JP2014214353A - Electromagnetic wave transmissible material - Google Patents

Electromagnetic wave transmissible material Download PDF

Info

Publication number
JP2014214353A
JP2014214353A JP2013093255A JP2013093255A JP2014214353A JP 2014214353 A JP2014214353 A JP 2014214353A JP 2013093255 A JP2013093255 A JP 2013093255A JP 2013093255 A JP2013093255 A JP 2013093255A JP 2014214353 A JP2014214353 A JP 2014214353A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
palladium
film
metal
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013093255A
Other languages
Japanese (ja)
Inventor
小林 正樹
Masaki Kobayashi
正樹 小林
佐藤 大輔
Daisuke Sato
大輔 佐藤
俊雄 岡部
Toshio Okabe
俊雄 岡部
山本 修二
Shuji Yamamoto
修二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankei Giken Kogyo Co Ltd
Original Assignee
Sankei Giken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankei Giken Kogyo Co Ltd filed Critical Sankei Giken Kogyo Co Ltd
Priority to JP2013093255A priority Critical patent/JP2014214353A/en
Publication of JP2014214353A publication Critical patent/JP2014214353A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic wave transmissible material having a high transmittance of an electromagnetic wave, and capable of maintaining metallic sheen over a long period.SOLUTION: An electromagnetic wave transmissible material is formed by providing a metal film (2) on the surface of an electromagnetic wave transmissible base material (1). The metal film (2) comprises palladium or a palladium alloy formed by electroless plating, and has a film thickness of 10nm-1 μm. When the metal film (2) has fine metal regions divided by crack, the number of the fine metal regions is 2-10,000 per unit area (1 mm).

Description

本発明は、金属光沢と耐候性に優れた電磁波透過性材料に関する。   The present invention relates to an electromagnetic wave transmissive material excellent in metallic luster and weather resistance.

従来、電磁波透過性材料としては、真空蒸着法により基材表面にインジウム被膜を設けることが行われている。このインジウム被膜は、インジウムが微細な島状に分布した海島構造となっており、目視では金属光沢を有しているが、ミクロ的な隙間があるため、電磁波を透過できる。そのため、自動車に搭載されるミリ波レーダ装置のカバー部材(レドーム)を装飾する金属被膜として用いられている(特許文献1、2)。   Conventionally, as an electromagnetic wave transmissive material, an indium film is provided on the surface of a substrate by a vacuum deposition method. This indium film has a sea-island structure in which indium is distributed in a fine island shape, and has a metallic luster visually, but can transmit electromagnetic waves because of a microscopic gap. Therefore, it is used as a metal film for decorating a cover member (radome) of a millimeter wave radar device mounted on an automobile (Patent Documents 1 and 2).

しかしながら、上記被膜は、真空蒸着により形成しているため、真空容器内に基材をその都度配置して成膜する必要があり、量産性が低く、基材の大きさも真空容器内に収容可能な大きさに限定される。また、蒸発した金属は方向性があるため、立体構造のような複雑な形状のものでは、均一な被膜を形成できない問題がある。   However, since the above film is formed by vacuum deposition, it is necessary to form a film by placing the substrate in the vacuum container each time, so the mass productivity is low and the size of the substrate can be accommodated in the vacuum container. Limited to a large size. Further, since the evaporated metal has directionality, there is a problem that a uniform film cannot be formed with a complicated shape such as a three-dimensional structure.

また、上記真空蒸着の問題を解決するために、基材表面に無電解めっきを用いて電磁波透過性の金属被膜の形成することが提案されているが(特許文献3)、電磁波透過性を付与するために、金属被膜を形成した後、熱処理を施し、単位面積(1mm)当たり2〜10000個の金属領域を存在させた海島構造の金属被膜を形成しなければならず、工程が多くなり、熱処理温度によっては、基材が変形や被膜の変質が生じるという問題がある。しかも、金属被膜も具体的にはニッケル−リン合金からなるもので、貴金属よりも耐食性に劣るため、長期に渡って金属光沢を維持するのが難しいという問題がある。 In order to solve the above-mentioned problem of vacuum deposition, it has been proposed to form an electromagnetic wave-permeable metal film on the surface of the base material by using electroless plating (Patent Document 3), but imparting electromagnetic wave permeability. Therefore, after forming the metal film, heat treatment is performed to form a metal film having a sea-island structure in which 2 to 10,000 metal regions exist per unit area (1 mm 2 ), which increases the number of processes. Depending on the heat treatment temperature, there is a problem that the base material is deformed or the film is deteriorated. In addition, the metal coating is specifically made of a nickel-phosphorus alloy and has a problem that it is difficult to maintain a metallic luster over a long period of time because it is inferior in corrosion resistance to noble metals.

特開2000−159039号公報Japanese Unexamined Patent Publication No. 2000-159039 特開2000−049522号公報JP 2000-049522 A 特開2010−163903号公報JP 2010-163903 A

本発明は、上記問題点に鑑みなされたもので、電磁波の透過率が高く、長期に渡って金属光沢を維持できる電磁波透過性材料を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an electromagnetic wave transmissive material that has a high electromagnetic wave transmittance and can maintain a metallic luster over a long period of time.

本発明者等は、鋭意研究を行った結果、無電解めっきで形成されたパラジウム被膜は、めっき時に発生する水素を多量に吸蔵し、体積膨張を生ずるため、電磁波透過損失が小さいこと、特に、パラジウム−リン被膜のような硬質の被膜では、内部応力が大きくなり、電磁波が透過できるクラックが自然発生し、電磁波透過性が更に向上すること、また、パラジウムは、ニッケルあるいはビスマスよりも優れた耐酸化性を有するため、環境に対して変色し難く、長期に渡って優れた金属光沢が維持されることを見出し、本発明に到った。 As a result of intensive studies, the inventors of the present invention have found that the palladium film formed by electroless plating occludes a large amount of hydrogen generated during plating and causes volume expansion, so that electromagnetic wave transmission loss is particularly small. In a hard coating such as a palladium-phosphorus coating, internal stress increases, cracks that allow the transmission of electromagnetic waves naturally occur, electromagnetic wave transmission is further improved, and palladium has an acid resistance superior to nickel or bismuth. Therefore, the present inventors have found that an excellent metallic luster is maintained over a long period of time because it is difficult to discolor to the environment.

すなわち、本発明は、以下の構成により、上記課題を達成できる。
(1)「電磁波透過性基材の表面に金属被膜を設けた電磁波透過性材料であって、前記金属被膜は、無電解めっきにより形成されたパラジウムまたはパラジウム合金からなり、膜厚が10nm〜1μmであることを特徴とする電磁波透過性材料」、
(2)「前記金属被膜の膜厚が、10〜500nmであることを特徴とする前記第(1)項に記載の電磁波透過性材料」、
(3)「前記金属被膜の膜厚が、20〜200nmであることを特徴とする前記第(2)項に記載の電磁波透過性材料」、
(4)「前記金属被膜が、クラックにより分割された微細金属領域を有し、該微細金属領域が、単位面積(1mm)当たり2〜10000個であることを特徴とする前記第(1)項乃至第(3)項のいずれかに記載の電磁波透過性材料」、
(5)「前記クラックの幅が、クラックの幅が10nm〜2μmであることを特徴とする前記第(4)項に記載の電磁波透過性材料」、
(6)「前記金属被膜は、電磁波透過性基材の表面に設けた下地層の上に形成されていることを特徴とする前記第(1)項乃至第(5)項のいずれかに記載の電磁波透過性材料」、
(7)「前記金属被膜の上に保護層を設けたことを特徴とする前記第(1)項乃至第(6)項のいずれかに記載の電磁波透過性材料。」
That is, this invention can achieve the said subject with the following structures.
(1) “An electromagnetic wave transmissive material in which a metal film is provided on the surface of an electromagnetic wave transmissive substrate, wherein the metal film is made of palladium or a palladium alloy formed by electroless plating and has a thickness of 10 nm to 1 μm. Electromagnetic wave transmissive material characterized by
(2) "The electromagnetic wave transmissive material according to item (1), wherein the metal coating has a thickness of 10 to 500 nm",
(3) "The electromagnetic wave transmissive material according to item (2), wherein the metal film has a thickness of 20 to 200 nm",
(4) The above (1), wherein the metal film has fine metal regions divided by cracks, and the number of fine metal regions is 2 to 10,000 per unit area (1 mm 2 ). The electromagnetic wave transmitting material according to any one of items 1 to 3),
(5) "The electromagnetic wave transmitting material according to item (4), wherein the crack has a width of 10 nm to 2 µm,"
(6) “The metal coating is formed on an underlayer provided on the surface of the electromagnetic wave transmissive substrate,” according to any one of the above items (1) to (5). Electromagnetic wave transmissive material ",
(7) “The electromagnetic wave transmissive material according to any one of Items (1) to (6), wherein a protective layer is provided on the metal coating”

本発明によれば、基体上の無電解めっきによりパラジウム又はパラジウム合金被膜を形成しているので、電磁波の透過減衰損失が小さく、優れた電磁波透過性を有する。また、パラジウムは、優れた耐環境性および光輝性を有するため、金属光沢を長期に渡って維持できる。 According to the present invention, since the palladium or palladium alloy film is formed by electroless plating on the substrate, the transmission attenuation loss of electromagnetic waves is small, and excellent electromagnetic wave permeability is obtained. In addition, since palladium has excellent environmental resistance and brightness, the metallic luster can be maintained over a long period of time.

特に、パラジウム−リンのような高い硬度の合金で被膜を形成すると、残存する内部応力によりクラックが発生するため、被膜自体の電磁波透過性と相俟って、電磁波透過性をさらに向上されることができる。また、クラックにより囲まれたパラジウム領域を単位面積(1mm)当たり10000個以下とすることにより、被膜に占めるパラジウム領域が大きく、優れた金属光沢を呈するとともに、パラジウムの優れた耐環境性と相俟って、金属光沢を長期に渡って維持することができる。 In particular, when a film is formed with a high hardness alloy such as palladium-phosphorus, cracks are generated due to the remaining internal stress, and therefore, the electromagnetic wave permeability can be further improved in combination with the electromagnetic wave permeability of the film itself. Can do. In addition, by making the palladium region surrounded by cracks 10000 or less per unit area (1 mm 2 ), the palladium region occupied in the coating is large, exhibiting excellent metallic luster, and excellent environmental resistance and compatibility with palladium. As a result, the metallic luster can be maintained for a long time.

さらに、無電解めっき法を用いているので、大量生産が可能であり、基材の形状に対する制約が少なく、金属被膜も極めて薄いので、めっき処理時間も短時間ですみ、効率よく生産できる。 Furthermore, since the electroless plating method is used, mass production is possible, there are few restrictions on the shape of the base material, and the metal coating is extremely thin, so that the plating process takes a short time and can be produced efficiently.

本発明の電磁波透過性材料の模式断面図である。It is a schematic cross section of the electromagnetic wave transmissive material of the present invention. 本発明のクラックを有する金属被膜表面の一部を拡大した模式図である。It is the schematic diagram which expanded a part of metal coating film surface which has a crack of this invention. 実施例2で得た電磁波透過用金属被膜の表面を写した実体顕微鏡写真である。4 is a stereomicrograph showing the surface of an electromagnetic wave transmitting metal coating obtained in Example 2. FIG. 実施例3で得た電磁波透過用金属被膜の表面を写した実体顕微鏡写真である。4 is a stereomicrograph showing the surface of the electromagnetic wave transmitting metal coating obtained in Example 3. FIG. 実施例4で得た電磁波透過用金属被膜の表面を写した実体顕微鏡写真である。4 is a stereomicrograph showing the surface of the electromagnetic wave transmitting metal coating obtained in Example 4. FIG. 実施例5で得た電磁波透過用金属被膜の表面を写した実体顕微鏡写真である。6 is a stereomicrograph showing the surface of the electromagnetic wave transmitting metal coating obtained in Example 5. FIG.

以下、本件発明に係る電磁波透過用金属被膜についての好ましい実施の形態を説明する。   Hereinafter, preferred embodiments of the metal film for electromagnetic wave transmission according to the present invention will be described.

本発明は、図1(a)、(b)に示すように、電磁波透過性基体1の表面またはこの基体1に設けた下地層3の表面に無電解めっきによりパラジウムまたはパラジウム合金の金属被膜2を形成したものである。 In the present invention, as shown in FIGS. 1A and 1B, the surface of the electromagnetic wave transmitting substrate 1 or the surface of the base layer 3 provided on the substrate 1 is electrolessly plated with palladium or a palladium alloy metal coating 2. Is formed.

パラジウムは、極めて高い水素吸収性を有しており、無電解めっきでパラジウムまたはその合金の金属被膜を形成すると、めっき時に発生する水素を吸蔵し、体積が膨張する。本発明は、この体積膨張により、通常の金属被膜では、クラックがないと数nmという極めて薄い膜厚でなければ実用に供する電磁波透過被膜を得ることができなかったが、無電解めっきによりパラジウム被膜を形成すると、100nm以下の薄い膜厚であれば、クラックがなくとも電磁波透過損失が小さく、実用に耐える電磁波透過性を有することを見出したものである。 Palladium has an extremely high hydrogen absorptivity, and when a metal film of palladium or an alloy thereof is formed by electroless plating, the hydrogen generated during plating is occluded and the volume expands. In the present invention, due to this volume expansion, a normal metal film could not be used for practical use unless it had a very thin film thickness of several nanometers without cracks. When the film is formed, it has been found that if the film thickness is 100 nm or less, the electromagnetic wave transmission loss is small even if there is no crack, and the electromagnetic wave transmission property can withstand practical use.

また、形成された被膜は、水素吸蔵による体積膨張により、高い内部応力が発生し、この内部応力により、膜厚の厚い純パラジウムの被膜やパラジウム−リン合金被膜のような硬度の高い被膜では、この内部応力によりクラックが発生する。そのため、アフターベーキング等の熱処理によってクラックを多数発生させる必要がなく、熱による基材の変形、変質がないため、寸法精度に優れた製品を得ることができる。 In addition, the formed film generates a high internal stress due to volume expansion due to hydrogen occlusion, and due to this internal stress, in a high hardness film such as a thick pure palladium film or a palladium-phosphorus alloy film, Cracks are generated by this internal stress. Therefore, it is not necessary to generate many cracks by a heat treatment such as after baking, and since there is no deformation or alteration of the base material due to heat, a product with excellent dimensional accuracy can be obtained.

本発明は、電磁波透過性と金属光沢の両者を満たす必要がある。これらは相反する特性であり、電磁波透過性は膜厚が薄い程向上するが、金属光沢は減ずることになる。また、膜厚が厚くなれば金属光沢は優れるが、発生するクラックは被膜が厚い程少なくなる傾向があり、膜厚が厚くなるほど、電磁波透過性はクラックに依存するため、膜厚が厚いと電磁波透過性は劣ることになる。 The present invention must satisfy both electromagnetic wave transparency and metallic luster. These are contradictory properties, and the electromagnetic wave transmission improves as the film thickness decreases, but the metallic luster decreases. Also, as the film thickness increases, the metallic luster is excellent, but the cracks that occur tend to decrease as the film becomes thicker, and as the film thickness increases, the electromagnetic wave permeability depends on the cracks. The permeability will be inferior.

そのため、上記特性を両立させるためには、膜厚は、10nm〜1μmであるが、好ましくは10〜500nm、より好ましくは20〜200nmである。膜厚が10nm未満では、基材が透けて見え、十分な金属光沢を得ることが困難であり、1μmを超えると、クラックの数が少なくなり、十分な電磁波透過性を得ることが困難となる。特に、被膜にクラックが存在しない場合は、膜厚は100nm以下とすることが好ましい。 Therefore, in order to make the said characteristic compatible, although a film thickness is 10 nm-1 micrometer, Preferably it is 10-500 nm, More preferably, it is 20-200 nm. If the film thickness is less than 10 nm, the substrate can be seen through and it is difficult to obtain a sufficient metallic luster, and if it exceeds 1 μm, the number of cracks is reduced and it is difficult to obtain sufficient electromagnetic wave permeability. . In particular, when there are no cracks in the coating, the film thickness is preferably 100 nm or less.

本発明において、被膜2にクラック4が存在する場合、図2に示すように、クラック4は網目状に形成され、被膜2は、クラック4に囲まれたパラジウムまたはその合金からなる多角形状の微細金属領域5を島とした海島構造をとり、各々の微細金属領域5は、クラックにより電気的に不導通状態になる。この微細金属領域5は、基材の表面に単位面積(1mm)当たり2〜10000個、好ましくは、300〜10000個である。微細金属領域5をこのような個数とすることにより、微細金属領域5が占める面積が大きくなり、金属光沢に優れるため好ましい。
なお、図3〜6において、クラックは黒い線状に視認される微細な領域であり、微細金属領域はクラックに囲まれた領域である。
In the present invention, when a crack 4 is present in the coating 2, the crack 4 is formed in a mesh shape as shown in FIG. 2, and the coating 2 is a polygonal fine particle made of palladium or an alloy thereof surrounded by the crack 4. A sea-island structure having the metal region 5 as an island is formed, and each fine metal region 5 is electrically nonconductive due to a crack. The number of fine metal regions 5 is 2 to 10,000, preferably 300 to 10,000 per unit area (1 mm 2 ) on the surface of the substrate. By setting the number of fine metal regions 5 to such a number, the area occupied by the fine metal regions 5 is increased, and the metallic luster is excellent, which is preferable.
3 to 6, the crack is a fine region visually recognized as a black line, and the fine metal region is a region surrounded by the crack.

クラックの幅は、浴組成、浴の温度、めっき液への浸漬時間等により変動するが、10nm〜2μm程度であり、好ましくは、30nm〜1μm、より好ましくは、30nm〜0.5μmである。クラック幅が10nm未満では微細金属領域間が接触して導通状態となる可能性があり、電磁波透過性に悪影響をおよぼす畏れがある。また、2μmを超えると、裸眼で視認できるため、意匠性に問題が生ずる。 The width of the crack varies depending on the bath composition, bath temperature, dipping time in the plating solution, etc., but is about 10 nm to 2 μm, preferably 30 nm to 1 μm, more preferably 30 nm to 0.5 μm. If the crack width is less than 10 nm, the fine metal regions may be brought into contact with each other to be in a conductive state, which may adversely affect electromagnetic wave transmission. On the other hand, if it exceeds 2 μm, it can be visually recognized with the naked eye, which causes a problem in design.

本発明の被膜は、パラジウムまたはパラジウム合金から形成されるものであるが、パラジウム合金としては、パラジウム−リン、パラジウム−ニッケル、パラジウム−ニッケル−リン、パラジウム−コバルト等を挙げることができる。このようなパラジウム又はパラジウム合金を用いることにより、10nmのような極薄いものであっても外観上、十分な金属光沢を発現させることができる。 The coating of the present invention is formed from palladium or a palladium alloy. Examples of the palladium alloy include palladium-phosphorus, palladium-nickel, palladium-nickel-phosphorus, and palladium-cobalt. By using such palladium or palladium alloy, even if it is extremely thin such as 10 nm, a sufficient metallic luster can be expressed in appearance.

