JP2014228460A - Work device and correction method - Google Patents

Work device and correction method Download PDF

Info

Publication number
JP2014228460A
JP2014228460A JP2013109820A JP2013109820A JP2014228460A JP 2014228460 A JP2014228460 A JP 2014228460A JP 2013109820 A JP2013109820 A JP 2013109820A JP 2013109820 A JP2013109820 A JP 2013109820A JP 2014228460 A JP2014228460 A JP 2014228460A
Authority
JP
Japan
Prior art keywords
unit
holding member
surface temperature
change
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013109820A
Other languages
Japanese (ja)
Inventor
一三 杉谷
Kazumi Sugitani
一三 杉谷
俊哉 瀧谷
Toshiya Takiya
俊哉 瀧谷
健人 中村
Taketo Nakamura
健人 中村
真嘉 上平
Masayoshi Kamihira
真嘉 上平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013109820A priority Critical patent/JP2014228460A/en
Publication of JP2014228460A publication Critical patent/JP2014228460A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a work device of which the errors due to temperature can be more reduced, and a correction method.SOLUTION: A shape measurement instrument D as an example of the work device includes: a white light interferometer head part 1 being an example of a work unit which executes prescribed work; a holding member 2 holding the white light interferometer head part 1; surface temperature measurement units 3 (3-1 and 3-2) which measure surface temperatures of the holding member 2 in a plurality of positions separated from each other in a prescribed direction; a variation length calculation unit 44 which obtains a variation from a reference length being a length of the holding member 2 in the prescribed direction at a prescribed temperature, on the basis of respective surface temperatures of the holding member 2 measured by the surface temperature measurement units 3; and a correction unit 45 which corrects white light interference data of the white light interferometer head part 1 on the basis of the variation obtained by the variation length calculation unit 44.

Description

本発明は、所定の作業を実行する作業部を備え、前記作業を行う作業装置に関する。そして、本発明は、前記作業部を保持する保持部材の長さを補正する補正方法に関する。   The present invention relates to a working device that includes a working unit that performs a predetermined work and performs the work. And this invention relates to the correction method which correct | amends the length of the holding member holding the said working part.

近年の精密機械産業には、所定の作業を実行する作業部を保持部材の一方端に持つ様々な作業装置が存在し、前記作業部は、当該作業装置の用途に応じて様々な態様がある。例えば、製品を組み立てる組み立て装置では、前記作業部は、マニピュレータの一方端に取り付けられた、部品を掴む把持部であり、また例えば、マニピュレータの一方端に取り付けられた、ネジを留めるネジ留め部であり、また例えば、マニピュレータの一方端に取り付けられた、部品を溶接する溶接部である。また例えば、材料を加工する工作機械では、前記作業部は、アームの一方端に取り付けられた、材料を削るバイト(切削工具)である。また例えば、被測定物を測定する測定装置では、アームの一方端に取り付けられた、被測定物を当該測定装置の測定方法に応じて検出する検出部である。   In the recent precision machinery industry, there are various working devices having a working part for performing a predetermined work at one end of the holding member, and the working part has various modes according to the use of the working device. . For example, in an assembling apparatus for assembling a product, the working part is a gripping part for gripping a part attached to one end of a manipulator, and for example, a screwing part for fastening a screw attached to one end of a manipulator. Yes, for example, a weld that is attached to one end of the manipulator and welds the parts. Further, for example, in a machine tool for processing a material, the working unit is a tool (cutting tool) for cutting the material, which is attached to one end of an arm. Further, for example, in a measuring apparatus that measures an object to be measured, it is a detection unit that is attached to one end of an arm and detects the object to be measured according to the measuring method of the measuring apparatus.

このような作業装置では、精度よく作業を実行するために、作業部と作業の対象である作業対象物との距離を正確に把握する必要がある。しかしながら、作業装置は、様々な環境温度下で使用され、また作業装置自体が発熱する等のために、前記マニピュレータやアーム等の、作業部を保持する保持部材は、様々な温度となり、伸縮する。このため、作業部と作業対象物との前記距離を温度によって補正する必要がある。   In such a working device, in order to perform the work with high accuracy, it is necessary to accurately grasp the distance between the working unit and the work target that is the work target. However, since the working device is used under various environmental temperatures and the working device itself generates heat, the holding members that hold the working unit such as the manipulator and the arm are at various temperatures and expand and contract. . For this reason, it is necessary to correct | amend the said distance of a working part and a work target object with temperature.

例えば、特許文献1には、被加工物の熱膨張係数の変化に対応した補正を行って加工誤差の少ない加工を自動的に行うNC加工装置が開示されている。この特許文献1に開示されたNC加工装置は、NCデータに従って加工機を駆動制御して被加工物を目標寸法に加工するNC加工装置において、前記被加工物の温度を測定する温度測定手段と、前記被加工物の寸法を測定する寸法測定手段と、これら測定手段によりそれぞれ測定された前記被加工物の温度及び寸法に基づいて前記加工機の温度に応じた加工誤差の補正値を求める加工誤差算出手段と、前記温度測定手段により測定された前記被加工物の温度及び熱膨脹係数に基づいて前記目標寸法の温度補正を行う目標寸法補正手段と、前記加工誤差算出手段により求められた前記加工誤差の補正値及び前記目標寸法補正手段により温度補正された前記目標寸法に基づいて前記加工機の加工補正値を求める補正値算出手段と、を具備している。   For example, Patent Document 1 discloses an NC machining apparatus that automatically performs machining with less machining error by performing correction corresponding to a change in the thermal expansion coefficient of a workpiece. The NC processing apparatus disclosed in Patent Document 1 includes a temperature measuring unit that measures the temperature of the workpiece in the NC processing apparatus that drives and controls the processing machine according to NC data to process the workpiece to a target dimension. , Dimension measuring means for measuring the dimension of the workpiece, and processing for obtaining a correction value of a machining error according to the temperature of the processing machine based on the temperature and dimension of the workpiece measured by the measuring means, respectively. Error calculation means, target dimension correction means for correcting the temperature of the target dimension based on the temperature and thermal expansion coefficient of the workpiece measured by the temperature measurement means, and the processing obtained by the processing error calculation means Correction value calculation means for obtaining a machining correction value of the processing machine based on an error correction value and the target dimension temperature-corrected by the target dimension correction means.

特開2000−190168号公報JP 2000-190168 A

ところで、前記特許文献1では、被加工物(すなわち、作業対象物)の温度を測定し、被加工物の熱膨張係数の変化に対応した補正が行われており、NC加工装置の温度によるNC加工装置の伸張が考慮されていない。   By the way, in Patent Document 1, the temperature of the workpiece (that is, the work object) is measured, and correction corresponding to the change in the thermal expansion coefficient of the workpiece is performed. The expansion of the processing equipment is not considered.

本発明は、上述の事情に鑑みて為された発明であり、その目的は、温度による誤差をより低減できる作業装置および補正方法を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a working device and a correction method that can further reduce errors due to temperature.

本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。すなわち、本発明の一態様にかかる作業装置は、所定の作業を実行する作業部と、前記作業部を保持する保持部材と、所定の方向に沿って互いに離間した複数の位置で前記保持部材の表面温度をそれぞれ測定する表面温度測定部と、前記表面温度測定部によって測定された前記保持部材の各表面温度に基づいて、所定の基準温度における前記方向に沿った前記保持部材の長さである基準長からの変化量を求める変化長演算部と、前記変化長演算部によって求められた前記変化量に基づいて前記作業を補正する補正部とを備えることを特徴とする。   As a result of various studies, the present inventor has found that the above object is achieved by the present invention described below. That is, the working device according to one aspect of the present invention includes a working unit that performs a predetermined work, a holding member that holds the working part, and a plurality of positions that are separated from each other along a predetermined direction. A surface temperature measuring unit for measuring the surface temperature, and a length of the holding member along the direction at a predetermined reference temperature based on each surface temperature of the holding member measured by the surface temperature measuring unit. A change length calculation unit that obtains a change amount from a reference length and a correction unit that corrects the work based on the change amount obtained by the change length calculation unit.

このような作業装置では、所定の方向に沿って互いに離間した複数の位置で保持部材の表面温度がそれぞれ測定され、これら測定された保持部材の各表面温度に基づいて、前記保持部材における基準長からの変化量が求められ、この求められた変化量に基づいて前記作業が補正される。したがって、このような作業装置は、当該作業装置側の保持部材の伸縮が考慮されるから、温度による誤差をより低減できる。   In such a working device, the surface temperature of the holding member is measured at a plurality of positions separated from each other along a predetermined direction, and the reference length of the holding member is determined based on the measured surface temperatures of the holding member. The amount of change from is obtained, and the operation is corrected based on the obtained amount of change. Therefore, since such a working device takes into account the expansion and contraction of the holding member on the working device side, errors due to temperature can be further reduced.

また、他の一態様では、上述の作業装置において、前記表面温度測定部は、前記複数の位置それぞれで前記保持部材の表面温度を所定のサンプリング間隔でサンプリングすることによって前記保持部材の表面温度時系列データを測定し、前記変化長演算部は、前記表面温度測定部によって測定された前記保持部材の各表面温度時系列データに基づいて前記保持部材の内部温度を求め、求めた前記内部温度に基づいて、前記変化量を求めることを特徴とする。   According to another aspect, in the above working device, the surface temperature measurement unit samples the surface temperature of the holding member at each of the plurality of positions at a predetermined sampling interval. Measuring the series data, the change length calculation unit obtains the internal temperature of the holding member based on each surface temperature time series data of the holding member measured by the surface temperature measurement unit, to the obtained internal temperature Based on this, the change amount is obtained.

