JP2014220276A - Method of manufacturing solar cell and solar cell - Google Patents

Method of manufacturing solar cell and solar cell Download PDF

Info

Publication number
JP2014220276A
JP2014220276A JP2013096389A JP2013096389A JP2014220276A JP 2014220276 A JP2014220276 A JP 2014220276A JP 2013096389 A JP2013096389 A JP 2013096389A JP 2013096389 A JP2013096389 A JP 2013096389A JP 2014220276 A JP2014220276 A JP 2014220276A
Authority
JP
Japan
Prior art keywords
solar cell
substrate
diffusion
main surface
texture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013096389A
Other languages
Japanese (ja)
Other versions
JP6003791B2 (en
Inventor
渡部 武紀
Takenori Watabe
武紀 渡部
大塚 寛之
Hiroyuki Otsuka
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013096389A priority Critical patent/JP6003791B2/en
Publication of JP2014220276A publication Critical patent/JP2014220276A/en
Application granted granted Critical
Publication of JP6003791B2 publication Critical patent/JP6003791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a solar cell, in which conversion efficiency is enhanced by suppressing auto-dope on the outer periphery of a substrate during diffusion heat treatment.SOLUTION: A texture 100a is formed on at least one principal surface, i.e., a first principal surface, of a first conductivity type silicon substrate 100, a diffusion coating layer 103a is formed by coating the first principal surface of the silicon substrate 100 with a diffusion agent containing a second conductivity type diffusion source, with the outer edge region of the substrate in the first principal surface as a flat part 100b not having the texture, and then a second conductivity type diffusion layer 103 is formed by diffusing the diffusion agent by heat treatment.

Description

本発明は、高い出力効率を有する太陽電池の製造方法及び太陽電池に関する。   The present invention relates to a method for manufacturing a solar cell having high output efficiency and a solar cell.

従来から単結晶シリコンや多結晶シリコンの半導体基板を用いた高効率の太陽電池セルが種々検討されている。このような太陽電池セルは、図1に示すように、半導体基板900の受光面において集電電極としてフィンガー電極102と呼ばれる数百〜数十μm幅の電極を多数有し、また太陽電池セルを連結するための集電電極としてのバスバー電極101を数本有するのが一般的である。   Conventionally, various high-efficiency solar cells using single crystal silicon or polycrystalline silicon semiconductor substrates have been studied. As shown in FIG. 1, such a solar battery cell has a large number of electrodes having a width of several hundreds to several tens of μm called finger electrodes 102 as current collecting electrodes on the light receiving surface of the semiconductor substrate 900. It is common to have several bus bar electrodes 101 as current collecting electrodes for connection.

また、この太陽電池セルの断面構造として、図2に示すように、半導体基板900の受光面側には基板の導電型と反対の導電型の拡散層であるエミッタ層103が設けられ、この上にフィンガー電極102が設けられる。なお、受光領域には反射損失を低減する目的で反射防止膜104が設けられることが多い。また、受光面の反対面側(裏面)にも集電用の電極105が形成され、電極以外の部分は半導体基板900の導電型と同じ導電型の拡散層106が形成され、その表面にはパッシベーション膜107が形成される。   In addition, as shown in FIG. 2, as a cross-sectional structure of the solar cell, an emitter layer 103 which is a diffusion layer having a conductivity type opposite to the conductivity type of the substrate is provided on the light receiving surface side of the semiconductor substrate 900. Are provided with finger electrodes 102. Note that an antireflection film 104 is often provided in the light receiving region for the purpose of reducing reflection loss. A current collecting electrode 105 is also formed on the opposite side (back surface) of the light receiving surface, and a diffusion layer 106 of the same conductivity type as that of the semiconductor substrate 900 is formed on the surface other than the electrode, A passivation film 107 is formed.

上記エミッタ層103及び裏面側拡散層106の形成方法としては、熱拡散法が広く用いられる。即ち、半導体基板900を熱処理炉に入れ、P型拡散層形成のためには、B、Al、Ga、In等を拡散源とし、N型拡散層形成のためにはP、As、Sb等を拡散源として、拡散源毎に所定の温度及び時間で滞留させて半導体基板900の表面から熱拡散させることで、拡散層を形成する。   As a method for forming the emitter layer 103 and the back side diffusion layer 106, a thermal diffusion method is widely used. That is, the semiconductor substrate 900 is put in a heat treatment furnace, and B, Al, Ga, In, etc. are used as diffusion sources for forming a P-type diffusion layer, and P, As, Sb, etc. are used for forming an N-type diffusion layer. As a diffusion source, each diffusion source is retained at a predetermined temperature and time and thermally diffused from the surface of the semiconductor substrate 900, thereby forming a diffusion layer.

なお、半導体基板への拡散源の供給方法として、リンの供給源としてのオキシ塩化リンやホウ素の供給源としての三臭化ホウ素を用いる気相拡散法が一般的であるが、拡散源を純水や溶剤に溶解しておき、これを予め半導体基板上に塗布しておいてから熱処理する方法(塗布拡散法)が簡便であり、例えば特開平10−154823号公報(特許文献1)、特開平10−173208号公報(特許文献2)、特開2004−221149号公報(特許文献3)、特開2006−156646号公報(特許文献4)、特開2010−056465号公報(特許文献5)、特開2011−253868号公報(特許文献6)、特開2011−019051号公報(特許文献7)、特開2012−019052号公報(特許文献8)に開示されている。   As a method for supplying a diffusion source to a semiconductor substrate, a vapor phase diffusion method using phosphorus oxychloride as a phosphorus supply source or boron tribromide as a boron supply source is generally used. A method (coating diffusion method) in which water is dissolved in water or a solvent, and this is previously applied onto a semiconductor substrate and then heat-treated (coating diffusion method) is simple, for example, Japanese Patent Laid-Open No. 10-154823 (Patent Document 1), Japanese Unexamined Patent Publication No. 10-173208 (Patent Document 2), Japanese Unexamined Patent Application Publication No. 2004-221149 (Patent Document 3), Japanese Unexamined Patent Application Publication No. 2006-156646 (Patent Document 4), Japanese Unexamined Patent Application Publication No. 2010-056465 (Patent Document 5). JP, 2011-253868, A (patent document 6), JP, 2011-019051, A (patent document 7,), JP, 2012-019052, A (patent document 8). .

