JP2014216415A - Semiconductor substrate manufacturing method and silicon substrate - Google Patents

Semiconductor substrate manufacturing method and silicon substrate Download PDF

Info

Publication number
JP2014216415A
JP2014216415A JP2013091389A JP2013091389A JP2014216415A JP 2014216415 A JP2014216415 A JP 2014216415A JP 2013091389 A JP2013091389 A JP 2013091389A JP 2013091389 A JP2013091389 A JP 2013091389A JP 2014216415 A JP2014216415 A JP 2014216415A
Authority
JP
Japan
Prior art keywords
oxygen
silicon substrate
heat treatment
leakage current
oxygen precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013091389A
Other languages
Japanese (ja)
Inventor
大槻 剛
Takeshi Otsuki
剛 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2013091389A priority Critical patent/JP2014216415A/en
Publication of JP2014216415A publication Critical patent/JP2014216415A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/32Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a semiconductor substrate having contradictory characteristics of reducing a leakage current due to oxygen precipitation while maintaining gettering.SOLUTION: The semiconductor substrate manufacturing method includes steps of: preparing a silicon substrate; and forming oxygen precipitation by performing a heat treatment on the silicon substrate. The step of forming the oxygen precipitation includes: performing three stages of heat treatment of oxygen precipitation nucleus formation, oxygen precipitation nucleus growth and oxygen precipitation formation on the silicon substrate; and setting a temperature of the heat treatment of the oxygen precipitation at 1100°C and over to form the oxygen precipitation into an octahedral or spherical shape.

Description

本発明は、半導体基板、特に固体撮像素子のようなシリコン基板特性に左右されやすいデバイス用途半導体基板及びその製造方法に関するものであり、金属不純物に対するゲッタリングと酸素析出そのものに起因するリークの低減とを両立させるための手法に関するものである。   The present invention relates to a semiconductor substrate, particularly a device-use semiconductor substrate that is easily affected by the characteristics of a silicon substrate such as a solid-state imaging device, and a method for manufacturing the same, and is intended to reduce gettering against metal impurities and leakage due to oxygen precipitation itself. It is related with the technique for making it compatible.

メモリ、CCD等の固体撮像素子等の半導体装置の微細化、高性能化に伴い、それらの製品歩留まりを向上させるために、材料としてのシリコン基板にも高品質化が要求され、これに対応した各種シリコン基板が開発されている。
特に、固体撮像素子においては、シリコン基板の品質が大きく影響するため、この品質を改善するための様々な検討がなされてきた。例えば、製品特性に直接影響を与えると推測されるウェーハ表層部の品質の改善策として、1)不活性ガス又は水素を含む雰囲気中での高温処理、2)引き上げ条件の改善によりグローンイン(Grown−in)欠陥の低減、3)エピタキシャル成長ウェーハ等がある。
As semiconductor devices such as solid-state imaging devices such as memories and CCDs are miniaturized and improved in performance, silicon substrates as materials are also required to have higher quality in order to improve their product yield. Various silicon substrates have been developed.
In particular, in a solid-state imaging device, the quality of a silicon substrate has a great influence, and thus various studies have been made to improve this quality. For example, as a measure for improving the quality of the wafer surface layer portion that is supposed to directly affect the product characteristics, 1) high-temperature treatment in an atmosphere containing an inert gas or hydrogen, 2) growth-in (Grown-in) in) reduction of defects, and 3) epitaxially grown wafers.

一方では、主にシリコン基板の製造工程中に起こる金属汚染が固体撮像素子をはじめとしたデバイスの特性に大きく影響することから、素子領域から金属汚染元素を取り除くゲッタリング手法が広く用いられている。このゲッタリングは、良く知られているように各種手法が検討・開発されている。この中で、CZ基板に含まれる酸素をSiO(酸素析出物)として基板中に析出させ、これに金属元素をゲッタリングさせる、いわゆるIG(Intrinsic Gettering)手法が広く用いられている。 On the other hand, gettering techniques that remove metal contamination elements from the element region are widely used because metal contamination that occurs mainly during the manufacturing process of silicon substrates greatly affects the characteristics of devices such as solid-state imaging devices. . As for this gettering, various methods have been studied and developed as is well known. Among these, a so-called IG (Intrinsic Gettering) method is widely used, in which oxygen contained in a CZ substrate is precipitated in the substrate as SiO 2 (oxygen precipitates), and a metal element is gettered thereto.

例えば、非特許文献1には、酸素析出と素子の不良率について記載されている。これによると、酸素析出が多いほど素子不良が低減される。すなわちゲッタリング効果が高くなっていく。そのため、高酸素濃度の基板を使用したりするなどして、十分な量の酸素析出が行われるようにしている。このように、酸素析出物により金属元素をゲッタリングすることで素子領域の金属を低減し、例えばPN接合部のリーク電流を低減させたりすることが可能になる。   For example, Non-Patent Document 1 describes oxygen precipitation and device defect rate. According to this, device defects are reduced as the amount of oxygen precipitation increases. That is, the gettering effect increases. Therefore, a sufficient amount of oxygen is deposited by using a substrate having a high oxygen concentration. Thus, gettering of the metal element by the oxygen precipitates can reduce the metal in the element region, for example, reduce the leakage current of the PN junction.