現実の保持部材は、3次元の構造体であり、前記保持部材の表面で受けた熱は、表面から内部へ熱伝導し、所定の時間経過後に内部に到達する。このため、前記特許文献1のように、表面温度を測定しただけでは、熱伝導による時間遅れに起因する誤差が残ってしまう。一方、保持部材の内部温度と表面温度とが同じ温度になる平衡状態では、表面温度の測定によって、時間遅れによる誤差を充分に低減できる。しかしなから、前記平衡状態になるまでに相応の時間を要するため、作業を開始するまでに時間を要し、作業効率が低下してしまう。上記構成の作業装置は、保持部材における表面温度の時間変化から前記保持部材の内部温度を見積もるので、表面温度の測定でも温度による誤差をさらにより低減でき、平衡状態になるまで待つ必要がないので、作業効率を向上できる。   The actual holding member is a three-dimensional structure, and the heat received on the surface of the holding member is conducted from the surface to the inside, and reaches the inside after a predetermined time. For this reason, an error due to a time delay due to heat conduction remains only by measuring the surface temperature as in Patent Document 1. On the other hand, in an equilibrium state where the internal temperature of the holding member and the surface temperature are the same, errors due to time delay can be sufficiently reduced by measuring the surface temperature. However, since it takes a certain amount of time to reach the equilibrium state, it takes time to start the work, and the work efficiency is lowered. Since the working device configured as described above estimates the internal temperature of the holding member from the time change of the surface temperature of the holding member, errors due to temperature can be further reduced even in the measurement of the surface temperature, and there is no need to wait until an equilibrium state is reached. , Work efficiency can be improved.

また、他の一態様では、これら上述の作業装置において、前記変化長演算部は、前記表面温度測定部によって測定された前記保持部材の各表面温度時系列データを平均することによって平均表面温度時系列データを求め、求めた平均表面温度時系列データをフーリエ変換し、フーリエ変換した前記平均表面温度時系列データに予め求められた所定の周波数特性を持つフィルタでフィルタリングし、このフィルタリングした前記平均表面温度時系列データを逆フーリエ変換することによって、前記保持部材の内部平均温度を求めることを特徴とする。   Further, in another aspect, in the above-described working device, the change length calculation unit averages each surface temperature time series data of the holding member measured by the surface temperature measurement unit, thereby obtaining an average surface temperature time. Obtaining the series data, Fourier transforming the obtained average surface temperature time series data, filtering the Fourier-transformed average surface temperature time series data with a filter having a predetermined frequency characteristic obtained in advance, the filtered average surface An internal average temperature of the holding member is obtained by performing inverse Fourier transform on the temperature time series data.

このような作業装置は、平均表面温度時系列データをフーリエ変換することで周波数空間に変換するので、前記保持部材の内部温度を求める際に、所定の予め求められた所定の周波数特性を持つフィルタを用いることができ、内部平均温度で前記保持部材の内部温度を求めることができる。   Since such a working device converts the average surface temperature time-series data into a frequency space by Fourier transform, when obtaining the internal temperature of the holding member, a filter having a predetermined frequency characteristic determined in advance. And the internal temperature of the holding member can be obtained from the internal average temperature.

また、他の一態様では、これら上述の作業装置において、前記作業部は、前記作業の対象である作業対象物に対する白色干渉によって前記作業対象物の形状を求めるための白色干渉データを測定する白色干渉部を備え、前記作業対象物を載置するための載置面を形成する載置台を有し、前記載置面を含む平面内で前記載置台を移動可能な載置部と、前記載置台を前記平面内で移動させることによって前記作業対象物の複数の測定点それぞれで、前記表面温度測定部によって前記保持部材の各表面温度を測定すると共に前記白色干渉部によって前記作業対象物の白色干渉データを測定する走査測定部と、前記複数の測定点それぞれで前記作業対象物の形状を求める形状演算部とをさらに備え、前記変化長演算部は、前記複数の測定点それぞれで前記表面温度測定部によって測定された前記保持部材の各表面温度に基づいて、前記複数の測定点それぞれで前記変化量を求め、前記補正部は、前記変化長演算部によって求められた前記各変化量に基づいて、前記複数の測定点それぞれで前記作業部の前記白色干渉部によって測定された前記白色干渉データを補正し、前記形状演算部は、前記複数の測定点それぞれにおける前記補正部によって補正された前記各白色干渉データに基づいて、前記複数の測定点それぞれで前記作業対象物の形状を求めることを特徴とする。   According to another aspect, in the above-described working devices, the working unit measures white interference data for obtaining the shape of the work object by white interference with the work object that is the work object. A mounting unit that includes an interference unit and has a mounting table that forms a mounting surface on which the work object is to be mounted; the mounting unit capable of moving the mounting table within a plane including the mounting surface; Each surface temperature of the holding member is measured by the surface temperature measuring unit at each of a plurality of measurement points of the work object by moving a pedestal in the plane, and the white color of the work object is measured by the white interference unit. A scanning measurement unit that measures interference data; and a shape calculation unit that obtains the shape of the work object at each of the plurality of measurement points. Based on each surface temperature of the holding member measured by the surface temperature measurement unit, the change amount is obtained at each of the plurality of measurement points, and the correction unit obtains each change obtained by the change length calculation unit. Based on the quantity, the white interference data measured by the white interference unit of the working unit is corrected at each of the plurality of measurement points, and the shape calculation unit is corrected by the correction unit at each of the plurality of measurement points. The shape of the work object is obtained at each of the plurality of measurement points based on the white interference data thus obtained.

このような作業装置は、作業部として、作業対象物に対する白色干渉によって前記作業対象物の形状を求めるための白色干渉データを測定する白色干渉部を備え、載置部の移動によって作業対象物の複数の測定点それぞれで、走査測定部によって所定範囲の白色干渉データと各表面温度とを求め、形状演算部によって複数の測定点それぞれで作業対象物の形状を求める。そして、この作業対象物の形状を求める際に、このような作業装置は、前記複数の測定点それぞれで、変化長演算部によって前記各表面温度に基づいて変化量を求め、前記複数の測定点それぞれで、これら求めた各変化量で前記作業部の前記白色干渉部によって測定された各白色干渉データを補正部によって補正する。したがって、この構成によれば、作業装置として形状測定装置が提供され、この形状測定装置は、温度による誤差をより低減できる。   Such a working device includes, as a working unit, a white interference unit that measures white interference data for obtaining the shape of the work target by white interference with respect to the work target. At each of the plurality of measurement points, the scanning measurement unit obtains white interference data in a predetermined range and each surface temperature, and the shape calculation unit obtains the shape of the work object at each of the plurality of measurement points. And when calculating | requiring the shape of this work target object, such a working device calculates | requires variation | change_quantity based on each said surface temperature by a variation length calculating part in each of these measurement points, and these measurement points Each of the white interference data measured by the white interference unit of the working unit is corrected by the correction unit with each of the obtained change amounts. Therefore, according to this configuration, a shape measuring device is provided as a working device, and this shape measuring device can further reduce errors due to temperature.

そして、本発明の他の一態様にかかる補正方法は、所定の作業を実行する作業部と、前記作業部を保持する保持部材とを備える作業装置に用いられ、前記作業を補正する作業装置の補正方法において、所定の方向に沿って互いに離間した複数の位置で前記保持部材の表面温度をそれぞれ測定する表面温度測定工程と、前記表面温度測定工程によって測定された前記保持部材の各表面温度に基づいて、所定の基準温度における前記方向に沿った前記保持部材の長さである基準長からの変化量を求める変化長演算工程と、前記変化長演算工程によって求められた前記変化量に基づいて前記作業を補正する補正工程とを備えることを特徴とする。   A correction method according to another aspect of the present invention is used in a work apparatus including a work unit that performs a predetermined work and a holding member that holds the work part. In the correction method, the surface temperature measurement step of measuring the surface temperature of the holding member at a plurality of positions spaced from each other along a predetermined direction, and the surface temperature of the holding member measured by the surface temperature measurement step Based on the change length calculation step for obtaining a change amount from a reference length that is the length of the holding member along the direction at a predetermined reference temperature, and the change amount obtained by the change length calculation step And a correction step for correcting the work.

このような作業装置の補正方法では、所定の方向に沿って互いに離間した複数の位置で保持部材の表面温度がそれぞれ測定され、これら測定された保持部材の各表面温度に基づいて、前記保持部材における基準長からの変化量が求められ、この求められた変化量に基づいて前記作業が補正される。したがって、このような作業装置の補正方法は、当該作業装置側の保持部材の伸縮が考慮されるから、温度による誤差をより低減できる。   In such a working device correction method, the surface temperature of the holding member is measured at a plurality of positions separated from each other along a predetermined direction, and the holding member is based on the measured surface temperatures of the holding member. The amount of change from the reference length is obtained, and the work is corrected based on the obtained amount of change. Therefore, in such a correction method for the working device, since the expansion and contraction of the holding member on the working device side is taken into consideration, an error due to temperature can be further reduced.

本発明にかかる作業装置および補正方法は、温度による誤差をより低減できる。   The working device and the correction method according to the present invention can further reduce errors due to temperature.

実施形態における作業装置の一例である形状測定装置の構成を示す図である。It is a figure which shows the structure of the shape measuring apparatus which is an example of the working device in embodiment. 図1に示す形状測定装置の白色干渉計ヘッド部回りのより詳細な構成を示す斜視図である。It is a perspective view which shows the more detailed structure around the white interferometer head part of the shape measuring apparatus shown in FIG. 表面温度に対する内部温度の時間遅れを説明するための図である。It is a figure for demonstrating the time delay of the internal temperature with respect to surface temperature. 表面温度から保持部材の長さの変化量を求める手法を説明するための図である。It is a figure for demonstrating the method of calculating | requiring the variation | change_quantity of the length of a holding member from surface temperature.

以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。   Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, in this specification, when referring generically, it is indicated by a reference symbol without a suffix, and when referring to an individual configuration, it is indicated by a reference symbol with a suffix.

実施形態における作業装置は、所定の作業を実行する作業部と、前記作業部を保持する保持部材と、所定の方向に沿って互いに離間した複数の位置で前記保持部材の表面温度をそれぞれ測定する表面温度測定部と、前記表面温度測定部によって測定された前記保持部材の各表面温度に基づいて、所定の基準温度における前記方向に沿った前記保持部材の長さである基準長からの変化量を求める変化長演算部と、前記変化長演算部によって求められた前記変化量に基づいて前記作業を補正する補正部とを備える。作業装置は、上述したように、組み立て装置、工作機械および測定装置等の様々な装置であり、作業部は、その用途に応じて様々な態様があり、そして、補正部は、作業に応じた補正を行うものである。例えば、組み立て装置や工作機械では、温度変化に起因したマニピュレータの伸縮による作業部(例えば把持部、ネジ留め部、溶接部およびバイト等の工具)と作業対象物との間の距離が補正される。また例えば、測定装置では、温度変化に起因したアームの伸縮による検出部と作業対象物との間の距離が補正される。本実施形態では、このような様々な作業装置の一例として、作業装置が形状測定装置である場合について以下に説明する。   The working device in the embodiment measures a surface temperature of the holding member at a plurality of positions spaced apart from each other along a predetermined direction, a working unit that performs a predetermined work, a holding member that holds the working part, and a predetermined direction. Based on the surface temperature measuring unit and each surface temperature of the holding member measured by the surface temperature measuring unit, the amount of change from the reference length that is the length of the holding member along the direction at a predetermined reference temperature And a correction unit that corrects the work based on the amount of change obtained by the change length computation unit. As described above, the working device is various devices such as an assembling device, a machine tool, and a measuring device, the working unit has various modes depending on the application, and the correcting unit is in accordance with the work. Correction is performed. For example, in an assembly apparatus or a machine tool, the distance between a work part (for example, a tool such as a gripping part, a screwing part, a welding part, and a cutting tool) due to expansion and contraction of a manipulator caused by a temperature change is corrected. . Further, for example, in the measuring apparatus, the distance between the detection unit and the work object due to the expansion and contraction of the arm caused by the temperature change is corrected. In this embodiment, a case where the working device is a shape measuring device will be described below as an example of such various working devices.

図1は、実施形態における作業装置の一例である形状測定装置の構成を示す図である。図2は、図1に示す形状測定装置の白色干渉計ヘッド部回りのより詳細な構成を示す斜視図である。   FIG. 1 is a diagram illustrating a configuration of a shape measuring device that is an example of a working device according to an embodiment. FIG. 2 is a perspective view showing a more detailed configuration around the white interferometer head portion of the shape measuring apparatus shown in FIG.

実施形態における作業装置の一例である形状測定装置Dは、図1および図2に示すように、前記作業部の一例である白色干渉計ヘッド部1と、保持部材2と、表面温度測定部3(3−1、3−2)と、制御演算部4とを備え、本実施形態では、さらに、載置部5と、入力部6と、出力部7と、インターフェース部(以下、「IF部」と略記する。)8とを備える。   As shown in FIGS. 1 and 2, the shape measuring device D that is an example of the working device in the embodiment includes a white interferometer head portion 1 that is an example of the working portion, a holding member 2, and a surface temperature measuring portion 3. (3-1, 2-2) and the control calculation unit 4, and in the present embodiment, the placement unit 5, the input unit 6, the output unit 7, and the interface unit (hereinafter referred to as “IF unit”). Abbreviated to ".) 8.

白色干渉計ヘッド部1は、所定の作業を実行する作業部の一例であり、測定対象である測定対象物(被測定物)に対する白色干渉によって前記作業対象物の形状を求めるための白色干渉データを測定する装置である。測定対象物は、作業の対象である作業対象物の一例である。より具体的には、白色干渉計ヘッド部1は、可干渉性の少ない白色光を放射する白色光源から測定対象物に照射され、測定対象物から反射された白色光と、前記白色光源から参照面に照射され、参照面から反射された白色光とを干渉させて前記測定対象物の干渉画像を得ると共に、前記参照面を光軸方向に移動させて最も干渉光強度の大きい参照面位置を検出する装置である。白色干渉計ヘッド部1は、前記干渉させて前記測定対象物の白色干渉データを得るために、例えばミラウ型やマイケルソン型の等光路干渉計と、前記測定対象物の干渉画像を撮像する撮像部と、等価的に前記参照面を光軸方向に移動させるために、光軸方向に移動する対物レンズ11と、測定対象物が載置される載置部5の載置面と対物レンズ11との距離を検出する差動型レーザ測距部とを備えている。白色干渉計ヘッド部1は、制御演算部4に接続され、前記撮像部で撮像した干渉画像のデータ(干渉画像データ)および前記差動型レーザ測距部で測距した距離のデータ(参照面位置データ)を白色干渉データとして制御演算部4へ出力する。   The white interferometer head unit 1 is an example of a working unit that performs a predetermined work, and white interference data for obtaining the shape of the work object by white interference with a measurement object (measurement object) that is a measurement object. It is a device that measures. The measurement object is an example of a work object that is a work object. More specifically, the white interferometer head unit 1 irradiates the measurement object from a white light source that emits white light with less coherence, and reflects the white light reflected from the measurement object and the white light source. The interference light of the measurement object is obtained by interfering with the white light irradiated on the surface and reflected from the reference surface, and the reference surface position having the highest interference light intensity is obtained by moving the reference surface in the optical axis direction. It is a device to detect. The white interferometer head unit 1 captures, for example, a Mirau-type or Michelson-type equal optical path interferometer and an interference image of the measurement object in order to obtain white interference data of the measurement object by causing the interference. And the objective lens 11 that moves in the optical axis direction, and the placement surface of the placement portion 5 on which the measurement object is placed and the objective lens 11 in order to move the reference surface equivalently in the optical axis direction. And a differential laser distance measuring unit for detecting the distance between the two. The white interferometer head unit 1 is connected to the control calculation unit 4, and the interference image data (interference image data) captured by the imaging unit and the distance data (reference plane) measured by the differential laser ranging unit Position data) is output to the control calculation unit 4 as white interference data.

保持部材2は、白色干渉計ヘッド部1を保持する部材である。本実施形態では、保持部材2は、図1に示すように、第1ないし第3保持部材21〜23を備える側面視にて略コ字形状(略C字形状)の部材である。形状測定装置Dにおける高さ方向をZ軸とするXYZ直交座標系を図1および図2に示すように設定した場合に、第3保持部材23は、第1および第2保持部材21、22を支持する支持体であり、互いに直交する一方向Xおよび他方向Yの2方向に拡がる平板状である。第3保持部材23の一端には、前記XY平面の法線方向である前記高さ方向Zに立設するように、第2保持部材22が固定されている。第2保持部材22は、高さ方向Zに長尺な柱状体であり、その一方端には、上述のように第3保持部材23が固定され、その他方端には、他方向Y(水平方向Y)に延びるように、第1保持部材21の一方端が固定されている。第1保持部材21は、他方向Y(水平方向Y)に長尺な柱状体であり、その一方端には、上述のように第2保持部材22が固定され、その他方端には、白色干渉計ヘッド部1が、その光軸と高さ方向Zとを一致させて取り付けられている。保持部材2は、任意の材料から形成でき、本実施形態では、例えば石材あるいはセラミックで形成されている。   The holding member 2 is a member that holds the white interferometer head unit 1. In the present embodiment, the holding member 2 is a substantially U-shaped (substantially C-shaped) member in a side view including the first to third holding members 21 to 23 as shown in FIG. When the XYZ orthogonal coordinate system having the height direction in the shape measuring apparatus D as the Z-axis is set as shown in FIGS. 1 and 2, the third holding member 23 includes the first and second holding members 21 and 22. It is a support body to be supported, and has a flat plate shape extending in two directions, ie, one direction X and the other direction Y orthogonal to each other. The second holding member 22 is fixed to one end of the third holding member 23 so as to stand in the height direction Z that is the normal direction of the XY plane. The second holding member 22 is a columnar body elongated in the height direction Z. The third holding member 23 is fixed to one end of the second holding member 22 as described above, and the other direction Y (horizontal) is set to the other end. One end of the first holding member 21 is fixed so as to extend in the direction Y). The first holding member 21 is a columnar body that is long in the other direction Y (horizontal direction Y). The second holding member 22 is fixed to one end of the first holding member 21 as described above, and the other end is white. The interferometer head unit 1 is attached with its optical axis and the height direction Z aligned. The holding member 2 can be formed of any material, and is formed of, for example, stone or ceramic in the present embodiment.

表面温度測定部3は、所定の方向に沿って互いに離間した複数の位置で保持部材2の表面温度をそれぞれ測定する装置である。本実施形態では、高さ方向Zにおける保持部材2の伸縮を補正することから、表面温度測定部3は、高さ方向Zに沿って互いに離間した複数の位置で保持部材2の表面温度をそれぞれ測定するように、保持部材2の表面に設けられている。保持部材2における高さ方向に沿った複数の位置は、例えば、熱源となる白色干渉計ヘッド部1に近い位置から、前記熱源の白色干渉計ヘッド部1から遠い位置までの範囲で種々の位置があり、例えば、白色干渉計ヘッド部1の取り付け位置における第1保持部材21の表面位置Pa、第1保持部材21と第2保持部材22との固定位置における第2保持部材22の表面位置Pb、第2保持部材22と第3保持部材23との固定位置における第2保持部材22の表面位置Pd、および、表面位置Pbと表面位置Pdとの中間位置における第2保持部材22の表面位置Pc等がある。本実施形態では、表面温度測定部3は、2個の熱電対であり、高さ方向に沿った保持部材2の温度分布を最低限の測定箇所で測定するために、第1熱電対3−1は、前記熱源の白色干渉計ヘッド部1に近い位置である表面位置Paに取り付けられ、表面位置Paの表面温度を測定し、第2熱電対3−2は、前記熱源の白色干渉計ヘッド部1に遠い位置である表面位置Pdに取り付けられ、表面位置Pdの表面温度を測定する。そして、表面温度測定部3の第1および第2熱電対3−1、3−2は、制御演算部4に接続され、その測定した表面位置Pa、Pdの各表面温度データT(Pa)、T(Pd)を制御演算部4へ出力する。   The surface temperature measuring unit 3 is a device that measures the surface temperature of the holding member 2 at a plurality of positions separated from each other along a predetermined direction. In the present embodiment, since the expansion and contraction of the holding member 2 in the height direction Z is corrected, the surface temperature measurement unit 3 sets the surface temperature of the holding member 2 at a plurality of positions separated from each other along the height direction Z. It is provided on the surface of the holding member 2 so as to measure. The plurality of positions along the height direction of the holding member 2 can be various positions in a range from a position close to the white interferometer head section 1 serving as a heat source to a position far from the white interferometer head section 1 serving as the heat source. For example, the surface position Pa of the first holding member 21 at the mounting position of the white interferometer head unit 1, and the surface position Pb of the second holding member 22 at the fixed position between the first holding member 21 and the second holding member 22. The surface position Pd of the second holding member 22 at the fixed position between the second holding member 22 and the third holding member 23 and the surface position Pc of the second holding member 22 at the intermediate position between the surface position Pb and the surface position Pd. Etc. In the present embodiment, the surface temperature measurement unit 3 is two thermocouples, and in order to measure the temperature distribution of the holding member 2 along the height direction at the minimum measurement location, the first thermocouple 3- 1 is attached to a surface position Pa that is close to the white interferometer head unit 1 of the heat source, measures the surface temperature of the surface position Pa, and the second thermocouple 3-2 is a white interferometer head of the heat source. It is attached to the surface position Pd, which is a position far from the part 1, and the surface temperature of the surface position Pd is measured. And the 1st and 2nd thermocouples 3-1 and 3-2 of the surface temperature measurement part 3 are connected to the control calculation part 4, and each surface temperature data T (Pa) of the measured surface position Pa and Pd, T (Pd) is output to the control calculation unit 4.