本発明の基材は、電磁透過性を有することが好ましく、そのため、樹脂、セラミックス、紙、ガラス及び繊維等の非金属が好適に用いられる。樹脂としては、熱可塑性樹脂及び熱硬化性樹脂のいずれを用いてもよく、例えば、COP(環状ポリオレフィン)樹脂、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、AES(アクリロニトリル−エチレン−スチレン)樹脂、アクリル樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリエチレンナフタレート樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、液晶ポリマー(LCP)、ポリ塩化ビニル樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリスルホン樹脂、セルロース樹脂、ポリフェニレンスルフィド樹脂等を挙げることができる。 The substrate of the present invention preferably has electromagnetic permeability, and therefore, nonmetals such as resin, ceramics, paper, glass, and fibers are preferably used. As the resin, any of a thermoplastic resin and a thermosetting resin may be used. For example, COP (cyclic polyolefin) resin, ABS (acrylonitrile-butadiene-styrene) resin, AES (acrylonitrile-ethylene-styrene) resin, acrylic Resin, Polyacetal resin, Polyamide resin, Polyamideimide resin, Polyimide resin, Polyurethane resin, Polyester resin, Polyethylene resin, Polyethylene naphthalate resin, Polyethersulfone resin, Polyetheretherketone resin, Liquid crystal polymer (LCP), Polyvinyl chloride resin , Polyolefin resin, polycarbonate resin, polystyrene resin, polysulfone resin, cellulose resin, polyphenylene sulfide resin, and the like.

また、本発明では、無電解めっきで金属被膜を形成するため、基材の形状に制限はなく、板材、シート材、フィルム材あるいは立体形状のものを用いることもできる。   Moreover, in this invention, since a metal film is formed by electroless plating, there is no restriction | limiting in the shape of a base material, A board | plate material, a sheet material, a film material, or the thing of a solid shape can also be used.

次に、本発明のパラジウム又はその合金の金属被膜の形成方法を説明する。本発明は、無電解めっきを用いることにより、基材として樹脂等の非金属を用いることができ、また、めっき時に発生する水素を被膜に吸蔵させることができる。   Next, a method for forming a metal coating of palladium or an alloy thereof according to the present invention will be described. In the present invention, by using electroless plating, a nonmetal such as a resin can be used as a base material, and hydrogen generated during plating can be occluded in the coating.

本発明における無電解めっきについての具体的な手順等に関する限定はないが、触媒付与工程→無電解めっき工程のような、通常の無電解めっき工程を経ることにより、基体表面に金属被膜を形成できる。   Although there is no limitation regarding the specific procedure etc. about the electroless plating in this invention, a metal film can be formed on the substrate surface by passing through a normal electroless plating process such as a catalyst application process → electroless plating process. .

基材の表面に無電解めっき法により金属被膜を形成する際には、例えば、基材の表面を改質して触媒が付着し易くするように、基材表面を機械的処理、化学的処理、UV処理、プラズマ処理等により粗面化する。また、基材の触媒付着能を向上させるために、下地層(アンダーコート層)を設けてもよい。 When forming a metal film on the surface of the substrate by electroless plating, for example, the substrate surface is mechanically treated or chemically treated so that the surface of the substrate is modified so that the catalyst is easily attached. The surface is roughened by UV treatment, plasma treatment, or the like. Moreover, in order to improve the catalyst adhesion ability of a base material, you may provide a base layer (undercoat layer).

次に、必要に応じて表面を粗面化した基体を脱脂、洗浄した後、基材表面にパラジウム等の触媒金属を析出させる触媒付与工程を行う。この触媒付与工程は、センシタイジング→アクチベーション法、キャタリスト→アクセレータ法等の公知の触媒付着工程を用いることができる。例えば、キャタリスト→アクセレータ法では、キャタリスト溶液(スズ塩とパラジウム塩の混合触媒溶液)に浸漬し、水洗の後、硫酸又は塩酸の水溶液、あるいは次亜リン酸塩等の還元剤の水溶液に浸漬し、基材表面に触媒であるパラジウムを析出させる。 Next, if necessary, a substrate having a roughened surface is degreased and washed, and then a catalyst application step for depositing a catalytic metal such as palladium on the surface of the substrate is performed. For this catalyst application step, a known catalyst adhesion step such as sensitizing → activation method, catalyst → accelerator method, or the like can be used. For example, in the catalyst-to-accelerator method, immerse in a catalyst solution (mixed catalyst solution of tin salt and palladium salt), wash with water, and then into an aqueous solution of sulfuric acid or hydrochloric acid, or an aqueous solution of a reducing agent such as hypophosphite. Immersion is performed to deposit palladium as a catalyst on the surface of the substrate.

基材表面にパラジウムの触媒金属を付着させた後、無電解パラジウムめっき浴に浸漬することで、基材表面に電磁波透過性を有する被膜が形成できる。   A film having electromagnetic wave permeability can be formed on the surface of the substrate by depositing a palladium catalyst metal on the surface of the substrate and then immersing it in an electroless palladium plating bath.

本発明で用いる無電解めっき浴としては、パラジウム塩と還元剤とを基本成分とし、必要に応じて、チオジグリコール酸のような安定化剤や錯化剤等を添加してもよい。また、パラジウム−ニッケルのような合金めっきとする場合は、ニッケル塩のような合金成分の塩をパラジウム塩と併用することにより、容易に得ることができる。 As an electroless plating bath used in the present invention, a palladium salt and a reducing agent are used as basic components, and if necessary, a stabilizer such as thiodiglycolic acid, a complexing agent, or the like may be added. Moreover, when it is set as alloy plating like palladium-nickel, it can obtain easily by using together the salt of an alloy component like nickel salt with palladium salt.

還元剤としては、次亜リン酸塩、亜リン酸塩、酸蟻塩、ヒドラジン等が挙げられ、次亜リン酸塩を用いれば、リンも共析するため、パラジウム−リンのようなリンを含有した合金被膜が形成できる。また、蟻酸塩やヒドラジンを用いれば、純パラジウム被膜を得ることができる。 Examples of the reducing agent include hypophosphite, phosphite, acid ant salt, hydrazine, etc. When hypophosphite is used, phosphorus is also co-deposited. The contained alloy film can be formed. Moreover, a pure palladium film can be obtained by using formate or hydrazine.

本発明の被膜は、一般的な装飾用の被膜とは異なり、膜厚を1μm以下として、電磁波透過性と装飾性とを両立させるものであるから、基材の浸漬時間は、浴組成や浴の温度等によって異なるが、概ね30秒〜90秒の範囲内でよい。そのため、高い生産性を有する。 Unlike the general decorative coating, the coating of the present invention has a film thickness of 1 μm or less and achieves both electromagnetic wave permeability and decorative properties. However, it may be within the range of 30 to 90 seconds. Therefore, it has high productivity.