さらにGrown−in欠陥がリーク電流に影響することが知られている。例えば、特許文献1には、多面体の結晶欠陥において、多面体の頂点からひげ状欠陥を伸ばすことでリーク不良領域を減少できることが記載されている。しかし、Grown−in欠陥の大きさは小さく、また基本的にシリコンのみが構成元素であるため、酸素や金属のような異物が共存する析出物がリーク電流へ与える影響に比べて、Grown−in欠陥がリーク電流へ与える影響は小さいと考えられる。   Further, it is known that a Grown-in defect affects a leakage current. For example, Patent Document 1 describes that in a polyhedron crystal defect, a leak defect region can be reduced by extending a whisker-like defect from the apex of the polyhedron. However, since the size of the grown-in defect is small, and basically only silicon is a constituent element, the grown-in defect is compared with the influence of precipitates coexisting with foreign matters such as oxygen and metal on the leakage current. It is considered that the influence of the defect on the leakage current is small.

また、非特許文献2には、リーク源として、酸素析出とシリコンの界面準位の存在が説明されている。   Non-Patent Document 2 describes the existence of an interface state between oxygen precipitation and silicon as a leak source.

特開2001−328897号公報JP 2001-328897 A 特開平10−135295号公報Japanese Patent Laid-Open No. 10-135295

津屋英樹著「超LSTプロセス制御工学」P210、丸善(1995)Hideki Tsuya "Ultra LST Process Control Engineering" P210, Maruzen (1995) M.Tsuchiya et.al.、J.Appl.、Phys.,85,8225(1999)M.M. Tsuchiya et. al. J. et al. Appl. Phys. , 85, 8225 (1999)

酸素析出物そのものはリーク源となり、例えば図7に示すように、析出量ΔOiを多くすると酸素析出物そのものからのリーク電流が大きくなり、例えばウェーハ面内で同心円状のリークムラが発生することがある。このような現象は、例えば固体撮像素子の場合、もちろんデバイス構造により影響の大小はあるが、ウェーハ面内で暗電流差を生じることになり、不良の大きな原因の1つと考えられる。   The oxygen precipitate itself becomes a leak source. For example, as shown in FIG. 7, when the precipitation amount ΔOi is increased, the leak current from the oxygen precipitate itself increases, and for example, concentric leak unevenness may occur in the wafer surface. . Such a phenomenon, for example, in the case of a solid-state image sensor, of course, has a large or small influence depending on the device structure, but a dark current difference occurs in the wafer surface, which is considered to be one of the major causes of defects.

本発明者はこの事象を確認するために、以下のような実験を行った。
まず、酸素濃度15ppmaのシリコンウェーハに、エピタキシャル層を10μm成長させたエピタキシャルウェーハを2枚準備し、1枚のウェーハに低温、中温、高温の3段階の熱処理を組み合わせて酸素析出物を形成した。この酸素析出物を形成したウェーハと、酸素析出物を形成しないウェーハのそれぞれにPN接合構造を形成し、リーク電流の面内分布を調べた。
In order to confirm this phenomenon, the present inventor conducted the following experiment.
First, two epitaxial wafers having an epitaxial layer grown by 10 μm were prepared on a silicon wafer having an oxygen concentration of 15 ppma, and oxygen precipitates were formed by combining three wafers of low temperature, medium temperature, and high temperature on one wafer. A PN junction structure was formed on each of the wafer on which the oxygen precipitate was formed and the wafer on which the oxygen precipitate was not formed, and the in-plane distribution of the leakage current was examined.

ここで、低温熱処理を500℃、4時間の条件で、中温熱処理を800℃、4時間の条件で、高温熱処理を1000℃、8時間の条件でそれぞれ実施した。酸素析出物の析出量ΔOiは0.3ppmaであった。図4にリーク電流の面内分布の結果を示す。図4に示すように、析出熱処理なしの場合にはリークムラが見られないのに比べ、析出熱処理ありの場合には、析出量が0.3ppma程度であっても縞状のリークムラが観察された。   Here, low temperature heat treatment was performed under conditions of 500 ° C. for 4 hours, intermediate temperature heat treatment was performed under conditions of 800 ° C. for 4 hours, and high temperature heat treatment was performed under conditions of 1000 ° C. for 8 hours. The amount of precipitated oxygen ΔOi was 0.3 ppma. FIG. 4 shows the result of in-plane distribution of leakage current. As shown in FIG. 4, stripe-like leak unevenness was observed even when the precipitation amount was about 0.3 ppma in the case of the precipitation heat treatment, compared to the case where no leak unevenness was observed in the case of no precipitation heat treatment. .

このように、ゲッタリングの観点からは酸素析出物が多いと好ましいが、酸素析出物が多すぎるとリーク源となってしまう可能性がある。そのため、酸素析出物からのリークを出来るだけ軽減する必要がある。   Thus, from the viewpoint of gettering, it is preferable that there are many oxygen precipitates. However, if there are too many oxygen precipitates, there is a possibility of becoming a leak source. Therefore, it is necessary to reduce leakage from oxygen precipitates as much as possible.