特開平10−154823号公報JP-A-10-154823 特開平10−173208号公報JP-A-10-173208 特開2004−221149号公報JP 2004-221149 A 特開2006−156646号公報JP 2006-156646 A 特開2010−056465号公報JP 2010-056465 A 特開2011−253868号公報JP 2011-253868 A 特開2011−019051号公報JP 2011-019051 A 特開2012−019052号公報JP 2012-019052 A

しかしながら、上記塗布拡散法は簡便であるが、半導体基板の両面に異種の拡散源を塗布し両面同時に拡散させようとすると、蒸気圧の高い拡散源は拡散炉内で容易に飛散し、所望の面とは反対の面に回り込んでしまい(オートドープ現象)、この現象により太陽電池特性が低下してしまうという問題があった。このとき、特開平10−173208号公報(特許文献2)で開示されているように、2枚の半導体基板の同じ導電型の拡散源の塗布面を外側に向けその裏面同士を向かい合わせて重ね合わせることで外側の塗布面から裏面側へのオートドープを回避しようとしても、熱による基板の膨張やテクスチャの存在などのために基板同士を完全に密着させることはできず、基板の裏面の外周部(基板外縁領域)に少なからず回り込みが発生し、太陽電池特性が低下する問題があった。また、2枚の半導体基板それぞれの拡散剤を塗布した面同士を向かい合わせて重ね合わせ、それらの外側の面に気相拡散法により拡散層を形成する場合にも、気相拡散法の拡散源が拡散剤塗布面側の外周部(基板外縁領域)に少なからず回り込み、太陽電池特性が低下する問題があった。   However, although the above-mentioned coating diffusion method is simple, if different types of diffusion sources are applied to both sides of the semiconductor substrate and both sides are simultaneously diffused, the diffusion source having a high vapor pressure is easily scattered in the diffusion furnace. There has been a problem that the surface of the surface is opposite to the surface (auto-doping phenomenon) and the solar cell characteristics deteriorate due to this phenomenon. At this time, as disclosed in Japanese Patent Application Laid-Open No. 10-173208 (Patent Document 2), the application surfaces of the diffusion sources of the same conductivity type on the two semiconductor substrates are directed outward and the back surfaces thereof are overlapped with each other. Even if trying to avoid auto-doping from the outer coated surface to the back side by combining them, the substrates cannot be completely adhered due to the expansion of the substrate due to heat or the presence of texture, etc. There is a problem that the wraparound occurs in the portion (outer edge region of the substrate) and the solar cell characteristics are deteriorated. The diffusion source of the vapor phase diffusion method can also be used when the surfaces of the two semiconductor substrates coated with the diffusing agent face each other and overlap each other and a diffusion layer is formed on the outer surface by the vapor phase diffusion method. However, there was a problem that the solar cell characteristics deteriorated due to the wrap around the outer peripheral portion (substrate outer edge region) on the diffusing agent application surface side.

本発明は、上記事情に鑑みなされたもので、拡散熱処理時の基板外縁領域のオートドープを抑制し、変換効率を向上させる太陽電池の製造方法及び太陽電池を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the manufacturing method and solar cell of a solar cell which suppress the auto dope of the board | substrate outer periphery area | region at the time of diffusion heat processing, and improve conversion efficiency.

本発明者らは、上記問題の原因を調べる中で、塗布拡散法において微細な凹凸からなるテクスチャ構造を有する半導体基板に拡散剤を塗布した場合、テクスチャ構造の凸部分が拡散剤で被覆されておらず、この状態で2枚の半導体基板のこの拡散剤塗布面(例えば、受光面)同士を向かい合わせて重ね合わせた後に表裏同時に拡散層を形成する拡散熱処理を行うと、テクスチャ構造によって基板同士が完全に密着していないことから上記拡散剤塗布面とは反対側の面(即ち、裏面)用の拡散源が受光面における基板外縁領域に回り込み、更に受光面のテクスチャ構造の拡散剤で被覆されていない凸部分から裏面用の拡散源が拡散し、太陽電池特性が低下してしまうことを把握し、この知見を基に問題解決を図るべく鋭意検討を行い、本発明を成すに至った。   When investigating the cause of the above problem, the present inventors applied a diffusing agent to a semiconductor substrate having a textured structure consisting of fine irregularities in the coating diffusion method, and the convex part of the textured structure was coated with the diffusing agent. In this state, if diffusion heat treatment for forming a diffusion layer at the same time is performed after the diffusion agent application surfaces (for example, light receiving surfaces) of the two semiconductor substrates face each other and overlap each other, Is not completely adhered, the diffusion source for the surface opposite to the diffusing agent application surface (that is, the back surface) wraps around the substrate outer edge region on the light receiving surface, and is further coated with a diffusing agent having a texture structure on the light receiving surface. It is understood that the diffusion source for the back surface diffuses from the unconvex convex part and the solar cell characteristics are deteriorated, and the present invention is devised to solve the problem based on this knowledge. It came to be.

即ち、本発明は、下記の太陽電池の製造方法及び太陽電池を提供する。
〔1〕 第一の導電型の半導体基板の少なくとも一方の主面である第一主面にテクスチャを形成し、該第一主面における基板の外縁領域をテクスチャを有さない平坦部として、上記半導体基板の第一主面に第二の導電型の拡散源を含む拡散剤を塗布し、熱処理して該拡散剤を拡散させて第二の導電型拡散層を形成することを特徴とする太陽電池の製造方法。
〔2〕 上記半導体基板の他方の主面である第二主面に第一の導電型の拡散源を別途供給し、上記熱処理により第一の導電型拡散層を同時に形成するものであることを特徴とする〔1〕記載の太陽電池の製造方法。
〔3〕 上記拡散剤を塗布した半導体基板を2枚一組とし、この2枚の半導体基板の第一主面同士を向き合わせて重ね合わせた状態で上記熱処理を行うことを特徴とする〔1〕又は〔2〕記載の太陽電池の製造方法。
〔4〕 上記半導体基板の導電型がN型であることを特徴とする〔1〕〜〔3〕のいずれかに記載の太陽電池の製造方法。
〔5〕 上記半導体基板の第一主面において該基板の外縁から7mm以内の領域をテクスチャを有さない平坦部とすることを特徴とする〔1〕〜〔4〕のいずれかに記載の太陽電池の製造方法。
〔6〕 第一主面に第二の導電型拡散層を有し、第二主面に第一の導電型拡散層を有する第一の導電型の半導体基板からなる太陽電池であって、上記半導体基板の少なくとも第一主面がテクスチャ構造を有すると共にその基板の外縁領域がテクスチャを有さない平坦部となっていることを特徴とする太陽電池。
〔7〕 上記半導体基板の導電型がN型であることを特徴とする〔6〕記載の太陽電池。
〔8〕 上記半導体基板の第一主面における平坦部が該基板の外縁から7mm以内の領域であることを特徴とする〔6〕又は〔7〕記載の太陽電池。
That is, this invention provides the manufacturing method and solar cell of the following solar cell.
[1] A texture is formed on a first main surface which is at least one main surface of a semiconductor substrate of the first conductivity type, and an outer edge region of the substrate on the first main surface is a flat portion having no texture, A sun comprising applying a diffusing agent including a diffusion source of a second conductivity type to a first main surface of a semiconductor substrate, and heat-diffusing the diffusing agent to form a second conductivity type diffusion layer Battery manufacturing method.
[2] A first conductivity type diffusion source is separately supplied to the second main surface, which is the other main surface of the semiconductor substrate, and the first conductivity type diffusion layer is simultaneously formed by the heat treatment. [1] The method for producing a solar cell according to [1].
[3] The semiconductor substrate coated with the diffusing agent is made into a set of two, and the heat treatment is performed in a state where the first main surfaces of the two semiconductor substrates face each other and overlap each other [1 ] Or the manufacturing method of the solar cell as described in [2].
[4] The method for manufacturing a solar cell according to any one of [1] to [3], wherein the semiconductor substrate has an N-type conductivity.
[5] The sun according to any one of [1] to [4], wherein a region within 7 mm from the outer edge of the substrate on the first main surface of the semiconductor substrate is a flat portion having no texture. Battery manufacturing method.
[6] A solar cell comprising a semiconductor substrate of a first conductivity type having a second conductivity type diffusion layer on the first main surface and a first conductivity type diffusion layer on the second main surface, A solar cell, wherein at least a first main surface of a semiconductor substrate has a texture structure, and an outer edge region of the substrate is a flat portion having no texture.
[7] The solar cell according to [6], wherein the semiconductor substrate has an N-type conductivity.
[8] The solar cell according to [6] or [7], wherein the flat portion on the first main surface of the semiconductor substrate is a region within 7 mm from the outer edge of the substrate.

