded dissimilar AA6061–AA5086 aluminium alloy joints
Çam et al. Recent developments in friction stir welding of Al-alloys
Papaefthymiou et al. Micro-friction stir welding of titan zinc sheets
Khodir et al. Microstructure and mechanical properties of friction stir welded AA2024-T3 aluminum alloy
US11964338B2 (en) Method for low-temperature joining of metal materials, and joint structure
Dawood et al. Advantages of the green solid state FSW over the conventional GMAW process
Razal Rose et al. Influences of welding speed on tensile properties of friction stir welded AZ61A magnesium alloy
Besler et al. Friction crush welding of aluminium, copper and steel sheetmetals with flanged edges
Imani et al. Improving friction stir welding between copper and 304L stainless steel
Liu et al. Improving joint formation and tensile properties of dissimilar friction stir welding of aluminum and magnesium alloys by solving the pin adhesion problem
Lotfi et al. Effect of welding parameters on microstructure, thermal, and mechanical properties of friction-stir welded joints of AA7075-T6 aluminum alloy
Suri An improved FSW tool for joining commercial aluminum plates
WO2017169992A1 (en) Method and device for friction stir bonding of structural steel
Khan et al. Proposing a new relation for selecting tool pin length in friction stir welding process
Birol et al. Effect of welding parameters on the microstructure and strength of friction stir weld joints in twin roll cast EN AW Al-Mn1Cu plates
Patil et al. Effect of weld parameter on mechanical and metallurgical properties of dissimilar joints AA6082–AA6061 in T6 condition produced by FSW
Zhou et al. Study on the microstructures and tensile behaviors of friction stir welded T-joints for AA6061-T4 alloys
Uygur Influence of shoulder diameter on mechanical response and microstructure of FSW welded 1050 Al-alloy
Haldar et al. Experimental studies on friction-stir welding of AA6061 using Inconel 601 tool
Jacob et al. Improvements in strength and microstructural behaviour of friction stir welded 7475 aluminium alloy using in-process cooling
Nejad et al. Friction stir welding of 2024 aluminum alloy: Study of major parameters and threading feature on probe
JP6153160B2 (en) Aluminum alloy and method for manufacturing the same, joining material and method for manufacturing the same, structure of railway vehicle, and structure of transportation means

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170524

R150 Certificate of patent or registration of utility model

Ref document number: 6153160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees