JP2014211414A - 表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム - Google Patents

表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム Download PDF

Info

Publication number
JP2014211414A
JP2014211414A JP2013089231A JP2013089231A JP2014211414A JP 2014211414 A JP2014211414 A JP 2014211414A JP 2013089231 A JP2013089231 A JP 2013089231A JP 2013089231 A JP2013089231 A JP 2013089231A JP 2014211414 A JP2014211414 A JP 2014211414A
Authority
JP
Japan
Prior art keywords
surface state
absorbance
state determination
measurement data
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013089231A
Other languages
English (en)
Other versions
JP6036517B2 (ja
Inventor
文一 姫野
Bunichi Himeno
文一 姫野
康治 麻生
Koji Aso
康治 麻生
健至 佐藤
Kenji Sato
健至 佐藤
杉浦 雅人
Masahito Sugiura
雅人 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013089231A priority Critical patent/JP6036517B2/ja
Publication of JP2014211414A publication Critical patent/JP2014211414A/ja
Application granted granted Critical
Publication of JP6036517B2 publication Critical patent/JP6036517B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)

Abstract

【課題】成形物の表面状態をより短時間で判定すること。【解決手段】互いに異なる赤外線反射強度を有する少なくとも2種類の物質から製造される成形物の表面状態を、前記成形物の赤外線反射強度の測定結果に基づいて判定するものであり、前記測定結果を示した測定データのうち、水による吸収が存在する波長帯域及び水による吸収が存在しない波長帯域での測定データに基づき、測定データ間の相対的な反射強度比を算出し、算出された前記相対的な反射強度比に基づいて、前記水による吸収が存在する波長帯域での吸光度を算出し、成形物の推定水分量から推定される吸光度と、算出された前記吸光度と、の乖離度合いに応じて、前記表面状態を判定する。【選択図】図7

Description

本発明は、表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラムに関する。
各種の製造ラインでは、複数の物質を用いて成形物を製造することが行われている。成形物を製造するにあたっては、不良品の出荷を防止するために、様々な測定が行われている。
例えば、以下の特許文献1では、第1の物質の表面に形成された第2の物質による被膜の厚さを測定するために、2種類の波長の光を用いて被膜前と被膜後における反射強度比をそれぞれ求め、被膜厚さと反射強度比との相関関係を利用する技術が開示されている。
また、以下の特許文献2では、成形物への異物の混入の有無を判定するために、近赤外帯域に属する1つの波長を利用し、異物無しの吸光度と異物有りの吸光度における二次微分スペクトルを統計学的に解析する技術が開示されている。
一方、成形物の表面状態については、製造ラインにて製造された成形物をサンプルとし、製造ラインから取得したサンプルをオフラインで測定することで判定がなされている。
特開昭58−030605号公報 特開2011−214941号公報
成形物の表面状態を判定することを考えた場合、上記特許文献1及び特許文献2では、成形物の表面状態についての言及はなされておらず、これらの文献に開示された方法では成形物の表面状態を判定することはできない。また、製造された成形物をサンプリングし、オフラインで判定を行う方法では、分析に時間を要するため、製造制御へのフィードバックが遅くなり、不良品を多く製造してしまう可能性がある。
このように、成形物の表面状態をより短時間で判定可能な方法が希求されていた。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、成形物の表面状態をより短時間で判定することが可能な、表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラムを提供することにある。
上記課題を解決するために、本発明のある観点によれば、互いに異なる赤外線反射強度を有する少なくとも2種類の物質から製造される成形物の表面状態(表面被覆状態)を、前記成形物の赤外線反射強度の測定結果に基づいて判定する装置であって、前記測定結果を示した測定データのうち、水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとに基づいて、当該水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとの間の相対的な反射強度比を算出する強度算出部と、前記強度算出部により算出された前記相対的な反射強度比に基づいて、前記水による吸収が存在する波長帯域での吸光度を算出する吸光度算出部と、前記成形物の推定水分量から推定される吸光度と、前記吸光度算出部により算出された前記吸光度と、の乖離度合いに応じて、前記表面状態を判定する表面状態判定部と、を備える表面状態判定装置が提供される。