本発明によれば、半導体基板の第一主面における基板の外縁領域にテクスチャを有さない平坦部を設けたので、少なくとも第一主面の基板外縁領域は塗布により拡散剤で被覆されることとなり、拡散処理時に半導体基板の外縁側から第一主面の基板外縁領域に侵入してくる異なる導電型の拡散源が半導体基板に拡散することを防ぐことができ、太陽電池の変換効率を向上させることが可能となる。   According to the present invention, since the flat portion having no texture is provided in the outer peripheral region of the substrate on the first main surface of the semiconductor substrate, at least the outer peripheral region of the substrate on the first main surface is coated with the diffusing agent by coating. This improves the conversion efficiency of solar cells by preventing diffusion sources of different conductivity types that enter the substrate outer edge area of the first main surface from the outer edge side of the semiconductor substrate during the diffusion process. It becomes possible to make it.

太陽電池の受光面側の構成例を示す外観図である。It is an external view which shows the structural example by the side of the light-receiving surface of a solar cell. 図1の太陽電池の構成例を示す断面図である。It is sectional drawing which shows the structural example of the solar cell of FIG. 本発明に係る太陽電池の製造方法の実施形態としての製造工程を示す断面図であり、(a)はテクスチャ形成工程、(b)はテクスチャ形成面の平坦部形成工程、(c)は拡散剤塗布工程、(d)は拡散熱処理工程、(e)は反射防止膜形成工程、(f)は電極形成工程である。It is sectional drawing which shows the manufacturing process as embodiment of the manufacturing method of the solar cell which concerns on this invention, (a) is a texture formation process, (b) is a flat part formation process of a texture formation surface, (c) is a spreading | diffusion agent. The coating process, (d) is a diffusion heat treatment process, (e) is an antireflection film forming process, and (f) is an electrode forming process. 拡散層形成工程におけるシリコン基板の配置状態を示す断面図である。It is sectional drawing which shows the arrangement | positioning state of the silicon substrate in a diffusion layer formation process. 本発明及び従来のシリコン基板において両面に拡散層を形成した場合のシート抵抗測定結果を示す図である。It is a figure which shows the sheet resistance measurement result at the time of forming a diffused layer on both surfaces in this invention and the conventional silicon substrate.

以下、本発明に係る太陽電池の製造方法について説明する。
本発明に係る太陽電池の製造方法は、第一の導電型の半導体基板の少なくとも一方の主面である第一主面にテクスチャを形成し、該第一主面における基板の外縁領域をテクスチャを有さない平坦部として、上記半導体基板の第一主面に第二の導電型の拡散源を含む拡散剤を塗布し、熱処理して該拡散剤を拡散させて第二の導電型拡散層を形成することを特徴とする。例えば、本発明の太陽電池の製造方法は、第一の導電型の半導体基板の少なくとも一方の主面である第一主面にテクスチャを形成し、該第一主面における基板の外縁領域をテクスチャを有さない平坦部とする工程と、上記半導体基板の第一主面に第二の導電型拡散層を形成するための第二の導電型の拡散源を含む拡散剤を塗布する工程と、上記半導体基板の他方の主面である第二主面に第一の導電型の拡散源を気相又は塗布により供給する気相拡散法又は塗布拡散法によって拡散層を形成すると共に上記第一主面の拡散剤を拡散させて第二の導電型拡散層を形成する拡散熱処理工程とを有することを特徴とするものである。
Hereinafter, a method for manufacturing a solar cell according to the present invention will be described.
In the method for manufacturing a solar cell according to the present invention, a texture is formed on a first main surface which is at least one main surface of a first conductivity type semiconductor substrate, and an outer edge region of the substrate on the first main surface is textured. As a flat portion that does not have, a diffusion agent containing a diffusion source of the second conductivity type is applied to the first main surface of the semiconductor substrate, and the diffusion agent is diffused by heat treatment to form a second conductivity type diffusion layer. It is characterized by forming. For example, in the method for manufacturing a solar cell of the present invention, a texture is formed on a first main surface which is at least one main surface of a first conductivity type semiconductor substrate, and an outer edge region of the substrate on the first main surface is textured. And a step of applying a diffusion agent including a second conductivity type diffusion source for forming a second conductivity type diffusion layer on the first main surface of the semiconductor substrate, A diffusion layer is formed on the second main surface, which is the other main surface of the semiconductor substrate, by a vapor phase diffusion method or a coating diffusion method in which a diffusion source of the first conductivity type is supplied by a gas phase or coating, and the first main surface is formed. A diffusion heat treatment step of diffusing the surface diffusing agent to form a second conductivity type diffusion layer.

以下、図3、図4を用いて本発明の太陽電池の製造方法を具体的に説明する。
[シリコン基板の準備]
高純度シリコンにリンあるいは砒素、アンチモンのようなV族元素をドープし、比抵抗0.1〜5Ω・cmとしたアズカット単結晶{100}N型シリコン基板表面のスライスダメージを、濃度5〜60質量%の水酸化ナトリウムや水酸化カリウムのような高濃度のアルカリもしくはふっ酸と硝酸の混酸などを用いてエッチングする。単結晶シリコン基板は、CZ法、FZ法のいずれの方法によって作製されてもよい。基板は必ずしも単結晶シリコンである必要はなく、多結晶シリコンや化合物半導体でも構わない。また、シリコン基板の形状も特に限定されず、矩形、円形のいずれでもよい。ここでは、N型単結晶シリコン基板を用いる場合を説明する。
Hereinafter, the manufacturing method of the solar cell of this invention is demonstrated concretely using FIG. 3, FIG.
[Preparation of silicon substrate]
High purity silicon is doped with a group V element such as phosphorus, arsenic, or antimony, and has a specific resistance of 0.1 to 5 Ω · cm. Etching is performed using a high concentration alkali such as sodium hydroxide or potassium hydroxide of a mass% or a mixed acid of hydrofluoric acid and nitric acid. The single crystal silicon substrate may be manufactured by either the CZ method or the FZ method. The substrate is not necessarily made of single crystal silicon, but may be polycrystalline silicon or a compound semiconductor. Further, the shape of the silicon substrate is not particularly limited, and may be rectangular or circular. Here, a case where an N-type single crystal silicon substrate is used will be described.

