JP2014229890A - Method for coating surface of aluminum current collector having three-dimensional pattern structure using photolithography - Google Patents

Method for coating surface of aluminum current collector having three-dimensional pattern structure using photolithography Download PDF

Info

Publication number
JP2014229890A
JP2014229890A JP2013155715A JP2013155715A JP2014229890A JP 2014229890 A JP2014229890 A JP 2014229890A JP 2013155715 A JP2013155715 A JP 2013155715A JP 2013155715 A JP2013155715 A JP 2013155715A JP 2014229890 A JP2014229890 A JP 2014229890A
Authority
JP
Japan
Prior art keywords
current collector
aluminum
aluminum current
etching
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013155715A
Other languages
Japanese (ja)
Inventor
シン、ダルウー
Dal-Woo Sin
イ、ムンス
Moon Su Lee
キム、ソンハン
Sung Han Kim
カン、レチョル
Rae Cheol Kang
シン、ジンシク
Jin-Sik Sin
ハ、ジェハン
Jae Han Ha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOREA JCC CO Ltd
Original Assignee
KOREA JCC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOREA JCC CO Ltd filed Critical KOREA JCC CO Ltd
Publication of JP2014229890A publication Critical patent/JP2014229890A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an aluminum current collector having a three-dimensional pattern structure using photolithography, and to provide an ultra-high capacity capacitor including the same.SOLUTION: There is provided a method for spreading the surface area comprising: designing a constant pattern three-dimensionally on the surface of an aluminum current collector by using photolithography; and etching the pattern selectively to form a three-dimensional pattern structure on the aluminum current collector surface. An ultra-high capacity capacitor manufactured by applying an aluminum current collector having a three-dimensional pattern structure using photolithography is also provided.

Description

本発明はフォトリソグラフィー(Photolithography)を利用した立体パターン(Pattern)構造を持つアルミニウム集電体(Current Collector)の製造方法に関するものでより詳しくはフォトリソグラフィー(Photolithography)を利用してアルミニウム集電体の表面に一定のパターンを設計した後、これらを選択的にエッチング(Etching)してアルミニウム集電体表面に立体パターン構造を形成した後に集電体表面に伝導性物質を一定の厚さでコーティングする方法に関するものである。   The present invention relates to a method of manufacturing an aluminum current collector (Current Collector) having a three-dimensional pattern (Pattern) structure using photolithography (Photolithography), and more specifically, using photolithography (Photolithography). After designing a certain pattern on the surface, these are selectively etched to form a three-dimensional pattern structure on the surface of the aluminum current collector, and then a conductive material is coated on the current collector surface with a certain thickness. It is about the method.

原油価格の上昇及び地球温暖化問題による代替エネルギー分野に対する技術が注目を集めている中、リチウムイオン2次電池を先頭にエネルギー保存装置の技術が急速に発展してきた。しかし、電気的な容量は大きいが出力が低く、高出力を要求する分野で使用が制限的な2次電池の対案として超高容量キャパシターが活用されていて、高出力がメリットである超高容量キャパシターは電気的な容量を拡大する技術研究を通して次第に2次電領域への適用範囲を拡大している。特に再生制動エネルギーを活用するのが難しい2次電池に比べて超高容量キャパシターは容易に再生制動エネルギーを活用できるという長所で現在さらに多様な分野へ適用が拡大しているところである。   While technology in the alternative energy field due to the rise in crude oil prices and global warming has attracted attention, the technology for energy storage devices has rapidly developed, starting with lithium ion secondary batteries. However, an ultra-high-capacity capacitor is used as an alternative to a secondary battery that has a large electrical capacity but low output and is restricted in use in fields that require high output. Capacitors are gradually expanding the scope of application to the secondary power region through technological research to expand electrical capacity. In particular, compared to secondary batteries in which it is difficult to utilize regenerative braking energy, ultra-high capacity capacitors can be easily utilized for regenerative braking energy, and are currently being applied to various fields.

超高容量キャパシターは表面積が大きい活性炭を利用して電解液の中でイオンの物理的な吸着及び脱着反応を利用して充電と放電を繰り返す方法で、既存の電解キャパシターでは表面積の限界を持っているアルミニウムがやっていた役割を活性炭が代わりにすることで電気的な容量を飛躍的に向上することができた。なお、最近では片方または両方電極を金属酸化物または炭素ナノチューブ(CNT),炭素ナノファイバー(CNF),複合金属酸化物などに活性炭を代わりに使う方法の超高容量キャパシターなどの概念が登場して電気的容量をさらに高めている。   An ultra-high capacity capacitor uses activated carbon with a large surface area to repeatedly charge and discharge using physical adsorption and desorption reactions of ions in the electrolyte, and existing electrolytic capacitors have a limited surface area. By replacing the role of aluminum with activated carbon, the electrical capacity could be improved dramatically. Recently, concepts such as ultra-high capacity capacitors that use activated carbon instead of metal oxide or carbon nanotube (CNT), carbon nanofiber (CNF), or composite metal oxide for one or both electrodes have appeared. The electric capacity is further increased.

超高容量キャパシターでのアルミニウムホイル(Foil)は活性炭から伝達される電子を外部回路へ誘導する集電体(Current Collector)としての役割をなし、活性炭から集電体へ電子が転移される時発生する抵抗を最大限低くするための界面特性が要求されている。このために電気化学的な方法で集電体表面のエッチング(Etching)を通して活物質との接続面積を増加させ、これを適用した超高容量キャパシターの等価直列抵抗(ESR)を低くすることができる。さらにアルミニウム代わりに表面積がかなり大きくて多孔性であるニッケルフォーム(Nickel Foam)を集電体に適用して活物質と集電体の接続面積を向上させることでこれを適用した超高容量キャパシターのESRを低くすることのみならず上昇した有効容量を具現する研究が進んでいたが、ニッケルフォームを適用した超高容量キャパシターの製品化は実用的な問題点を抱えている。
また、超高容量キャパシターの電気的容量を増加させるための従来の方法は物理的な吸着及び脱着反応をする活性炭代わりに酸化還元反応をする金属酸化物で活物質を代わりにしたり、または活性炭より表面積が大きい炭素ナノチューブ(CNT)のような活物質を使用する方法などである。活物質を代替するこのような方法はまず代替活物質が大量で生産されていない、または一部生産されている物質は既存活性炭を使用して製造する工程設備をそのまま使えない問題点を抱えており、さらに活物質自体の価格が非常に高くてコスト面でも多くの問題点を抱えている。
Aluminum foil (Foil) in super high-capacitance capacitors plays a role as a current collector that induces electrons transferred from activated carbon to an external circuit, and is generated when electrons are transferred from activated carbon to the current collector. There is a demand for interfacial characteristics to minimize the resistance to be generated. For this purpose, it is possible to reduce the equivalent series resistance (ESR) of an ultrahigh-capacitance capacitor by applying an electrochemical method to increase the connection area with the active material through etching of the current collector surface. . Furthermore, instead of aluminum, nickel foam (Nickel Foam), which has a fairly large surface area and is porous, is applied to the current collector to improve the connection area between the active material and the current collector. Although research has been progressing to realize not only low ESR but also increased effective capacity, commercialization of ultra-high capacity capacitors using nickel foam has practical problems.
In addition, the conventional method for increasing the electric capacity of the ultra high capacity capacitor is to replace the active material with a metal oxide that performs a redox reaction instead of activated carbon that performs physical adsorption and desorption reactions, For example, a method using an active material such as a carbon nanotube (CNT) having a large surface area. Such a method for substituting an active material has a problem that a substitute active material is not produced in large quantities, or a partly produced material cannot be used as it is with a process facility that uses existing activated carbon. In addition, the price of the active material itself is very high and has many problems in terms of cost.