無電解めっきによりパラジウムまたはその合金の金属被膜を形成した基材は、その後、水洗、乾燥等の後処理工程を行うが、めっき浴から引き揚げた直後の金属被膜は連続膜であっても、内部応力により、水洗および/または乾燥工程中でクラックが発生し、基材の表面に微細金属領域の集合体としての不連続な非導通性の金属被膜を得ることができる。このように、金属被膜自体の内部応力でクラックを発生させるため、乾燥工程も常温等の低温で行えるので、熱による基体の変形、変質がなく、精度の高い製品が得られる。   The base material on which the metal film of palladium or its alloy is formed by electroless plating is then subjected to post-treatment steps such as washing and drying, but the metal film immediately after being lifted from the plating bath may be a continuous film. Due to the stress, cracks are generated in the washing and / or drying process, and a discontinuous non-conductive metal film as an aggregate of fine metal regions can be obtained on the surface of the substrate. As described above, since the crack is generated by the internal stress of the metal coating itself, the drying process can be performed at a low temperature such as room temperature, so that a highly accurate product can be obtained without any deformation or alteration of the substrate due to heat.

また、めっき法によるパラジウム及びパラジウム合金被膜のクラック密度は、吸蔵された水素含有量による内部応力で変化するので、浴組成、浴温、浸漬時間等のめっき条件である程度コントロールすることができる。また、基体上に下地層(アンダーコート層)を設け、この上に被膜を形成する場合、下地層が柔らかいとパラジウム及びパラジウム合金被膜の収縮膨張に追随するのでクラックが入り難く、硬度が高いと入り易い。この性質を利用して、下地層の硬さを変えることにより、パラジウム及びパラジウム合金被膜のクラック密度をコントロールすることができる。このような下地層を硬さの変更は、光重合(紫外線照射)や熱硬化により行うことができる。   In addition, the crack density of palladium and palladium alloy coatings by plating changes with internal stress due to the occluded hydrogen content and can be controlled to some extent by plating conditions such as bath composition, bath temperature, and immersion time. In addition, when a base layer (undercoat layer) is provided on a substrate and a film is formed thereon, if the base layer is soft, cracks hardly occur and the hardness is high because it follows the shrinkage and expansion of the palladium and palladium alloy coating. Easy to enter. By utilizing this property, the crack density of the palladium and palladium alloy coating can be controlled by changing the hardness of the underlayer. Such a base layer can be changed in hardness by photopolymerization (ultraviolet irradiation) or thermosetting.

下地層は、樹脂を溶媒等で希釈した塗料を基材に塗布した後、光重合(UV)あるいは熱硬化させることで形成できる。光重合型の樹脂としては、アクリル系ポリエステルアクリレート、ポリウレタン系アクリレート、エポキシ系アクリレート、アクリル酸エステル等が挙げられ、熱硬化型としては、ポリエステル系樹脂、フェノール系樹脂、アルキド樹脂、メラミン尿素系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、シリコン系樹脂、塩化ゴム系樹脂、酢酸ビニル系樹脂、アクリル系樹脂、塩化ビニル系樹脂、フッ素系樹脂、セルロース等が挙げられる。 The underlayer can be formed by applying a paint obtained by diluting a resin with a solvent or the like to a base material, followed by photopolymerization (UV) or thermosetting. Examples of photopolymerizable resins include acrylic polyester acrylates, polyurethane acrylates, epoxy acrylates, and acrylates. Thermosetting resins include polyester resins, phenolic resins, alkyd resins, and melamine urea resins. , Epoxy resins, polyurethane resins, silicon resins, chlorinated rubber resins, vinyl acetate resins, acrylic resins, vinyl chloride resins, fluorine resins, and cellulose.

また、金属被膜を保護し、且つ耐食性を向上させるように、金属被膜上に、樹脂からなる保護層(トップコート層)を設けても良い。このような保護層は、前記の下地層と同様に、樹脂を含有すると塗料を金属被膜上に塗布し、紫外線の照射あるいは熱硬化させてることで形成でき、用いる樹脂も下地層と同様の樹脂を用いることができる。このように、トップコート層を形成すると、クラックに樹脂が入り込み、金属被膜を強固にすると共に、金属被膜の腐食が防止でき、金属被膜が腐食される場合であっても、腐食の広がりを防止できるため、耐食性が大幅に向上できる。 Moreover, you may provide the protective layer (topcoat layer) which consists of resin on a metal film so that a metal film may be protected and corrosion resistance may be improved. Such a protective layer can be formed by applying a paint on a metal film and irradiating with ultraviolet rays or thermosetting, if the resin is contained, as in the case of the base layer, and the resin used is the same resin as the base layer. Can be used. In this way, when the topcoat layer is formed, the resin enters the cracks, strengthening the metal film, and preventing the metal film from being corroded. Even when the metal film is corroded, the spread of corrosion is prevented. Therefore, the corrosion resistance can be greatly improved.

以上のように、本発明は、無電解めっきにより被膜を形成しているため、基材の大きさに関する制約が少ない。また、耐環境性および光輝性に優れたパラジウムまたはその合金で金属被膜を形成しているため、耐食性、耐環境性および光輝性に優れ、高い光輝性の金属光沢を長期に渡って維持できる。   As described above, in the present invention, since the coating is formed by electroless plating, there are few restrictions on the size of the substrate. Further, since the metal film is formed of palladium or an alloy thereof excellent in environmental resistance and glitter, the corrosion resistance, environment resistance and glitter are excellent, and a high gloss metallic luster can be maintained for a long time.

そのため、本発明に係る電磁波透過性材料は、携帯電話の筐体、タブレット筐体、テレビやカメラ等の電磁波を用いてリモートコントロールする電子部品のアンテナレドーム、自動車衝突防止用レーダーのレドーム、キーレスエントリーのドアノブ等の電磁波透過性と装飾性の必要な部材として好適に用いることができる。   Therefore, the electromagnetic wave transmissive material according to the present invention includes a cellular phone casing, a tablet casing, an antenna radome for electronic parts that are remotely controlled using electromagnetic waves such as a TV and a camera, a radar radome for automobile collision prevention, and a keyless entry. It can be suitably used as a member that requires electromagnetic wave transparency and decorativeness, such as a door knob.

次に、実施例および比較例を示して本発明を具体的に説明するが、これらの実施例に限定されるものではない。   Next, although an Example and a comparative example are shown and this invention is demonstrated concretely, it is not limited to these Examples.

[実施例1]
基材として、20mm×50mm×0.3mmのCOP樹脂製のシートを用い、その一方の面に紫外線(UV)を照射して表面を改質した。
[Example 1]
A COP resin sheet having a size of 20 mm × 50 mm × 0.3 mm was used as a substrate, and one surface thereof was irradiated with ultraviolet rays (UV) to modify the surface.

