JP2014212645A - Power storage system - Google Patents

Power storage system Download PDF

Info

Publication number
JP2014212645A
JP2014212645A JP2013088431A JP2013088431A JP2014212645A JP 2014212645 A JP2014212645 A JP 2014212645A JP 2013088431 A JP2013088431 A JP 2013088431A JP 2013088431 A JP2013088431 A JP 2013088431A JP 2014212645 A JP2014212645 A JP 2014212645A
Authority
JP
Japan
Prior art keywords
secondary battery
storage system
monitoring
battery
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013088431A
Other languages
Japanese (ja)
Inventor
進 西田
Susumu Nishida
進 西田
富士雄 須藤
Fujio Sudo
富士雄 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013088431A priority Critical patent/JP2014212645A/en
Publication of JP2014212645A publication Critical patent/JP2014212645A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Abstract

PROBLEM TO BE SOLVED: To provide a power storage system capable of improving independence without depending upon an external apparatus and supplying stable electric power while achieving size and weight reductions.SOLUTION: When a power storage system 1 is started by a starting signal of the power storage system, an internal power supply circuit 17 is energized from a secondary battery 11, and the internal power supply circuit 17 converts a voltage from the secondary battery 11 and supplies required electric power to a battery monitor and control circuit 16. The battery monitor and control circuit 16 performs and continues monitor and control operations while all electric power required for monitor and control of the power storage system 1 including monitor of the secondary battery 11 and connection and disconnection control with/from a main circuit 20 by switch driving is being supplied from the internal power supply circuit 17 after the power storage system 1 is started.

Description

本発明の実施形態は、二次電池を内蔵する蓄電システムに関する。   Embodiments described herein relate generally to a power storage system including a secondary battery.

二次電池を内蔵し、主回路との接続・切断を制御しながら、内蔵した二次電池を充放電する蓄電システムにおいては、内蔵した二次電池の状態を監視し、その状態に基づき二次電池の充電動作、あるいは二次電池から外部の主回路上に接続された各種機器への電力供給(放電動作)、さらには二次電池の特性や安全性を考慮した過充電や過放電保護動作を含め、主回路との接断が制御される。   In an energy storage system that has a built-in secondary battery and controls connection / disconnection to / from the main circuit while charging / discharging the built-in secondary battery, the status of the built-in secondary battery is monitored, and the secondary battery is Battery charging operation, power supply (discharge operation) from secondary battery to various devices connected to external main circuit, and overcharge and overdischarge protection operation considering the characteristics and safety of secondary battery Connection with the main circuit is controlled.

このような主回路との接断を制御する機能を実現するため、自システム内には、例えば、専用の制御部等が設けられる。この制御部は、二次電池の状態を含む各種情報を判定して制御信号を生成する電子回路を中心とした制御回路部分、及び制御信号に基づき主回路との接断を担うスイッチ機構としてのパワーリレーやコンタクタ部分等を含み構成される。   In order to realize such a function of controlling connection / disconnection with the main circuit, for example, a dedicated control unit or the like is provided in the own system. This control unit determines the various information including the state of the secondary battery and generates a control signal as a control circuit part centered on the electronic circuit, and as a switch mechanism responsible for connection to the main circuit based on the control signal It includes power relays and contactor parts.

特開2008−5622号公報(第16ページ、図1)Japanese Patent Laying-Open No. 2008-5622 (page 16, FIG. 1)

ところで、上述した制御動作に必要な電力は、制御回路部分についてはわずかであるものの、スイッチ機構としてのパワーリレーやコンタクタ等は電力消費が多く、また、その消費量も、取り扱う電流等の大容量化に伴って増大するとともに、二次電池を複数接続して大容量化した場合には更に増大する。そして、そのために必要な電力は、蓄電システム内の二次電池から供給するのではなく、蓄電システムの外部から供給される場合が多い。これは、自システム内での電力消費を極力低減し、より多くの電力を主回路上の負荷装置等へ供給可能にするためである。すなわち、制御動作に必要な電力は、制御部全体での電力消費の規模に応じて、例えば、外部に別途鉛蓄電池等が設けられるなど、外部の電力供給源から供給される。   By the way, although the power required for the control operation described above is very small for the control circuit portion, power relays and contactors as a switch mechanism consume a lot of power, and the amount of consumption is also large, such as the current handled. It increases with the increase in capacity, and further increases when the capacity is increased by connecting a plurality of secondary batteries. In many cases, the power required for this is supplied from the outside of the power storage system, not from the secondary battery in the power storage system. This is to reduce power consumption in the system as much as possible and to supply more power to a load device or the like on the main circuit. That is, the electric power necessary for the control operation is supplied from an external power supply source, for example, a lead storage battery is provided outside, according to the scale of power consumption in the entire control unit.

しかしながら、このように外部に電力供給源を設けることは、蓄電システムとしての独立性が低下するとともに、小型軽量化の障害となって機動性も低下する。特に、複数の二次電池を内蔵した場合には、主回路との接断も各二次電池毎に制御する必要がある。このため、制御動作に必要な電力も増加し、電力容量に不足を生じたり、あるいは外部の電力供給源が大容量化・大型化するなど、蓄電システムとしての全体規模が増大する要因となっていた。   However, providing an external power supply source in this manner reduces the independence of the power storage system, and reduces the size and weight and reduces the mobility. In particular, when a plurality of secondary batteries are incorporated, it is necessary to control connection / disconnection with the main circuit for each secondary battery. For this reason, the power required for the control operation also increases, causing a shortage in power capacity or increasing the overall scale of the power storage system, such as increasing the capacity and size of an external power supply source. It was.

本発明の実施形態は、上述の事情を考慮してなされたものであり、外部機器に依存することのないように独立性を高めるとともに、本体の小型軽量化を図りつつ、安定した電力を供給する蓄電システムを提供することを目的とする。   The embodiments of the present invention have been made in consideration of the above-described circumstances, and increase the independence so as not to depend on external equipment, and supply stable power while reducing the size and weight of the main body. An object of the present invention is to provide a power storage system.