前記表面状態判定部は、前記水による吸収が存在する波長帯域での吸光度と前記成形物の水分量とで規定される座標平面での、前記成形物の水分量を算出する際に利用される検量線を利用し、前記算出された吸光度の前記検量線からの離隔度合いを表す指標を算出し、算出した前記指標を、前記乖離度合いとすることが好ましい。
前記表面状態判定部は、算出した前記指標が所定の閾値以下である場合に、前記成形物の表面状態は良好であると判定することが好ましい。
前記成形物は、前記少なくとも2種類の物質を混練することで製造されたものであり、前記表面状態判定部は、算出した前記指標が所定の閾値超過である場合に、前記少なくとも2種類の物質の混練が不足していると判定してもよい。
前記表面状態判定部は、前記推定水分量と前記検量線とを用いて算出される推定吸光度と、前記吸光度算出部により算出された吸光度と、の差分を、前記指標としてもよい。
前記表面状態判定部は、前記座標平面において、前記吸光度算出部により算出された吸光度と前記推定水分量とで規定される点と、前記検量線との離隔距離を、前記指標としてもよい。
前記吸光度算出部により算出された前記吸光度と、検量線と、に基づいて、前記成形物の水分量を算出する水分量算出部を更に備えてもよい。
前記強度算出部は、白色校正板での赤外光の反射強度の測定データを利用し、前記測定データのそれぞれを前記白色校正板の対応する波長での前記測定データで除することで校正反射強度を算出し、算出した校正反射強度を用いて前記相対的な反射強度比を算出してもよい。
前記成形物は、粉状コークスと消石灰とを混練することで得られる改質コークスであってもよい。
また、上記課題を解決するために、本発明の別の観点によれば、互いに異なる赤外線反射強度を有する少なくとも2種類の物質から製造される成形物の表面状態(表面被覆状態)を、前記成形物の赤外線反射強度の測定結果に基づいて判定する方法であって、前記測定結果を示した測定データのうち、水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとに基づいて、当該水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとの間の相対的な反射強度比を算出する強度算出ステップと、前記強度算出ステップにて算出された前記相対的な反射強度比に基づいて、前記水による吸収が存在する波長帯域での吸光度を算出する吸光度算出ステップと、前記成形物の推定水分量から推定される吸光度と、前記吸光度算出ステップにて算出された前記吸光度と、の乖離度合いに応じて、前記表面状態を判定する表面状態判定ステップと、を含む表面状態判定方法が提供される。
また、上記課題を解決するために、本発明の更に別の観点によれば、互いに異なる赤外線反射強度を有する少なくとも2種類の物質から製造される成形物の表面状態(表面被覆状態)を、前記成形物の赤外線反射強度の測定結果に基づいて判定するシステムであって、前記成形物を所定の波長帯域の前記赤外光を利用して測定し、前記成形物の測定結果を示した測定データを生成する赤外線測定装置と、前記赤外線測定装置により生成された前記測定データを利用して、前記成形物の表面状態を判定する表面状態判定装置と、を備え、前記表面状態判定装置は、前記測定結果を示した測定データのうち、水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとに基づいて、当該水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとの間の相対的な反射強度比を算出する強度算出部と、前記強度算出部により算出された前記相対的な反射強度比に基づいて、前記水による吸収が存在する波長帯域での吸光度を算出する吸光度算出部と、前記成形物の推定水分量から推定される吸光度と、前記吸光度算出部により算出された前記吸光度と、の乖離度合いに応じて、前記表面状態を判定する表面状態判定部と、を有する表面状態判定システムが提供される。
また、上記課題を解決するために、本発明の更に別の観点によれば、コンピュータを、互いに異なる赤外線反射強度を有する少なくとも2種類の物質から製造される成形物の表面状態(表面被覆状態)を、前記成形物の赤外線反射強度の測定結果に基づいて判定する装置として機能させるためのプログラムであって、コンピュータに、前記測定結果を示した測定データのうち、水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとに基づいて、当該水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとの間の相対的な反射強度比を算出する強度算出機能と、前記強度算出機能により算出された前記相対的な反射強度比に基づいて、前記水による吸収が存在する波長帯域での吸光度を算出する吸光度算出機能と、前記成形物の推定水分量から推定される吸光度と、前記吸光度算出機能により算出された前記吸光度と、の乖離度合いに応じて、前記表面状態を判定する表面状態判定機能と、
を実現させるためのプログラムが提供される。
以上説明したように本発明によれば、水による吸収が存在しない波長帯域及び水による吸収が存在する波長帯域での成形物の測定データに基づいて、水による吸収が存在する波長帯域の吸光度と検量線との離隔度合いを算出し、得られた離隔度合いと所定の閾値との大小関係に着目することにより、成形物の表面状態(表面被覆状態)をより短時間で判定することが可能となる。
本発明の実施形態に係る表面状態判定システムの全体構成を模式的に示す説明図である。 赤外線測定装置の原理を説明するための模式図である。 赤外反射強度に基づく水分値算出処理について説明するための説明図である。 本発明の実施形態に係る表面状態判定処理について説明するための説明図である。 同実施形態に係る表面状態判定処理について説明するための説明図である。 同実施形態に係る表面状態判定処理について説明するための説明図である。 同実施形態に係る表面状態判定装置の構成の一例を示したブロック図である。 同実施形態に係る表面状態判定装置の演算処理部が実施する強度算出処理について説明するための説明図である。 同実施形態に係る表面状態判定処理について説明するための説明図である。 同実施形態に係る表面状態判定方法の事前処理の流れの一例について示した流れ図である。 同実施形態に係る表面状態判定方法の流れの一例について示した流れ図である。 本発明の実施形態に係る表面状態判定装置のハードウェア構成の一例を示したブロック図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(表面状態判定システムの全体構成について)
まず、図1及び図2を参照しながら、本発明の実施形態に係る表面状態判定システムの全体構成について、簡単に説明する。
なお、以下では、製造ラインで製造される成形物の一例として、粉状コークス(以下、単に「粉コークス」とも称する。)と、消石灰とを混練して粉コークスの表面に消石灰を被覆することで製造される改質コークスを挙げて説明を行うものとする。しかしながら、本発明の実施形態に係る表面状態判定システムにおける成形物は、この改質コークスに限定されるわけではない。
図1は、改質コークスの製造ラインと、この製造ラインに設けられる本発明の実施形態に係る表面状態判定システムの全体構成と、を模式的に示した説明図であり、図2は、赤外線測定装置の原理を説明するための模式図である。
本発明の実施形態で着目する改質コークスは、例えば粒径が1〜2mm程度の粉コークスと、粉コークスよりも粒径の小さな(例えば、70μm程度以下)消石灰を用いて製造され、図1に示したように、粉コークスの粒子表面に消石灰からなる被膜が形成されたものである。
このような改質コークスは、図1に例示したように、消石灰槽1に貯蔵された消石灰(Ca(OH))と、コークス槽2に貯蔵された粉コークスと、を用いて製造される。
コークス槽2に貯蔵されている粉コークスは、搬送コンベア3により混練機4まで搬送されるが、この搬送の際に、搬送コンベア3の上方に設けられた水分計5により、粉コークスの水分量が予め測定される。また、この搬送コンベア3上で、消石灰槽1から切出された消石灰が粉コークス上に積層される。
混練機4では、粉コークス及び消石灰に対して操業上の目標となる水分値となるまで水が供給されたうえで、混練処理が行われ、粉コークスの表面に消石灰からなる被膜がコーティングされる。その後、消石灰による被膜が形成された粉コークスは、パンペレタイザー等の造粒機6へと搬送されて、消石灰が粉コークス表面により強固に付着した改質コークスの成形物が製造される。
改質コークスの成形物は、搬送コンベア7により成品槽8へと搬送される途中で、赤外線測定装置9により所定の赤外波長帯域での赤外線反射強度が測定された後、成品槽8に貯蔵される。
ここで、混練機4において供給された水の量や、水分計5による粉コークスの水分量の測定結果や、赤外線測定装置9による赤外線反射強度の測定データは、1又は複数の操業データ保持サーバ20へと出力されて、保管される。
本発明の実施形態に係る表面状態判定装置10は、操業データ保持サーバ20に保持されている赤外線反射強度の測定データや、水分計5による測定結果を示したデータ等を利用して、改質コークスの表面状態を判定する。この表面状態判定装置10については、以下で改めて詳述する。
なお、図1では、表面状態判定装置10は、操業データ保持サーバ20から各種の情報を取得するように図示しているが、表面状態判定装置10は、操業データ保持サーバ20を介さずに、水分計5や赤外線測定装置9等から直接各種のデータを取得してもよい。
図2は、測定対象物の水分量を測定するために用いられる、一般的な赤外線測定装置(より詳細には、赤外線水分計)の構成を模式的に示したものである。
水分量を測定するための赤外線測定装置は、図2に模式的に示したように、赤外線帯域の光(赤外光)を射出する赤外光源と、赤外光源から射出された赤外光を測定対象物まで導光する光学系と、波長選択フィルタと、反射赤外光をディテクタへと導光する光学系と、反射赤外光を検出するディテクタと、を主に有する。
赤外光源から射出された赤外光は、波長選択フィルタにより測定対象物へと照射される赤外光の波長が選択されたうえで、測定対象物の測定エリアへと照射される。測定対象物から反射された反射赤外光は、ミラーにより集光されて、ディテクタへと導光される。
ここで、赤外線測定装置では、水による吸収のある波長(λ)での反射赤外光の強度と、波長λの近傍に位置する、水による吸収のない波長(λb1,λb2)での反射赤外光の強度と、をそれぞれ測定し、ディテクタによる検知結果を測定データとして出力する。このような波長は、水の吸収波長に基づいて適宜決定することが可能であるが、例えば、波長λb1,λ,λb2として、それぞれ、1780nm,1940nm,2100nmを選択することが可能である。
なお、本発明の実施形態では、図2に示したような赤外線水分計以外にも、一般的な赤外分光計等を利用することも可能である。
以下で詳細に説明する本発明の実施形態に係る表面状態判定装置10は、このような赤外線測定装置から出力された測定データに基づいて処理を行うことで、製造ライン上を搬送される改質コークスの表面状態を、オンラインで短時間に測定することができる。
以下では、水による吸収のある波長での測定データに着目して、改質コークスの表面状態を判定する方法について説明する。
<水による吸収の無い波長における吸光度の挙動について>
以下では、まず、本発明の実施形態に係る表面状態判定処理について説明するに先立ち、本発明者が見出し、かつ、本実施形態に係る表面状態判定処理で着目する現象について、図3〜図6を参照しながら説明する。図3は、赤外反射強度に基づく水分値算出処理について説明するための説明図であり、図4〜図6は、本実施形態に係る表面状態判定処理について説明するための説明図である。
図3上段に示したように、水による吸収のない波長帯域に属する波長λb1,波長λb2における校正反射強度を結ぶ直線に着目する。この直線と、水による吸収の存在する波長帯域を表す直線(例えば図3における波長λに対応する直線)と、の交点の縦軸座標C(λw0)は、簡便な計算により算出することが可能である。このようにして得られる交点の縦軸座標C(λw0)と、実際の測定値であるC(λ)と、を利用することで、図3上段に示したように、波長λにおける吸光度Xを算出することができる。
ランベルト・ベールの法則により、吸光度Xと水分値との間には、図3下段に示したような直線関係が存在することから、算出した吸光度Xと、予め決定しておいた検量線と、を用いることで、未知の水分値を算出することが可能となる。
このような関係が本実施形態で着目する成形物である改質コークスにおいても成立することを確認するために、改質コークスに含まれる消石灰の配合比率を10%に固定したままで、改質コークスの混練に際して添加する水分量を変化させながら(すなわち、製造される改質コークスの水分値を変化させながら)、赤外線測定装置5による測定を行った。得られた結果を、図4に示した。図4から明らかなように、水による吸収が存在するλでの相対赤外反射強度の値は、水分値に応じて変化しているため、図3に示したような一般的な水分値の算出手法を、本実施形態で着目する改質コークスに対しても適用可能であることがわかる。
十分な混練処理を行うことで製造された改質コークスに関する検量線を算出したところ、例えば図5に示したように、極めて精度の高い検量線を得ることができた。一方で、本発明者は、十分な混練を経ずに製造された、乾燥重量法による水分値が既知の改質コークスについて、測定の結果得られた吸光度を検量線にあわせてプロットしたところ、図5に示したようになった。
ここで、十分な混練を行うことで得られる改質コークスの表面状態は、図6に模式的に示したように、消石灰が粉コークスの表面に均一に付着した良好なものであるのに対し、十分な混練を経ずに製造された改質コークスの表面状態は、消石灰が粉コークスの表面に不均一に付着したものである。
すなわち、混練が十分でない状態では、白色の消石灰と黒色の粉コークスはバラバラに存在しているのみであり、いわば消石灰が粉コークスの表面近傍に厚く存在している状態であるのに対し、混練を十分に行うことによって、粉コークスの表面における消石灰の被覆率は上昇していくようになる。混練が不足している状態では、消石灰が粉コークスの表面に不均一に付着しているのみであり、場所によっては、図6に模式的に示したように、消石灰の塊が存在していることも考えられる。このような状態にある改質コークスの表面拡大写真を撮像してみると、改質コークスの表面は、白色の部分と黒色の部分がまだらに存在している。十分な混練が行われると、消石灰は粉コークスの表面の全体にわたって薄く均一に付着するようになる。このような状態にある改質コークスの表面拡大写真を撮像してみると、改質コークスの表面は、黒色の粉コークスが白色の消石灰を介して透けて見えることによって、灰色の像として観察される。
従って、図5に示した結果は、実際に測定された改質コークスの吸光度と、改質コークスの水分値を算出する際に利用される検量線との離隔度合いに応じて、改質コークスの表面状態を判定可能であることを示すものであるといえる。
本発明者は、このような知見に基づいて鋭意検討を行った結果、以下で説明するような、水による吸収のある波長での測定データを利用した、本発明の実施形態に係る表面状態判定装置及び表面状態判定方法に想到した。
<表面状態判定装置の構成について>
以上説明したような知見に基づき、本発明者が想到した本実施形態に係る表面状態判定装置10の構成について、図7〜図9を参照しながら詳細に説明する。図7は、本実施形態に係る表面状態判定装置10の構成の一例を示したブロック図である。図8は、本実施形態に係る表面状態判定装置10の演算処理部が実施する強度算出処理について説明するための説明図である。図9は、本実施形態に係る表面状態判定処理について説明するための説明図である。
表面状態判定装置10は、互いに異なる赤外線反射強度を有する少なくとも2種類の物質から製造される成形物(例えば、消石灰及び粉コークスから製造される改質コークス)の表面状態(表面被覆状態)を、成形物の赤外線による測定結果に基づいて判定する装置である。この表面状態判定装置10は、図14に例示したように、データ取得部101と、演算処理部103と、結果出力部105と、表示制御部107と、記憶部109と、を主に備える。
データ取得部101は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、通信装置等により実現される。データ取得部101は、例えば操業データ保持サーバ等といった、判定対象物(例えば改質コークス等)を赤外線により測定した測定データを格納しているサーバやデータベース等から、測定結果を示したデータ(測定データ)を取得する。また、データ取得部101は、測定結果を示したデータを、赤外線測定装置9から直接取得することも可能である。データ取得部101は、表面状態の判定処理に利用する測定データを取得すると、取得した測定データを後述する演算処理部103に出力する。
なお、データ取得部101は、必要に応じて、例えば改質コークスを製造する際に、混練機4に供給する消石灰の含有水分、混錬機4で添加した水の供給量等といった各種の操業データを取得して、演算処理部103に出力することも可能である。
演算処理部103は、例えば、CPU、ROM、RAM等により実現される。演算処理部103は、データ取得部101から出力された、判定対象物の測定データを利用して、判定対象物の表面状態を判定する処理を実施する。演算処理部103は、表面状態判定処理を実施するに際して、記憶部109に格納されている、表面状態判定用閾値等といった各種のパラメータや検量線に関する情報等が記録されたデータベース等を参照することが可能である。この演算処理部103で実施される表面状態判定処理の詳細について、以下で詳述する。
演算処理部103は、赤外線測定装置9での測定データに基づいて判定対象物の表面状態を判定すると、得られた判定結果を、後述する結果出力部105に出力する。