載置部5は、前記測定対象物を載置するための載置面を形成する載置台51を有し、前記載置面を含む平面内で載置台51を移動可能な装置である。載置部5は、例えば、一方向Xおよび他方向Yそれぞれに移動するXYステージであり、載置台51と、第1および第2載置台用支持部材52、53と、第1および第2駆動部54、55とを備える。載置台51は、測定対象物を載置するための載置面を持つ板状体である。第1載置台用支持部材52は、一方向Xに沿って案内しつつ移動可能に載置台51を支持する部材であり、第2載置台用支持部材53は、一方向Yに沿って案内しつつ移動可能に第1載置台用支持部材52を介して載置台51を支持する部材である。載置台51、第1載置台用支持部材52および第2載置台用支持部材53は、この順で上から高さ方向Zに沿って重ねられて保持部材2の第3保持部材23上に配設されている。このように載置台51が第1および第2載置台用支持部材52、53を介して保持部材2の第3保持部材23上に配設されることによって、保持部材2は、前記作業部の一例である白色干渉計ヘッド部1と載置部5の載置台51に載置された測定対象物とを所定の方向(本実施形態では、測定する方向となる高さ方向Z)で離隔して白色干渉計ヘッド部1を保持している。第1駆動部54は、載置面を含むXY平面内で載置台51を移動させるべく、第1載置台用支持部材52によって支持しつつ載置台51を一方向Xに沿って移動させる装置であり、例えば、リニアモータ等である。第2駆動部55は、載置面を含む平面内で載置台51を移動させるべく、第2載置台用支持部材53によって支持しつつ載置台51を他方向Yに沿って移動させる装置であり、例えば、リニアモータ等である。これら第1および第2駆動部54、55は、制御演算部4に接続され、制御演算部4によって制御される。   The mounting unit 5 includes a mounting table 51 that forms a mounting surface for mounting the measurement object, and is a device that can move the mounting table 51 within a plane including the mounting surface. The mounting unit 5 is, for example, an XY stage that moves in one direction X and the other direction Y, and includes a mounting table 51, first and second mounting table support members 52 and 53, and first and second drives. Parts 54 and 55. The mounting table 51 is a plate-like body having a mounting surface for mounting a measurement object. The first mounting table support member 52 is a member that supports the mounting table 51 so as to be movable while being guided along the one direction X, and the second mounting table support member 53 is guided along the one direction Y. It is a member that supports the mounting table 51 via the first mounting table support member 52 while being movable. The mounting table 51, the first mounting table support member 52, and the second mounting table support member 53 are stacked on the third holding member 23 of the holding member 2 by being stacked in this order along the height direction Z. It is installed. In this way, the mounting table 51 is disposed on the third holding member 23 of the holding member 2 via the first and second mounting table support members 52 and 53, so that the holding member 2 can The white interferometer head unit 1, which is an example, and the measurement object mounted on the mounting table 51 of the mounting unit 5 are separated from each other in a predetermined direction (in this embodiment, a height direction Z that is a measuring direction). The white interferometer head 1 is held. The first drive unit 54 is a device that moves the mounting table 51 along one direction X while supporting it by the first mounting table support member 52 in order to move the mounting table 51 in the XY plane including the mounting surface. For example, a linear motor or the like. The second drive unit 55 is a device that moves the mounting table 51 along the other direction Y while being supported by the second mounting table support member 53 in order to move the mounting table 51 within a plane including the mounting surface. For example, a linear motor or the like. The first and second drive units 54 and 55 are connected to the control calculation unit 4 and controlled by the control calculation unit 4.

測定対象物は、本実施形態では、例えば、樹脂材料製のミラー母材であり、安定的に載置台51に載置するために、治具ADに配置され、このミラー母材を含む治具ADが載置台51上に載置されている。そして、治具ADには、ミラー母材の各測定位置を特定するための基準点が設けられている。ミラー母材の各測定位置は、この基準点からの相対位置で決定され、その各測定位置におけるミラー母材の面形状が測定される。   In this embodiment, the object to be measured is, for example, a mirror base material made of a resin material, and is placed on the jig AD in order to be stably placed on the mounting base 51, and the jig including the mirror base material. AD is mounted on the mounting table 51. The jig AD is provided with a reference point for specifying each measurement position of the mirror base material. Each measurement position of the mirror base material is determined by a relative position from the reference point, and the surface shape of the mirror base material at each measurement position is measured.

制御演算部4は、測定対象物の形状を測定するべく、形状測定装置Dの各部を当該各部の機能に応じてそれぞれ制御するものであり、白色干渉計ヘッド部1の出力(白色干渉データ)および表面温度測定部3の出力(表面温度データ)に基づいて測定対象物の形状を求めるものである。制御演算部4は、例えば、CPU(Central Processing Unit)、このCPUによって実行される種々のプログラムやその実行に必要なデータ等を予め記憶するROM(Read Only Memory)やEEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性記憶素子、このCPUのいわゆるワーキングメモリとなるRAM(Random Access Memory)等の揮発性記憶素子およびその周辺回路等を備えたマイクロコンピュータによって構成される。なお、制御演算部4は、白色干渉計ヘッド部1の白色干渉データ、表面温度測定部3の表面温度データおよび測定対象物の形状データ等の各データを記憶するために、例えばハードディスク等の比較的大容量の記憶装置をさらに備えてもよい。そして、制御演算部4には、プログラムを実行することによって、機能的に、制御部41、走査測定部42、形状演算部43、変化長演算部44および補正部45が構成される。   The control calculation unit 4 controls each part of the shape measuring device D according to the function of each part in order to measure the shape of the measurement object, and outputs the white interferometer head part 1 (white interference data). Further, the shape of the measurement object is obtained based on the output (surface temperature data) of the surface temperature measurement unit 3. The control calculation unit 4 includes, for example, a CPU (Central Processing Unit), various programs executed by the CPU, data necessary for the execution, and the like (ROM (Read Only Memory) or EEPROM (Electrically Erasable Programmable Read Only)). A non-volatile memory element such as Memory), a volatile memory element such as a RAM (Random Access Memory) serving as a so-called working memory of the CPU, and a microcomputer including peripheral circuits thereof. In addition, the control calculation unit 4 compares each data such as white interference data of the white interferometer head unit 1, surface temperature data of the surface temperature measurement unit 3, and shape data of the measurement object. A large-capacity storage device may be further provided. The control calculation unit 4 functionally includes a control unit 41, a scanning measurement unit 42, a shape calculation unit 43, a change length calculation unit 44, and a correction unit 45 by executing a program.

制御部41は、測定対象物の形状を測定するために、形状測定装置Dの各部を当該各部の機能に応じてそれぞれ制御するものである。   The control unit 41 controls each part of the shape measuring device D according to the function of each part in order to measure the shape of the measurement object.

走査測定部42は、載置部5の載置台51を載置面を含む前記XY平面内で移動させることによって作業対象物の複数の測定点それぞれで、表面温度測定部3によって保持部材2の各表面温度を測定すると共に白色干渉計ヘッド部1によって作業対象物の白色干渉データを測定するものである。   The scanning measuring unit 42 moves the mounting table 51 of the mounting unit 5 in the XY plane including the mounting surface, and the surface temperature measuring unit 3 moves the mounting member 2 at the plurality of measurement points of the work target. While measuring each surface temperature, the white interferometer head part 1 measures the white interference data of the work object.

形状演算部43は、複数の測定点それぞれで作業対象物の形状を求めるものである。本実施形態では、形状演算部43は、複数の測定点それぞれにおける、補正部45によって補正された各白色干渉データに基づいて、複数の測定点それぞれで作業対象物の形状を求めるものである。   The shape calculation unit 43 obtains the shape of the work object at each of a plurality of measurement points. In the present embodiment, the shape calculation unit 43 obtains the shape of the work object at each of the plurality of measurement points based on the white interference data corrected by the correction unit 45 at each of the plurality of measurement points.

変化長演算部44は、表面温度測定部3によって測定された保持部材2の各表面温度に基づいて、予め設定された所定の基準長からの変化量を求めるものである。本実施形態では、変化長演算部44は、第1および第2熱電対3−1、3−2によって測定された保持部材2における表面位置Pa、Pdの各表面温度Ts(Pa)、Ts(Pd)に基づいて、前記基準長からの変化量を求める。基準長は、所定の基準温度における、表面温度の各測定位置Pa、Pdの並ぶ前記方向に沿った保持部材2の長さである。   The change length calculation unit 44 obtains a change amount from a predetermined reference length set in advance based on each surface temperature of the holding member 2 measured by the surface temperature measurement unit 3. In the present embodiment, the change length calculation unit 44 has the surface temperatures Pa and Pd of the holding member 2 measured by the first and second thermocouples 3-1 and 3-2. Based on Pd), the amount of change from the reference length is obtained. The reference length is the length of the holding member 2 along the direction in which the measurement positions Pa and Pd of the surface temperature are arranged at a predetermined reference temperature.