[テクスチャ形成工程]
引き続き、シリコン基板100の少なくとも受光面(第一主面)表面にテクスチャ100aと呼ばれる微小な凹凸形成を行う(図3(a))。テクスチャ100aは太陽電池の反射率を低下させるための有効な方法である。テクスチャ100aは、シリコン基板100を加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどのアルカリ溶液(濃度1〜10質量%、温度60〜100℃)中に10〜30分間程度浸漬することで形成される。上記溶液中に、所定量の2−プロパノールを溶解させ、反応を促進させることが多い。テクスチャ形成は、表面のエッチングを行っていることになるため、前記ダメージエッチングの代用とすることも可能である。
なお、図3(a)に示すように、シリコン基板100の両面にテクスチャ100aを形成してもよい。図3においては、シリコン基板100の上向きの面を受光面(第一主面)、下向きの面を裏面(第二主面)としている。
[Texture formation process]
Subsequently, minute unevenness called a texture 100a is formed on at least the light receiving surface (first main surface) surface of the silicon substrate 100 (FIG. 3A). The texture 100a is an effective method for reducing the reflectance of the solar cell. The texture 100a is 10 to 30 in an alkaline solution (concentration 1 to 10% by mass, temperature 60 to 100 ° C.) such as sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, or sodium hydrogen carbonate that is obtained by heating the silicon substrate 100. It is formed by dipping for about a minute. In many cases, a predetermined amount of 2-propanol is dissolved in the solution to promote the reaction. Since the texture is formed by etching the surface, it can be used instead of the damage etching.
In addition, as shown to Fig.3 (a), you may form the texture 100a on both surfaces of the silicon substrate 100. FIG. In FIG. 3, the upward surface of the silicon substrate 100 is the light receiving surface (first main surface), and the downward surface is the back surface (second main surface).

[テクスチャ形成面の平坦部形成工程]
次に、シリコン基板100のテクスチャ形成面における基板外縁領域のテクスチャ100aを除去してテクスチャを有さない平坦部100bとする(図3(b))。テクスチャ100aの除去方法としては、アルカリやふっ酸と硝酸の混酸にシリコン基板100の外縁領域のみを浸漬、もしくはこれらの薬品を含ませたポーラス状の物体(例えばスポンジ)にシリコン基板100の外縁領域を接触させることで、外縁領域のみのテクスチャがエッチングされ除去される。又は、シリコン基板100を複数枚重ねた状態で四フッ化炭素などのプラズマ雰囲気中に曝すことで、重ね合わせたシリコン基板100間の隙間からプラズマを侵入させてその外縁領域のみをエッチングしてテクスチャを除去するようにしてもよい。テクスチャ100aが除去されることにより、シリコン基板100のテクスチャ形成面における外縁領域は平坦な状態となる。なお、ここでいう平坦な状態とは、テクスチャのような微細な凹凸がなく、後述する拡散剤の塗布によってシリコン基板100の表面が部分的に露出することなく拡散剤で被覆可能な程度に平滑な状態を意味する。
[Process for forming flat portion of textured surface]
Next, the texture 100a in the substrate outer edge region on the texture forming surface of the silicon substrate 100 is removed to form a flat portion 100b having no texture (FIG. 3B). As a method for removing the texture 100a, only the outer edge region of the silicon substrate 100 is immersed in an alkali or a mixed acid of hydrofluoric acid and nitric acid, or the outer edge region of the silicon substrate 100 is immersed in a porous object (for example, sponge) containing these chemicals. As a result, the texture of only the outer edge region is etched and removed. Alternatively, by exposing a plasma atmosphere such as carbon tetrafluoride in a state where a plurality of silicon substrates 100 are stacked, the plasma is intruded from the gap between the stacked silicon substrates 100 and only the outer edge region is etched to be textured. May be removed. By removing the texture 100a, the outer edge region on the texture forming surface of the silicon substrate 100 becomes flat. Here, the flat state means that there is no fine unevenness such as texture, and that the surface of the silicon substrate 100 is smooth enough to be covered with the diffusing agent without partially exposing the surface of the silicon substrate 100 by applying the diffusing agent described later. Means a state.

平坦部100bの基板外縁からの幅Wは1mm以上7mm以下であることが好ましく、
3mm以上6mm以下であることがより好ましい。平坦部100bの幅Wが1mm未満では後述する拡散熱処理の際に裏面側から裏面用の拡散源が回り込んで受光面の基板外縁からテクスチャ100aの領域にまで侵入して太陽電池特性を劣化させるおそれがあり、7mm超ではテクスチャ100aによる反射率低減効果が阻害されるおそれがある。
以上の工程の後、塩酸、硫酸、硝酸、ふっ酸等もしくはこれらの混合液の酸性水溶液中でシリコン基板100を洗浄する。
The width W from the substrate outer edge of the flat part 100b is preferably 1 mm or more and 7 mm or less,
More preferably, it is 3 mm or more and 6 mm or less. When the width W of the flat portion 100b is less than 1 mm, a diffusion source for the back surface wraps around from the back surface side during diffusion heat treatment to be described later and penetrates from the outer edge of the substrate of the light receiving surface to the texture 100a region to deteriorate the solar cell characteristics. If it exceeds 7 mm, the reflectance reduction effect by the texture 100a may be hindered.
After the above steps, the silicon substrate 100 is cleaned in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, or the like or a mixture thereof.

[拡散剤塗布工程]
次いで、シリコン基板100の第一主面に、シリコン基板100の導電型と逆の導電型(第二の導電型)となる拡散源を含む拡散剤、例えば予めホウ酸を純水に溶解しておいた拡散剤を塗布し乾燥させることで、拡散剤塗布層(拡散源)103aを形成する(図3(c))。拡散剤の塗布量は拡散層103を形成するために必要な量であるが、シリコン基板100の第一主面はテクスチャ100aを有するため、図3(c)の如く拡散剤塗布層103aはテクスチャ100aの凹凸を完全に被覆できず、テクスチャ100aの凹部付近を被覆し、凸部の先端は被覆されずに露出した状態となる。また、平坦部100bは拡散剤塗布層103aで完全に被覆される。
[Diffusion agent application process]
Next, a diffusing agent including a diffusion source having a conductivity type opposite to that of the silicon substrate 100 (second conductivity type), for example, boric acid is dissolved in pure water in advance on the first main surface of the silicon substrate 100. A diffusing agent coating layer (diffusion source) 103a is formed by applying and drying a placed diffusing agent (FIG. 3C). The coating amount of the diffusing agent is an amount necessary to form the diffusing layer 103. However, since the first main surface of the silicon substrate 100 has the texture 100a, the diffusing agent coated layer 103a is textured as shown in FIG. The unevenness of 100a cannot be completely covered, the vicinity of the concave portion of the texture 100a is covered, and the tip of the convex portion is exposed without being covered. The flat portion 100b is completely covered with the diffusing agent coating layer 103a.

[拡散熱処理工程]
次に、シリコン基板100を950〜1,050℃で10〜40分間の熱処理を施すことで、第一主面上にホウ素の拡散層103を形成する(図3(d))。この拡散層103のシート抵抗は30〜100Ωとするのが好適である。また、この拡散熱処理時に雰囲気ガスとして第一の導電型の拡散源を供給するガス、例えばオキシ塩化リンを導入することで、シリコン基板100の第二主面にN型拡散層106を同時に形成することができる(図3(d))。
[Diffusion heat treatment process]
Next, the silicon substrate 100 is subjected to a heat treatment at 950 to 1,050 ° C. for 10 to 40 minutes to form a boron diffusion layer 103 on the first main surface (FIG. 3D). The sheet resistance of the diffusion layer 103 is preferably 30 to 100Ω. Further, by introducing a gas for supplying a diffusion source of the first conductivity type, for example, phosphorus oxychloride as an atmospheric gas during the diffusion heat treatment, an N-type diffusion layer 106 is simultaneously formed on the second main surface of the silicon substrate 100. (FIG. 3D).