また、現在電解液を利用して実施しているアルミニウム集電体の電気化学的なエッチング(Etching)方法だけでは超高容量キャパシターの有効容量を増加させるほど活物質とアルミニウム集電体の間に接続面積を増加させる形態を持つことができない問題点を抱えている。   In addition, only the electrochemical etching (etching) method of the aluminum current collector currently implemented using an electrolyte solution increases the effective capacity of the ultrahigh-capacitance capacitor between the active material and the aluminum current collector. It has a problem that it cannot have a form that increases the connection area.

上記のような問題点を解決するために本出願人は登録特許第10-1166148号でフォトリソグラフィーを利用した立体パターン構造を持つアルミニウム製造方法を掲示したことがあるが、耐蝕性と耐久性をより確保する必要性があった。   In order to solve the above problems, the present applicant has posted an aluminum manufacturing method having a three-dimensional pattern structure using photolithography in registered patent No. 10-1166148, but the corrosion resistance and durability have been posted. There was a need to secure more.

本発明の目的は上記した従来技術の問題点を解決するためのもので、フォトリソグラフィー(Photolithography)を利用して既存アルミニウム集電体表面にパターン(Pattern)を形成させてこれらの選択的エッチング(Etching)を通してアルミニウム集電体と活物質との接続面積を効果的に増加させ、その表面に伝導性物質をコーティングして電解液とアルミニウムが直接反応することを防止して耐蝕性及び耐久性を増大させることができるアルミニウム集電体コーティング方法を提供することである。   An object of the present invention is to solve the above-mentioned problems of the prior art, and a pattern is formed on the surface of an existing aluminum current collector using photolithography (Photolithography) to selectively etch these ( Etching) effectively increases the connection area between the aluminum current collector and the active material, and the surface is coated with a conductive material to prevent direct reaction between the electrolyte and aluminum, thereby improving corrosion resistance and durability. It is to provide an aluminum current collector coating method that can be increased.

上記した本発明の目的を達成させるために本発明は;
アルミニウム箔集電体を洗浄した後、窒素で乾燥するステップ(S1);
上記乾燥されたアルミニウム箔集電体表面上に感光液を塗布した後、乾燥して感光液が選択的に露光させて硬化させるステップ(S2);
上記ステップ(S2)後、現像液を露光されたアルミニウム集電体に振り撒いて露光されてない感光液を選択的に除いた後に残る感光液を完全に硬化させてアルミニウム集電体の上にパターン形成を完了させるステップ(S3);
二つの炭素板をそれぞれの対極にしてパターンが形成されたアルミニウム箔集電体を二つの炭素板の間に位置させて交流電源を認可して電解液でアルミニウム集電体を1次エッチングするステップ(S4);
エッチングされたアルミニウム集電体を乾燥させるステップ(S5);
上記ステップ(S5)後、二つの炭素板を対極にして1次エッチング後乾燥されたアルミニウム集電体を両対極の間に位置させて2次エッチングするステップ(S6);
2次エッチングされたアルミニウム箔を洗浄乾燥させるステップ(S7);そして上記集電体にニッケルまたは柱石を鍍金するステップ(S8)を含まることを特徴とする立体パターン構造を持つアルミニウム集電体の製造方法を提供する。
In order to achieve the object of the present invention described above, the present invention is
After washing the aluminum foil current collector, drying with nitrogen (S1);
Applying a photosensitive solution onto the dried aluminum foil current collector surface, and then drying and exposing the photosensitive solution selectively to cure (S2);
After the above step (S2), the developer is sprinkled on the exposed aluminum current collector to selectively remove the unexposed photosensitive liquid, and the remaining photosensitive liquid is completely cured to form on the aluminum current collector. Completing pattern formation (S3);
An aluminum foil current collector having a pattern formed by using two carbon plates as counter electrodes is positioned between the two carbon plates, an AC power source is approved, and the aluminum current collector is first etched with an electrolyte (S4). );
Drying the etched aluminum current collector (S5);
After the above step (S5), the secondary etching is performed by placing the aluminum collector dried after the primary etching with the two carbon plates as the counter electrode between the counter electrodes (S6);
A step of cleaning and drying the secondary-etched aluminum foil (S7); and a step of plating nickel or pillar stone (S8) on the current collector. A manufacturing method is provided.

上記で上記ステップ(S1)のアルミニウム箔は純度が99.00〜99.99%であり、厚さが10〜100μmのものを使うのが望ましい。純度が99.00より低い場合EDLCの漏洩電流特性が悪くなり、純度100%のアルミニウム箔は現在の技術では製造が不可能である。厚さが10μm未満ではエッチングできる深さも10μm未満に限定されることになってエッチングの深さが低くなると発明の硬化がひくくなり、厚さが100μmが超え始めると電極の体積が増加されてそれによるエネルギーの密度が減少する逆効果が現れる理由である。   In the above, it is desirable to use the aluminum foil of the above step (S1) having a purity of 99.00 to 99.99% and a thickness of 10 to 100 μm. When the purity is lower than 99.00, the leakage current characteristic of EDLC is deteriorated, and 100% purity aluminum foil cannot be manufactured with the current technology. When the thickness is less than 10 μm, the depth of etching is limited to less than 10 μm, and when the etching depth is lowered, the hardening of the invention becomes worse, and when the thickness starts to exceed 100 μm, the volume of the electrode is increased. This is the reason for the adverse effect of decreasing the energy density.