そして、本実施形態では、表面温度測定部3は、複数の表面位置それぞれで保持部材2の表面温度を所定のサンプリング間隔(サンプリング周期)でサンプリングすることによって保持部材2の表面温度時系列データT(Z、t)を測定しており、変化長演算部44は、表面温度測定部3によって測定された保持部材2の各表面温度時系列データT(Z、t)に基づいて保持部材2の内部温度を求め、求めた内部温度に基づいて、前記基準長からの変化量を求めるものである。より具体的には、本実施形態では、例えば、変化長演算部44は、表面温度測定部3によって測定された保持部材2の各表面温度時系列データを平均することによって平均表面温度時系列データを求め、求めた平均表面温度時系列データを高速フーリエ変換し、高速フーリエ変換した前記平均表面温度時系列データに予め求められた所定の周波数特性を持つフィルタJωでフィルタリングし、このフィルタリングした前記平均表面温度時系列データを逆フーリエ変換することによって、保持部材2の内部平均温度を求めるものである。 In the present embodiment, the surface temperature measurement unit 3 samples the surface temperature of the holding member 2 at each of a plurality of surface positions at a predetermined sampling interval (sampling period), so that the surface temperature time-series data T of the holding member 2 is obtained. (Z, t) is measured, and the change length calculation unit 44 determines the holding member 2 based on each surface temperature time series data T (Z, t) of the holding member 2 measured by the surface temperature measuring unit 3. An internal temperature is obtained, and a change amount from the reference length is obtained based on the obtained internal temperature. More specifically, in the present embodiment, for example, the change length calculation unit 44 averages each surface temperature time series data of the holding member 2 measured by the surface temperature measurement unit 3 to obtain average surface temperature time series data. The obtained average surface temperature time-series data is subjected to fast Fourier transform, and the average surface temperature time-series data obtained by fast Fourier transform is filtered with a filter having a predetermined frequency characteristic obtained in advance, and the filtered The internal average temperature of the holding member 2 is obtained by performing inverse Fourier transform on the average surface temperature time-series data.

そして、本実施形態では、測定対象物は、載置部5の載置台51の移動によって、複数の測定点で測定され、これら複数の測定点それぞれ、測定対象物の形状を求めることから、変化長演算部44は、これら複数の測定点それぞれで、上述によって前記変化量を求める。   In this embodiment, the measurement object is measured at a plurality of measurement points by the movement of the mounting table 51 of the mounting unit 5, and the shape of the measurement object is obtained for each of the plurality of measurement points. The length calculation unit 44 obtains the change amount as described above at each of the plurality of measurement points.

補正部45は、変化長演算部44によって求められた変化量に基づいて、前記作業の一例として白色干渉計ヘッド部1の白色干渉データを補正するものである。本実施形態では、補正部45は、変化長演算部44によって求められた前記各変化量に基づいて、前記複数の測定点それぞれで白色干渉計ヘッド部1によって測定された白色干渉データを補正するものである。   The correction unit 45 corrects white interference data of the white interferometer head unit 1 as an example of the work based on the amount of change obtained by the change length calculation unit 44. In the present embodiment, the correction unit 45 corrects the white interference data measured by the white interferometer head unit 1 at each of the plurality of measurement points based on the change amounts obtained by the change length calculation unit 44. Is.

入力部6は、制御演算部4に接続され、例えば、測定対象物の測定開始を指示するコマンド等の各種コマンド、および、例えば測定対象物における識別子の入力等の各種データを形状測定装置Dに入力する機器であり、例えば、キーボードやマウス等である。出力部7は、入力部6から入力されたコマンドやデータ、および、測定された測定対象物の形状を出力する機器であり、例えばCRTディスプレイ、LCDおよび有機ELディスプレイ等の表示装置やプリンタ等の印刷装置等である。   The input unit 6 is connected to the control calculation unit 4 and, for example, various commands such as a command for instructing measurement start of the measurement object and various data such as an input of an identifier in the measurement object are input to the shape measuring device D. An input device is, for example, a keyboard or a mouse. The output unit 7 is a device that outputs commands and data input from the input unit 6 and the shape of the measured measurement object. For example, the output unit 7 is a display device such as a CRT display, LCD, or organic EL display, a printer, or the like. Printing device or the like.

なお、入力部6および出力部7からタッチパネルが構成されてもよい。このタッチパネルを構成する場合において、入力部6は、例えば抵抗膜方式や静電容量方式等の操作位置を検出して入力する位置入力装置であり、出力部7は、表示装置である。このタッチパネルでは、表示装置の表示面上に位置入力装置が設けられ、表示装置に入力可能な1または複数の入力内容の候補が表示され、ユーザが、入力したい入力内容を表示した表示位置を触れると、位置入力装置によってその位置が検出され、検出された位置に表示された表示内容がユーザの操作入力内容として形状測定装置Dに入力される。このようなタッチパネルでは、ユーザは、入力操作を直感的に理解し易いので、ユーザにとって取り扱い易い形状測定装置Dが提供される。   A touch panel may be configured from the input unit 6 and the output unit 7. In the case of configuring this touch panel, the input unit 6 is a position input device that detects and inputs an operation position such as a resistive film method or a capacitance method, and the output unit 7 is a display device. In this touch panel, a position input device is provided on the display surface of the display device, one or more input content candidates that can be input to the display device are displayed, and the user touches the display position where the input content to be input is displayed. Then, the position is detected by the position input device, and the display content displayed at the detected position is input to the shape measuring device D as the operation input content of the user. In such a touch panel, since the user can easily understand the input operation intuitively, the shape measuring device D that is easy to handle for the user is provided.

IF部8は、制御演算部4に接続され、外部機器との間でデータの入出力を行う回路であり、例えば、シリアル通信方式であるRS−232Cのインターフェース回路、Bluetooth(登録商標)規格を用いたインターフェース回路、IrDA(Infrared Data Asscoiation)規格等の赤外線通信を行うインターフェース回路、および、USB(Universal Serial Bus)規格を用いたインターフェース回路等である。   The IF unit 8 is a circuit that is connected to the control calculation unit 4 and inputs / outputs data to / from an external device. For example, an RS-232C interface circuit that is a serial communication method, Bluetooth (registered trademark) standard is used. An interface circuit that performs infrared communication such as an IrDA (Infrared Data Association) standard, an interface circuit that uses a USB (Universal Serial Bus) standard, and the like.

次に、本実施形態の動作について説明する。図3は、表面温度に対する内部温度の時間遅れを説明するための図である。図3の横軸は、高さ方向Zに沿った位置であり、その縦軸は、温度Tである。図4は、表面温度から保持部材の長さの変化量を求める手法を説明するための図である。   Next, the operation of this embodiment will be described. FIG. 3 is a diagram for explaining the time delay of the internal temperature with respect to the surface temperature. The horizontal axis in FIG. 3 is the position along the height direction Z, and the vertical axis is the temperature T. FIG. 4 is a diagram for explaining a method for obtaining the amount of change in the length of the holding member from the surface temperature.

このような構成の形状測定装置Dでは、まず、測定対象物が形状測定装置Dにセットされ、測定が開始される。本実施形態では、上述したように、測定対象物のミラー母材は、治具ADにセットされ、この治具ADが載置台51にセットされる。測定が開始されると、制御演算部4の走査測定部42は、載置台51を移動しながら白色干渉計ヘッド部1によって測定された白色干渉データに基づいて治具ADの前記基準点を検出し、基準位置を決定する。走査測定部42は、基準位置から、予め設定された測定を開始する測定開始点(測定開始位置)に載置台51を移動する。そして、走査測定部42は、まず、この測定開始点で、白色干渉計ヘッド部1によって所定範囲の白色干渉データを測定し、この測定した白色干渉データを測定点(測定位置)と対応させて保存する。すなわち、白色干渉計ヘッド部1は、対物レンズ11の位置を光軸方向(高さ方向Z)に移動させつつ所定のサンプリング間隔で、前記撮像部によって測定対象物の干渉画像を撮像し、前記差動型レーザ測距部によって載置部5の載置面と対物レンズ11との距離を検出し、各撮像によって得られた各干渉画像データおよび各検出によって得られた各参照面位置データを互いに対応付けて、これら各干渉画像データおよび各参照面位置データを白色干渉データとして制御演算部4へ出力する。一方、このように白色干渉データを測定している間に、走査測定部42は、この測定開始点(測定開始位置)で、表面温度測定部3の第1および第2熱電対3−1、3−2によって測定される各表面位置Pa、Pdにおける表面温度を所定のサンプリング間隔でサンプリングし、各表面温度時系列データT(Pa、t)、T(Pd、t)を取り込み、この取り込んだ各表面温度時系列データT(Pa、t)、T(Pd、t)を前記測定点(測定位置)と対応させて保存する。   In the shape measuring apparatus D having such a configuration, first, a measurement object is set in the shape measuring apparatus D, and measurement is started. In the present embodiment, as described above, the mirror base material of the measurement object is set on the jig AD, and the jig AD is set on the mounting table 51. When the measurement is started, the scanning measurement unit 42 of the control calculation unit 4 detects the reference point of the jig AD based on the white interference data measured by the white interferometer head unit 1 while moving the mounting table 51. And determine the reference position. The scanning measurement unit 42 moves the mounting table 51 from the reference position to a measurement start point (measurement start position) at which a preset measurement is started. The scanning measurement unit 42 first measures white interference data in a predetermined range by the white interferometer head unit 1 at the measurement start point, and associates the measured white interference data with the measurement point (measurement position). save. That is, the white interferometer head unit 1 captures an interference image of the measurement object by the imaging unit at a predetermined sampling interval while moving the position of the objective lens 11 in the optical axis direction (height direction Z), and The distance between the mounting surface of the mounting unit 5 and the objective lens 11 is detected by the differential laser distance measuring unit, and each interference image data obtained by each imaging and each reference surface position data obtained by each detection are obtained. In association with each other, the interference image data and the reference plane position data are output to the control calculation unit 4 as white interference data. On the other hand, while measuring the white light interference data in this way, the scanning measurement unit 42 uses the first and second thermocouples 3-1 of the surface temperature measurement unit 3 at the measurement start point (measurement start position), The surface temperature at each surface position Pa, Pd measured by 3-2 is sampled at a predetermined sampling interval, and each surface temperature time series data T (Pa, t), T (Pd, t) is taken in and taken in. Each surface temperature time series data T (Pa, t), T (Pd, t) is stored in association with the measurement point (measurement position).