上記目的を達成するために、第1の実施形態の蓄電システムは、二次電池と、前記二次電池の監視データを取得するセンサと、前記二次電池を主回路に接続、または主回路から切り離す接断手段と、前記センサからの監視データを受けとって前記二次電池の状態を監視するとともに起動・停止信号を受けとり、前記二次電池の監視結果、及び受けとった起動・停止信号に基づいて前記接断手段を制御する監視・制御手段と、前記二次電池の電圧を所定の電圧に変換して自システム内の各部に所要の電力を供給する内部電源回路とを備えたことを特徴とする。   In order to achieve the above object, a power storage system according to a first embodiment includes a secondary battery, a sensor for obtaining monitoring data of the secondary battery, and the secondary battery connected to a main circuit or from the main circuit. The connection means for disconnecting and receiving the monitoring data from the sensor to monitor the state of the secondary battery and receiving the start / stop signal, based on the monitoring result of the secondary battery and the received start / stop signal The monitoring and control means for controlling the connection and disconnection means, and an internal power supply circuit for converting the voltage of the secondary battery into a predetermined voltage and supplying required power to each part in the own system. To do.

また、第2の実施形態の蓄電システムは、複数の二次電池と、前記複数の二次電池のそれぞれの監視データを取得するセンサと、前記複数の二次電池をそれぞれに主回路に接続、または主回路から切り離す接断手段と、前記センサからの監視データを受けとって前記複数の二次電池の状態を監視するとともに起動・停止信号を受けとり、前記複数の二次電池の監視結果、及び受けとった起動・停止信号に基づいて前記接断手段を制御する監視・制御手段と、前記監視・制御手段における前記複数の二次電池の監視結果に基づいて、前記複数の二次電池の中から1つの二次電池を選択する電池選択回路と、前記電池選択回路により選択された二次電池の電圧を所定の電圧に変換して自システム内の各部に所要の電力を供給する内部電源回路とを備えたことを特徴とする。   The power storage system of the second embodiment includes a plurality of secondary batteries, a sensor that acquires monitoring data of each of the plurality of secondary batteries, and the plurality of secondary batteries connected to a main circuit, Alternatively, the connection means for disconnecting from the main circuit and the monitoring data from the sensor are monitored to monitor the state of the plurality of secondary batteries and the start / stop signal is received, and the monitoring results of the plurality of secondary batteries are received. Monitoring / controlling means for controlling the connection / disconnection means based on the start / stop signal, and monitoring results of the plurality of secondary batteries in the monitoring / controlling means. A battery selection circuit for selecting two secondary batteries, and an internal power supply circuit for converting the voltage of the secondary battery selected by the battery selection circuit into a predetermined voltage and supplying required power to each part in the own system And said that there were pictures.

本実施形態に係る蓄電システムの第1の実施例の構成の一例を示すブロック図。The block diagram which shows an example of a structure of the 1st Example of the electrical storage system which concerns on this embodiment. 突入電流の抑制制御を説明するためのタイミングチャート。The timing chart for demonstrating suppression control of inrush current. 図1に例示した蓄電システムの起動時の動作を説明するためのフローチャート。The flowchart for demonstrating the operation | movement at the time of starting of the electrical storage system illustrated in FIG. 本実施形態に係る蓄電システムの第2の実施例の構成の一例を示すブロック図。The block diagram which shows an example of a structure of the 2nd Example of the electrical storage system which concerns on this embodiment. 図4に例示した蓄電システムの起動時の動作を説明するためのフローチャート。5 is a flowchart for explaining an operation at the time of starting the power storage system illustrated in FIG. 4.

以下に、本実施形態に係る蓄電システムを実施するための最良の形態について、図1乃至図5を参照して説明する。   The best mode for carrying out the power storage system according to the present embodiment will be described below with reference to FIGS. 1 to 5.

図1は、本実施形態に係る蓄電システムの第1の実施例の構成の一例を示すブロック図である。この蓄電システム1は、二次電池11、この二次電池11の監視データを取得するセンサ12、接断手段としてのスイッチ(B)13、スイッチ(C)14、及びプリチャージ抵抗15、電池監視・制御回路16、内部電源回路17、ならびに、スイッチ(A)18から構成されている。   FIG. 1 is a block diagram illustrating an example of a configuration of a first example of the power storage system according to the present embodiment. The power storage system 1 includes a secondary battery 11, a sensor 12 that acquires monitoring data of the secondary battery 11, a switch (B) 13, a switch (C) 14, and a precharge resistor 15 as connection / disconnection means, battery monitoring A control circuit 16, an internal power supply circuit 17, and a switch (A) 18 are included.

二次電池11は、例えば、所定の電力容量を有するリチウムイオン二次電池等であり、この蓄電システム1の主構成品として外部の主回路20に接続制御され、負荷装置21を含む主回路20上に接続された各種の機器等に電力を供給するとともに、充電用電源(図示せず)からの電力供給を受けて充電される。センサ12は、この二次電池の状態を監視して監視データを取得するセンサである。本実施例においては、二次電池の監視データとして、その温度、及び電圧に加え、動作時の電流等を含む各種のデータを取得し、後述する電池監視・制御回路16に送出する。   The secondary battery 11 is, for example, a lithium ion secondary battery having a predetermined power capacity, and is connected and controlled to an external main circuit 20 as a main component of the power storage system 1 and includes a load device 21. While supplying electric power to various devices connected to the upper portion, the electric power is supplied from a charging power source (not shown) to be charged. The sensor 12 is a sensor that monitors the state of the secondary battery and acquires monitoring data. In this embodiment, as the monitoring data of the secondary battery, various data including the current during operation in addition to the temperature and voltage are acquired and sent to the battery monitoring / control circuit 16 described later.