また、上記ステップ(S2)での感光液塗布は0.5〜50μmの厚さですることが望ましい。感光液塗布の厚さが0.5μm未満の場合集電体エッチング時、感光液が破壊されやすくなり過度なエッチングでパターンが崩れ、50μm超過で厚さが厚くなればエッチング液浸透が難しくなり十分なエッチングができなくなってパターン形成が完全にできないことがある。上記ステップ(S2)での乾燥は50〜150℃の温度で5〜30分間することが望ましい。乾燥温度が150℃超過した場合には感光液が破壊され、50℃未満では感光液が硬化されるまで非常に多い時間がかかるので実用的ではない。乾燥時間が5分未満では硬化が完全にされてなく以降の過程が進行する間にパターンが崩れやすく恐れがあり、30分超過では硬化しすぎて選択的に露光して完全な硬化をしたとしても露光したとおりにパターンが形成されない場合がある。   In addition, it is desirable that the photosensitive solution coating in the above step (S2) has a thickness of 0.5 to 50 μm. If the coating thickness of the photosensitive solution is less than 0.5μm, the collector will be easily destroyed during current collector etching, the pattern will be destroyed by excessive etching, and if the thickness exceeds 50μm, the penetration of the etching solution will be difficult. In some cases, etching cannot be performed and the pattern cannot be formed completely. The drying in the above step (S2) is desirably performed at a temperature of 50 to 150 ° C. for 5 to 30 minutes. When the drying temperature exceeds 150 ° C., the photosensitive solution is destroyed. When the drying temperature is less than 50 ° C., it takes much time until the photosensitive solution is cured, which is not practical. If the drying time is less than 5 minutes, the curing may not be completely completed and the pattern may be easily broken while the subsequent process proceeds. If the drying time exceeds 30 minutes, the film may be cured too much and selectively exposed to complete curing. However, the pattern may not be formed as exposed.

また、上記ステップ(S2)での露光は透過性材質の上でクロムでパターンを形象化したマスクを感光液が塗布されたアルミニウム集電体の上に位置させた後、UV光を照射させ選択的に行う。上記マスクは石英(quartz)を含むUV光透過性物質を使用し、大きさ10〜500μmの模様と模様の間隔が10〜500μmで調合されるパターンで行うが、パターン模様の大きさ及び間隔が10μmより小さいか500μmより大きい場合は活物質から集電体へ電子が移動する移動距離が短くなる結果が現れることになり発明の効果が低くなる恐れがあるため、上記の通りに行う。   Also, the exposure in the above step (S2) is selected by irradiating UV light after placing a mask formed of a chrome pattern on a transparent material on an aluminum current collector coated with a photosensitive solution. Do it. The mask uses a UV light transmissive material containing quartz, and a pattern with a size of 10 to 500 μm and a pattern with a pattern spacing of 10 to 500 μm is prepared. If it is smaller than 10 μm or larger than 500 μm, the movement distance of electrons from the active material to the current collector may be shortened and the effect of the invention may be reduced.

また、上記ステップ(S3)での上記感光液は中性を除外した酸またはアルカリ溶液を使用して、上記ステップ(S3)での硬化は50〜150℃の温度で5〜60分間行う。乾燥温度が150℃を超過すると感光液が破壊され、50℃未満では感光液が硬化できるまで非常に多くの時間がかかり実用的でない。乾燥時間が5分未満では硬化の程度が足りなず以降のエッチング過程でエッチング液による感光液が破壊され、それによるパターン形成ができなくなり、60分超過では硬化しすぎて以降の感光液除去ステップで感光液除去がむずかしくなる。   The photosensitive solution in the step (S3) is an acid or alkali solution excluding neutrality, and the curing in the step (S3) is performed at a temperature of 50 to 150 ° C. for 5 to 60 minutes. If the drying temperature exceeds 150 ° C., the photosensitive solution is destroyed, and if it is less than 50 ° C., it takes a very long time until the photosensitive solution can be cured, which is not practical. If the drying time is less than 5 minutes, the degree of curing is insufficient, and the photosensitive solution by the etching solution is destroyed in the subsequent etching process, so that pattern formation cannot be performed. This makes it difficult to remove the photosensitive solution.

また上記のステップ(S4)での交流電源は周波数5〜60Hz、電流密度0.1〜10A/cm2の範囲であることが望ましい。
これは周波数5Hz未満及び10A/cm2超過の電流密度では過度なエッチングになりパターンの破壊が、また60Hz超過及び0.1A/cm2超過の電流密度ではエッチングが十分になされずパターンのままのエッチングが円滑に行われないためであり、上記のステップ(S4)での電解液は20g/lのAlイオンと0.5〜5Mの塩酸と0.01〜2Mの硫酸を使用することが望ましい。その理由は20g/l超過のAlイオンがある場合Alイオンのじゃまが大きく、エッチングの進行がじゃまされ、0.5M未満の塩酸及び0.01M未満の硫酸濃度ではエッチングの進行がうまく進まず、5M超過の塩酸及び2M超過の硫酸濃度ではエッチングが過度に進んでしまう恐れがあるためである。上記ステップ(S4)での上記1次エッチングは、上記の電解液の温度が10〜60℃で10〜60秒間なされる。その理由は10℃未満の温度及び10秒未満ではエッチングの進行がうまくすすまず、60℃を超える温度及び60秒超過時間では、過度なエッチングがされるためである。
Further, the AC power source in the above step (S4) is desirably in the range of frequency 5 to 60 Hz and current density of 0.1 to 10 A / cm 2 .
This is excessive etching at a current density of less than 5 Hz and a current density of more than 10 A / cm 2 , resulting in pattern destruction, and etching at a current density of more than 60 Hz and more than 0.1 A / cm 2 is not sufficiently etched. Therefore, it is desirable to use 20 g / l of Al ions, 0.5-5 M hydrochloric acid and 0.01-2 M sulfuric acid as the electrolytic solution in the above step (S4). The reason is that if there is an Al ion exceeding 20g / l, the Al ion is greatly disturbed and the progress of the etching is disturbed, and if the hydrochloric acid concentration is less than 0.5M and the sulfuric acid concentration is less than 0.01M, the etching does not proceed well, exceeding 5M. This is because the etching may proceed excessively at a hydrochloric acid concentration of 2M or sulfuric acid exceeding 2M. The primary etching in the step (S4) is performed at a temperature of the electrolytic solution of 10 to 60 ° C. for 10 to 60 seconds. This is because the etching does not proceed well at temperatures lower than 10 ° C. and lower than 10 seconds, and excessive etching is performed at temperatures higher than 60 ° C. and longer than 60 seconds.