結果出力部105は、例えば、CPU、ROM、RAM、出力装置、通信装置等により実現される。結果出力部105は、演算処理部103から出力された判定結果に対応するデータを、表面状態判定装置10のユーザに出力する。具体的には、結果出力部105は、解析結果に対応するデータを、各種サーバや制御装置に出力したり、プリンタ等の出力装置を利用して、紙媒体として出力したりする。また、結果出力部105は、判定結果に対応するデータを、外部に設けられたコンピュータ等の各種の情報処理装置に出力してもよいし、各種の記録媒体に出力してもよい。
また、結果出力部105は、判定結果に対応するデータを、表面状態判定装置10に設けられたディスプレイ等の出力装置や、外部に設けられた各種機器の有するディスプレイ等に出力する際には、後述する表示制御部107と連携して判定結果を出力する。
表示制御部107は、例えば、CPU、ROM、RAM、出力装置、通信装置等により実現される。表示制御部107は、判定結果に対応するデータをディスプレイ等の各種表示装置に表示させる際の表示制御を行う。これにより、表面状態判定装置10のユーザは、判定対象物の表面状態に関する判定結果を、その場で把握することが可能となる。
また、表示制御部107は、結果出力部105から出力された、判定対象物の判定結果を素早く表示させる等といった表示制御を行うことができる。これにより、製造される判定対象物(例えば改質コークス)の表面状態の判定結果が素早く表示画面に表示されることとなり、表面状態判定装置10のユーザは、表面状態が好ましくない成形物が発生したか否かの認識と、発生した異常に対する処理判断と、を素早く行うことが可能となる。また、表示制御部107は、表面状態が悪化したことを通知するアラームや処置に必要な情報を表示画面上に表示させたり、警報として音声信号等を発生させたりしてもよい。
このようにして判定結果をユーザに対して出力することで、ユーザは、表面状態の悪化が発生した場合に、混練等の際に添加する添加水分量や混練時間等を増加させる等といった対処操作を迅速に行うことが可能となり、製品の歩留まりを向上させることが可能となる。
記憶部109は、例えば、RAM、ストレージ装置等により実現される。記憶部109には、本実施形態に係る表面状態判定装置10が、何らかの処理を行う際に保存する必要が生じた様々なパラメータや処理の途中経過等、または、各種のデータベースやプログラム等が、適宜記録される。これらのパラメータやデータベース等は、成形物の操業条件等に応じて、1又は複数格納されていてもよい。また、記憶部109には、表示制御部107が解析結果を表示させるための表示画面を構成する際に利用される、アイコン等の様々なオブジェクトが記録されていてもよい。この記憶部109は、表面状態判定装置10が備えるデータ取得部101、演算処理部103、結果出力部105、表示制御部107等が、自由にデータのリード/ライト処理を行うことが可能である。
[演算処理部の構成について]
次に、表面状態判定装置10が備える演算処理部103の構成について、詳細に説明する。演算処理部103は、上記のように、判定対象物の測定データを利用して、判定対象物の表面状態を判定する処理を実施する。この演算処理部103は、図7に示したように、強度算出部121と、吸光度算出部123と、表面状態判定部125と、水分量算出部127と、を備える。
強度算出部121は、例えば、CPU、ROM、RAM等により実現される。強度算出部121は、データ取得部101から出力された測定結果を示した測定データのうち、水による吸収が存在しない波長帯域及び水による吸収が存在する波長帯域での測定データに基づいて、これらの測定データ間の相対的な反射強度比を算出する。
以下では、水による吸収が存在しない波長帯域として、図4等に示した波長λb1=1780nmと、波長λb2=2100nmと、を例にとり、水による吸収が存在する波長帯域として、図4等に示した波長λw=1940nmを例にとって、図8を参照しながら説明を行うものとする。
まず、実際の改質コークスの表面状態判定処理に先立って、白色校正板を用いた赤外光による測定が行われており、図8に示した、白色校正板の反射強度Aλb1,Aλw,Aλb2が得られているものとする。このような白色校正板の反射強度は、例えば、記憶部109に、パラメータ又はデータベースとして格納されている。強度算出部121は、データ取得部101から出力された測定データのうち、波長λb1,λ及びλb2に対応する測定データ(すなわち、反射強度Bλb1,Bλw,Bλb2)を特定する。
次に、強度算出部121は、波長λb1,λ,λb2のそれぞれにおいて、改質コークスの反射強度B(λ)を白色校正板の反射強度A(λ)で除することで、反射強度の校正を行う。図8に示した例では、波長λb1の校正反射強度Cλb1=(Bλb1/Aλb1)であり、波長λの校正反射強度Cλw=(Bλw/Aλw)であり、波長λb2の校正反射強度Cλb2=(Bλb2/Aλb2)である。
続いて、強度算出部121は、波長λb1,λb2の何れか一方の波長での校正反射強度を基準として、相対的な反射強度比を算出する。図8に示した例は、波長λb1での校正反射強度を基準とした相対反射強度Dを算出する場合に対応しており、波長λb1の相対反射強度Dλb1=(Cλb1/Cλb1)=1であり、波長λの相対反射強度Dλw=(Cλw/Cλb1)であり、波長λb2の相対反射強度Dλb2=(Cλb2/Cλb1)である。
なお、図8に示した例では、波長λb1での校正反射強度を基準としているが、波長λb2での校正反射強度を基準としてもよいことは、言うまでもない。
強度算出部121は、このようにして算出した相対反射強度Dのそれぞれを、吸光度算出部123に出力する。
吸光度算出部123は、例えば、CPU、ROM、RAM等により実現される。吸光度算出部123は、強度算出部121により算出された相対反射強度に基づいて、水による吸収が存在する波長帯域での吸光度を算出する。
より詳細には、吸光度算出部123は、図3の上段に示した方法と同様にして、波長λwの吸光度を算出する。すなわち、吸光度算出部123は、波長λb1での相対反射強度D(λb1)と、波長λb2での相対反射強度D(λb2)と、を結ぶ直線を算出し、この直線と波長λ=1940nmで表される直線との交点を算出する。その後、吸光度算出部123は、この交点に対応する相対反射強度D(λw0)と、強度算出部121により算出された相対反射強度D(λ)とを利用して、吸光度X(λ)を算出する。