スイッチ(B)13、及びスイッチ(C)14は、ともに電力線の回路を接断するスイッチ機構であり、プリチャージ抵抗15を含め、接断手段として、電池監視・制御回路16からの制御信号に基づいて、二次電池11を主回路20に接続または切り離す。これらスイッチ(B)13、及びスイッチ(C)14には、例えば、所要の電力を開閉可能な接点容量を有するパワーリレーやコンタクタ等が適用される。また、プリチャージ抵抗15は、本蓄電システム1を主回路20に接続する際の突入電流を制限するための抵抗であり、スイッチ(B)13を経由して二次電池11と主回路20との間に接続されている。   The switch (B) 13 and the switch (C) 14 are both switch mechanisms for connecting and disconnecting the power line circuit. The switch (B) 13 and the switch (C) 14 include a precharge resistor 15 as a connection means, and control signals from the battery monitoring / control circuit 16 Based on this, the secondary battery 11 is connected to or disconnected from the main circuit 20. For example, a power relay or a contactor having a contact capacity capable of opening and closing required power is applied to the switch (B) 13 and the switch (C) 14. The precharge resistor 15 is a resistor for limiting an inrush current when the power storage system 1 is connected to the main circuit 20, and the secondary battery 11 and the main circuit 20 are connected via the switch (B) 13. Connected between.

加えて、本実施例においては、二次電池11を主回路20に接続する際(蓄電システムON時)に、これら2つのスイッチの開閉タイミングを制御することによって、二次電池11と主回路との間での突入電流を抑制している。この突入電流の抑制制御について、図2を参照して以下に説明する。   In addition, in this embodiment, when the secondary battery 11 is connected to the main circuit 20 (when the power storage system is ON), the secondary battery 11 and the main circuit are controlled by controlling the opening / closing timing of these two switches. Inrush current between the two is suppressed. This inrush current suppression control will be described below with reference to FIG.

図2は、この突入電流抑制のための各スイッチの制御タイミングをモデル化してに例示した説明図である。この図2に示したように、蓄電システム1をONにして二次電池11を主回路20に接続する際は、いずれもOFF(開)状態の2つのスイッチ(B)13、及びスイッチ(C)14のうち、まずT0のタイミングでスイッチ(B)13がONされる。これによって、二次電池11と主回路20との間はプリチャージ抵抗を介して接続されるので、接続直後の過渡状態におけるこの間の最大電流は、プリチャージ抵抗によって決まる値に制限される。この状態は、電流制限期間として、電流値が安定するまでの所定の期間継続される。   FIG. 2 is an explanatory diagram illustrating the control timing of each switch for suppressing the inrush current as a model. As shown in FIG. 2, when the power storage system 1 is turned on and the secondary battery 11 is connected to the main circuit 20, both the two switches (B) 13 and the switch (C ) 14, first, the switch (B) 13 is turned on at the timing of T0. As a result, the secondary battery 11 and the main circuit 20 are connected via the precharge resistor, so that the maximum current during the transient state immediately after the connection is limited to a value determined by the precharge resistor. This state is continued as a current limiting period for a predetermined period until the current value is stabilized.

次いで、T1のタイミングでスイッチ(B)14もONされ、二次電池11と主回路20とが直接接続される。これら2つのスイッチがともにONされた状態は、重複期間として、所定の期間継続される。その後は、過渡状態が完全に終了したT2のタイミングでスイッチ(B)13がOFFされることによってプリチャージ抵抗15が切り離され、スイッチ(C)14を経由接続による定常動作に移行して運用可能状態になる。   Next, the switch (B) 14 is also turned ON at the timing of T1, and the secondary battery 11 and the main circuit 20 are directly connected. The state where both these two switches are ON is continued for a predetermined period as an overlapping period. After that, the switch (B) 13 is turned off at the timing of T2 when the transient state is completely ended, so that the precharge resistor 15 is disconnected, and the operation can be shifted to the steady operation by the connection via the switch (C) 14. It becomes a state.

電池監視・制御回路16は、センサ12から二次電池11の監視データを受けとってその状態を監視する。本実施例では二次電池11の温度、電圧、電流等のパラメータ等から、電池異常の検出や、その充放電状態や残容量等の推定を行って、二次電池11の状態を監視するものとしている。なお、図示しないが、表示部を設けてこれらの監視結果を表示したり、充電機能を設け、監視結果に基づき二次電池11を充電制御するように構成することも可能である。   The battery monitoring / control circuit 16 receives monitoring data of the secondary battery 11 from the sensor 12 and monitors its state. In the present embodiment, the state of the secondary battery 11 is monitored by detecting battery abnormality, estimating its charge / discharge state, remaining capacity, etc. from parameters such as the temperature, voltage and current of the secondary battery 11. It is said. Although not shown, a display unit may be provided to display these monitoring results, or a charging function may be provided to charge the secondary battery 11 based on the monitoring results.

また、蓄電システムON/OFF信号を受けとってスイッチ(B)13、及びスイッチ(C)14を制御し、この蓄電システム1と主回路20との接続を制御する。すなわち、ON時には、上述したように突入電流を抑制するように2つのスイッチを制御して運用可能状態にし、OFF時は、スイッチ(B)13、及びスイッチ(C)14を共にOFF(開状態)にする。なお、これら電池監視・制御回路16の制御動作に必要な電力は、スイッチ(B)13、及びスイッチ(C)14の駆動に必要な電力を含め、後述の内部電源回路17から供給される。   Further, the switch (B) 13 and the switch (C) 14 are controlled by receiving the power storage system ON / OFF signal, and the connection between the power storage system 1 and the main circuit 20 is controlled. That is, at the time of ON, as described above, the two switches are controlled so as to suppress the inrush current so as to be operable, and at the time of OFF, both the switch (B) 13 and the switch (C) 14 are turned off (open state). ). The power necessary for the control operation of the battery monitoring / control circuit 16 is supplied from an internal power supply circuit 17 described later, including the power necessary for driving the switch (B) 13 and the switch (C) 14.