また上記ステップ(S5)での乾燥は、エッチングされたアルミニウム集電体を蒸留水で洗浄した後、アセトンを含んだ感光液・除去剤で残留感光剤を除去した後、50〜500℃の温度で2〜15分間行う。
これは乾燥のとき、50℃未満の温度及び2分未満では乾燥がうまくいかず、アルミニウム表面の水和反応が進んで非結晶性酸化膜が形成され、また500℃超過の温度及び15分超過の時間ではアルミニウム表面が酸化反応が進み、結晶性酸化膜が形成されることがあるため、上記の通りに行う。
In addition, the drying in the above step (S5) is performed by washing the etched aluminum current collector with distilled water, removing the residual photosensitizer with a photosensitizing solution / removing agent containing acetone, and then heating at a temperature of 50 to 500 ° C. At 2-15 minutes.
This is because when drying, the temperature is less than 50 ° C and less than 2 minutes, the drying is not successful, the hydration reaction of the aluminum surface proceeds to form an amorphous oxide film, the temperature exceeds 500 ° C and exceeds 15 minutes In this time, the aluminum surface undergoes an oxidation reaction and a crystalline oxide film may be formed.

その次の上記のステップ(S6)での2次エッチングは交流電源を印加してエッチングするが、上記交流電源は周波数10〜90Hz、電流密度0.1〜10A/cm2の範囲で使用することが望ましい。その理由は周波数10Hz未満及び10A/cm2超過の電流密度では過度なエッチングが進み、パターンの破壊が起きることがあり、90Hz超過及び0.1A/cm2未満の電流密度ではエッチングがうまくなされず、パターンどおりのエッチングが円滑になされないためである。 The next secondary etching in the above step (S6) is performed by applying an AC power supply, and the AC power supply is preferably used in a frequency range of 10 to 90 Hz and a current density of 0.1 to 10 A / cm 2. . The reason is that excessive etching proceeds at a current density of less than 10 Hz and a current density exceeding 10 A / cm 2 , and pattern destruction may occur, and etching is not successful at a current density exceeding 90 Hz and less than 0.1 A / cm 2 , This is because the etching according to the pattern is not smoothly performed.

また、上記2次エッチングは10〜30g/lAlイオンと100〜300g/l(q)Clイオン、そして5〜30g/lのSO4イオンを含むエッチング電解液で行うことが望ましい。それはイオン液30g/l超過のAlイオンのある場合、Alイオンのじゃまが大きく、エッチングの進行がじゃまされ、100g/l未満のClイオン及び5g/l未満のSO4イオンではエッチングが進まず、また、300g/l超過のClイオン及び30g/l超過のSO4イオンではエッチングが過度に進んでしまう恐れがあり、   The secondary etching is preferably performed with an etching electrolyte containing 10 to 30 g / l Al ions, 100 to 300 g / l (q) Cl ions, and 5 to 30 g / l SO4 ions. If there is more than 30g / l of ionic liquid Al ions, the blockage of Al ions will be large and the progress of etching will be hindered, and etching will not proceed with Cl ions less than 100g / l and SO4 ions less than 5g / l. Etching may progress excessively with Cl ions exceeding 300 g / l and SO4 ions exceeding 30 g / l.

上記2次エッチングは30〜90℃で10〜60秒間行うのが望ましい。それは30℃未満の温度及び10秒未満の時間ではエッチングが進まず、また、90℃超過の温度及び60秒超過の時間ではエッチングが過度に進んでしまうためである
また上記ステップ(S7)での洗浄及び乾燥は蒸留水で洗浄した後、50〜500℃の温度で2〜15分間行う。これは50℃未満の温度及び2分未満では乾燥がうまくいかずアルミニウム表面の水和反応が進んで非結晶性酸化膜が形成され、500℃を超える温度及び15分を超過する時間ではアルミニウム表面の酸化反応が進み、結晶性酸化膜が形成されることがあるためである。
The secondary etching is desirably performed at 30 to 90 ° C. for 10 to 60 seconds. This is because the etching does not proceed at a temperature of less than 30 ° C and a time of less than 10 seconds, and the etching proceeds excessively at a temperature exceeding 90 ° C and a time exceeding 60 seconds. Washing and drying are carried out at a temperature of 50 to 500 ° C. for 2 to 15 minutes after washing with distilled water. This is because drying is not successful at temperatures below 50 ° C and less than 2 minutes, and the hydration reaction of the aluminum surface proceeds to form an amorphous oxide film, and at temperatures exceeding 500 ° C and times exceeding 15 minutes, the aluminum surface This is because the oxidation reaction proceeds and a crystalline oxide film may be formed.

また、本発明での上記パターンはフォトリソグラフィーを利用して形成させる。.
本発明は、また、上記の通り製造されるアルミニウム集電体を提供し、上記の通りの電極を含む超高容量キャパシターを提供する。
The pattern in the present invention is formed using photolithography. .
The present invention also provides an aluminum current collector manufactured as described above, and provides an ultra-high capacity capacitor including the electrode as described above.

上記ステップ(S8)でのコーティングはアルミニウム集電体に電導性をもつニッケルや錫を一定の厚さにメッキをするが、こうすることによって集電体が電解液と反応し、時間の経過に伴う腐食を防止することができ、エッチングされた集電体表面が電解液と直接反応することを防ぐことができ、耐食性及び耐久性を増加させることができるようになる。   The coating in the above step (S8) is performed by plating the aluminum current collector with conductive nickel or tin to a certain thickness, but this causes the current collector to react with the electrolyte, and over time. Corrosion can be prevented, the etched current collector surface can be prevented from reacting directly with the electrolyte, and corrosion resistance and durability can be increased.

本発明によると、アルミニウム集電体と活物質との接触面積を効果的に増加させることのできるアルミニウム集電体表面積拡大エッチング方法の提供及び上記集電体を適用して効果容量を向上させる超高容量キャパシターの製造方法を提供する効果を持ち、耐久性を増加させることができる。   According to the present invention, it is possible to provide an aluminum collector surface area expansion etching method capable of effectively increasing the contact area between an aluminum current collector and an active material, and to increase the effective capacity by applying the current collector. This has the effect of providing a method for manufacturing a high-capacitance capacitor, and can increase durability.