酸素析出物がリーク電流に与える影響について、例えば特許文献2に、表面から5μm以内にある酸素析出物の対角線長さとリーク電流の関係や、リーク電流を測定しなくても酸素析出のサイズと密度を測定することで、リーク電流の大きさを見積もることが可能であることが記載されている。特許文献2には、析出物の形状についても議論されているが八面体のほうが若干リークが高いがほとんど同じレベルである。しかし、実際に酸素析出物は表面付近よりもバルクに多数存在しており、空乏層に含まれるよりも空乏層外からの拡散電流としての寄与の方が大きいと思われる。さらに微視的なリークの問題に対して、図4に示すような析出ムラに起因するリーク電流分布が縞状に存在する問題や、ゲッタリングとの両立という観点からの議論も十分ではない。   Regarding the influence of oxygen precipitates on leakage current, for example, Patent Document 2 discloses the relationship between the diagonal length of oxygen precipitates within 5 μm from the surface and the leakage current, and the size and density of oxygen precipitation without measuring the leakage current. It is described that it is possible to estimate the magnitude of the leakage current by measuring. Patent Document 2 discusses the shape of the precipitate, but the octahedron has a slightly higher leak, but is almost at the same level. However, there are actually a large number of oxygen precipitates in the bulk rather than near the surface, and it seems that the contribution as diffusion current from the outside of the depletion layer is greater than that contained in the depletion layer. Further, with respect to the problem of microscopic leakage, there is not enough discussion from the viewpoint of the problem that the leakage current distribution due to the deposition unevenness as shown in FIG.

本発明は前述のような問題に鑑みてなされたもので、CCD、CMOSセンサをはじめとした高歩留まりが要求される半導体装置に使用されるシリコン基板において、ゲッタリングを維持しつつ酸素析出物によるリーク電流を低減するという相反する特性を有した半導体基板の製造方法及びシリコン基板を提供することを目的とする。   The present invention has been made in view of the above-described problems. In a silicon substrate used for a semiconductor device that requires a high yield, such as a CCD and a CMOS sensor, the present invention is based on oxygen precipitates while maintaining gettering. It is an object of the present invention to provide a method for manufacturing a semiconductor substrate and a silicon substrate having conflicting characteristics of reducing leakage current.

上記目的を達成するために、本発明によれば、シリコン基板を準備する工程と、該シリコン基板に熱処理を施して酸素析出物を形成する工程を有する半導体基板の製造方法であって、前記酸素析出物を形成する工程において、前記シリコン基板に酸素析出核形成、酸素析出核成長、及び酸素析出物形成の3段階の熱処理を行い、前記酸素析出物形成の熱処理の温度を1100℃以上とすることによって、前記形成する酸素析出物の形状を八面体状又は球状にすることを特徴とする半導体基板の製造方法が提供される。   In order to achieve the above object, according to the present invention, there is provided a method of manufacturing a semiconductor substrate, comprising: a step of preparing a silicon substrate; and a step of heat-treating the silicon substrate to form an oxygen precipitate. In the step of forming a precipitate, the silicon substrate is subjected to a three-step heat treatment of oxygen precipitate nucleation, oxygen precipitate nucleation growth, and oxygen precipitate formation, and the temperature of the heat treatment for forming the oxygen precipitate is set to 1100 ° C. or higher. Thus, there is provided a method for manufacturing a semiconductor substrate, characterized in that the shape of the oxygen precipitate formed is octahedral or spherical.

このような製造方法であれば、形成する酸素析出物の析出量を低減することなく、その表面積を低減できるので、必要なゲッタリング能力を維持しつつ酸素析出物によるリーク電流を低減できる。   With such a manufacturing method, the surface area can be reduced without reducing the amount of oxygen precipitates to be formed, so that leakage current due to oxygen precipitates can be reduced while maintaining the required gettering ability.

このとき、前記シリコン基板を準備する工程において、前記準備するシリコン基板に窒素をドープし、窒素濃度を4.9×1013atoms/cm以下にすることによって、前記酸素析出物の形状を球状にすることが好ましい。
このようにすれば、酸素析出物の形状を球状にすることができ、酸素析出物の析出量に対する表面積をより低減できる。これにより、リーク電流をより効果的に低減できる。
At this time, in the step of preparing the silicon substrate, the silicon substrate to be prepared is doped with nitrogen, and the nitrogen concentration is reduced to 4.9 × 10 13 atoms / cm 3 or less, so that the shape of the oxygen precipitate is spherical. It is preferable to make it.
In this way, the shape of the oxygen precipitate can be made spherical, and the surface area relative to the amount of oxygen precipitate deposited can be further reduced. Thereby, leakage current can be reduced more effectively.

また、本発明によれば、酸素析出物を含有するシリコン基板であって、前記酸素析出物の形状が球状であることを特徴とするシリコン基板が提供される。
このようなものであれば、酸素析出物の析出量に対する表面積が最大限低減されたものであるので、必要なゲッタリング能力を維持しつつ酸素析出物によるリーク電流をより効果的に低減可能なものとなる。
In addition, according to the present invention, there is provided a silicon substrate containing an oxygen precipitate, wherein the oxygen precipitate has a spherical shape.
In such a case, since the surface area with respect to the amount of oxygen precipitates is reduced to the maximum, leakage current due to oxygen precipitates can be more effectively reduced while maintaining the necessary gettering ability. It will be a thing.