内部電源回路17は、この蓄電システム1を起動・停止するための蓄電システム起動信号を受けとり、この信号に連動させてスイッチ(A)18を制御するとともに、この蓄電システム1の起動後は、二次電池11の電圧を変換し、上記した電池監視・制御回路16に必要な電力を供給する。この内部電源回路17は、例えばDC−DCコンバータ等により構成され、二次電池11からの出力電圧を電池監視・制御回路17で必要な電圧に変換して電池監視・制御回路16に供給する。   The internal power supply circuit 17 receives a power storage system start signal for starting and stopping the power storage system 1, controls the switch (A) 18 in conjunction with this signal, and after the power storage system 1 is started, The voltage of the secondary battery 11 is converted, and necessary power is supplied to the battery monitoring / control circuit 16 described above. The internal power supply circuit 17 is constituted by, for example, a DC-DC converter or the like, converts the output voltage from the secondary battery 11 into a necessary voltage by the battery monitoring / control circuit 17 and supplies the voltage to the battery monitoring / control circuit 16.

スイッチ(A)18は、蓄電システム起動信号に連動して、内部電源回路17によって開閉制御されるスイッチである。すなわち、起動時にはON(閉状態)になって二次電池11の電圧を内部電源回路17に供給を開始するとともに、停止時にはOFF(開状態)に制御されて、電圧供給を停止する。   The switch (A) 18 is a switch that is controlled to be opened and closed by the internal power supply circuit 17 in conjunction with the power storage system activation signal. That is, it is turned on (closed state) at the time of startup and starts supplying the voltage of the secondary battery 11 to the internal power supply circuit 17, and is controlled to be turned off (opened state) at the time of stop to stop the voltage supply.

次に、前出の図1及び図2、ならびに図3のフローチャートを参照して、上述のように構成された蓄電システム1の動作について説明する。なお、以下の説明においては、停止状態にあるこの蓄電システム1が起動され、主回路20上の負荷装置21に電力の供給が可能となる運用状態になるまでの動作を中心に説明する。   Next, the operation of the power storage system 1 configured as described above will be described with reference to the flowcharts of FIGS. 1 and 2 and FIG. 3 described above. In the following description, the operation from when the power storage system 1 in the stopped state is started up to the operation state in which power can be supplied to the load device 21 on the main circuit 20 will be mainly described.

まず、例えば上位システム等の外部機器から内部電源回路17に送られてくる蓄電システム起動信号がONになるのを待つ(ST31のN)。この信号がONになると(ST31のY)、内部電源回路17の制御によりスイッチ(A)18がONされ、本蓄電システム1が起動される(ST32)。スイッチ(A)18がONになって二次電池11の出力が内部電源回路17に接続されると、内部電源回路17では、この二次電池11からの電圧が電池監視・制御回路16に適するように変換され、電池監視・制御回路16に供給される。なお、以降説明する電池監視・制御回路16の動作に必要な電力は、すべてこの内部電源回路17から継続的に供給される(ST33)。   First, it waits for the power storage system activation signal sent from the external device such as the host system to the internal power supply circuit 17 to be turned on (N in ST31). When this signal is turned on (Y in ST31), the switch (A) 18 is turned on by the control of the internal power supply circuit 17, and the power storage system 1 is activated (ST32). When the switch (A) 18 is turned on and the output of the secondary battery 11 is connected to the internal power supply circuit 17, the voltage from the secondary battery 11 is suitable for the battery monitoring / control circuit 16 in the internal power supply circuit 17. And is supplied to the battery monitoring / control circuit 16. Note that all the electric power necessary for the operation of the battery monitoring / control circuit 16 described below is continuously supplied from the internal power supply circuit 17 (ST33).

次いで、内部電源回路17からの電力供給を受けて、電池監視・制御回路16では、監視・制御動作が開始される。すなわち、電池監視・制御回路16は、まずセンサ12から二次電池11の監視データを受けとって、その温度や電圧、電流等をモニタしつつ残容量の推定等も行って、二次電池の状態を監視する。なお、この監視動作は、起動時だけでなく、運用状態に移行した後も同様に継続される(ST34)。   Next, upon receiving power supply from the internal power supply circuit 17, the battery monitoring / control circuit 16 starts a monitoring / control operation. That is, the battery monitoring / control circuit 16 first receives monitoring data of the secondary battery 11 from the sensor 12 and estimates the remaining capacity while monitoring the temperature, voltage, current, etc. To monitor. Note that this monitoring operation is similarly continued not only at the time of activation but also after the transition to the operation state (ST34).

次いで、蓄電システム1を運用状態にするために、上位システム等の外部機器から電池監視・制御回路16に送られてくる蓄電システムON/OFF信号の状態が読み込まれる。そして、この信号がONになると(ST35のY)、運用状態に移行すべく、電池監視・制御回路16により、二次電池11と主回路20との接続時における突入電流の抑制制御が実行される。すなわち、電池監視・制御回路16は、図2に例示したようにスイッチ(B)13、及びスイッチ(C)14を制御する。そして、電流制御期間及び重複期間を経て、二次電池11と主回路20との接続が完了し、運用状態へ移行する(ST36)。   Next, in order to put the power storage system 1 into an operating state, the state of the power storage system ON / OFF signal sent from the external device such as the host system to the battery monitoring / control circuit 16 is read. When this signal is turned on (Y in ST35), the battery monitoring / control circuit 16 performs inrush current suppression control when the secondary battery 11 and the main circuit 20 are connected in order to shift to the operating state. The That is, the battery monitoring / control circuit 16 controls the switch (B) 13 and the switch (C) 14 as illustrated in FIG. Then, after the current control period and the overlap period, the connection between the secondary battery 11 and the main circuit 20 is completed, and the operation state is shifted (ST36).