実施例を通じて、製造されたフォトリソグラフィーを利用した立体パターン構造を持つアルミニウム集電体の図面代用写真。FIG. 4 is a drawing-substituting photograph of an aluminum current collector having a three-dimensional pattern structure using photolithography manufactured through examples. フォトリソグラフィーを利用してアルミニウム集電体表面の上に感光液(Photoresist)で大きさ70μmの形と、その形の間隔を10μmにパターンを形成させた図面代用写真。A photo that substitutes for a drawing using photolithography to form a pattern of 70μm in size and 10μm between the shapes on the surface of an aluminum current collector using a photoresist. フォトリソグラフィーを利用してアルミニウム集電体表面の上に感光液(Photo resist)で大きさ50μmの形と、その形の間隔を50μmにパターンを形成させた図面代用写真。A photo that substitutes for a drawing using photolithography to form a pattern with a size of 50 μm on the surface of an aluminum current collector with a photo resist (photo resist) and a spacing of 50 μm between the shapes. フォトリソグラフィーを利用してアルミニウム集電体表面の上に感光液(Photo resist)で大き100μmの形と、その形の間隔を50μmにパターンを形成させた図面代用写真。A photo that substitutes for a drawing using photolithography to form a pattern with a size of 100 μm and a spacing of 50 μm on the surface of an aluminum current collector using a photo resist. フォトリソグラフィーを利用してアルミニウム集電体表面の上に感光液(Photo resist)で大き50μmの形と、その形の間隔を10μmにパターンを形成させた図面代用写真。A photo that substitutes for a drawing using photolithography to form a pattern with a size of 50μm on the surface of an aluminum current collector and a space of 10μm between the shapes. 感光液が残っている部分と除去した部分のパターンを形成している図面代用写真。The drawing substitute photograph which forms the pattern of the part which the photosensitive solution remains, and the removed part. 感光液が除去された部分のアルミニウムのみ選択的にエッチングを実施した後のアルミニウム集電体図面代用写真。The aluminum collector drawing substitute photograph after selectively etching only the aluminum of the part from which the photosensitive solution was removed. エッチングを実施してアルミニウム集電体表面に残っている感光液を除去剤(Remover)ですべて除去した後のアルミニウム集電体の図面代用写真。The drawing substitute photograph of the aluminum electrical power collector after implementing etching and removing all the photosensitive liquids which remain | survived on the aluminum electrical power collector surface with a remover (Remover). 実施例を通じて製造されるアルミニウム集電体を適用した超高容量キャパシター電極の構成図面。1 is a configuration diagram of an ultra-high capacity capacitor electrode to which an aluminum current collector manufactured through an embodiment is applied. 実施例を通じて製造されるアルミニウム集電体を適用して製造した超高容量キャパシターの内部構成図面。1 is an internal configuration diagram of an ultra-high capacity capacitor manufactured by applying an aluminum current collector manufactured through an embodiment.

本発明を実施するために、まずアルミニウムの純度は99.00〜99.99%であり、不純物としてはCu:4,000ppm、Si:2,000ppm、Fe:2,000ppm以下で添加された10〜100μmのアルミニウム集電体表面の有機物を除去するために1)アセトン溶液2)メタノール溶液3)蒸留水で順次的に洗浄を実施した後、窒素で乾燥させる。   In order to carry out the present invention, first, the purity of aluminum is 99.00 to 99.99%, and impurities are Cu: 4,000 ppm, Si: 2,000 ppm, Fe: added at 2,000 ppm or less, and a 100 to 100 μm aluminum current collector. In order to remove organic substances on the surface, 1) acetone solution, 2) methanol solution, 3) washed sequentially with distilled water and then dried with nitrogen.

その次に、感光液(Photo resist)アルミニウム集電体表面の上に0.5μm〜50μmの厚さでまんべんなく塗布した後、感光液(Photo resist)内に存在する溶媒(Solvent)を蒸発させて、固形の感光液フィルム状態を維持するために50〜150度の温度で5〜30分間乾燥して、クォッツ(quartz)のようにUV(Ultra Violet)光が通過する材質の上にクロムで大きさ10〜500μmの形と、その形同士の間隔が10〜500μmの組み合わせになるパターンを形成化したマスク(Maske)を感光液の塗布されたアルミニウム集電体の上に位置させてからUV光を照射させて感光液が選択的に露光されるようにする。   Next, after applying evenly on the surface of the photosensitive solution (Photo resist) aluminum collector with a thickness of 0.5 μm to 50 μm, the solvent (Solvent) present in the photosensitive solution (Photo resist) is evaporated, In order to maintain the state of a solid photosensitive solution film, it is dried at a temperature of 50 to 150 degrees for 5 to 30 minutes, and is sized on a material such as quartz on which UV (Ultra Violet) light passes. Position the mask (Maske) with a pattern of 10 to 500 μm and a pattern with a distance of 10 to 500 μm between the shapes on the aluminum current collector coated with the photosensitive solution, and then apply UV light. Irradiation is performed so that the photosensitive solution is selectively exposed.

その後、現像液(アルカリ溶液)を露光させたアルミニウム集電体にふりかけて、露光された感光液または露光されていない感光液だけを選択的に除去して、残っている感光液を5〜150℃の間の温度で5〜60分間、完全に固めてアルミニウム集電体の上にパターン形成を完了させる。   Thereafter, the developer (alkaline solution) is sprinkled on the exposed aluminum current collector to selectively remove only the exposed or unexposed photosensitive solution, and the remaining photosensitive solution is 5-150. Completely harden for 5-60 minutes at a temperature between 0 ° C. to complete patterning on the aluminum current collector.

先に、あるいはその後に20g/l以下のAlイオンと0.5〜5Mの塩酸と0.01〜2Mの硫酸を添加して1次エッチング電解液を製造しておく。   First or after that, a primary etching electrolytic solution is prepared by adding 20 g / l or less of Al ions, 0.5 to 5 M hydrochloric acid, and 0.01 to 2 M sulfuric acid.

その後、ふたつの炭素板をそれぞれの対極にして感光液でパターンが形成されたアルミニウム集電体をその間に位置するようにして、交流電源を印加するが、交流電源の周波数は5Hz〜60Hz、電流密度は0.1〜10A/cm2にして、10〜60℃間の電解液の温度で10〜60秒間アルミニウム集電体をエッチングするようにする。 After that, an AC power source is applied with an aluminum current collector having a pattern formed with a photosensitive solution with the two carbon plates as counter electrodes, and the frequency of the AC power source is 5 Hz to 60 Hz, current The density is 0.1 to 10 A / cm 2 , and the aluminum current collector is etched for 10 to 60 seconds at an electrolyte temperature of 10 to 60 ° C.

エッチングされたアルミニウム集電体を蒸留水で洗浄した後、アセトンのような除去剤(Remover)を使用して残留観光液をすべて除去した後、50〜500℃の温度で2〜15分間乾燥させる。   After the etched aluminum current collector is washed with distilled water, all the residual tourism liquid is removed using a remover such as acetone and then dried at a temperature of 50 to 500 ° C. for 2 to 15 minutes. .