そして、前記測定開始位置の測定が終了すると、走査測定部42は、次の測定点(次の測定位置)の測定を実行するために、次の測定点に載置台51を移動する。次の測定点に載置台51を移動すると、走査測定部42は、上述と同様に、白色干渉計ヘッド部1によって所定範囲の白色干渉データを測定し、表面温度測定部3から各表面温度時系列データを取り込み、これらを前記測定点(測定位置)と対応させて保存する。以下同様に、順次に各測定点(各測定位置)の測定が実行される。   When the measurement of the measurement start position is completed, the scanning measurement unit 42 moves the mounting table 51 to the next measurement point in order to execute measurement of the next measurement point (next measurement position). When the mounting table 51 is moved to the next measurement point, the scanning measurement unit 42 measures white interference data in a predetermined range by the white interferometer head unit 1 as described above, and the surface temperature measurement unit 3 measures each surface temperature. The series data is taken in and stored in correspondence with the measurement points (measurement positions). Similarly, the measurement at each measurement point (each measurement position) is sequentially performed.

このような測定中に(測定に並行して)、あるいは、測定の終了後に、制御演算部4は、前記保存した各測定点それぞれの各白色干渉データおよび各表面温度時系列データに基づいて、各測定点それぞれの測定対象物の形状を求め、これら求めた各測定点における測定対象物の各形状を連結することで、測定対象物全体の表面形状を求める。このように各測定点における測定対象物の各形状を連結するので、1個の白色干渉データでは得られないより広い範囲の形状を測定できる。   During such measurement (in parallel with the measurement) or after the measurement is finished, the control calculation unit 4 is based on the white interference data and the surface temperature time-series data of each of the stored measurement points. The shape of the measurement object at each measurement point is obtained, and the surface shape of the whole measurement object is obtained by connecting the shapes of the measurement objects at the obtained measurement points. Since the shapes of the measurement objects at the measurement points are connected in this way, a wider range of shapes that cannot be obtained with one piece of white interference data can be measured.

より具体的には、各測定点(各測定位置)それぞれにおいて、変化長演算部44は、表面温度測定部3によって測定された保持部材2の各表面温度に基づいて、予め設定された所定の基準長からの変化量を求める。補正部45は、変化長演算部44によって求められた変化量に基づいて、白色干渉データを補正する。例えば、測定中の温度変化に起因して保持部材2が高さ方向Z、すなわち、光軸方向に伸縮するので、白色干渉データの参照面位置データに変化量を加算することによって白色干渉データの参照面位置データが補正される。なお、基準長より伸張する場合には、変化量は、プラス(+)で表され、基準長より収縮する場合には、変化量は、マイナス(−)で表される。そして、形状演算部43は、補正部45によって補正された白色干渉データに基づいて、作業対象物の形状を求める。各測定点それぞれで作業対象物の形状が求められると、形状演算部43は、これら求めた各測定点における測定対象物の各形状を連結することで、測定対象物全体の表面形状を求め、この求めた測定対象物全体の表面形状を出力部7に出力する。また、必要に応じて、制御演算部4は、この求めた測定対象物全体の表面形状をIF部8に出力する。   More specifically, at each measurement point (each measurement position), the change length calculation unit 44 is based on each surface temperature of the holding member 2 measured by the surface temperature measurement unit 3 and is set to a predetermined value set in advance. Find the amount of change from the reference length. The correction unit 45 corrects the white light interference data based on the amount of change obtained by the change length calculation unit 44. For example, since the holding member 2 expands and contracts in the height direction Z, that is, the optical axis direction due to a temperature change during measurement, the amount of white interference data is added by adding the amount of change to the reference surface position data of the white interference data. The reference plane position data is corrected. The amount of change is represented by plus (+) when extending from the reference length, and the amount of change is represented by minus (−) when contracting from the reference length. Then, the shape calculation unit 43 obtains the shape of the work object based on the white interference data corrected by the correction unit 45. When the shape of the work object is obtained at each measurement point, the shape calculator 43 obtains the surface shape of the entire measurement object by connecting the shapes of the measurement objects at the obtained measurement points, The obtained surface shape of the entire measurement object is output to the output unit 7. Moreover, the control calculating part 4 outputs the calculated | required surface shape of the whole measuring object to the IF part 8 as needed.

ここで、変化長演算部44による前記変化量の演算について以下に説明する。保持部材2の温度変化に起因する基準長からの変化量は、上述したように、保持部材2の各表面温度に基づいて求められてもよいが、保持部材2は、現実には3次元構造体であり、その表面で受けた熱は、表面から内部へ熱伝導し、所定の時間経過後に内部に到達する。したがって、図3に示すように、実線で示す保持部材2の表面温度分布と、破線で示す保持部材2の内部温度分布との間には、時間遅れが存在する。このため、保持部材2の内部温度に基づいて求めた変化量は、保持部材2の各表面温度に基づいて求めた変化量に較べて、より正確になる。一方、保持部材2の内部温度と保持部材2の表面温度とが同じ温度になる平衡状態では、表面温度の測定によって、前記時間遅れによる誤差を充分に低減できる。しかしなから、前記平衡状態になるまでに時間を要するため、測定を実行するまでに時間を要し、測定時間が長くなってしまう。そこで、本実施形態では、表面温度から以下のように内部温度を見積もり、前記時間遅れによる誤差を低減しつつ、測定時間の短縮化を図っている。   Here, the calculation of the change amount by the change length calculation unit 44 will be described below. As described above, the amount of change from the reference length due to the temperature change of the holding member 2 may be obtained based on each surface temperature of the holding member 2, but the holding member 2 is actually a three-dimensional structure. The heat received on the surface of the body is conducted from the surface to the inside, and reaches the inside after a predetermined time. Therefore, as shown in FIG. 3, there is a time delay between the surface temperature distribution of the holding member 2 indicated by a solid line and the internal temperature distribution of the holding member 2 indicated by a broken line. For this reason, the amount of change obtained based on the internal temperature of the holding member 2 is more accurate than the amount of change obtained based on each surface temperature of the holding member 2. On the other hand, in an equilibrium state where the internal temperature of the holding member 2 and the surface temperature of the holding member 2 are the same, the error due to the time delay can be sufficiently reduced by measuring the surface temperature. However, since it takes time to reach the equilibrium state, it takes time to perform the measurement, and the measurement time becomes long. Therefore, in this embodiment, the internal temperature is estimated from the surface temperature as follows, and the measurement time is shortened while reducing the error due to the time delay.

保持部材2の表面で受けた熱が内部に熱伝導する場合、熱伝導方程式は、保持部材2の表面から垂直に内部に向かう方向をz方向としたxyz直交座標系における時間tでの温度分布をT(x、y、z、t)とし、保持部材2の熱伝導率をkとし、その密度をρとし、その比熱容量をcとした場合に、次式(1)で表される。   When the heat received on the surface of the holding member 2 conducts to the inside, the heat conduction equation indicates that the temperature distribution at time t in the xyz orthogonal coordinate system with the direction perpendicular to the inside from the surface of the holding member 2 as the z direction. Is T (x, y, z, t), the thermal conductivity of the holding member 2 is k, its density is ρ, and its specific heat capacity is c, it is expressed by the following formula (1).

Figure 2014228460
Figure 2014228460

この熱伝導方程式は、変数分離法を用い、第1境界条件として、境界面(保持部材2の表面)z=0の温度変化(境界条件、初期値)をT(x、y、0、t)=Tωiwtとし(i=−1)、第2境界条件として、保持部材2内部を含めた温度分布の有界条件を|T(x、y、z、t)|<∞として、解かれ、次式(2)(式(2−1)またはその変形式の式(2−2))となる。なお、Rは、温度伝導率k/(ρ×c)の逆数であり、R=(ρ×c/k)である。また、T(x、y、z、t)は、xyに関し不変であるので、T(x、y、z、t)=T(z、t)とした。 This heat conduction equation uses a variable separation method, and the temperature change (boundary condition, initial value) at the boundary surface (the surface of the holding member 2) z = 0 is expressed as T (x, y, 0, t) as the first boundary condition. ) = T ω e iwt (i 2 = −1), and as a second boundary condition, the bounded condition of the temperature distribution including the inside of the holding member 2 is | T (x, y, z, t) | <∞ Then, the following equation (2) (equation (2-1) or a modified equation (2-2) thereof) is obtained. R is the reciprocal of temperature conductivity k / (ρ × c), and R = (ρ × c / k). In addition, T (x, y, z, t) is invariant with respect to xy, so T (x, y, z, t) = T (z, t) was set.

Figure 2014228460
Figure 2014228460

この式2より、保持部材2の表面上、角周波数ωの変化成分は、深さzの保持部材2内部では、振幅がexp(−((R×|ω|×z)/2)1/2)倍程度減衰し、位相が((R×|ω|×z)/2)1/2程度ずれることが分かる。なお、exp(x)=eである。 From Equation 2, the change component of the angular frequency ω on the surface of the holding member 2 has an amplitude exp (− ((R × | ω | × z) / 2) 1 / in the holding member 2 having the depth z. 2 ) It is found that the phase is attenuated by about twice and the phase is shifted by about ((R × | ω | × z) / 2) 1/2 . Note that it is exp (x) = e x.

この式2によって与えられる保持部材2の表面の温度分布T(z、t)に対し、表面温度変化に対する保持部材2の表面から深さz=D>0までの温度分布の平均<T(t)>は、次式(3)となる。なお、<α>は、αの平均であることを意味する。また、式3におけるJωは、次式4によって与えられる。 With respect to the temperature distribution T (z, t) of the surface of the holding member 2 given by Equation 2, the average of the temperature distribution from the surface of the holding member 2 to the depth z = D> 0 with respect to the surface temperature change <T (t )> Is expressed by the following equation (3). Note that <α> means an average of α. Further, J omega in Equation 3 is given by: 4.