このようにして起動が完了して運用状態に移行後、蓄電システム1は、電池監視・制御動作を継続しながら、負荷装置21を含む主回路20上の各機器に電力を供給する。   After the start-up is completed and the operation state is shifted to the operation state in this way, the power storage system 1 supplies power to each device on the main circuit 20 including the load device 21 while continuing the battery monitoring / control operation.

なお、上記した電池監視・制御回路16の電力消費の、二次電池11の容量に対する割合については、一例として次のように試算される。すなわち、蓄電システムとしてDC300V、40Aの容量を考えた場合、電池監視・制御回路16の動作電圧をDC12V、スイッチ(B)13、及びスイッチ(C)14の駆動電流を含めた消費電流を3Aとすると、電池監視・制御回路16の消費電力は12×3=36Wとなり、これを内部電源回路17から供給するものとしてその電源変換効率を80%とすると、内部電源回路17の入力側の必要電流は、36W/300V/0.8=0.15Aとなる。この値は、上記した蓄電システムの定格電流40Aに対して0.4%程度であり、容量に占める割合は小さいため、蓄電システムの運用の支障にはならないものと評価される。   The ratio of the power consumption of the battery monitoring / control circuit 16 to the capacity of the secondary battery 11 is calculated as follows as an example. That is, when considering the capacity of DC 300V and 40A as the power storage system, the operating voltage of the battery monitoring / control circuit 16 is DC 12V, and the current consumption including the driving current of the switch (B) 13 and the switch (C) 14 is 3A. Then, the power consumption of the battery monitoring / control circuit 16 is 12 × 3 = 36 W. If this is supplied from the internal power supply circuit 17 and its power conversion efficiency is 80%, the required current on the input side of the internal power supply circuit 17 Is 36 W / 300 V / 0.8 = 0.15 A. This value is about 0.4% with respect to the above-mentioned rated current 40A of the power storage system, and since the proportion of the capacity is small, it is evaluated that it does not hinder the operation of the power storage system.

以上説明したように、本実施例においては、蓄電システム起動信号によって蓄電システム1が起動されると、二次電池11から内部電源回路17に通電され、内部電源回路17は二次電池11からの電圧を変換して電池監視・制御回路16に必要な電力を供給している。そして、電池監視・制御回路16は、蓄電システム1の起動以降、二次電池11の監視やスイッチ駆動による主回路20との接断制御を含む蓄電システム1の監視・制御に必要な電力を、すべて内部電源回路17から供給されつつ動作を継続している。   As described above, in the present embodiment, when the power storage system 1 is activated by the power storage system activation signal, the internal power supply circuit 17 is energized from the secondary battery 11, and the internal power supply circuit 17 is supplied from the secondary battery 11. The necessary power is supplied to the battery monitoring / control circuit 16 by converting the voltage. The battery monitoring / control circuit 16 supplies power necessary for monitoring / control of the power storage system 1 including monitoring of the secondary battery 11 and control of connection / disconnection with the main circuit 20 by switch driving after the power storage system 1 is started. The operation continues while being supplied from the internal power supply circuit 17.

すなわち、電池監視・制御回路への電力供給を外部の電力源から行うのではなく、自システム内の二次電池を供給源とし、内部電源回路により電圧変換して電池監視・制御回路に供給し所望の監視・制御動作を実行させている。   In other words, power is not supplied to the battery monitoring / control circuit from an external power source, but a secondary battery in its own system is used as the supply source, and the voltage is converted by the internal power supply circuit and supplied to the battery monitoring / control circuit. A desired monitoring / control operation is executed.

これにより、外部機器に依存することがなくなって、蓄電システムとしての独立性を高めることができるとともに、本体を小型軽量化することができる。   Thereby, it is not dependent on an external apparatus, and the independence as an electrical storage system can be improved, and a main body can be reduced in size and weight.

図4は、本実施形態に係る蓄電システムの第2の実施例の構成の一例を示すブロック図である。また図5は、この蓄電システムの第2の実施例の動作を説明するためのフローチャートである。この第2の実施例について、図1及び図3に示した第1の実施例の各部と同一の部分は同一の符号で示し、その説明を省略する。   FIG. 4 is a block diagram illustrating an example of a configuration of a second example of the power storage system according to the present embodiment. FIG. 5 is a flowchart for explaining the operation of the second embodiment of the power storage system. In the second embodiment, the same parts as those in the first embodiment shown in FIGS. 1 and 3 are denoted by the same reference numerals, and the description thereof is omitted.

この第2の実施例が第1の実施例と異なる点は、蓄電システムの監視及び制御動作に必要な電力を供給するにあたって、第1の実施例では、蓄電システムの備える二次電池を1個として、この二次電池を供給源にして電圧変換し、変換後の電力を用いて所望の動作を実行するよう構成したのに対し、第2の実施例では、複数個(この実施例では2個)の二次電池を備え、これらの中から電池監視結果に基づきひとつの二次電池を選択するとともに、この選択した二次電池を供給源にして電圧変換し、自システムの監視及び制御動作を実行するよう構成した点である。あわせて、複数個の二次電池は、個別に主回路との接断を制御されるように構成した点である。以下、前出の図1乃至図3、ならびに図4及び図5を参照して、その相違点を中心に説明する。   The second embodiment is different from the first embodiment in that, in supplying power necessary for the monitoring and control operation of the power storage system, in the first embodiment, one secondary battery provided in the power storage system is provided. In the second embodiment, a voltage conversion is performed using the secondary battery as a supply source, and a desired operation is performed using the converted power. And select one secondary battery based on the battery monitoring results, convert the voltage from the selected secondary battery as a supply source, and monitor and control the system. It is the point which comprised so that. In addition, the plurality of secondary batteries are configured such that the connection and disconnection with the main circuit are individually controlled. Hereinafter, the difference will be mainly described with reference to FIGS. 1 to 3 and FIGS.