本発明では、シリコン基板に酸素析出核形成、酸素析出核成長、及び酸素析出物形成の3段階の熱処理を行い、酸素析出物形成の熱処理の温度を1100℃以上とすることによって、形成する酸素析出物の形状を八面体状又は球状にするので、ゲッタリングを維持しつつ酸素析出物によるリーク電流を低減可能な半導体基板を製造できる。   In the present invention, a three-stage heat treatment of oxygen precipitation nucleation, oxygen precipitation nucleation growth, and oxygen precipitate formation is performed on the silicon substrate, and the temperature of the heat treatment for oxygen precipitate formation is set to 1100 ° C. or higher to form oxygen. Since the shape of the precipitate is octahedral or spherical, it is possible to manufacture a semiconductor substrate capable of reducing leakage current due to oxygen precipitates while maintaining gettering.

本発明の半導体基板の製造方法を説明するフロー図である。It is a flowchart explaining the manufacturing method of the semiconductor substrate of this invention. 実施例1、2における本発明の半導体基板のリーク電流分布を示す図である。It is a figure which shows the leakage current distribution of the semiconductor substrate of this invention in Example 1,2. 比較例における半導体基板のリーク電流分布を示す図である。It is a figure which shows the leakage current distribution of the semiconductor substrate in a comparative example. 従来の半導体基板の酸素析出物に起因する縞状のリーク電流分布を示す図である。It is a figure which shows the striped leakage current distribution resulting from the oxygen precipitate of the conventional semiconductor substrate. リーク電流が酸素析出物の表面積に依存することを説明する図である。It is a figure explaining that a leakage current is dependent on the surface area of an oxygen precipitate. リーク電流の温度依存性を示す図である。It is a figure which shows the temperature dependence of leakage current. リーク電流と酸素析出物の析出量の関係を示す図である。It is a figure which shows the relationship between leakage current and the amount of precipitation of oxygen precipitates.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
上記したように、従来より、高歩留まりが要求される半導体装置に使用されるシリコン基板に対し、ゲッタリングを維持しつつ酸素析出物によるリーク電流を低減するという相反する課題がある。
Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.
As described above, conventionally, there is a conflicting problem of reducing leakage current due to oxygen precipitates while maintaining gettering for a silicon substrate used in a semiconductor device that requires a high yield.

そこで、本発明者はこの課題を解決するために鋭意検討を重ねた。その結果、酸素析出物によるリーク電流は酸素析出物の表面を起源とし、その大きさは表面積に依存することを見出した。そして、リーク電流を低減するためには、酸素析出物の表面積を小さくすれば良く、そのためには酸素析出物形成の熱処理の温度を1100℃以上として酸素析出物の形状を八面体又は球状にすれば良いことを見出し、本発明を完成させた。   Therefore, the present inventor has intensively studied to solve this problem. As a result, it was found that the leakage current due to the oxygen precipitate originated from the surface of the oxygen precipitate, and its magnitude depends on the surface area. In order to reduce the leakage current, the surface area of the oxygen precipitate may be reduced. For this purpose, the temperature of the heat treatment for forming the oxygen precipitate is set to 1100 ° C. or higher, and the shape of the oxygen precipitate is made octahedral or spherical. As a result, the present invention was completed.

以下、本発明の半導体基板の製造方法について、図1を参照して説明する。
まず、シリコン基板を準備する(図1の(A))。このシリコン基板として、例えばCZ法により引き上げた、不純物として酸素を含有するシリコン単結晶から得られるシリコンウェーハや、シリコンエピタキシャルウェーハを準備することができる。
The semiconductor substrate manufacturing method of the present invention will be described below with reference to FIG.
First, a silicon substrate is prepared (FIG. 1A). As this silicon substrate, for example, a silicon wafer obtained from a silicon single crystal containing oxygen as an impurity, which is pulled up by the CZ method, or a silicon epitaxial wafer can be prepared.

次に、この準備したシリコン基板に熱処理を施して酸素析出物を形成する。この熱処理工程は、図1に示すように、酸素析出核形成、酸素析出核成長、及び酸素析出物形成の3段階の熱処理として組み合わせる。酸素析出核形成、酸素析出核成長、及び酸素析出物形成の各熱処理は、それぞれ低温、中温、高温熱処理とする。このようにすることで、低温で酸素析出核を形成し(図1の(B))、中温で形成された酸素析出核を消滅することなく成長させ(図1の(C))、高温で酸素析出物を確実に成長させることができる(図1の(D))。   Next, this prepared silicon substrate is subjected to heat treatment to form oxygen precipitates. As shown in FIG. 1, this heat treatment process is combined as a three-step heat treatment of oxygen precipitation nucleus formation, oxygen precipitation nucleus growth, and oxygen precipitate formation. The heat treatments for the formation of oxygen precipitate nuclei, the growth of oxygen precipitate nuclei, and the formation of oxygen precipitates are respectively a low temperature, medium temperature, and high temperature heat treatment. In this way, oxygen precipitation nuclei are formed at a low temperature ((B) in FIG. 1), and oxygen precipitation nuclei formed at a medium temperature are grown without disappearing ((C) in FIG. 1). Oxygen precipitates can be reliably grown ((D) in FIG. 1).