ここで、上述のように、シリコン基板100の第一主面ではテクスチャ100aの凹凸部分が完全には拡散剤塗布層103aで被覆されておらず、凸部先端が露出した状態にあるため、熱処理時にシリコン基板100を単体で配置しておくと、第一主面にもリンが拡散してしまうため、図4に示すように、2枚のシリコン基板100の拡散剤塗布層103aを形成した第一主面同士を向かい合わせて重ね合わせた状態で上記拡散熱処理を施すとよい。   Here, as described above, the unevenness portion of the texture 100a is not completely covered with the diffusing agent coating layer 103a on the first main surface of the silicon substrate 100, and the tip of the protrusion is exposed. When the silicon substrate 100 is sometimes disposed alone, phosphorus diffuses also on the first main surface. Therefore, as shown in FIG. 4, the first diffusing agent coating layer 103 a of the two silicon substrates 100 is formed. The diffusion heat treatment may be performed in a state where the principal surfaces face each other and overlap each other.

しかしながら、この方法を用いても、シリコン基板100面同士を完全に密着させることはできないため、拡散源としてのリンがシリコン基板100の外縁から第一主面における基板外縁領域に数mmほど侵入してしまう。この場合、従来のシリコン基板では第一主面全面にテクスチャが形成されていることから第一主面の基板外縁領域でリンが拡散してしまい、太陽電池特性を低下させる問題が発生する。これに対して、本発明ではシリコン基板100の第一主面における基板外縁領域をテクスチャ100aを有しない平坦部100bとしており、この平坦部100b表面が完全に拡散剤塗布層(ホウ素拡散源)103aで覆われているため、拡散熱処理時に第一主面の基板外縁領域付近にリンが侵入してきても、拡散剤塗布層103aがリンのシリコン基板100表面に到達することを防止してくれるため、第一主面の基板外縁領域へのリン拡散が防止され、太陽電池の変換効率を向上させることが可能となる。   However, even if this method is used, the surfaces of the silicon substrates 100 cannot be brought into close contact with each other, so that phosphorus as a diffusion source penetrates from the outer edge of the silicon substrate 100 to the substrate outer edge region of the first main surface by several mm. End up. In this case, since the texture is formed on the entire surface of the first main surface in the conventional silicon substrate, phosphorus diffuses in the substrate outer edge region of the first main surface, which causes a problem that the solar cell characteristics are deteriorated. On the other hand, in the present invention, the substrate outer edge region on the first main surface of the silicon substrate 100 is a flat portion 100b having no texture 100a, and the surface of the flat portion 100b is completely diffusing agent coating layer (boron diffusion source) 103a. In order to prevent the diffusion agent coating layer 103a from reaching the surface of the silicon substrate 100 of phosphorus, even if phosphorus penetrates into the vicinity of the substrate outer edge region of the first main surface during diffusion heat treatment, Phosphorus diffusion to the substrate outer edge region of the first main surface is prevented, and the conversion efficiency of the solar cell can be improved.

図5は、本発明のシリコン基板100と従来のシリコン基板において上記のようにして両面に拡散層を形成した場合のホウ素拡散層形成面(第一主面)のシート抵抗を直流四探針法で測定した結果である。ここでは、幅156mmのシリコン基板を幅方向に横断するように探針を走査して測定しており、横軸は基板内位置を示す。
図5に示すように、従来のシリコン基板を用いた場合(図5の点線)、シリコン基板両端側の領域でシート抵抗が極端に低くなっている。これは、拡散熱処理時にリンが第一主面の基板外縁領域に回り込み、拡散(オートドープ)することによってP型に反転できず、シリコン基板の抵抗が測定されていることを示している。この低抵抗領域は基板外縁から最大7mm入った領域に渡って確認される。一方、基板外縁領域のテクスチャを除去した本発明のシリコン基板の場合(図5の実線)、低抵抗領域は認められない。上述のように、シリコン基板100の第一主面における基板外縁領域が平坦となることでその領域が拡散剤塗布層で完全に覆われ、リンの回り込み(オートドープ)がブロックされたためと考えられる。
FIG. 5 shows the sheet resistance of the boron diffusion layer forming surface (first main surface) when the diffusion layers are formed on both sides of the silicon substrate 100 of the present invention and the conventional silicon substrate as described above. It is the result measured by. Here, measurement is performed by scanning a probe so as to cross a silicon substrate having a width of 156 mm in the width direction, and the horizontal axis indicates the position in the substrate.
As shown in FIG. 5, when a conventional silicon substrate is used (dotted line in FIG. 5), the sheet resistance is extremely low in the regions on both sides of the silicon substrate. This indicates that during diffusion heat treatment, phosphorus wraps around the substrate outer edge region of the first main surface and cannot be inverted to P-type by diffusion (auto-doping), and the resistance of the silicon substrate is measured. This low resistance region is confirmed over a region having a maximum of 7 mm from the outer edge of the substrate. On the other hand, in the case of the silicon substrate of the present invention in which the texture of the substrate outer edge region is removed (solid line in FIG. 5), the low resistance region is not recognized. As described above, it is considered that the peripheral region of the substrate on the first main surface of the silicon substrate 100 is flattened so that the region is completely covered with the diffusing agent coating layer, and phosphorus wraparound (auto-doping) is blocked. .

このようにリン汚染防止の観点からは、シリコン基板100の第一主面におけるテクスチャの除去範囲(平坦部100bの幅W)は広いほど効果が期待できるが、一方で、太陽電池の反射率が上昇してしまうという弊害もある。従って、基板外縁領域のテクスチャの除去範囲は7mm程度あれば十分である。これ以上除去すると、拡散源回り込み防止効果よりも太陽電池の反対率上昇の影響が大きくなり、変換効率はかえって低下してしまうおそれがある。   As described above, from the viewpoint of preventing phosphorus contamination, the larger the texture removal range (width W of the flat portion 100b) on the first main surface of the silicon substrate 100, the more effective the effect can be expected. There is also the harmful effect of rising. Therefore, it is sufficient that the texture removal range of the substrate outer edge region is about 7 mm. If it is removed more than this, the influence of the increase in the opposite rate of the solar cell becomes larger than the effect of preventing the diffusion source from going around, and the conversion efficiency may be lowered.

なお、裏面側のN型の拡散源としては、オキシ塩化リンを用いた気相拡散法の他、リンやアンチモン等を含有する材料をスピン塗布したり、印刷したりする方法等、いずれの方法を用いても同じ効果が得られる。
拡散熱処理が終わったら、シリコン基板100表面に形成されたガラスをふっ酸などで除去する。
As the N-type diffusion source on the back surface side, any method such as a method of spin-coating or printing a material containing phosphorus, antimony, or the like in addition to a vapor phase diffusion method using phosphorus oxychloride is used. Even if is used, the same effect can be obtained.
After the diffusion heat treatment, the glass formed on the surface of the silicon substrate 100 is removed with hydrofluoric acid or the like.