図4に例示したように、この蓄電システム2は、複数個の二次電池として2個の二次電池(#1)11(#1)、及び二次電池(#2)11(#2)、これら複数の二次電池のそれぞれに対応して設けられたセンサ(#1)12(#1)、及びセンサ(#2)12(#2)、同じく複数の二次電池のそれぞれに対応して設けられた接断手段としてのスイッチ(B#1)13(#1)、スイッチ(C#1)14(#1)、プリチャージ抵抗(#1)15(#1)、スイッチ(B#2)13(#2)、スイッチ(C#2)14(#2)、及びプリチャージ抵抗(#2)15(#2)、電池監視・制御回路16a、内部電源回路17、スイッチ(A)18、ならびに電池選択回路19から構成されている。   As illustrated in FIG. 4, the power storage system 2 includes two secondary batteries (# 1) 11 (# 1) and a secondary battery (# 2) 11 (# 2) as a plurality of secondary batteries. The sensors (# 1) 12 (# 1) and the sensors (# 2) 12 (# 2) provided corresponding to the plurality of secondary batteries respectively correspond to the plurality of secondary batteries. Switch (B # 1) 13 (# 1), switch (C # 1) 14 (# 1), precharge resistor (# 1) 15 (# 1), switch (B #) 2) 13 (# 2), switch (C # 2) 14 (# 2), precharge resistor (# 2) 15 (# 2), battery monitoring / control circuit 16a, internal power supply circuit 17, switch (A) 18 and a battery selection circuit 19.

二次電池(#n)11(#n)、センサ(#n)12(#n)、スイッチ(B#n)13(#n)、スイッチ(C#n)14(#n)、及びプリチャージ抵抗(#n)15(#n)(nはいずれも1及び2)については、第1の実施例と同一であるので説明を省略する。   Secondary battery (#n) 11 (#n), sensor (#n) 12 (#n), switch (B # n) 13 (#n), switch (C # n) 14 (#n), and pre- The charge resistors (#n) 15 (#n) (n is 1 and 2) are the same as those in the first embodiment, and thus description thereof is omitted.

電池監視・制御回路16aは、各センサ12(#n)からの監視データを受けとってその状態を監視する点、及びスイッチ(B)13(#n)、及びスイッチ(C)14(#n)を開閉制御して、主回路20との間の接続を制御する点で、第1の実施例と同一である。ただし、電池の監視は各二次電池毎に行い、また主回路との接続制御も各二次電池毎に行う。   The battery monitoring / control circuit 16a receives monitoring data from each sensor 12 (#n) and monitors its state, and switches (B) 13 (#n) and switches (C) 14 (#n) Is the same as that of the first embodiment in that the connection between the main circuit 20 and the main circuit 20 is controlled. However, battery monitoring is performed for each secondary battery, and connection control with the main circuit is performed for each secondary battery.

さらに、電池監視・制御回路16aは、各電池の監視結果に基づいて、内部電源回路17に接続すべき二次電池を、これら複数個の二次電池(#n)11(#n)の中から選択し、電池選択回路19に通知する。本実施例においては、監視結果として電池残容量が最も多いと推定された二次電池を選択するものとしている。   Further, the battery monitoring / control circuit 16a selects a secondary battery to be connected to the internal power supply circuit 17 based on the monitoring result of each battery, among the plurality of secondary batteries (#n) 11 (#n). And the battery selection circuit 19 is notified. In this embodiment, the secondary battery that is estimated to have the largest remaining battery capacity as the monitoring result is selected.

内部電源回路17、及びスイッチ(A)18は、第1の実施例と同一であるので説明を省略する。電池選択回路19は、電池監視・制御回路16aにおける二次電池の選択制御の結果を受けて、複数個の二次電池(#n)11(#n)と内部電源回路17との間の接続を制御する。   Since the internal power supply circuit 17 and the switch (A) 18 are the same as those in the first embodiment, description thereof is omitted. The battery selection circuit 19 receives the result of the secondary battery selection control in the battery monitoring / control circuit 16 a, and connects between the plurality of secondary batteries (#n) 11 (#n) and the internal power supply circuit 17. To control.

次に、前出の図1〜図4、ならびに図5のフローチャートを参照して、上述のように構成された蓄電システム2の動作について、第1の実施例と同様、この蓄電システム2が起動され、主回路20上の負荷装置21に電力の供給が可能となる運用状態になるまでの動作を中心に説明する。   Next, referring to the flow charts of FIGS. 1 to 4 and FIG. 5, the operation of the power storage system 2 configured as described above is activated as in the first embodiment. The operation until the operation state in which power can be supplied to the load device 21 on the main circuit 20 will be mainly described.

図5のフローチャートにおいて、ST31〜ST33aの動作ステップについては、第1の実施例と同様であるので説明を省略する。ただし、ST33aの動作ステップにおいて、内部電源回路17に接続される二次電池11は、複数個の中からあらかじめ設定されたひとつが電池選択回路19で選択されて接続される。   In the flowchart of FIG. 5, the operation steps ST31 to ST33a are the same as those in the first embodiment, and thus the description thereof is omitted. However, in the operation step of ST33a, the secondary battery 11 connected to the internal power supply circuit 17 is selected and connected by a battery selection circuit 19 from a plurality of secondary batteries 11 set in advance.

次いで、内部電源回路17からの電力供給を受けて、電池監視・制御回路16aでは監視・制御動作が開始され、その中で、各二次電池(#n)11(#n)の残容量も推定される(ST34)。そして、これら残容量に基づいて、電池監視・制御回路16aは、内部電源回路17の電力供給源となるべき二次電池として、残容量の最も多い二次電池(#K)11(#K)(1≦K≦n)を選択する。その選択結果は、電池選択回路19に通知される(ST51)。   Next, upon receiving power supply from the internal power supply circuit 17, the battery monitoring / control circuit 16a starts monitoring / controlling operation, and the remaining capacity of each secondary battery (#n) 11 (#n) is also included therein. Estimated (ST34). Based on these remaining capacities, the battery monitoring / control circuit 16a is the secondary battery (#K) 11 (#K) having the largest remaining capacity as a secondary battery to be a power supply source of the internal power supply circuit 17. (1 ≦ K ≦ n) is selected. The selection result is notified to the battery selection circuit 19 (ST51).