この酸素析出物形成の熱処理における熱処理温度を1100℃以上とする。こうすることで、形成する酸素析出物の形状を八面体状又は球状にすることができる。酸素析出物の形状が八面体状又は球状であれば、例えば酸素析出物の形状が板状である場合に比べて、析出量は同じであっても表面積は小さくなる。従って、ゲッタリングを維持しつつ酸素析出物によるリーク電流を低減できる。   The heat treatment temperature in this heat treatment for forming oxygen precipitates is set to 1100 ° C. or higher. By doing so, the shape of the oxygen precipitate to be formed can be octahedral or spherical. If the shape of the oxygen precipitate is octahedral or spherical, for example, the surface area becomes smaller even if the amount of precipitation is the same as compared with the case where the shape of the oxygen precipitate is plate-like. Therefore, leakage current due to oxygen precipitates can be reduced while maintaining gettering.

また、酸素析出核形成の熱処理温度は500℃程度、酸素析出核成長の熱処理温度は800℃程度とすることが好ましい。このようにすれば、酸素析出核を確実に成長させることができる。   The heat treatment temperature for forming oxygen precipitation nuclei is preferably about 500 ° C., and the heat treatment temperature for growing oxygen precipitation nuclei is preferably about 800 ° C. In this way, oxygen precipitation nuclei can be reliably grown.

酸素析出物の形状を球状とすれば、析出量に対する表面積を最大限に低減できるので好ましい。酸素析出物の形状を球状にするためには、上記したシリコン基板を準備する工程において、準備するシリコン基板に窒素をドープすれば良い。このとき、窒素濃度を4.9×1013atoms/cm以下にする。これよりも多くても形状変化には寄与しない。窒素濃度の下限は特に限定されないが、シリコン基板の作製時の窒素添加方法を考慮すると、おおよそ1×1013atoms/cm程度が現実的であると考えられる。
尚、窒素添加の有無による析出熱処理の差はない。
It is preferable that the oxygen precipitates have a spherical shape because the surface area relative to the amount of precipitation can be reduced to the maximum. In order to make the shape of the oxygen precipitate spherical, in the step of preparing the silicon substrate described above, the prepared silicon substrate may be doped with nitrogen. At this time, the nitrogen concentration is set to 4.9 × 10 13 atoms / cm 3 or less. More than this does not contribute to the shape change. Although the lower limit of the nitrogen concentration is not particularly limited, it is considered that about 1 × 10 13 atoms / cm 3 is realistic considering the nitrogen addition method at the time of manufacturing the silicon substrate.
There is no difference in the precipitation heat treatment depending on whether or not nitrogen is added.

酸素析出物の形状を球状とした本発明のシリコン基板は、酸素析出物の析出量に対する表面積が最大限低減されたものであるので、必要なゲッタリング能力を維持しつつ酸素析出物によるリーク電流をより効果的に低減可能なものとなる。   Since the silicon substrate of the present invention in which the shape of the oxygen precipitate is spherical has a reduced surface area with respect to the amount of oxygen precipitate deposited, the leakage current caused by the oxygen precipitate while maintaining the required gettering ability. Can be reduced more effectively.

本発明者は、リーク電流が酸素析出物の表面積に依存することを確認するために以下の実験を行った。
酸素濃度15ppmaのCZ P型基板(CZ基板)、及びエピタキシャル層を形成したp/p−ウェーハ(EPウェーハ)をそれぞれ3枚づつ準備した。準備したCZ基板及びEPウェーハに500℃の酸素析出核形成の熱処理及び800℃の酸素析出核成長の熱処理を行った。その後、同じ析出量で形状が異なる酸素析出物を成長させるために熱処理温度を変更した。
The present inventor conducted the following experiment in order to confirm that the leakage current depends on the surface area of the oxygen precipitate.
Three CZP type substrates (CZ substrate) having an oxygen concentration of 15 ppma and three p / p-wafers (EP wafers) on which an epitaxial layer was formed were prepared. The prepared CZ substrate and EP wafer were subjected to heat treatment for forming oxygen precipitation nuclei at 500 ° C. and heat treatment for growing oxygen precipitation nuclei at 800 ° C. Thereafter, the heat treatment temperature was changed in order to grow oxygen precipitates having different shapes with the same precipitation amount.