[反射防止膜形成工程]
次いで、シリコン基板100の受光面に反射防止膜104を形成する(図3(e))。反射防止膜104の形成にはプラズマCVD装置を用いSiNx膜を厚さ約100nmで製膜する。このとき、同時に裏面側にパッシベーション膜107としてSiNx膜を形成するとよい。なお、反応ガスとして、モノシラン(SiH4)及びアンモニア(NH3)を混合して用いることが多いが、NH3の代わりに窒素を用いることも可能であり、また、プロセス圧カの調整、反応ガスの希釈、更には基板に多結晶シリコンを用いた場合には基板のバルクパッシベーション効果を促進するため、反応ガスに水素を混合することもある。
[Antireflection film forming process]
Next, an antireflection film 104 is formed on the light receiving surface of the silicon substrate 100 (FIG. 3E). The antireflection film 104 is formed by forming a SiNx film with a thickness of about 100 nm using a plasma CVD apparatus. At this time, it is preferable to simultaneously form a SiNx film as the passivation film 107 on the back surface side. As the reaction gas, monosilane (SiH 4 ) and ammonia (NH 3 ) are often mixed and used, but nitrogen can be used instead of NH 3 , and the process pressure can be adjusted and reacted. In the case of diluting the gas, and further using polycrystalline silicon for the substrate, hydrogen may be mixed into the reaction gas in order to promote the bulk passivation effect of the substrate.

[電極形成工程]
次いで、シリコン基板100の表裏面の反射防止膜104、パッシベーション膜107上にフィンガー電極102を含む受光面電極、裏面電極105をスクリーン印刷法で形成する。即ち、上記基板の表裏面に、Ag粉末とガラスフリットを有機物バインダと混合したAgペーストを印刷し乾燥し、電極印刷の後、熱処理によりSiNx膜の反射防止膜104、パッシベーション膜107にAg粉末を貫通させ(ファイアースルー)、フィンガー電極102、裏面電極105とシリコン基板(拡散層103、106)とを導通させる(図3(f))。焼成は、通常700〜800℃の温度で5〜30分間処理することで行われる。裏面電極105及び受光面電極の焼成は一度に行ってもよいし、各面の印刷後それぞれに焼成することも可能である。
[Electrode formation process]
Next, the light receiving surface electrode including the finger electrode 102 and the back electrode 105 are formed on the antireflection film 104 and the passivation film 107 on the front and back surfaces of the silicon substrate 100 by a screen printing method. That is, an Ag paste in which Ag powder and glass frit are mixed with an organic binder is printed on the front and back surfaces of the substrate and dried. After electrode printing, Ag powder is applied to the antireflection film 104 of the SiNx film and the passivation film 107 by heat treatment. The finger electrode 102 and the back electrode 105 are electrically connected to the silicon substrate (diffusion layers 103 and 106) (fire through) (FIG. 3F). Firing is usually performed by treating at a temperature of 700 to 800 ° C. for 5 to 30 minutes. The back electrode 105 and the light receiving surface electrode may be fired at once, or after each surface is printed.

以上、導電型がN型のシリコン基板の場合を例にとって説明したが、基板の導電型がP型の場合でも、上記の拡散層に関するP型とN型の条件を入れ替えるようにすれば、本発明の製造方法が適用可能である。
また、上記では反射防止膜形成工程以降、受光面と裏面とを区別しているが、受光面と裏面を上記と逆にしても何ら問題なく、例えば図3においてシリコン基板100の上向きの面、下向きの面のいずれをも受光面としてよい。即ち、図3(e)、(f)においてシリコン基板100の上向きの面を裏面、下向きの面を受光面とし、符号104、102をそれぞれ裏面パッシベーション膜、裏面電極、符号107、105をそれぞれ反射防止膜、受光面電極として使用しても問題ない。
The case where the conductivity type is an N-type silicon substrate has been described as an example. However, even if the conductivity type of the substrate is a P-type, if the conditions of the P-type and the N-type regarding the diffusion layer described above are switched, the present The manufacturing method of the invention is applicable.
In the above description, the light receiving surface and the back surface are distinguished from each other after the antireflection film forming step. However, there is no problem if the light receiving surface and the back surface are reversed. For example, in FIG. Any of these surfaces may be used as the light receiving surface. That is, in FIGS. 3E and 3F, the upward surface of the silicon substrate 100 is the back surface and the downward surface is the light receiving surface, and the reference numerals 104 and 102 are the back surface passivation film, the back electrode, and the reference numerals 107 and 105 are respectively reflected. There is no problem even if it is used as a prevention film or a light-receiving surface electrode.

以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited to an Example.

[実施例1、比較例1]
本発明の太陽電池の製造方法の有効性を確認するため、従来の製造方法で太陽電池を作製し、それぞれの太陽電池特性の比較を行った。
まず、拡散厚さ200μm、比抵抗1Ω・cmの、リンドープ{100}N型アズカットシリコン基板16枚に対し、熱濃水酸化カリウム水溶液によりダメージ層を除去後、72℃の水酸化カリウム/2−プロパノール水溶液中に浸漬し、基板両面にテクスチャ形成を行った。
このうち、8枚のシリコン基板に対してのみ、シリコン基板を重ね合わせた状態で四フッ化炭素と酸素の混合プラズマ中に30分間曝すことで、シリコン基板の表裏面の基板外縁領域のみテクスチャを除去した。顕微鏡観察の結果、基板外縁から1mm入ったところまでの領域のテクスチャが除去されているのが確認された。これらの基板を用いたものを実施例1とし、このテクスチャ除去を行っていないものを比較例1とする。
引き続き、75℃に加熱した塩酸/過酸化水素混合溶液中で洗浄を行い乾燥させた。
次に、シリコン基板の第一主面(受光面)に5質量%ホウ酸水溶液を3mL滴下し、10秒間で500回転させた後、200℃のホットプレートで乾燥させることで、ホウ素源(拡散剤塗布層)を形成した。
次いで、2枚のシリコン基板の第一主面同士を向かい合わせて重ね合わせた状態で、オキシ塩化リン雰囲気下980℃で40分間熱処理し、第一主面(受光面)にはホウ素の拡散層を形成し、第二主面(裏面)にはリンの拡散層を形成した。直流四探針法で測定した結果、シート抵抗は40Ωとなった。
この後、シリコン基板を濃度12質量%のふっ酸水溶液に浸漬することで表面のガラスを除去した。
以上の処理の後、プラズマCVD装置を用いてSiNx膜を、受光面反射防止膜及び裏面パッシベーション膜として全試料両面に形成した。
次に、表裏面それぞれに電極層としてAgペーストを印刷して乾燥し、780℃の空気雰囲気下で焼成して電極を形成し、太陽電池を完成させた。
以上のようにして得られた太陽電池セルをスペクトルAM(エアマス)1.5グローバルの擬似太陽光を照射して電流電圧測定機で電気特性(短絡電流、開放電圧、形状因子、光電変換効率)を測定した。各項目の平均値を表1に示す。
[Example 1, Comparative Example 1]
In order to confirm the effectiveness of the manufacturing method of the solar cell of the present invention, solar cells were produced by a conventional manufacturing method and the characteristics of the solar cells were compared.
First, after removing a damaged layer with a hot concentrated potassium hydroxide aqueous solution on 16 phosphorus-doped {100} N-type as-cut silicon substrates having a diffusion thickness of 200 μm and a specific resistance of 1 Ω · cm, 72 ° C. potassium hydroxide / 2 -It was immersed in a propanol aqueous solution and textured on both sides of the substrate.
Of these, only for eight silicon substrates, by exposing the silicon substrates to a mixed plasma of carbon tetrafluoride and oxygen for 30 minutes with the silicon substrates being superposed, the texture is applied only to the outer edge regions of the front and back surfaces of the silicon substrate. Removed. As a result of microscopic observation, it was confirmed that the texture in the region up to 1 mm from the outer edge of the substrate was removed. A substrate using these substrates is referred to as a first embodiment, and one not subjected to texture removal is referred to as a first comparative example.
Subsequently, it was washed in a hydrochloric acid / hydrogen peroxide mixed solution heated to 75 ° C. and dried.
Next, 3 mL of 5% by weight boric acid aqueous solution is dropped on the first main surface (light-receiving surface) of the silicon substrate, is rotated 500 times for 10 seconds, and is then dried on a hot plate at 200 ° C. Agent coating layer).
Next, heat treatment is performed at 980 ° C. for 40 minutes in a phosphorus oxychloride atmosphere with the first principal surfaces of the two silicon substrates facing each other, and a boron diffusion layer is formed on the first principal surface (light-receiving surface). A phosphorus diffusion layer was formed on the second main surface (back surface). As a result of measurement by the direct current four-point probe method, the sheet resistance was 40Ω.
Thereafter, the glass on the surface was removed by immersing the silicon substrate in an aqueous hydrofluoric acid solution having a concentration of 12% by mass.
After the above processing, SiNx films were formed on both surfaces of the entire sample as a light-receiving surface antireflection film and a back surface passivation film using a plasma CVD apparatus.
Next, an Ag paste was printed on each of the front and back surfaces as an electrode layer, dried, and fired in an air atmosphere at 780 ° C. to form electrodes, thereby completing a solar cell.
Solar cells obtained as described above are irradiated with pseudo-sunlight of spectrum AM (air mass) 1.5 global, and electrical characteristics (short-circuit current, open-circuit voltage, form factor, photoelectric conversion efficiency) with a current-voltage measuring device. Was measured. Table 1 shows the average value of each item.