この通知を受けて電池選択回路19は、複数個の中から選択された二次電池(#K)11(#K)を内部電源回路17に接続する。これによって、残容量の最も多い二次電池(#K)11(#K)が供給源となって内部電源回路17が動作し、さらに、電池監視・制御回路16aは、この内部電源回路17から給電されて、動作ステップST34の動作を継続する(ST52)。   Upon receiving this notification, the battery selection circuit 19 connects the secondary battery (#K) 11 (#K) selected from the plurality to the internal power supply circuit 17. As a result, the secondary battery (#K) 11 (#K) with the largest remaining capacity operates as the supply source, and the internal power supply circuit 17 operates. Further, the battery monitoring / control circuit 16a Power is supplied, and the operation of the operation step ST34 is continued (ST52).

次いで実行されるST35〜ST36aの動作ステップについては、第1の実施例と同様であるので、詳細な説明は省略する。ただし、ST36aの動作ステップにおける突入電流の抑制については、各二次電池(#n)11(#n)毎に個別に制御される。   Since the operation steps ST35 to ST36a to be executed next are the same as those in the first embodiment, detailed description thereof will be omitted. However, inrush current suppression in the operation step of ST36a is individually controlled for each secondary battery (#n) 11 (#n).

以上説明したように、本実施例においても、電池監視・制御回路への電力供給を外部のの電力源から行うのではなく、自システム内の二次電池を供給源とし、内部電源回路により電圧変換して電池監視・制御回路に供給し所望の監視・制御動作を実行させているので、第1の実施例と同様に、蓄電システムとしての独立性を高めることができるとともに、本体を小型軽量化することができる。   As described above, also in this embodiment, power is not supplied to the battery monitoring / control circuit from an external power source, but a secondary battery in its own system is used as a supply source, and voltage is supplied by an internal power supply circuit. Since it is converted and supplied to the battery monitoring / control circuit to execute the desired monitoring / control operation, the independence of the power storage system can be enhanced and the main body is small and lightweight as in the first embodiment. Can be

加えて、本実施例においては、複数個の二次電池の中から残容量の最も多い二次電池を電力供給源として自システムの監視・制御動作を実行しているので、安定した監視・制御動作を継続できるとともに、そのような安定した監視・制御動作を継続する中で、二次電池の監視状況や負荷の状況等の変化に適応させながら、複数個の二次電池に対し、個別に主回路との接断を制御できるので、安定した電力の供給が可能な蓄電システムを得ることができる。   In addition, in this embodiment, since the monitoring / control operation of the own system is executed using the secondary battery having the largest remaining capacity among the plurality of secondary batteries as the power supply source, stable monitoring / control is performed. While continuing the operation and continuing such stable monitoring and control operations, while adapting to changes in the monitoring status and load status of the secondary battery, individually for multiple secondary batteries Since connection / disconnection with the main circuit can be controlled, a power storage system capable of supplying stable power can be obtained.

なお、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   These embodiments are presented as examples, and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1、2 蓄電システム
11 二次電池
12 センサ
13 スイッチ(B)
14 スイッチ(C)
15 プリチャージ抵抗
16、16a 電池監視・制御回路
17 内部電源回路
18 スイッチ(A)
19 電池選択回路
20 主回路
21 負荷装置
1, 2 Storage system 11 Secondary battery 12 Sensor 13 Switch (B)
14 Switch (C)
15 Precharge resistors 16, 16a Battery monitoring / control circuit 17 Internal power supply circuit 18 Switch (A)
19 Battery selection circuit 20 Main circuit 21 Load device

Claims (7)