具体的には、1枚のCZ基板及びEPウェーハに1000℃の熱処理を実施して平板状の酸素析出物を成長させた。また、残りの2枚のCZ基板及びEPウェーハにそれぞれ1100℃(八面体1)、1150℃(八面体2)の熱処理を実施して八面体状の酸素析出物を成長させた。
このようにして製造したCZ基板及びEPウェーハにPN接合構造を形成し、リーク電流を測定した。その結果を図5に示す。図5に示すように、CZ基板及びEPウェーハのリーク電流のレベルは異なる。この理由としては、CZ基板では酸素析出物が表面近くまで存在するのに対して、EPウェーハでは酸素析出物のないエピタキシャル層が存在することから、PN接合部と酸素析出物までの距離に差がある(EPウェーハの方が遠い)ためである。
Specifically, a heat treatment at 1000 ° C. was performed on one CZ substrate and EP wafer to grow a flat oxygen precipitate. Further, the remaining two CZ substrates and EP wafers were heat-treated at 1100 ° C. (octahedron 1) and 1150 ° C. (octahedron 2), respectively, to grow octahedral oxygen precipitates.
A PN junction structure was formed on the thus produced CZ substrate and EP wafer, and the leakage current was measured. The result is shown in FIG. As shown in FIG. 5, the CZ substrate and the EP wafer have different leakage current levels. The reason for this is that the oxygen precipitates exist close to the surface in the CZ substrate, whereas the epitaxial layer without oxygen precipitates exists in the EP wafer, so there is a difference in the distance between the PN junction and the oxygen precipitates. (EP wafer is farther).

析出物の形状が平板状と八面体状ではリーク電流レベルに違いが見られ、その差は、CZ基板とEPウェーハ共に、平板形状が八面体状の1.8倍程度のリーク電流となっている。また、CZ基板及びEPウェーハでは、図6に示すようなリーク電流に温度依存性を有し、傾きが1.1eVに相当する温度特性を持つことから、リーク電流は拡散電流が支配的である。   There is a difference in the leakage current level between the precipitate shape of the flat plate and the octahedron, and the difference between the CZ substrate and the EP wafer is a leakage current about 1.8 times that of the octahedron in the flat plate shape. Yes. Further, the CZ substrate and the EP wafer have temperature dependence on the leakage current as shown in FIG. 6 and have a temperature characteristic corresponding to a slope of 1.1 eV, so that the diffusion current is dominant in the leakage current. .

このような酸素析出物の形状によるリーク電流の違いは以下のように理解することができる。平板状及び八面体状それぞれの析出物の表面積を算出したところ、平板状のものが45000Å、八面体状のものが13316Åで、その比は約3.4倍(平板/八面体)である。球状であると表面積は113046Åであり、更に小さい。
一方のリーク電流の拡散成分は以下に示す式で表され、およそ表面積比(3.4倍)の平方根(1.8倍)に比例している。すなわち、酸素析出物によるリーク電流は酸素析出物の表面を起源とし、その大きさは表面積に依存することが明らかとなった。
The difference in leakage current depending on the shape of such oxygen precipitates can be understood as follows. When the surface areas of the precipitates of the flat plate and the octahedron were calculated, the flat plate was 45000 cm 2 and the octahedral plate was 13316 mm 2 , and the ratio was about 3.4 times (flat plate / octahedron). is there. When spherical, the surface area is 113046 2 , which is even smaller.
One diffusion component of the leakage current is expressed by the following formula, and is approximately proportional to the square root (1.8 times) of the surface area ratio (3.4 times). That is, it has been clarified that the leakage current due to the oxygen precipitate originates from the surface of the oxygen precipitate, and its magnitude depends on the surface area.

Figure 2014216415
Figure 2014216415
:拡散電流
q:電子電荷量
:真性キャリア濃度
:アクセプタ不純物濃度
:電子の拡散係数
τ:P型半導体での電子寿命
σ:電子の捕獲断面積
:キャリアの熱速度
:欠陥(発生再結合)密度
Figure 2014216415
Figure 2014216415
I s: the diffusion current q: electron charge quantity n i: the intrinsic carrier concentration N A: acceptor impurity concentration D n: diffusion coefficient of the electron tau n: electronic life of a P-type semiconductor sigma n: electron capture cross section V t: Carrier thermal velocity N t : Defect (generated recombination) density

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these.

(実施例1)
本発明の半導体基板の製造方法に従って半導体基板を製造し、リーク電流を評価した。
まず、抵抗率10Ω・cm、酸素濃度15ppma、ボロンドープの直径200mmシリコンウェーハを2枚準備した(CZウェーハ)。このうち1枚のウェーハに抵抗率10Ω・cmのエピタキシャル層を10μm成長させた(EPウェーハ)。これらのウェーハに500℃、4時間の低温熱処理、800℃、4時間の中温熱処理、1150℃、100分の高温熱処理を施し、酸素析出物を形成した。
Example 1
A semiconductor substrate was manufactured according to the semiconductor substrate manufacturing method of the present invention, and leakage current was evaluated.
First, two silicon wafers having a resistivity of 10 Ω · cm, an oxygen concentration of 15 ppma, and a boron dope diameter of 200 mm were prepared (CZ wafer). Of these, an epitaxial layer having a resistivity of 10 Ω · cm was grown to 10 μm on one wafer (EP wafer). These wafers were subjected to low temperature heat treatment at 500 ° C. for 4 hours, intermediate temperature heat treatment at 800 ° C. for 4 hours, high temperature heat treatment at 1150 ° C. for 100 minutes to form oxygen precipitates.