吸光度算出部123は、このようにして算出した吸光度X(λ)を、後述する表面状態判定部125及び水分量算出部127に出力する。
なお、上記では、吸光度算出部123が、3種類の波長での相対反射強度に基づいて吸光度を算出する場合について説明したが、本実施形態に係る吸光度算出部123における吸光度の算出手法は、上記例に限定されるものではない。吸光度算出部123は、上記算出手法以外にも、2種類の波長での相対反射強度に基づいて吸光度を算出手法や、多数の波長での相対反射強度を重回帰分析することで吸光度を算出する手法など、公知の吸光度算出手法を利用することが可能である。
表面状態判定部125は、例えば、CPU、ROM、RAM等により実現される。表面状態判定部125は、成形物の推定水分量から推定される吸光度と、吸光度算出部により算出された前記吸光度と、の乖離度合いに応じて、表面状態を判定する。より詳細には、表面状態判定部125は、水による吸収が存在する波長帯域での吸光度と成形物の水分量とで規定される座標平面での、成形物の水分量を算出する際に利用される検量線を利用し、算出された吸光度の検量線からの離隔度合いを表す指標を算出し、算出した指標を、乖離度合いとして使用する。以下、この表面状態判定部125における処理について、詳細に説明する。
表面状態判定部125は、まず、データ取得部101から出力された、水分計による粉コークスの水分量や混練に際して供給した水分量(添加水分量)、及び、粉コークス及び消石灰の添加量に関するデータを参照して、製造される改質コークスの推定水分値を算出する。この推定水分値(%)は、例えば、以下の式101により算出することができる。
推定水分値(%)={(粉コークスの水分量+添加水分量)/(粉コークス量+消石灰量+添加水分量)}×100 ・・・(式101)
次に、表面状態判定部125は、水による吸収が存在する波長帯域での吸光度と成形物の水分量とで規定される座標平面(換言すれば、図5に示したような検量線を規定する座標平面)に着目し、吸光度算出部123により算出された吸光度X(λ)及び算出した推定水分値に基づいて、吸光度X(λ)の検量線からの離隔度合いを表す指標を算出する。ここで、水分量を算出する際に利用される検量線は、例えば、記憶部109に、パラメータ又はデータベースとして、実際の操業条件等に応じて1又は複数格納されている。
ここで、検量線からの離隔度合いを表す指標としては、例えば図9(a)及び図9(b)に示したような、2種類の指標を挙げることができる。
図9(a)は、推定水分値と検量線とを用いて算出される推定吸光度と、吸光度算出部123により算出された吸光度X(λ)と、の差分(図中のLに対応する差分値)を指標とする場合について示している。
また、図9(b)は、検量線を規定する座標系において、吸光度算出部123により算出された吸光度X(λ)と算出した推定水分量とで規定される点と、検量線との離隔距離(図中のLで表される長さ)を指標とする場合について示している。
表面状態判定部125は、このような指標の何れかを算出し、算出した指標と、予め決定された表面状態判定用閾値との大小関係を比較する。ここで、表面状態判定用閾値は、実際の改質コークスの表面状態判定処理に先立って、過去の操業データ等に基づいて改質コークスの表面状態と相対反射強度との相関関係を解析することで、予め決定されているものとする。このような表面状態判定用閾値は、例えば、記憶部109に、パラメータ又はデータベースとして、実際の操業条件等に応じて1又は複数格納されている。
先だって説明したように、混練が十分に行われ表面状態の良好な改質コークスの吸光度の値は、検量線に近い値を示す。そこで、表面状態判定部125は、以上のようにして算出した指標が表面状態判定用閾値以下である場合に、改質コークスの表面状態は良好(図6に示すように、粉コークス表面に消石灰が均一に付着した状態)であると判定する。
また、表面状態判定部125は、算出した指標が表面状態判定用閾値超過である場合に、混練処理が不足しており、表面状態が不良(図6に示すように、粉コークス表面に消石灰が不均一に付着した状態)であると判定する。
なお、上記説明では、1つの表面状態判定用閾値に基づいて表面状態の良否(換言すれば、混練処理が十分か否か)を判定する場合について言及を行ったが、表面状態判定用閾値を段階的に複数設定し、例えば、表面状態を○、△、×などのように多段階で評価してもよい。
表面状態判定部125は、このようにして得られた判定結果を示す情報を、結果出力部105に出力する。
水分量算出部127は、例えば、CPU、ROM、RAM等により実現される。水分量算出部127は、吸光度算出部123により算出された吸光度X(λ)と、予め決定されている検量線と、に基づいて、改質コークスの水分量(水分値)を算出する。この水分量(水分値)の算出方法は、特に限定されるものではなく、例えば図9に示したような検量線を利用して、得られた吸光度X(λ)に対応する直線と検量線との交点を特定し、交点を規定する水分値の座標値を決定する方法を利用することが可能である。
水分量算出部127は、このようにして得られた水分量(水分値)に関する情報を、結果出力部105に出力する。
このように、本実施形態に係る演算処理部103では、水による吸収が存在しない波長帯域及び水による吸収が存在する波長帯域での成形物の測定データに基づいて、水による吸収が存在する波長帯域の吸光度と、検量線との離隔度合いを算出し、得られた離隔度合いと表面状態判定用閾値との大小関係に比較することで、成形物の表面状態を判定する。このような処理は極めて短時間で実施することが可能であるため、従来ではオフラインで行っていた表面状態の判定処理をオンラインで実施することが可能となる。
以上、本実施形態に係る表面状態判定装置10の機能の一例を示した。上記の各構成要素は、汎用的な部材や回路を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。また、各構成要素の機能を、CPU等が全て行ってもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用する構成を変更することが可能である。