本発明の製造方法によって作製した太陽電池は、リンの受光面への回り込み(オートドープ)が回避され並列抵抗が上昇し、形状因子が向上している。また、受光面の不要なリン拡散層が低減するため、開放電圧も向上している。   In the solar cell produced by the production method of the present invention, the wraparound (auto-doping) of phosphorus to the light receiving surface is avoided, the parallel resistance is increased, and the shape factor is improved. Further, since an unnecessary phosphorus diffusion layer on the light receiving surface is reduced, the open circuit voltage is also improved.

なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。   Although the present invention has been described with the embodiments shown in the drawings, the present invention is not limited to the embodiments shown in the drawings, and other embodiments, additions, modifications, deletions, etc. As long as the effects of the present invention are exhibited in any aspect, the present invention is included in the scope of the present invention.

100、900 N型半導体基板(シリコン基板)
100a テクスチャ
100b 平坦部
101 バスバー電極
102 フィンガー電極
103 P型拡散層(エミッタ層)
103a 拡散剤塗布層
104 反射防止膜
105 裏面電極
106 N型拡散層
107 パッシベーション膜
100, 900 N-type semiconductor substrate (silicon substrate)
100a Texture 100b Flat part 101 Bus bar electrode 102 Finger electrode 103 P-type diffusion layer (emitter layer)
103a Diffuser coating layer 104 Antireflection film 105 Back electrode 106 N-type diffusion layer 107 Passivation film

Claims (8)

第一の導電型の半導体基板の少なくとも一方の主面である第一主面にテクスチャを形成し、該第一主面における基板の外縁領域をテクスチャを有さない平坦部として、上記半導体基板の第一主面に第二の導電型の拡散源を含む拡散剤を塗布し、熱処理して該拡散剤を拡散させて第二の導電型拡散層を形成することを特徴とする太陽電池の製造方法。   A texture is formed on a first main surface, which is at least one main surface of a semiconductor substrate of the first conductivity type, and an outer edge region of the substrate on the first main surface is defined as a flat portion having no texture. Manufacturing a solar cell, wherein a first conductive surface is coated with a diffusing agent containing a diffusion source of the second conductivity type and heat-treated to diffuse the diffusing agent to form a second conductivity type diffusion layer. Method. 上記半導体基板の他方の主面である第二主面に第一の導電型の拡散源を別途供給し、上記熱処理により第一の導電型拡散層を同時に形成するものであることを特徴とする請求項1記載の太陽電池の製造方法。   A first conductivity type diffusion source is separately supplied to the second main surface, which is the other main surface of the semiconductor substrate, and the first conductivity type diffusion layer is simultaneously formed by the heat treatment. The manufacturing method of the solar cell of Claim 1. 上記拡散剤を塗布した半導体基板を2枚一組とし、この2枚の半導体基板の第一主面同士を向き合わせて重ね合わせた状態で上記熱処理を行うことを特徴とする請求項1又は2記載の太陽電池の製造方法。   3. The heat treatment is performed in a state where two semiconductor substrates coated with the diffusing agent are made into a set and the first main surfaces of the two semiconductor substrates face each other and overlap each other. The manufacturing method of the solar cell of description. 上記半導体基板の導電型がN型であることを特徴とする請求項1〜3のいずれか1項記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to any one of claims 1 to 3, wherein the semiconductor substrate has an N-type conductivity. 上記半導体基板の第一主面において該基板の外縁から7mm以内の領域をテクスチャを有さない平坦部とすることを特徴とする請求項1〜4のいずれか1項記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to any one of claims 1 to 4, wherein a region within 7 mm from the outer edge of the substrate on the first main surface of the semiconductor substrate is a flat portion having no texture. . 第一主面に第二の導電型拡散層を有し、第二主面に第一の導電型拡散層を有する第一の導電型の半導体基板からなる太陽電池であって、上記半導体基板の少なくとも第一主面がテクスチャ構造を有すると共にその基板の外縁領域がテクスチャを有さない平坦部となっていることを特徴とする太陽電池。   A solar cell comprising a first conductive type semiconductor substrate having a second conductive type diffusion layer on a first main surface and a first conductive type diffusion layer on a second main surface, A solar cell, wherein at least a first main surface has a texture structure and an outer edge region of the substrate is a flat portion having no texture. 上記半導体基板の導電型がN型であることを特徴とする請求項6記載の太陽電池。   The solar cell according to claim 6, wherein a conductivity type of the semiconductor substrate is an N type. 上記半導体基板の第一主面における平坦部が該基板の外縁から7mm以内の領域であることを特徴とする請求項6又は7記載の太陽電池。   8. The solar cell according to claim 6, wherein the flat portion on the first main surface of the semiconductor substrate is a region within 7 mm from the outer edge of the substrate.
JP2013096389A 2013-05-01 2013-05-01 Manufacturing method of solar cell Active JP6003791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013096389A JP6003791B2 (en) 2013-05-01 2013-05-01 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013096389A JP6003791B2 (en) 2013-05-01 2013-05-01 Manufacturing method of solar cell