酸素析出物を調査したところ、析出量は0.3ppma、表面積は13316Å、形状は八面体であった。後述の比較例と比較すると、低温熱処理条件が同じであるため、析出量も同じとなったが、高温熱処理条件が異なることから、実施例1では八面体状、比較例では平面状と異なる形状になった。そのため、表面積が比較例の45000Åよりも実施例1の方が小さくなった。 When the oxygen precipitate was investigated, the amount of precipitation was 0.3 ppma, the surface area was 13316 cm 2 , and the shape was octahedral. Compared to the comparative example described later, since the low-temperature heat treatment conditions are the same, the amount of precipitation is also the same, but because the high-temperature heat treatment conditions are different, the shape is different from the octahedral shape in Example 1 and the planar shape in the comparative example. Became. For this reason, the surface area of Example 1 was smaller than that of Comparative Example 45000 2 .

これらのウェーハに、Pyro雰囲気1000℃、90分の熱処理で厚さ200nmの酸化膜を形成した。この後、レジストを塗布し、フォトリソを行った。今回はネガレジストを選択した。マスクには各種面積の開口部を準備しておき、接合リークの面積依存が測定できるように工夫した。また同一面積で周辺長を変えたものも準備した。このレジスト付きウェーハをバッファードHF溶液にてエッチングして酸化膜を除去し、硫酸過酸化水素混合液にてレジストを除去後、RCA洗浄を実施した。   An oxide film having a thickness of 200 nm was formed on these wafers by heat treatment at 1000 ° C. for 90 minutes in a Pyro atmosphere. Thereafter, a resist was applied and photolithography was performed. This time I chose negative resist. The mask was prepared with openings of various areas so that the area dependence of junction leakage could be measured. In addition, the same area with different peripheral lengths was also prepared. This resist-coated wafer was etched with a buffered HF solution to remove the oxide film, and after removing the resist with a sulfuric acid hydrogen peroxide mixed solution, RCA cleaning was performed.

洗浄後のウェーハに加速電圧55KeV、ドーズ量2×1012atoms/cmでボロンをイオン注入し、1000℃、窒素雰囲気下で回復アニール後、リンガラスを塗布拡散し、リンを表面より拡散することで、PN接合を形成し、逆方向バイアス印加時のリーク電流を測定した。
上記CZウェーハのリーク電流の分布の結果を図2に示す。図2中の色が濃い方がリーク電流が高いことを示している。図2に示すように、後述する比較例の分布(図3)に比べて、実施例1のウェーハはリークが減少し、縞模様もかなり緩和されている。また、EPウェーハに関しても同様の結果となった。
Boron ions are implanted into the cleaned wafer at an acceleration voltage of 55 KeV and a dose of 2 × 10 12 atoms / cm 2 , and after recovery annealing in a nitrogen atmosphere at 1000 ° C., phosphorus glass is applied and diffused, and phosphorus is diffused from the surface. Thus, a PN junction was formed, and the leakage current when reverse bias was applied was measured.
The result of the leakage current distribution of the CZ wafer is shown in FIG. A darker color in FIG. 2 indicates a higher leakage current. As shown in FIG. 2, compared with the distribution of the comparative example (FIG. 3) to be described later, the leak of the wafer of Example 1 is reduced and the stripe pattern is considerably relaxed. Similar results were obtained for EP wafers.

(実施例2)
窒素濃度が4.9×1013となるように窒素をドープしたシリコンウェーハを用い、球状の酸素析出物を形成した以外、実施例1と同様の条件で半導体基板を製造し、同様に評価した。
酸素析出物を調査したところ、析出量は0.3ppmaと実施例1と同じであったが、表面積が11304Åと実施例1よりも更に低減された。
CZウェーハのリーク電流の分布の結果を図2に示す。図2に示すように、実施例1よりも更にリークが減少し、縞模様もより緩和されている。後述する比較例の結果と比べるとリークが大幅に低減されていることが分かった。EPウェーハに関しても同様の結果となった。
(Example 2)
A semiconductor substrate was manufactured under the same conditions as in Example 1 except that a silicon wafer doped with nitrogen so that the nitrogen concentration was 4.9 × 10 13 was used, and a spherical oxygen precipitate was formed. .
When checking oxygen precipitates, although precipitation amount was the same as 0.3ppma as Example 1, it was further reduced than that of Example 1 surface area and 11304Å 2.
The result of the leakage current distribution of the CZ wafer is shown in FIG. As shown in FIG. 2, the leakage is further reduced as compared with the first embodiment, and the stripe pattern is more relaxed. It was found that the leakage was greatly reduced as compared with the results of comparative examples described later. Similar results were obtained for EP wafers.