前もって、またはその後、10〜30g/l間のAlイオンと100〜300g/l間のClイオン、そして5〜30g/l間のSO4イオンを添加して2次エッチング電解液を製造する。   In advance or afterwards, 10 to 30 g / l Al ions, 100 to 300 g / l Cl ions, and 5 to 30 g / l SO4 ions are added to produce a secondary etching electrolyte.

ふたつの炭素板をそれぞれ対極にして1次エッチングを実施したアルミニウム集電体をその間に位置するようにして交流電源を印加するが、交流電源の周波数は10〜90Hz、電源密度は0.1〜10A/cm2にし、30〜90℃の間の電解液の温度で10〜60秒間アルミニウム集電体を2次エッチングした後、2次エッチングされたアルミニウム集電体を蒸留水で洗浄した後、50〜500度の温度で2〜15分間乾燥すると、本発明の完成である。 An AC power supply is applied so that the two carbon plates are counter electrodes and an aluminum collector subjected to primary etching is positioned between them. The frequency of the AC power supply is 10 to 90Hz, and the power density is 0.1 to 10A / to cm 2, after second etching 10-60 seconds aluminum current collector at a temperature of the electrolytic solution between 30 to 90 ° C., after washing the secondary etched aluminum current collector with distilled water, 50 Drying for 2-15 minutes at a temperature of 500 degrees completes the present invention.

以下、実施例を挙げて、本発明を詳細に説明するが、これは当業界で通常の知識を持った者の理解を手助けするためのものであって、本発明の実施例として限定するものではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is intended to help those skilled in the art to understand, and is limited as examples of the present invention. is not.

[実施例1]フォトレジストを利用した立体パターン構造を持つアルミニウム集電体の製造
純度99.99%の厚さ0.030mmのアルミニウム箔を、1)アセトン溶液2)メタノール溶液3)蒸留水で順次に洗浄した後、実施した後、窒素で乾燥させた。
感光液(Photo resist)をアルミニウム集電体表面の上に0.5μmの厚さでまんべんなく塗布したあと、80度の温度で15分間乾燥させた後、直径80μmの円と、その円の間隔が70μmとなるパターンを形成化したマスク(Maske)を感光液の塗布されたアルミニウム集電体の上に位置するようにしてからUV光を照射させて感光液が選択的に露光するようにした。
[Example 1] Production of an aluminum current collector having a three-dimensional pattern structure using a photoresist. An aluminum foil having a purity of 99.99% and a thickness of 0.030 mm was sequentially washed with 1) an acetone solution, 2) a methanol solution, and 3) distilled water. Then, after carrying out, it was dried with nitrogen.
After a photo resist is applied evenly on the surface of the aluminum current collector with a thickness of 0.5μm, it is dried at a temperature of 80 degrees for 15 minutes, and then 80μm diameter circles and the interval between the circles is 70μm. A mask (Maske) with a pattern to be formed was positioned on the aluminum current collector coated with the photosensitive solution, and then the UV light was irradiated so that the photosensitive solution was selectively exposed.

現像液を露光させたアルミニウム集電体にふりかけて、露光されていない感光液だけを選択的に除去して、残っている感光液を100℃の温度で15分間、完全に固めてアルミニウム集電体の上にパターン形成を完了させた。   Sprinkle the exposed aluminum collector on the exposed aluminum current collector to selectively remove only the unexposed photosensitive solution, and completely solidify the remaining photosensitive solution for 15 minutes at a temperature of 100 ° C. Pattern formation was completed on the body.

15g/lのAlイオンと1Mの塩酸と2Mの硫酸を添加して1次エッチング電解液を製造した後、ふたつの炭素板をそれぞれの対極にして、感光液でパターンが形成されたアルミニウム集電体をその間に位置するようにして、交流電源を印加した。   After preparing primary etching electrolyte by adding 15g / l Al ion, 1M hydrochloric acid and 2M sulfuric acid, aluminum collectors with patterns formed with photosensitive solution using two carbon plates as counter electrodes AC power was applied with the body in between.

交流電源の周波数は50Hz、電流密度は3A/cm2で、温度は45℃の電解液で50秒間、アルミニウム集電体を1次エッチングした後、エッチングされたアルミニウム集電体を蒸留水で洗浄してから、アセトンで集電体の表面に残っている感光液をすべて除去し、150度の温度で2分間乾燥させた。 The frequency of the AC power supply is 50 Hz, the current density is 3 A / cm 2 , the temperature is 45 ° C, and the aluminum current collector is first etched for 50 seconds, and then the etched aluminum current collector is washed with distilled water. Then, all the photosensitive solution remaining on the surface of the current collector was removed with acetone and dried at a temperature of 150 ° C. for 2 minutes.

10g/lのAlイオンと120g/lのClイオン、そして20g/lのSO4イオンを添加して2次エッチング電解液を製造した後、ふたつの炭素板をそれぞれの対極にして、1次エッチングを実施したアルミニウム集電体をその間に位置するようにして、交流電源を印加した。
交流電源の周波数は30Hz、電流密度は1A/cm2で、45度の電解液温度で45秒の間アルミニウム集電体の2次エッチングを実施した。
10g / l Al ion, 120g / l Cl ion, and 20g / l SO4 ion were added to produce the secondary etching electrolyte, and then the primary etching was performed using two carbon plates as the counter electrodes. An alternating current power source was applied so that the implemented aluminum current collector was positioned therebetween.
The frequency of the AC power source was 30 Hz, the current density was 1 A / cm 2 , and the aluminum current collector was subjected to secondary etching for 45 seconds at an electrolyte temperature of 45 degrees.

2次エッチングされたアルミニウム集電体を蒸留水で洗浄した後、125度の温度で10分間乾燥させた。
上記のとおりにして、立体パターン表面構造を持つアルミニウム集電体を図1に示した。
After the secondary etched aluminum current collector was washed with distilled water, it was dried at a temperature of 125 ° C. for 10 minutes.
As described above, an aluminum current collector having a three-dimensional pattern surface structure is shown in FIG.