この基材を、浴温45℃の苛性ソーダ水溶液(50gNaOH/L)に2分間浸漬して脱脂した後、純水で洗浄した。次に、45℃の条件下で市販のコンディショニング液に2分間浸漬した後、45℃の塩化第1スズ−塩化パラジウム水溶液0.3g/Lに2分間浸漬した。   This base material was degreased by being immersed in a caustic soda aqueous solution (50 g NaOH / L) having a bath temperature of 45 ° C. for 2 minutes, and then washed with pure water. Next, after being immersed in a commercially available conditioning solution for 2 minutes under the condition of 45 ° C., it was immersed in an aqueous solution of stannous chloride-palladium chloride at 45 ° C. for 2 minutes.

次に、15%の蟻酸ナトリウム水溶液に、基材を45℃の条件下で1分間浸漬し、基材の表面に触媒としてのパラジウム金属を吸着させた後、50℃に調整した以下の浴組成を有する無電解めっき浴に30秒浸漬し、厚さ20nmの純パラジウムの金属被膜を形成した。   Next, the substrate composition was immersed in a 15% sodium formate aqueous solution at 45 ° C. for 1 minute to adsorb palladium metal as a catalyst on the surface of the substrate, and then adjusted to 50 ° C. Was immersed in an electroless plating bath having a thickness of 30 nm to form a pure palladium metal film having a thickness of 20 nm.

無電解めっき浴
塩化パラジウム :0.01M(mol/L)
蟻酸ナトリウム :0.2M
チオジグリコール酸 :200mg/L
Electroless plating bath Palladium chloride: 0.01M (mol / L)
Sodium formate: 0.2M
Thiodiglycolic acid: 200 mg / L

得られた金属被膜は、柔らかくクラックの発生はなかった。また、76.5GHzでの電磁波透過減衰率は、−1.50dBであった。 The resulting metal coating was soft and free from cracks. Further, the electromagnetic wave transmission attenuation factor at 76.5 GHz was −1.50 dB.

[実施例2]
基材として、20mm×50mm×0.3mmのポリカーボネート製シートを用いた。この基材の一方の面にアクリル系樹脂を溶媒で希釈した塗布液をスプレー塗布し、その後、UV硬化させることにより、厚み20μmの下地層を形成した。
[Example 2]
A 20 mm × 50 mm × 0.3 mm polycarbonate sheet was used as the substrate. An undercoat layer having a thickness of 20 μm was formed by spray-coating a coating solution obtained by diluting an acrylic resin with a solvent on one surface of the substrate and then curing the coating with UV.

下地層が形成された基材を、60℃の条件下でアルカリ脱脂を行った。その後、45℃の条件下で市販のコンディショニング液に2分間浸漬した後、塩化第1スズ−塩化パラジウム水溶液0.3g/Lに、45℃の条件下で、2分間浸漬した。   The base material on which the underlayer was formed was alkali degreased at 60 ° C. Then, after being immersed in a commercially available conditioning solution for 2 minutes at 45 ° C, it was immersed in 0.3 g / L of a stannous chloride-palladium chloride aqueous solution for 2 minutes at 45 ° C.

次に、基材を10%の硫酸水溶液に、45℃の条件下で1分間浸漬して、下地層に触媒としてのパラジウム金属を吸着させた。   Next, the base material was immersed in a 10% aqueous sulfuric acid solution at 45 ° C. for 1 minute to adsorb palladium metal as a catalyst to the underlayer.

下地層にパラジウム金属を吸着させた基材を、50℃に調整した以下の浴組成を有する無電解めっき浴に40秒浸漬し、下地層の表面にパラジウムーリンから成る合金被膜を形成した。   The base material with palladium metal adsorbed on the underlayer was immersed in an electroless plating bath having the following bath composition adjusted to 50 ° C. for 40 seconds to form an alloy film composed of palladium-phosphorous on the surface of the underlayer.

無電解めっき浴
塩化パラジウム :0.01M(mol/L)
次亜リン酸ナトリウム :0.2M
チオジグリコール酸 :1.0g/L
Electroless plating bath Palladium chloride: 0.01M (mol / L)
Sodium hypophosphite: 0.2M
Thiodiglycolic acid: 1.0 g / L

そして、基材を無電解めっき浴から引き揚げると、クラックが残留応力により生じ、単位面積(1mm)当たりに微細な微細金属領域が8910個分布したパラジウム−リン合金金属被膜から成る電磁波透過用金属被膜を得た。このとき形成された金属被膜の膜厚は60nmであり、76.5GHzでの電磁波透過減衰率は、−0.40dBであった。 When the substrate is lifted from the electroless plating bath, a crack is generated due to residual stress, and an electromagnetic wave transmitting metal comprising a palladium-phosphorus alloy metal coating in which 8910 fine metal regions are distributed per unit area (1 mm 2 ). A coating was obtained. The film thickness of the metal coating formed at this time was 60 nm, and the electromagnetic wave transmission attenuation rate at 76.5 GHz was −0.40 dB.

[実施例3]
無電解めっき浴に浸漬する時間を70秒に変更した以外は、実施例2と同様にしてパラジウム−リン合金被膜を形成した。このとき基材の表面に設けられた微細金属領域の分布率は2050個/mm、金属被膜の膜厚は70nmであった。また、76.5GHzでの電磁波透過減衰率は、−0.95dBであった。
[Example 3]
A palladium-phosphorus alloy film was formed in the same manner as in Example 2 except that the time of immersion in the electroless plating bath was changed to 70 seconds. At this time, the distribution ratio of the fine metal region provided on the surface of the substrate was 2050 / mm 2 , and the film thickness of the metal coating was 70 nm. Further, the electromagnetic wave transmission attenuation factor at 76.5 GHz was -0.95 dB.

[実施例4]
無電解めっき浴に浸漬する時間を90秒に変更した以外は、実施例1と同様にして電磁波透過用金属被膜を得た。このとき基材の表面に設けられた微細金属領域の分布率は463個/mmであり、金属被膜の膜厚は100nmであり、76.5GHzでの電磁波透過減衰率は、−1.20dBであった。
[Example 4]
A metal film for electromagnetic wave transmission was obtained in the same manner as in Example 1 except that the time of immersion in the electroless plating bath was changed to 90 seconds. At this time, the distribution ratio of the fine metal region provided on the surface of the base material is 463 / mm 2 , the thickness of the metal coating is 100 nm, and the electromagnetic wave transmission attenuation rate at 76.5 GHz is −1.20 dB. Met.