なお、上述のような本実施形態に係る表面状態判定装置の各機能を実現するためのコンピュータプログラムを作製し、パーソナルコンピュータ等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。
<表面状態判定方法について>
以下では、図10及び図11を参照しながら、本実施形態に係る表面状態判定方法の流れの一例について、簡単に説明する。図10は、本実施形態に係る表面状態判定方法の事前処理の流れの一例について示した流れ図であり、図11は、本実施形態に係る表面状態判定方法の流れの一例について示した流れ図である。
[事前処理の流れについて]
まず、図10を参照しながら、本実施形態に係る表面状態判定方法の事前処理の流れについて、簡単に説明する。
まず、白色校正板を用いて、赤外線測定装置9により、3波長λb1,λ,λb2の反射強度を測定し(ステップS101)、得られた測定結果(反射強度)を、記憶部109等に格納しておく。その後、表面状態及び水分値が既知の改質コークスを用いて、赤外線測定装置9により波長λb1,λ,λb2の反射強度を測定する(ステップS103)。
次に、演算処理部103の強度算出部121は、得られた改質コークスの測定結果から、校正反射強度を算出し(ステップS105)、続いて、波長λb1,λ,λb2間の相対反射強度を算出する(ステップS107)。また、演算処理部103の吸光度算出部123は、算出された相対反射強度を利用して、波長λの吸光度を算出する(ステップS109)。
ここで、得られた改質コークスの測定結果に関するサンプル数が十分であるかを判断する(ステップS111)。サンプル数が、表面状態判定用閾値を決定するための統計処理に十分な量であると判断される場合には、後述するステップS213が実施される。また、サンプル数が不足していると判断される場合には、ステップS203に戻って、表面状態及び水分値が既知の改質コークスを用いて測定が継続される。なお、このサンプル数の具体的な値については、特に限定されるものではなく、統計学的に有意な結果が得られるような数を適宜決定すればよい。
サンプル数が十分であると判断される場合には、算出した吸光度と既知の水分値から検量線を算出するとともに、算出した吸光度と既知の表面状態から、表面状態判定用閾値を決定する(ステップS113)。決定した表面状態判定用閾値及び検量線は、記憶部109等に格納しておく。
このような事前処理を行うことで、表面状態判定処理の準備が整うこととなる。なお、この事前処理は、成形物の表面状態判定処理に先立って少なくとも1回実施されればよく、成形物を測定する毎に実施しなくともよい。また、この事前処理は、ユーザ操作等に応じて、任意のタイミングで実施されてもよい。
[表面状態判定処理の流れについて]
次に、図11を参照しながら、本実施形態に係る表面状態判定方法の流れについて、簡単に説明する。
まず、赤外線測定装置9は、搬送コンベア上を搬送される改質コークスを測定して、3波長λb1,λ,λb2の反射強度を測定する(ステップS121)。
表面状態判定装置10のデータ取得部101は、上記赤外線測定装置9で測定した測定データを取得して、演算処理部103の強度算出部121に出力するとともに、記憶部109に出力する。更に、このデータ取得部101は、記憶部109に記憶した白色校正板の測定データを取得して強度算出部111に出力する。強度算出部121は、データ取得部101から出力された測定データと、予め測定されている白色校正板の測定データと、を利用して、改質コークスの校正反射強度を算出し(ステップS123)、続いて、波長λb1,λ,λb2間の相対反射強度を算出する(ステップS125)。その後、強度算出部121は、得られた相対反射強度を、吸光度算出部123に出力する。
吸光度算出部123は、強度算出部121から出力された相対反射強度に基づいて、波長λの吸光度X(λ)を算出し(ステップS127)、得られた吸光度X(λ)を、表面状態判定部125及び水分量算出部127に出力する。
表面状態判定部125は、着目している改質コークスの推定水分値を算出した後、吸光度算出部123から出力された吸光度X(λ)と、予め決定されている検量線と、を利用して、検量線からの離隔度合いを表す指標を算出する(ステップS129)。その後、表面状態判定部125は、算出した指標を、記憶部109等に格納されている表面状態判定用閾値を用いて閾値判定し、改質コークスの表面状態を判定する(ステップS131)。表面状態判定部125は、表面状態の判定が終了すると、得られた判定結果を示す情報を生成して、結果出力部105に出力する。
一方、水分量算出部127は、吸光度算出部123により算出された吸光度X(λ)と検量線とを利用して、着目している改質コークスの水分値を算出し(ステップS133)、得られた水分値を示す情報を生成して、結果出力部105に出力する。
結果出力部105は、判定結果を示す情報及び水分値を示す情報を取得すると、これらの収得情報を表示制御部107及び記憶部109に出力する。表示制御部107は、これらの判定結果を示す情報を表示画面上に表示する(ステップS135)。これにより、ユーザは、製造している改質コークスの表面状態を短時間で把握することが可能となる。
以上、図7〜図11を参照しながら、本発明の実施形態に係る表面状態判定装置及び表面状態判定方法について、詳細に説明した。
(ハードウェア構成について)
次に、図12を参照しながら、本発明の実施形態に係る表面状態判定装置10のハードウェア構成について、詳細に説明する。図12は、本発明の実施形態に係る表面状態判定装置10のハードウェア構成を説明するためのブロック図である。
表面状態判定装置10は、主に、CPU901と、ROM903と、RAM905と、を備える。また、表面状態判定装置10は、更に、バス907と、入力装置909と、出力装置911と、ストレージ装置913と、ドライブ915と、接続ポート917と、通信装置919とを備える。