Figure 2014228460
Figure 2014228460

Figure 2014228460
Figure 2014228460

ここで、第1境界条件から、Tωは、表面温度変化をフーリエ変換したものの周波数ωに対応する周波数成分であり、それに対応する内部平均温度変化の周波数成分は、式3より、Jω×Tωで与えられる。すなわち、表面温度の時間変動(前記温度分布T(0、t))T(t)を測定し、この測定したT(t)を前記Jωなる周波数特性を持つフィルタによって変換することで、保持部材の内部の平均温度<T(t)>が求められる。 Here, from the first boundary condition, T ω is a frequency component corresponding to the frequency ω of the Fourier transform of the surface temperature change, and the frequency component of the internal average temperature change corresponding to the frequency component is J ω × It is given by . That is, the time variation of the surface temperature (the temperature distribution T (0, t)) T (t) were measured, by converting the T (t) obtained by the measurement by a filter having the J omega comprising frequency characteristics, retention An average temperature <T (t)> inside the member is determined.

より具体的には、保持部材2の内部の平均温度<T(t)>は、例えば、表面温度変化T(t)をフーリエ変換することによってTωを求め、この周波数空間で前記Jωとの積(フィルタリング)を行い、そして、これを逆フーリエ変換することによって求められる。ここで、本実施形態では、保持部材2の表面温度時系列データは、複数の表面位置(上述の例では2箇所Pa、Pd)で測定しているので、これらの平均値が求められ、保持部材2の内部の平均温度<T(t)>は、この平均された平均表面温度時系列データをフーリエ変換することによってTωを求め、この周波数空間で前記Jωとの積(フィルタリング)を行い、そして、これを逆フーリエ変換することによって求められている。 More specifically, the interior of the mean temperature of the holding member 2 <T (t)>, for example, determine the T omega surface temperature change T (t) is by Fourier transform, and the J omega in this frequency space Is obtained by performing a product (filtering) of the data and performing an inverse Fourier transform on the product. Here, in this embodiment, since the surface temperature time-series data of the holding member 2 is measured at a plurality of surface positions (in the above example, two locations Pa and Pd), an average value of these is obtained and held. The average temperature inside the member 2 <T (t)> is obtained by performing a Fourier transform on the averaged average surface temperature time series data to obtain Tω, and the product (filtering) with the above Jω in this frequency space. It is determined by performing and inverse Fourier transforming this.

また例えば、保持部材2における内部平均温度の最新値のみの算出では、この最新値は、前記Jωを逆フーリエ変換することによって得られるインパルス応答により、表面温度変化T(t)を直接畳み込み積分することによって求められる。本実施形態では、上述と同様に、この最新値は、前記Jωを逆フーリエ変換することによって得られるインパルス応答により、前記平均された平均表面温度時系列データを直接畳み込み積分することによって求められる。これは、いわゆるFIR(Finite Impulse Filter)の信号処理である。 Further, for example, in the calculation of only the latest value of the average internal temperature in the holding member 2, the latest value by the impulse response obtained by inverse Fourier transforming the J omega, convolution surface temperature change T (t) direct integration It is required by doing. In the present embodiment, similarly to the above, this latest value is determined by the by impulse response obtained by inverse Fourier transform of J omega, directly convolved the averaged mean surface temperature time series data was . This is so-called FIR (Finite Impulse Filter) signal processing.

なお、表面温度のサンプリング周期(各データの時間間隔)とデータ数(時間幅、観測時間の長さ)は、前記Jωによって適宜に設定される。また、上述の複数の表面温度時系列データを平均する際に、保持部材2が前記z方向に不均一な厚さである場合には、より精度良く内部温度を見積もるために、この不均一性に基づく重みで重み付ける重み付け平均(加重平均)が用いられてもよい。 The sampling period of the surface temperature and the number of data (the time interval of each data) (time width, the length of the observation time) is appropriately set by the J omega. In addition, when the plurality of surface temperature time-series data are averaged, if the holding member 2 has a non-uniform thickness in the z direction, this non-uniformity is used in order to estimate the internal temperature more accurately. A weighted average (weighted average) weighted with a weight based on the above may be used.

そして、保持部材2の伸縮量、すなわち前記変化量は、図4に示すように、保持部材2の伸縮方向に直交する微小な厚面の面内で、上述の内部温度の平均化を行い、その内部温度にて、保持部材2の線膨張率を用いて前記伸縮方向(厚面の法線方向)における微小な厚面の微小変化量を求め、この求めた微小変化量を前記伸縮方向で積分することによって求められる。なお、微小変化量は、例えば、基準温度と内部温度との差に保持部材2の線膨張率を乗じ、この乗算結果に、前記基準温度における前記微小な厚面の法線方向の長さ(厚さ)をさらに乗じることで、求められる。あるいは、前記変化量は、基準温度と内部温度との差に保持部材2の線膨張率を乗じ、この乗算結果に基準長をさらに乗じることで求められてよい。   The amount of expansion / contraction of the holding member 2, that is, the amount of change is performed by averaging the above-described internal temperature within the surface of a minute thick surface perpendicular to the expansion / contraction direction of the holding member 2, as shown in FIG. At the internal temperature, the minute change amount of the minute thick surface in the expansion / contraction direction (the normal direction of the thick surface) is obtained using the linear expansion coefficient of the holding member 2, and the obtained minute change amount is obtained in the expansion / contraction direction. It is obtained by integrating. Note that the minute change amount is obtained by, for example, multiplying the difference between the reference temperature and the internal temperature by the linear expansion coefficient of the holding member 2, and multiplying the result by the normal direction length of the minute thick surface at the reference temperature ( It is obtained by further multiplying by (thickness). Alternatively, the amount of change may be obtained by multiplying the difference between the reference temperature and the internal temperature by the linear expansion coefficient of the holding member 2 and further multiplying the multiplication result by the reference length.

以上説明したように、本実施形態における形状測定装置Dでは、高さ方向Zに沿って互いに離間した複数の位置Pa、Pdで保持部材2の表面温度がそれぞれ測定され、これら測定された保持部材2の各表面温度に基づいて、保持部材2における基準長からの変化量が求められ、この求められた変化量に基づいて白色干渉データが補正される。したがって、このような形状測定装置Dは、当該形状測定装置D側の保持部材2の伸縮が考慮されるから、温度による誤差をより低減できる。   As described above, in the shape measuring apparatus D in the present embodiment, the surface temperature of the holding member 2 is measured at a plurality of positions Pa and Pd separated from each other along the height direction Z, and these measured holding members are measured. 2, the amount of change from the reference length in the holding member 2 is obtained, and the white interference data is corrected based on the obtained amount of change. Therefore, since the shape measuring apparatus D takes into account the expansion and contraction of the holding member 2 on the shape measuring apparatus D side, errors due to temperature can be further reduced.

また、本実施形態における形状測定装置Dは、保持部材2における表面温度の時間変化から保持部材2の内部温度を見積もるので、表面温度の測定でも温度による誤差をさらにより低減でき、平衡状態になるまで待つ必要がないので、作業効率を向上できる。特に、本実施形態における形状測定装置Dでは、より広い範囲の形状を測定するために、上述のように、各測定位置それぞれで測定が繰り返されるので、測定中に、測定環境の環境温度の変化や形状測定装置D自体の発熱等によって、保持部材2は、温度変化する場合が多いので、上述の作用効果は、より効果的である。   Moreover, since the shape measuring apparatus D in this embodiment estimates the internal temperature of the holding member 2 from the time change of the surface temperature in the holding member 2, the temperature error can be further reduced even in the measurement of the surface temperature, and the equilibrium state is obtained. Work efficiency can be improved. In particular, in the shape measuring apparatus D according to the present embodiment, since the measurement is repeated at each measurement position as described above in order to measure a wider range of shapes, a change in the environmental temperature of the measurement environment during the measurement. Since the temperature of the holding member 2 often changes due to the heat generation of the shape measuring device D itself or the like, the above-described effects are more effective.

また、本実施形態における形状測定装置Dは、平均表面温度時系列データをフーリエ変換することで周波数空間に変換するので、保持部材2の内部温度を求める際に、所定の予め求められた所定の周波数特性を持つフィルタJωを用いることができ、内部平均温度で保持部材2の内部温度を求めることができる。 Moreover, since the shape measuring apparatus D in the present embodiment converts the average surface temperature time-series data into a frequency space by performing Fourier transform, when determining the internal temperature of the holding member 2, a predetermined predetermined value obtained in advance is obtained. A filter having frequency characteristics can be used, and the internal temperature of the holding member 2 can be obtained by the internal average temperature.

なお、上述では、保持部材2の内部の平均温度を求める際に、複数の表面位置(上述の例では2箇所Pa、Pd)で測定された保持部材2の各表面温度時系列データが平均されたが、保持部材2の各表面温度時系列データそれぞれで、上述によって、各表面温度時系列データに基づく保持部材2の各変化量を求め、これら各変化量を平均(単純平均および重み付け平均を含む)することで、補正部45で用いられる保持部材2の変化量が求められてもよい。この場合には、変化長演算部44は、表面温度測定部3によって測定された前記保持部材の各表面温度時系列データを高速フーリエ変換し、高速フーリエ変換した前記各表面温度時系列データに予め求められた所定の周波数特性を持つフィルタJωでフィルタリングし、このフィルタリングした前記各表面温度時系列データを逆フーリエ変換することによって、各表面位置での各表面温度時系列データに基づく保持部材2の各内部平均温度を求める。そして、変化長演算部44は、これら求めた各表面位置での各表面温度時系列データに基づく保持部材2の内部平均温度に基づいて、各表面温度時系列データに基づく各変化量を求め、これら各変化量を平均することで、補正部45で用いられる保持部材2の変化量を求める。 In the above description, when the average temperature inside the holding member 2 is obtained, each surface temperature time series data of the holding member 2 measured at a plurality of surface positions (in the above example, two locations Pa and Pd) is averaged. However, in each of the surface temperature time series data of the holding member 2, each change amount of the holding member 2 based on each surface temperature time series data is obtained as described above, and these change amounts are averaged (simple average and weighted average). The amount of change of the holding member 2 used in the correction unit 45 may be obtained. In this case, the change length calculation unit 44 performs a fast Fourier transform on each surface temperature time series data of the holding member measured by the surface temperature measurement unit 3, and applies the surface temperature time series data obtained by the fast Fourier transform in advance. The holding member 2 based on each surface temperature time-series data at each surface position is filtered by the filter having the predetermined frequency characteristic thus obtained, and the filtered surface temperature time-series data is subjected to inverse Fourier transform. Each internal average temperature is obtained. Then, the change length calculation unit 44 obtains each change amount based on each surface temperature time series data based on the internal average temperature of the holding member 2 based on each surface temperature time series data at each obtained surface position, The amount of change of the holding member 2 used in the correction unit 45 is obtained by averaging these amounts of change.