[実施例5]
下記の無電解めっき浴に変更した以外は、実施例2と同様にして、パラジウム−リン合金被膜を形成した。このとき基材の表面に設けられた微細金属領域の分布率は3560個/mm、金属被膜の膜厚は70nmであり、76.5GHzでの電磁波透過減衰率は、−0.90dBであった。
[Example 5]
A palladium-phosphorus alloy film was formed in the same manner as in Example 2 except that the electroless plating bath was changed to the following. At this time, the distribution ratio of the fine metal region provided on the surface of the substrate was 3560 / mm 2 , the film thickness of the metal coating was 70 nm, and the electromagnetic wave transmission attenuation rate at 76.5 GHz was −0.90 dB. It was.

無電解めっき浴
塩化パラジウム :0.01M(mol/L)
次亜リン酸ナトリウム :0.2M
チオジグリコール酸 :3.0g/L
Electroless plating bath Palladium chloride: 0.01M (mol / L)
Sodium hypophosphite: 0.2M
Thiodiglycolic acid: 3.0 g / L

[実施例6]
実施例2で得られた金属被膜の上に、アクリル系樹脂を溶媒で希釈した塗布液をスプレー塗布し、その後、UV硬化させることにより、厚み20μmのトップコート層を形成した。
[Example 6]
On the metal film obtained in Example 2, a coating solution obtained by diluting an acrylic resin with a solvent was spray-coated, and then UV-cured to form a topcoat layer having a thickness of 20 μm.

[比較例1]
下記の無電解めっき浴に変更した以外、実施例2と同様にして、基材上にニッケル−リン合金めっきを形成した。被膜の膜厚は、70nmであったが、明確なクラックは認められなかった。また、透過減衰率は−7.50dBであった。
[Comparative Example 1]
A nickel-phosphorus alloy plating was formed on the substrate in the same manner as in Example 2 except that the electroless plating bath was changed to the following. The film thickness was 70 nm, but no clear cracks were observed. The transmission attenuation factor was −7.50 dB.

無電解めっき浴
塩化ニッケル :0.01M(mol/L)
次亜リン酸ナトリウム :0.2M
チオジグリコール酸 :1.0g/L
Electroless plating bath Nickel chloride: 0.01M (mol / L)
Sodium hypophosphite: 0.2M
Thiodiglycolic acid: 1.0 g / L

[比較例2]
基材として、20mm×50mm×0.3mmのCOP製シートを用いた。この基材表面に、厚さ20nmの純パラジウムをスパッタ法により形成した。
この被膜の組成を分析したところ、リン及び水素の含有量は0であり、クラックの数も0であった。
また、この被膜の76.5GHzでの電磁波透過減衰率は、−3.7dBであった。
[Comparative Example 2]
A 20 mm × 50 mm × 0.3 mm COP sheet was used as the substrate. Pure palladium having a thickness of 20 nm was formed on the surface of the substrate by sputtering.
When the composition of this film was analyzed, the contents of phosphorus and hydrogen were 0, and the number of cracks was 0.
Moreover, the electromagnetic wave transmission attenuation factor of this coating film at 76.5 GHz was -3.7 dB.

〈評価〉
各実施例で得た被膜を用いて、アジレント社製 ネットワークアナライザーを用いて各被膜の76.6GHzにおける電磁波透過減衰率を評価した。電波の透過量は、減衰率が−3dBで半減するため、電磁波透過性の評価基準として、−3dBが良く用いられるので、−3dBを実用レベルの下限として評価した。
測定方法は、基材のみの減衰率を測定し、得られた試料の減衰率を測定した。その後、実施例、比較例で得られた減衰率から、基材のみの減衰率を差し引き、金属被膜のみの減衰率を求めた。
その結果を表1に示す。
<Evaluation>
Using the coating obtained in each example, the electromagnetic wave transmission attenuation rate at 76.6 GHz of each coating was evaluated using a network analyzer manufactured by Agilent. Since the attenuation of the radio wave is halved at −3 dB, −3 dB is often used as an evaluation standard for electromagnetic wave permeability. Therefore, −3 dB was evaluated as the lower limit of the practical level.
In the measurement method, the attenuation rate of only the base material was measured, and the attenuation rate of the obtained sample was measured. Thereafter, the attenuation rate of only the base material was subtracted from the attenuation rates obtained in the examples and comparative examples, and the attenuation rate of only the metal coating was obtained.
The results are shown in Table 1.

Figure 2014214353
Figure 2014214353

表1に示すように、実施例の被膜は、電磁波の透過減衰率が極めて小さく、十分な電磁波透過性を有することが確認された。また、80℃、90%での高湿試験を24時間行ったところ、実施例1〜5では、金属光沢を有し、装飾性は問題のないレベルであり、実施例6では、点状腐食は認められず、優れた金属光沢を示したが、比較例1では、多数の点状腐食がみられ、金属光沢が失われた。   As shown in Table 1, it was confirmed that the coating films of the examples had a very low electromagnetic wave transmission attenuation rate and sufficient electromagnetic wave permeability. Further, when a high humidity test at 80 ° C. and 90% was conducted for 24 hours, Examples 1 to 5 had a metallic luster and the decorative property was at a level with no problem. In Example 6, point corrosion However, in Comparative Example 1, many point-like corrosions were observed and the metallic luster was lost.

本件発明に係る電磁波透過用金属被膜は、パラジウムまたはパラジウム合金からなり、無電解めっき法を採用することにより、外観上、十分な金属光沢を有し、且つ、電磁波を透過可能な金属被膜を、種々の形状の基材の表面に設けることができる。従って、多様な製品に、外観上、十分な金属光沢を有し、且つ、電磁波を透過可能な材料を量産性よく設けることが可能になる。   The metal film for electromagnetic wave transmission according to the present invention is made of palladium or a palladium alloy, and by adopting an electroless plating method, a metal film having a sufficient metallic luster on the appearance and capable of transmitting electromagnetic waves, It can be provided on the surface of a substrate of various shapes. Therefore, it is possible to provide a variety of products with a material having sufficient metallic luster in appearance and capable of transmitting electromagnetic waves with high productivity.