Publications (2)

Publication Number Publication Date
JP2014220276A true JP2014220276A (en) 2014-11-20
JP6003791B2 JP6003791B2 (en) 2016-10-05

Family

ID=51938497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013096389A Active JP6003791B2 (en) 2013-05-01 2013-05-01 Manufacturing method of solar cell

Country Status (1)

Country Link
JP (1) JP6003791B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103525A (en) * 2014-11-27 2016-06-02 日立化成株式会社 Solar cell unit and manufacturing method of the same
JPWO2014174613A1 (en) * 2013-04-24 2017-02-23 三菱電機株式会社 Manufacturing method of solar cell
WO2018043523A1 (en) * 2016-08-31 2018-03-08 パナソニックプロダクションエンジニアリング株式会社 Method for forming boron diffusion layer and phosphorus diffusion layer
CN108391449A (en) * 2015-12-07 2018-08-10 东丽株式会社 The manufacturing method of semiconductor element and the manufacturing method of solar cell
CN109087969A (en) * 2017-06-13 2018-12-25 东京应化工业株式会社 The manufacturing method of silicon substrate for solar cell device
CN110890443A (en) * 2018-09-10 2020-03-17 浙江清华柔性电子技术研究院 Crystalline silicon solar cell diffusion layer and preparation method thereof
WO2020184261A1 (en) * 2019-03-11 2020-09-17 株式会社カネカ Solar battery and method for manufacturing same, method for inspecting solar battery, and solar battery module and method for manufacturing same
CN116230787A (en) * 2023-02-20 2023-06-06 中国科学院上海微***与信息技术研究所 Edge polished monocrystalline textured silicon wafer, solar cell and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354165A (en) * 1991-05-31 1992-12-08 Hitachi Ltd Manufacture of solar battery
JP2001077386A (en) * 1999-09-07 2001-03-23 Hitachi Ltd Method for manufacturing solar cell
JP2011171600A (en) * 2010-02-19 2011-09-01 Tokyo Ohka Kogyo Co Ltd Diffusion method of impurity diffusing component, and method of manufacturing solar cell
JP2011243706A (en) * 2010-05-17 2011-12-01 Tokyo Ohka Kogyo Co Ltd Diffusion agent composition, method of forming impurity diffusion layer, and solar battery
JP2013026578A (en) * 2011-07-25 2013-02-04 Hitachi Chem Co Ltd Manufacturing method of n-type diffusion layer and manufacturing method of solar cell element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354165A (en) * 1991-05-31 1992-12-08 Hitachi Ltd Manufacture of solar battery
JP2001077386A (en) * 1999-09-07 2001-03-23 Hitachi Ltd Method for manufacturing solar cell
JP2011171600A (en) * 2010-02-19 2011-09-01 Tokyo Ohka Kogyo Co Ltd Diffusion method of impurity diffusing component, and method of manufacturing solar cell
JP2011243706A (en) * 2010-05-17 2011-12-01 Tokyo Ohka Kogyo Co Ltd Diffusion agent composition, method of forming impurity diffusion layer, and solar battery
JP2013026578A (en) * 2011-07-25 2013-02-04 Hitachi Chem Co Ltd Manufacturing method of n-type diffusion layer and manufacturing method of solar cell element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014174613A1 (en) * 2013-04-24 2017-02-23 三菱電機株式会社 Manufacturing method of solar cell
JP2016103525A (en) * 2014-11-27 2016-06-02 日立化成株式会社 Solar cell unit and manufacturing method of the same
CN108391449B (en) * 2015-12-07 2022-05-17 东丽株式会社 Method for manufacturing semiconductor element and method for manufacturing solar cell
CN108391449A (en) * 2015-12-07 2018-08-10 东丽株式会社 The manufacturing method of semiconductor element and the manufacturing method of solar cell
JPWO2017099020A1 (en) * 2015-12-07 2018-09-20 東レ株式会社 Method for manufacturing semiconductor device and method for manufacturing solar cell
TWI700733B (en) * 2015-12-07 2020-08-01 日商東麗股份有限公司 Manufacturing method of semiconductor element and manufacturing method of solar cell
JPWO2018043523A1 (en) * 2016-08-31 2019-06-24 パナソニックプロダクションエンジニアリング株式会社 Method of forming boron diffusion layer and phosphorus diffusion layer
WO2018043523A1 (en) * 2016-08-31 2018-03-08 パナソニックプロダクションエンジニアリング株式会社 Method for forming boron diffusion layer and phosphorus diffusion layer
CN109087969A (en) * 2017-06-13 2018-12-25 东京应化工业株式会社 The manufacturing method of silicon substrate for solar cell device
CN110890443A (en) * 2018-09-10 2020-03-17 浙江清华柔性电子技术研究院 Crystalline silicon solar cell diffusion layer and preparation method thereof
CN110890443B (en) * 2018-09-10 2023-01-31 浙江清华柔性电子技术研究院 Crystalline silicon solar cell diffusion layer and preparation method thereof
WO2020184261A1 (en) * 2019-03-11 2020-09-17 株式会社カネカ Solar battery and method for manufacturing same, method for inspecting solar battery, and solar battery module and method for manufacturing same
JPWO2020184261A1 (en) * 2019-03-11 2021-12-09 株式会社カネカ Solar cells and their manufacturing methods, solar cell inspection methods, and solar cell modules and their manufacturing methods
JP7137271B2 (en) 2019-03-11 2022-09-14 株式会社カネカ Method for manufacturing solar cell and method for manufacturing solar cell module
CN116230787A (en) * 2023-02-20 2023-06-06 中国科学院上海微***与信息技术研究所 Edge polished monocrystalline textured silicon wafer, solar cell and preparation method

Also Published As

Publication number Publication date
JP6003791B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP6003791B2 (en) Manufacturing method of solar cell
EP2479804B1 (en) Method for manufacturing a solar cell
US9837575B2 (en) Method of manufacturing solar battery cell
US9871156B2 (en) Solar cell and method of manufacturing the same
EP3151286A1 (en) Solar cell element, method for manufacturing same and solar cell module
WO2019021545A1 (en) Solar cell and method for manufacturing same
JP2013161847A (en) Solar cell
JP6114108B2 (en) Manufacturing method of solar cell
JP2018147910A (en) High efficiency solar cell and method of manufacturing the same
CN103367526A (en) Method for manufacturing rear side local contact silicon solar cell
WO2017122422A1 (en) Solar cell and method for producing solar cell
TWI640103B (en) Solar cell manufacturing method
US11038078B2 (en) Method for manufacturing high efficiency solar cell
JP5316491B2 (en) Manufacturing method of solar cell
JP6356855B2 (en) Manufacturing method of solar cell
TW201817021A (en) Solar cell with high photoelectric conversion efficiency and method for manufacturing solar cell with high photoelectric conversion efficiency
WO2016072048A1 (en) Solar cell and method for manufacturing same
US11804560B2 (en) Solar cell and method for manufacturing the same
JP5994895B2 (en) Manufacturing method of solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6003791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150