本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。   In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.

D 形状測定装置
1 白色干渉計ヘッド部
2 保持部材
3 表面温度測定部
4 制御演算部
5 載置部
51 載置台
42 走査測定部
43 形状演算部
44 変化長演算部
45 補正部
D shape measuring apparatus 1 white interferometer head unit 2 holding member 3 surface temperature measuring unit 4 control calculating unit 5 mounting unit 51 mounting table 42 scanning measuring unit 43 shape calculating unit 44 change length calculating unit 45 correcting unit

Claims (5)

所定の作業を実行する作業部と、
前記作業部を保持する保持部材と、
所定の方向に沿って互いに離間した複数の位置で前記保持部材の表面温度をそれぞれ測定する表面温度測定部と、
前記表面温度測定部によって測定された前記保持部材の各表面温度に基づいて、所定の基準温度における前記方向に沿った前記保持部材の長さである基準長からの変化量を求める変化長演算部と、
前記変化長演算部によって求められた前記変化量に基づいて前記作業を補正する補正部とを備えること
を特徴とする作業装置。
A working unit for performing predetermined work;
A holding member for holding the working unit;
A surface temperature measuring unit for measuring the surface temperature of the holding member at a plurality of positions spaced from each other along a predetermined direction;
Based on each surface temperature of the holding member measured by the surface temperature measuring unit, a change length calculation unit that obtains a change amount from a reference length that is the length of the holding member along the direction at a predetermined reference temperature. When,
A working device comprising: a correcting unit that corrects the work based on the amount of change obtained by the change length calculating unit.
前記表面温度測定部は、前記複数の位置それぞれで前記保持部材の表面温度を所定のサンプリング間隔でサンプリングすることによって前記保持部材の表面温度時系列データを測定し、
前記変化長演算部は、前記表面温度測定部によって測定された前記保持部材の各表面温度時系列データに基づいて前記保持部材の内部温度を求め、求めた前記内部温度に基づいて、前記変化量を求めること
を特徴とする請求項1に記載の作業装置。
The surface temperature measurement unit measures the surface temperature time series data of the holding member by sampling the surface temperature of the holding member at each of the plurality of positions at a predetermined sampling interval,
The change length calculation unit obtains an internal temperature of the holding member based on each surface temperature time series data of the holding member measured by the surface temperature measurement unit, and based on the obtained internal temperature, the amount of change The working device according to claim 1, wherein:
前記変化長演算部は、前記表面温度測定部によって測定された前記保持部材の各表面温度時系列データを平均することによって平均表面温度時系列データを求め、求めた平均表面温度時系列データをフーリエ変換し、フーリエ変換した前記平均表面温度時系列データに予め求められた所定の周波数特性を持つフィルタでフィルタリングし、このフィルタリングした前記平均表面温度時系列データを逆フーリエ変換することによって、前記保持部材の内部平均温度を求めること
を特徴とする請求項2に記載の作業装置。
The change length calculation unit obtains an average surface temperature time series data by averaging each surface temperature time series data of the holding member measured by the surface temperature measurement unit, and the obtained average surface temperature time series data is Fourier-transformed. The holding member is transformed and filtered by a filter having a predetermined frequency characteristic obtained in advance on the average surface temperature time series data subjected to Fourier transform, and inverse Fourier transform is performed on the filtered average surface temperature time series data. The working device according to claim 2, wherein an internal average temperature of the is determined.
前記作業部は、前記作業の対象である作業対象物に対する白色干渉によって前記作業対象物の形状を求めるための白色干渉データを測定する白色干渉部を備え、
前記作業対象物を載置するための載置面を形成する載置台を有し、前記載置面を含む平面内で前記載置台を移動可能な載置部と、
前記載置台を前記平面内で移動させることによって前記作業対象物の複数の測定点それぞれで、前記表面温度測定部によって前記保持部材の各表面温度を測定すると共に前記白色干渉部によって前記作業対象物の白色干渉データを測定する走査測定部と、
前記複数の測定点それぞれで前記作業対象物の形状を求める形状演算部とをさらに備え、
前記変化長演算部は、前記複数の測定点それぞれで前記表面温度測定部によって測定された前記保持部材の各表面温度に基づいて、前記複数の測定点それぞれで前記変化量を求め、
前記補正部は、前記変化長演算部によって求められた前記各変化量に基づいて、前記複数の測定点それぞれで前記作業部の前記白色干渉部によって測定された前記白色干渉データを補正し、
前記形状演算部は、前記複数の測定点それぞれにおける前記補正部によって補正された前記各白色干渉データに基づいて、前記複数の測定点それぞれで前記作業対象物の形状を求めること
を特徴とする請求項1ないし請求項3のいずれか1項に記載の作業装置。
The working unit includes a white interference unit that measures white interference data for obtaining the shape of the work object by white interference with respect to the work object that is the work object,
A mounting unit that forms a mounting surface for mounting the work object, and a mounting unit capable of moving the mounting table within a plane including the mounting surface;
Each surface temperature of the holding member is measured by the surface temperature measurement unit at each of a plurality of measurement points of the work object by moving the mounting table in the plane, and the work object is obtained by the white interference unit. A scanning measurement unit for measuring white interference data of
A shape calculation unit for obtaining the shape of the work object at each of the plurality of measurement points;
The change length calculation unit obtains the amount of change at each of the plurality of measurement points based on each surface temperature of the holding member measured by the surface temperature measurement unit at each of the plurality of measurement points.
The correction unit corrects the white interference data measured by the white interference unit of the working unit at each of the plurality of measurement points based on the amount of change obtained by the change length calculation unit,
The shape calculation unit obtains the shape of the work object at each of the plurality of measurement points based on the white interference data corrected by the correction unit at each of the plurality of measurement points. The working device according to any one of claims 1 to 3.
所定の作業を実行する作業部と、前記作業部を保持する保持部材とを備える作業装置に用いられ、前記作業を補正する作業装置の補正方法において、
所定の方向に沿って互いに離間した複数の位置で前記保持部材の表面温度をそれぞれ測定する表面温度測定工程と、
前記表面温度測定工程によって測定された前記保持部材の各表面温度に基づいて、所定の基準温度における前記方向に沿った前記保持部材の長さである基準長からの変化量を求める変化長演算工程と、
前記変化長演算工程によって求められた前記変化量に基づいて前記作業を補正する補正工程とを備えること
を特徴とする作業装置の補正方法。
In a working device including a working unit that performs a predetermined work and a holding member that holds the working unit, the working device correction method for correcting the work,
A surface temperature measuring step of measuring the surface temperature of the holding member at a plurality of positions spaced apart from each other along a predetermined direction;
Based on each surface temperature of the holding member measured by the surface temperature measuring step, a change length calculating step for obtaining an amount of change from a reference length that is the length of the holding member along the direction at a predetermined reference temperature. When,
And a correction step of correcting the work based on the amount of change obtained by the change length calculation step.
JP2013109820A 2013-05-24 2013-05-24 Work device and correction method Pending JP2014228460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013109820A JP2014228460A (en) 2013-05-24 2013-05-24 Work device and correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013109820A JP2014228460A (en) 2013-05-24 2013-05-24 Work device and correction method

Publications (1)

Publication Number Publication Date
JP2014228460A true JP2014228460A (en) 2014-12-08

Family

ID=52128422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109820A Pending JP2014228460A (en) 2013-05-24 2013-05-24 Work device and correction method

Country Status (1)

Country Link
JP (1) JP2014228460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220019369A (en) * 2020-08-10 2022-02-17 세메스 주식회사 Bonding apparatus and bonding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220019369A (en) * 2020-08-10 2022-02-17 세메스 주식회사 Bonding apparatus and bonding method
KR102635492B1 (en) 2020-08-10 2024-02-07 세메스 주식회사 Bonding apparatus and bonding method

Similar Documents

Publication Publication Date Title
JP6254451B2 (en) Shape measuring apparatus and method for correcting shape measuring error
JP5816475B2 (en) Industrial machinery
JP6374318B2 (en) Method and apparatus for inspecting a workpiece
JP6448242B2 (en) Method for correcting measurement error of shape measuring apparatus and shape measuring apparatus
JP6393156B2 (en) Shape measuring apparatus and shape measuring method
JP5351639B2 (en) On-machine measuring method and measuring apparatus
US20160298959A1 (en) Calibration of motion systems
TWI534410B (en) Linear shape measurement method and linear shape measuring device
JP5486416B2 (en) Industrial machinery
JP7158582B2 (en) Adjustment amount estimation device, adjustment amount estimation method, adjustment amount estimation program, and machine tool assembly method
KR20090070194A (en) Sensing device and its method for compensating tool position processing oil-groove inside of engine cylinder
JP2014228460A (en) Work device and correction method
JP2020089963A (en) Robot system and coordinate conversion method
JP6738661B2 (en) Industrial machinery
JP2017087405A (en) Thermal displacement correction device of machine tool
JP7300374B2 (en) Machine tool error measurement method and machine tool
JP5383258B2 (en) Machine tool posture control device
JP6570543B2 (en) Method and apparatus for characterizing instrument errors
JP2019158385A (en) measuring device
JP2008501969A (en) Method and apparatus for three-dimensional measurement
JP6128639B2 (en) Measuring method
JP2010169635A (en) Shape measurement device
JP2019141971A (en) robot
TWI777205B (en) Calibration method of shape measuring device, reference device and detector
JP2018128350A (en) Position detector, stage device, and shape measuring device