1・・・電磁波透過性基体
2・・・下地層
3・・・電磁波透過性金属被膜
4・・・クラック
5・・・微細金属領域
DESCRIPTION OF SYMBOLS 1 ... Electromagnetic wave transmission base | substrate 2 ... Underlayer 3 ... Electromagnetic wave permeable metal coating 4 ... Crack 5 ... Fine metal area | region

Claims (7)

電磁波透過性基材の表面に金属被膜を設けた電磁波透過性材料であって、前記金属被膜は、無電解めっきにより形成されたパラジウムまたはパラジウム合金からなり、膜厚が10nm〜1μmであることを特徴とする電磁波透過性材料。 An electromagnetic wave transmissive material in which a metal film is provided on the surface of an electromagnetic wave transmissive substrate, wherein the metal film is made of palladium or a palladium alloy formed by electroless plating and has a film thickness of 10 nm to 1 μm. An electromagnetic wave-transmitting material characterized. 前記金属被膜の膜厚が、20〜500nmであることを特徴とする請求項1に記載の電磁波透過性材料。 2. The electromagnetic wave transmissive material according to claim 1, wherein the metal film has a thickness of 20 to 500 nm. 前記金属被膜の膜厚が、30〜200nmであることを特徴とする請求項2に記載の電磁波透過性材料。   The electromagnetic wave transmissive material according to claim 2, wherein the metal film has a thickness of 30 to 200 nm. 前記金属被膜が、クラックにより分割された微細金属領域を有し、該微細金属領域が、単μ位面積(1mm)当たり2〜10000個であることを特徴とする請求項1乃至3のいずれかに記載の電磁波透過性材料。 4. The metal film according to claim 1, wherein the metal film has fine metal regions divided by cracks, and the number of fine metal regions is 2 to 10,000 per 1 μm area (1 mm 2 ). The electromagnetic wave-transmitting material according to crab. 前記クラックの幅が、クラックの幅が10nm〜2μmであることを特徴とする請求項4に記載の電磁波透過性材料。 The electromagnetic wave transmitting material according to claim 4, wherein the crack has a width of 10 nm to 2 μm. 前記金属被膜は、電磁波透過性基材の表面に設けた下地層の上に形成されていることを特徴とする請求項1乃至5のいずれかに記載の電磁波透過性材料。   6. The electromagnetic wave transmissive material according to claim 1, wherein the metal coating is formed on an underlayer provided on the surface of the electromagnetic wave transmissive substrate. 前記金属被膜の上に保護層を設けたことを特徴とする請求項1乃至6のいずれかに記載の電磁波透過性材料。 The electromagnetic wave transmissive material according to claim 1, wherein a protective layer is provided on the metal coating.
JP2013093255A 2013-04-26 2013-04-26 Electromagnetic wave transmissible material Pending JP2014214353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013093255A JP2014214353A (en) 2013-04-26 2013-04-26 Electromagnetic wave transmissible material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093255A JP2014214353A (en) 2013-04-26 2013-04-26 Electromagnetic wave transmissible material

Publications (1)

Publication Number Publication Date
JP2014214353A true JP2014214353A (en) 2014-11-17

Family

ID=51940414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093255A Pending JP2014214353A (en) 2013-04-26 2013-04-26 Electromagnetic wave transmissible material

Country Status (1)

Country Link
JP (1) JP2014214353A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152252A1 (en) * 2015-03-20 2016-09-29 日本写真印刷株式会社 Matte metal tone decorative sheet and manufacturing method therefor
WO2017030050A1 (en) * 2015-08-19 2017-02-23 株式会社ニコン Method for manufacturing wiring pattern, method for manufacturing electroconductive film, method for manufacturing transistor
WO2018131652A1 (en) * 2017-01-13 2018-07-19 株式会社 アルファ Door handle member for vehicle and exterior member for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152252A1 (en) * 2015-03-20 2016-09-29 日本写真印刷株式会社 Matte metal tone decorative sheet and manufacturing method therefor
WO2017030050A1 (en) * 2015-08-19 2017-02-23 株式会社ニコン Method for manufacturing wiring pattern, method for manufacturing electroconductive film, method for manufacturing transistor
CN107709609A (en) * 2015-08-19 2018-02-16 株式会社尼康 The manufacture method of the manufacture method of wiring pattern, the manufacture method of conducting film and transistor
JPWO2017030050A1 (en) * 2015-08-19 2018-05-31 株式会社ニコン Wiring pattern manufacturing method, conductive film manufacturing method, and transistor manufacturing method
CN107709609B (en) * 2015-08-19 2020-08-14 株式会社尼康 Method for manufacturing wiring pattern, method for manufacturing conductive film, and method for manufacturing transistor
WO2018131652A1 (en) * 2017-01-13 2018-07-19 株式会社 アルファ Door handle member for vehicle and exterior member for vehicle

Similar Documents

Publication Publication Date Title
JP5465030B2 (en) Electromagnetic wave transmitting metal film, method of forming electromagnetic wave transmitting metal film, and on-vehicle radar device
TWI524939B (en) Stable catalysts for electroless metallization
WO2013065845A1 (en) Metal coating for electromagnetic wave transmission, method for producing metal coating for electromagnetic wave transmission, and radome for vehicle radar device
Guo et al. Electroless nickel deposition of a palladium‐activated self‐assembled monolayer on polyester fabric
JP6171189B2 (en) Thin coating on material
Lien et al. Electroless silver plating on tetraethoxy silane-bridged fiber glass
CN102933745B (en) The method utilizing the surface of the substrate that metal level coated non-metallic material makes
JP5674561B2 (en) Coating composition for electroless plating
EP3181724A2 (en) Environmentally friendly stable catalysts for electroless metallization of printed circuit boards and through-holes
Zhao et al. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)
JP2014214353A (en) Electromagnetic wave transmissible material
JP4013021B2 (en) Transparent electromagnetic shielding material and manufacturing method thereof
EP3181723A2 (en) Environmentally friendly stable catalysts for electroless metallization of printed circuit boards and through-holes
CN104718068A (en) Method for manufacturing product with bright surface
US20170171988A1 (en) Environmentally friendly stable catalysts for electroless metallization of printed circuit boards and through-holes
US20220235467A1 (en) Electroless metal coatings exhibiting wave permeability and method for the manufacture thereof
Chen et al. The copper sulfide coating on polyacrylonitrile with a chelating agent of ethylenediaminetetraacetic acid by an electroless deposition method and its EMI shielding effectiveness
CN109306478B (en) Sheet, metal net and manufacturing method thereof
US20220213600A1 (en) Light permeable metallic coatings and method for the manufacture thereof
JP2015110836A (en) Electromagnetic wave transmission meal coating film, and radome for car-mounted radar device
JP5615881B2 (en) Electroless plating method
WO2016017792A1 (en) Catalyst-containing metal silicon oligomer, method for manufacturing same, and application for catalyst-containing metal silicon oligomer
JPH1072676A (en) Electromagnetic wave shielding material and its production
JP2013253283A (en) Electroless plating bath
JP6284536B2 (en) Coating composition for electroless plating