(比較例)
高温熱処理の温度を1000℃とした以外、実施例1と同様な条件で半導体基板を製造し、同様に評価した。
結果を図3に示す。図3に示すように、実施例1、実施例2と比べ、リークが増加してしまった。
(Comparative example)
A semiconductor substrate was manufactured under the same conditions as in Example 1 except that the temperature of the high-temperature heat treatment was 1000 ° C., and evaluated in the same manner.
The results are shown in FIG. As shown in FIG. 3, the leakage increased as compared with Example 1 and Example 2.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (3)

シリコン基板を準備する工程と、該シリコン基板に熱処理を施して酸素析出物を形成する工程を有する半導体基板の製造方法であって、
前記酸素析出物を形成する工程において、前記シリコン基板に酸素析出核形成、酸素析出核成長、及び酸素析出物形成の3段階の熱処理を行い、前記酸素析出物形成の熱処理の温度を1100℃以上とすることによって、前記形成する酸素析出物の形状を八面体状又は球状にすることを特徴とする半導体基板の製造方法。
A method for manufacturing a semiconductor substrate, comprising: preparing a silicon substrate; and performing heat treatment on the silicon substrate to form an oxygen precipitate,
In the step of forming the oxygen precipitate, the silicon substrate is subjected to a three-step heat treatment of forming an oxygen precipitate nucleus, growing an oxygen precipitate nucleus, and forming an oxygen precipitate, and the temperature of the heat treatment for forming the oxygen precipitate is 1100 ° C. or higher. Thus, the shape of the oxygen precipitate to be formed is octahedral or spherical.
前記シリコン基板を準備する工程において、前記準備するシリコン基板に窒素をドープし、窒素濃度を4.9×1013atoms/cm以下にすることによって、前記酸素析出物の形状を球状にすることを特徴とする請求項1に記載の半導体基板の製造方法。 In the step of preparing the silicon substrate, the silicon substrate to be prepared is doped with nitrogen, and the nitrogen concentration is reduced to 4.9 × 10 13 atoms / cm 3 or less to make the shape of the oxygen precipitate spherical. The method of manufacturing a semiconductor substrate according to claim 1. 酸素析出物を含有するシリコン基板であって、
前記酸素析出物の形状が球状であることを特徴とするシリコン基板。
A silicon substrate containing oxygen precipitates,
A silicon substrate characterized in that the oxygen precipitate has a spherical shape.
JP2013091389A 2013-04-24 2013-04-24 Semiconductor substrate manufacturing method and silicon substrate Pending JP2014216415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013091389A JP2014216415A (en) 2013-04-24 2013-04-24 Semiconductor substrate manufacturing method and silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013091389A JP2014216415A (en) 2013-04-24 2013-04-24 Semiconductor substrate manufacturing method and silicon substrate

Publications (1)

Publication Number Publication Date
JP2014216415A true JP2014216415A (en) 2014-11-17

Family

ID=51941930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013091389A Pending JP2014216415A (en) 2013-04-24 2013-04-24 Semiconductor substrate manufacturing method and silicon substrate

Country Status (1)

Country Link
JP (1) JP2014216415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213382A (en) * 2015-05-12 2016-12-15 信越半導体株式会社 Semiconductor substrate evaluation method, semiconductor substrate manufacturing method and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213382A (en) * 2015-05-12 2016-12-15 信越半導体株式会社 Semiconductor substrate evaluation method, semiconductor substrate manufacturing method and semiconductor device

Similar Documents

Publication Publication Date Title
JP5276863B2 (en) Silicon wafer
CN103498196B (en) Method for fabricating silicon wafer
JP5845143B2 (en) Epitaxial silicon wafer manufacturing method and epitaxial silicon wafer
US9252025B2 (en) Method for manufacturing silicon single crystal wafer and electronic device
KR101856012B1 (en) Epitaxial wafer manufacturing method and epitaxial wafer
US5951755A (en) Manufacturing method of semiconductor substrate and inspection method therefor
JP5217245B2 (en) Silicon single crystal wafer and manufacturing method thereof
JP5938969B2 (en) Epitaxial wafer manufacturing method and solid-state imaging device manufacturing method
JP3381816B2 (en) Semiconductor substrate manufacturing method
JP2010177233A (en) Method of manufacturing epitaxial wafer, and method of manufacturing solid-state imaging element
JP2009231429A (en) Method of manufacturing silicon wafer
US6599816B2 (en) Method of manufacturing silicon epitaxial wafer
JP4189041B2 (en) Manufacturing method of semiconductor substrate and inspection method thereof
JP5533869B2 (en) Epitaxial silicon wafer and manufacturing method thereof
JP4510997B2 (en) Silicon semiconductor substrate and manufacturing method thereof
JP2014216415A (en) Semiconductor substrate manufacturing method and silicon substrate
WO2014057741A1 (en) Method for producing silicon epitaxial wafer and solid-state image-pickup element using same
JP4270713B2 (en) Manufacturing method of silicon epitaxial wafer
JP5720557B2 (en) Semiconductor substrate evaluation method and semiconductor substrate manufacturing method
JPH11288942A (en) Manufacture of semiconductor device
JP6354657B2 (en) Semiconductor substrate evaluation method, semiconductor substrate manufacturing method
JP2023070066A (en) silicon wafer and epitaxial silicon wafer
JP2023070067A (en) silicon wafer and epitaxial silicon wafer
JP2023070019A (en) silicon wafer and epitaxial silicon wafer
JP2005050942A (en) Silicon wafer and manufacturing method therefor