[実施例2]立体パターン構造を持つアルミニウム集電体を適用した超高容量キャパシターの製造
撹拌容器に活性炭(皮表面積2,100m2/g)80g、カーボンブラック20g、バインダー4gを添加して、撹拌機を使用して30分間撹拌した後、純水200gを入れて200分間再び撹拌、純水100gとバインダー4gを入れて200分間追加で撹拌することでスラリーを製造した。
[Example 2] Production of an ultra-high capacity capacitor using an aluminum current collector having a three-dimensional pattern structure Add 80 g of activated carbon (skin surface area 2,100 m 2 / g), 20 g of carbon black, and 4 g of binder to a stirring vessel, and stir After stirring for 30 minutes using a machine, 200 g of pure water was added and stirred again for 200 minutes, and 100 g of pure water and 4 g of binder were added and stirred for an additional 200 minutes to produce a slurry.

フォトレジストを利用して製造した立体パターン構造を持つアルミニウム集電体の上に上記スラリーを0.6g/cm3でコーティングして電極を製造した。 The slurry was coated at 0.6 g / cm 3 on an aluminum current collector having a three-dimensional pattern structure manufactured using a photoresist to manufacture an electrode.

上記の電極を70℃で20分間、1次乾燥した後、100℃で240分間、2次乾燥を行った。   The electrode was primarily dried at 70 ° C. for 20 minutes and then subjected to secondary drying at 100 ° C. for 240 minutes.

乾燥が完了した電極を3.5cm×4.5cm(15.75cm2)の大きさに切り取り、2枚を準備して、上記で製造した電極1枚→電解紙→上記で準備した電極の残り1枚の順序で積層して、リードタップを出し、アルミニウムパウチで外装を行った。
パウチの中に電解液(1M TEABF4/ACN)を入れて、真空含浸した後、密封して超高容量キャパシターを製造した。
Cut the dried electrode to 3.5 cm x 4.5 cm (15.75 cm 2 ) size, prepare 2 sheets, 1 electrode manufactured above → electrolytic paper → remaining 1 electrode prepared above Lamination was done in order, the lead tap was taken out, and the exterior was covered with an aluminum pouch.
An electrolytic solution (1M TEABF4 / ACN) was put in the pouch, vacuum impregnated, and sealed to manufacture an ultra-high capacity capacitor.

[比較例]
撹拌容器に活性炭(皮表面積2,100m2/g)80g、カーボンブラック20g、バインダー4gを添加して、撹拌機を使用して30分間撹拌した後、純水200gを入れて200分間再び撹拌、純水100gとバインダー4gを入れて200分間追加で撹拌することでスラリーを製造した。
一般市販されているEDLC用アルミニウム集電体の上に上記スラリーを0.6g/cm3でコーティングして電極を製造した。
[Comparative example]
Add 80 g of activated carbon (skin surface area 2,100 m 2 / g), carbon black 20 g, and binder 4 g to the stirring vessel, stir for 30 minutes using a stirrer, then add 200 g of pure water and stir again for 200 minutes. A slurry was prepared by adding 100 g of water and 4 g of binder and stirring for an additional 200 minutes.
The slurry was coated at 0.6 g / cm 3 on a commercially available aluminum current collector for EDLC to produce an electrode.

上記の電極を70℃で20分間、1次乾燥した後、100℃で240分間、2次乾燥を行った。 The electrode was primarily dried at 70 ° C. for 20 minutes and then subjected to secondary drying at 100 ° C. for 240 minutes.

乾燥が完了した電極を3.5cm×4.5cm(15.75cm2)の大きさに切り取り、2枚を準備して、上記で製造した電極1枚→電解紙→上記で準備した電極の残り1枚の順序で積層して、リードタップを出し、アルミニウムパウチで外装を行った。
パウチの中に電解液(1M TEABF4/ACN)を入れて、真空含浸した後、密封して超高容量キャパシターを製造した。
Cut the dried electrode to 3.5 cm x 4.5 cm (15.75 cm 2 ) size, prepare 2 sheets, 1 electrode manufactured above → electrolytic paper → remaining 1 electrode prepared above Lamination was done in order, the lead tap was taken out, and the exterior was covered with an aluminum pouch.
An electrolytic solution (1M TEABF4 / ACN) was put in the pouch, vacuum impregnated, and sealed to manufacture an ultra-high capacity capacitor.

[評価例]
実施例と比較例で製造した超高容量キャパシターを、すべて15.75mAの定電流、2.7Vの定電圧充電を行って30分間維持してから定電流(15.75mA)で放電した。
上記の条件で容量を測定して、その結果は表1のとおりである。
[Evaluation example]
All of the ultrahigh-capacitance capacitors manufactured in Examples and Comparative Examples were charged with a constant current of 15.75 mA and a constant voltage of 2.7 V, maintained for 30 minutes, and then discharged with a constant current (15.75 mA).
The capacity was measured under the above conditions, and the results are shown in Table 1.

上記の表で確認できるように、本発明によると、超高容量キャパシターを提供することのできるアルミニウム集電体が提供できる。   As can be seen from the above table, according to the present invention, an aluminum current collector capable of providing an ultra-high capacity capacitor can be provided.

10 : 活物質
20 : パターンエッチングされたアルミニウム集電体
30 : 電解紙
40 : パターンエッチングされたアルミニウム集電体を適用させた陰電極
50 : パターンエッチングされたアルミニウム集電体を適用させた陽電極
10: Active material
20: Pattern-etched aluminum current collector
30: Electrolytic paper
40: Cathode made of pattern-etched aluminum current collector
50: Positive electrode with pattern-etched aluminum current collector

Claims (1)