二次電池と、
前記二次電池の監視データを取得するセンサと、
前記二次電池を主回路に接続、または主回路から切り離す接断手段と、
前記センサからの監視データを受けとって前記二次電池の状態を監視するとともに起動・停止信号を受けとり、前記二次電池の監視結果、及び受けとった起動・停止信号に基づいて前記接断手段を制御する監視・制御手段と、
前記二次電池の電圧を所定の電圧に変換して自システム内の各部に所要の電力を供給する内部電源回路と
を備えたことを特徴とする蓄電システム。
A secondary battery,
A sensor for obtaining monitoring data of the secondary battery;
Connection means for connecting the secondary battery to the main circuit, or disconnecting from the main circuit,
Receives monitoring data from the sensor to monitor the state of the secondary battery, receives a start / stop signal, and controls the connection / disconnection means based on the monitoring result of the secondary battery and the received start / stop signal. Monitoring / controlling means,
An electrical storage system comprising: an internal power supply circuit that converts a voltage of the secondary battery into a predetermined voltage and supplies required power to each part in the system.
前記監視・制御手段は、前記二次電池を主回路に接続制御する際に、突入電流の抑制制御を行いながら接続することを特徴とする請求項1に記載の蓄電システム。   2. The power storage system according to claim 1, wherein the monitoring / control unit performs connection control while performing suppression control of inrush current when performing connection control of the secondary battery to a main circuit. 前記監視データは、前記二次電池の出力電圧及び温度を含むことを特徴とする請求項1または請求項2に記載の蓄電システム。   The power storage system according to claim 1, wherein the monitoring data includes an output voltage and a temperature of the secondary battery. 複数の二次電池と、
前記複数の二次電池のそれぞれの監視データを取得するセンサと、
前記複数の二次電池をそれぞれに主回路に接続、または主回路から切り離す接断手段と、
前記センサからの監視データを受けとって前記複数の二次電池の状態を監視するとともに起動・停止信号を受けとり、前記複数の二次電池の監視結果、及び受けとった起動・停止信号に基づいて前記接断手段を制御する監視・制御手段と、
前記監視・制御手段における前記複数の二次電池の監視結果に基づいて、前記複数の二次電池の中から1つの二次電池を選択する電池選択回路と、
前記電池選択回路により選択された二次電池の電圧を所定の電圧に変換して自システム内の各部に所要の電力を供給する内部電源回路と
を備えたことを特徴とする蓄電システム。
A plurality of secondary batteries;
A sensor for acquiring monitoring data of each of the plurality of secondary batteries;
Connection means for connecting to or disconnecting from the main circuit each of the plurality of secondary batteries,
The monitoring data from the sensor is received to monitor the state of the plurality of secondary batteries and the start / stop signal is received, and the connection based on the monitoring result of the plurality of secondary batteries and the received start / stop signal. Monitoring / control means for controlling the disconnection means;
A battery selection circuit that selects one secondary battery from the plurality of secondary batteries based on a monitoring result of the plurality of secondary batteries in the monitoring / control unit;
An electrical storage system comprising: an internal power supply circuit that converts a voltage of a secondary battery selected by the battery selection circuit into a predetermined voltage and supplies required power to each unit in the system.
前記電池選択回路は、前記複数の二次電池の中から1つの二次電池を選択する際に、前記複数の二次電池の監視結果に基づき電池残容量の最も大きい二次電池を選択することを特徴とする請求項4に記載の蓄電システム。   The battery selection circuit selects a secondary battery having the largest remaining battery capacity based on a monitoring result of the plurality of secondary batteries when selecting one secondary battery from the plurality of secondary batteries. The power storage system according to claim 4. 前記監視・制御手段は、前記複数の二次電池を主回路に接続制御する際に、それぞれの二次電池毎に突入電流の抑制制御を行いながら接続することを特徴とする請求項4または請求項5に記載の蓄電システム。   The monitoring / control means, when controlling connection of the plurality of secondary batteries to a main circuit, performs connection control while performing inrush current suppression control for each secondary battery. Item 6. The power storage system according to Item 5. 前記監視データは、前記複数の二次電池のそれぞれの出力電圧及び温度を含むことを特徴とする請求項4乃至請求項6のいずれか1項に記載の蓄電システム。   The power storage system according to any one of claims 4 to 6, wherein the monitoring data includes output voltages and temperatures of the plurality of secondary batteries.
JP2013088431A 2013-04-19 2013-04-19 Power storage system Pending JP2014212645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013088431A JP2014212645A (en) 2013-04-19 2013-04-19 Power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013088431A JP2014212645A (en) 2013-04-19 2013-04-19 Power storage system

Publications (1)

Publication Number Publication Date
JP2014212645A true JP2014212645A (en) 2014-11-13

Family

ID=51932005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013088431A Pending JP2014212645A (en) 2013-04-19 2013-04-19 Power storage system

Country Status (1)

Country Link
JP (1) JP2014212645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163008A1 (en) * 2018-02-21 2019-08-29 Tdk株式会社 Dc feeding system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045673A (en) * 1999-08-03 2001-02-16 Tokyo R & D Co Ltd Motor-driven device and charge/discharge of battery unit
JP2008187884A (en) * 2007-01-04 2008-08-14 Toyota Motor Corp Power supply system, vehicle with the same, and its control method
JP2010166760A (en) * 2009-01-19 2010-07-29 Toyota Motor Corp Power supply system
WO2012117503A1 (en) * 2011-02-28 2012-09-07 日立ビークルエナジー株式会社 Battery control device
JP2013021778A (en) * 2011-07-08 2013-01-31 Sony Corp Control device, power storage system, electronic apparatus, electric vehicle, and electric power system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045673A (en) * 1999-08-03 2001-02-16 Tokyo R & D Co Ltd Motor-driven device and charge/discharge of battery unit
JP2008187884A (en) * 2007-01-04 2008-08-14 Toyota Motor Corp Power supply system, vehicle with the same, and its control method
JP2010166760A (en) * 2009-01-19 2010-07-29 Toyota Motor Corp Power supply system
WO2012117503A1 (en) * 2011-02-28 2012-09-07 日立ビークルエナジー株式会社 Battery control device
JP2013021778A (en) * 2011-07-08 2013-01-31 Sony Corp Control device, power storage system, electronic apparatus, electric vehicle, and electric power system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163008A1 (en) * 2018-02-21 2019-08-29 Tdk株式会社 Dc feeding system
US11418051B2 (en) 2018-02-21 2022-08-16 Tdk Corporation Direct current power supplying system

Similar Documents

Publication Publication Date Title
JP5640387B2 (en) Power supply
JP5847506B2 (en) Electronic control device and vehicle control system
JP6296608B2 (en) Uninterruptible power system
JP5567040B2 (en) Secondary battery control device
EP3506457B1 (en) Charging power system with low standby power consumption and method of controlling the same
WO2019114304A1 (en) Starting power supply device and method for mobile charging vehicle
JP2013230063A (en) Power supply
RU2010136971A (en) AUTOMATIC RECOVERY OF A BATTERY CONNECTION
JPWO2014006838A1 (en) Switching power supply device and semiconductor device
US20140211524A1 (en) Power converter and pre-charging circuit of same
CN210225056U (en) External expansion device, remote control device of unmanned aerial vehicle and external member
JP2011024299A (en) Power supply circuit
US20190308573A1 (en) Vehicle-mounted power supply device
JP2014117083A (en) Input power supply switching method for power storage device
JP2015042067A (en) Device for charge/discharge control of electrical storage battery having bidirectional isolated dc-dc converter
EP4346062A1 (en) Scalable energy storage system and scaling method thereof
CN101584108A (en) Control device and control method for power conversion system having instantaneous voltage drop - service interruption counter-measure functions
JP2008125159A (en) Power supply apparatus
JP2013038871A (en) Switching device
CN108886249B (en) Storage battery device, control method for storage battery device, and recording medium
JP6145777B2 (en) Power converter
JP2014212645A (en) Power storage system
JP4717845B2 (en) Power system
JP5556422B2 (en) Battery system
JP2018182829A (en) Power conversion device

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170630

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170922

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180105