アルミニウム箔集電体を洗浄した後、窒素で乾燥するステップ(S1);
上記乾燥されたアルミニウム箔集電体の表面の上に感光液を塗布した後、乾燥して感光液が露光されるようにして硬化させるステップ(S2);
上記のステップ(S2)の後、現像液を露光させたアルミニウム集電体にふりかけて、露光されていない感光液だけを選択的に除去して、残っている感光液を100℃の温度で15分間、完全に硬化させてアルミニウム集電体の上にパターン形成を完了させるステップ(S3);
ふたつの炭素板をそれぞれの対極にして、パターンが形成されたアルミニウム箔集電体を二つの炭素板の間に位置させて、交流電源を印加し、電解液でアルミニウム集電体を1次エッチングするステップ(S4);
エッチングされたアルミニウム集電体を乾燥させるステップ(S5);
上記ステップ(S5)の後、ふたつの炭素板を対極にして1次エッチング後、乾燥したアルミニウム集電体を両対極の間に位置させて2次エッチングするステップ(S6);
2次エッチングされたアルミニウム箔を洗浄してから乾燥させるステップ(S7);
そして集電体表面に電導性物質をコーティングするステップ(S8)、を含む立体パターン構造を持つアルミニウム集電体の製造方法として、上記ステップ(S1)でのアルミニウム集電体は純度が99.00〜99.99%であり、厚さが10〜100μmであることを特徴にした立体パターン構造を持つアルミニウム集電体製造方法。
After washing the aluminum foil current collector, drying with nitrogen (S1);
Applying a photosensitive solution on the surface of the dried aluminum foil current collector, and then drying and curing the photosensitive solution to be exposed (S2);
After the above step (S2), the developer is sprinkled on the exposed aluminum current collector to selectively remove only the unexposed photosensitive solution and remove the remaining photosensitive solution at a temperature of 100 ° C. Completing the patterning on the aluminum current collector by completely curing for a minute (S3);
Steps in which two carbon plates are used as counter electrodes, a patterned aluminum foil current collector is positioned between the two carbon plates, an AC power supply is applied, and the aluminum current collector is first etched with an electrolyte. (S4);
Drying the etched aluminum current collector (S5);
After the above step (S5), after the primary etching with the two carbon plates as the counter electrode, a step of performing the secondary etching by positioning the dried aluminum current collector between the counter electrodes (S6);
Washing and drying the secondary etched aluminum foil (S7);
Then, as a method of manufacturing an aluminum current collector having a three-dimensional pattern structure including a step of coating a conductive material on the surface of the current collector (S8), the purity of the aluminum current collector in the above step (S1) is 99.00 to 99.99. %, And a thickness of 10 to 100 μm. A method for producing an aluminum current collector having a three-dimensional pattern structure.
JP2013155715A 2013-05-20 2013-07-26 Method for coating surface of aluminum current collector having three-dimensional pattern structure using photolithography Pending JP2014229890A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130056457A KR20140136217A (en) 2013-05-20 2013-05-20 A method of current collector with cubic pattern by photolithography and a capacitor using thereof
KR10-2013-0056457 2013-05-20

Publications (1)

Publication Number Publication Date
JP2014229890A true JP2014229890A (en) 2014-12-08

Family

ID=52129435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155715A Pending JP2014229890A (en) 2013-05-20 2013-07-26 Method for coating surface of aluminum current collector having three-dimensional pattern structure using photolithography

Country Status (2)

Country Link
JP (1) JP2014229890A (en)
KR (1) KR20140136217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920653A (en) * 2017-12-12 2019-06-21 韩国Jcc株式会社 Double layer capacitor
WO2022100280A1 (en) * 2020-11-16 2022-05-19 Oppo广东移动通信有限公司 Composite current collector, composite pole piece, battery, and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102207524B1 (en) 2016-09-01 2021-01-26 주식회사 엘지화학 Methode of preparing electrodes for lithium secondary battery and the electrodes for lithium secondary battery manufactured by the same
EP3595052B1 (en) * 2017-09-25 2021-07-21 LG Chem, Ltd. Method for manufacturing electrode for secondary battery and electrode manufactured thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920653A (en) * 2017-12-12 2019-06-21 韩国Jcc株式会社 Double layer capacitor
WO2022100280A1 (en) * 2020-11-16 2022-05-19 Oppo广东移动通信有限公司 Composite current collector, composite pole piece, battery, and electronic device

Also Published As

Publication number Publication date
KR20140136217A (en) 2014-11-28

Similar Documents

Publication Publication Date Title
Tang et al. Fabrication of oxygen‐vacancy abundant NiMn‐layered double hydroxides for ultrahigh capacity supercapacitors
KR101166148B1 (en) A method of current collector with cubic pattern by photolithography and a capacitor using thereof
Gao et al. Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing–leaching combined with high-temperature calcination
Wang et al. Construction of vertically aligned PPy nanosheets networks anchored on MnCo2O4 nanobelts for high-performance asymmetric supercapacitor
Feng et al. Hierarchical hollow Prussian blue rods synthesized via self‐sacrifice template as cathode for high performance sodium ion battery
Zhao et al. Graphene Quantum Dots Pinned on Nanosheets‐Assembled NiCo‐LDH Hollow Micro‐Tunnels: Toward High‐Performance Pouch‐Type Supercapacitor via the Regulated Electron Localization
Cui et al. Hollow carbon nanobelts codoped with nitrogen and sulfur via a self‐templated method for a high‐performance sodium‐ion capacitor
Mohanapriya et al. Solar light reduced Graphene as high energy density supercapacitor and capacitive deionization electrode
Geng et al. Boosting the capacity of aqueous Li‐ion capacitors via pinpoint surgery in nanocoral‐like covalent organic frameworks
Yin et al. Towards renewable energy storage: Understanding the roles of rice husk-based hierarchical porous carbon in the negative electrode of lead-carbon battery
JP2014229890A (en) Method for coating surface of aluminum current collector having three-dimensional pattern structure using photolithography
Chodankar et al. Surface modified carbon cloth via nitrogen plasma for supercapacitor applications
US20220397822A1 (en) Lignin based laser lithography process for fabricating 3d graphene electrode and method
Wang et al. Controllable design of MoS2 nanosheets grown on nitrogen‐doped branched TiO2/C nanofibers: toward enhanced sodium storage performance induced by pseudocapacitance behavior
CN105633362A (en) Tungsten carbide shell layer coated lithium iron phosphate positive electrode material and preparation method therefor
Xu et al. Interconnected vertical δ-MnO2 nanoflakes coated by a dopamine-derived carbon thin shell as a high-performance self-supporting cathode for aqueous zinc ion batteries
Owusu et al. Room temperature synthesis of vertically aligned amorphous ultrathin NiCo‐LDH nanosheets bifunctional flexible supercapacitor electrodes
Guo et al. In-situ grown Ni (OH) 2 nanosheets on Ni foam for hybrid supercapacitors with high electrochemical performance
WO2017143549A1 (en) Sulphur-carbon composite and preparation method therefor, electrode material and lithium-sulphur battery containing sulphur-carbon composite
Ding et al. Enhanced elastic migration of magnesium cations in alpha‐manganese dioxide tunnels locally tuned by aluminium substitution
Yang et al. Expanding Layer Spacing of Carbon‐Coated Vanadium Oxide via Ammonium Ions for Fast Electrochemical Kinetics in Aqueous Zinc‐Ion Batteries
Luo et al. Construction of Hierarchical NiCo2O4@ NiFe‐LDH Core‐Shell Heterostructure for High‐performance Positive Electrode for Supercapacitor
Lin et al. Synthesis and electrochemical properties of coral-like LiFePO4 particles as supercapacitor electrodes
CN111599986B (en) Preparation method and application of self-supporting positive electrode of lithium-sulfur battery with coated structure
Gao et al. Silver Nanowires@ Mn3O4 Core–Shell Nanocables as Advanced Electrode Materials for Aqueous Asymmetric Supercapacitors