CPU901は、演算処理装置および制御装置として機能し、ROM903、RAM905、ストレージ装置913、またはリムーバブル記録媒体921に記録された各種プログラムに従って、表面状態判定装置10内の動作全般またはその一部を制御する。ROM903は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM905は、CPU901が使用するプログラムや、プログラムの実行において適宜変化するパラメータ等を一次記憶する。これらはCPUバス等の内部バスにより構成されるバス907により相互に接続されている。
バス907は、ブリッジを介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バスに接続されている。
入力装置909は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチおよびレバーなどユーザが操作する操作手段である。また、入力装置909は、例えば、赤外線やその他の電波を利用したリモートコントロール手段(いわゆる、リモコン)であってもよいし、表面状態判定装置10の操作に対応したPDA等の外部接続機器923であってもよい。さらに、入力装置909は、例えば、上記の操作手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。表面状態判定装置10のユーザは、この入力装置909を操作することにより、表面状態判定装置10に対して各種のデータを入力したり処理動作を指示したりすることができる。
出力装置911は、取得した情報をユーザに対して視覚的または聴覚的に通知することが可能な装置で構成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置およびランプなどの表示装置や、スピーカおよびヘッドホンなどの音声出力装置や、プリンタ装置、携帯電話、ファクシミリなどがある。出力装置911は、例えば、表面状態判定装置10が行った各種処理により得られた結果を出力する。具体的には、表示装置は、表面状態判定装置10が行った各種処理により得られた結果を、テキストまたはイメージで表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して出力する。
ストレージ装置913は、表面状態判定装置10の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置913は、例えば、HDD(Hard Disk Drive)等の磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス、または光磁気記憶デバイス等により構成される。このストレージ装置913は、CPU901が実行するプログラムや各種データ、および外部から取得した各種のデータなどを格納する。
ドライブ915は、記録媒体用リーダライタであり、表面状態判定装置10に内蔵、あるいは外付けされる。ドライブ915は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記録媒体921に記録されている情報を読み出して、RAM905に出力する。また、ドライブ915は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記録媒体921に記録を書き込むことも可能である。リムーバブル記録媒体921は、例えば、CDメディア、DVDメディア、Blu−rayメディア等である。また、リムーバブル記録媒体921は、コンパクトフラッシュ(登録商標)(CompactFlash:CF)、フラッシュメモリ、または、SDメモリカード(Secure Digital memory card)等であってもよい。また、リムーバブル記録媒体921は、例えば、非接触型ICチップを搭載したICカード(Integrated Circuit card)または電子機器等であってもよい。
接続ポート917は、機器を表面状態判定装置10に直接接続するためのポートである。接続ポート917の一例として、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポート、RS−232Cポート等がある。この接続ポート917に外部接続機器923を接続することで、表面状態判定装置10は、外部接続機器923から直接各種のデータを取得したり、外部接続機器923に各種のデータを提供したりする。
通信装置919は、例えば、通信網925に接続するための通信デバイス等で構成された通信インターフェースである。通信装置919は、例えば、有線または無線LAN(Local Area Network)、Bluetooth(登録商標)、またはWUSB(Wireless USB)用の通信カード等である。また、通信装置919は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、または、各種通信用のモデム等であってもよい。この通信装置919は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。また、通信装置919に接続される通信網925は、有線または無線によって接続されたネットワーク等により構成され、例えば、インターネット、家庭内LAN、赤外線通信、ラジオ波通信または衛星通信等であってもよい。
以上、本発明の実施形態に係る表面状態判定装置10の機能を実現可能なハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用するハードウェア構成を変更することが可能である。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
10 表面状態判定装置
101 データ取得部
103 演算処理部
105 結果出力部
107 表示制御部
109 記憶部
121 強度算出部
125 表面状態判定部
123 吸光度算出部
127 水分量算出部

Claims (12)

  1. 互いに異なる赤外線反射強度を有する少なくとも2種類の物質から製造される成形物の表面状態を、前記成形物の赤外線反射強度の測定結果に基づいて判定する装置であって、
    前記測定結果を示した測定データのうち、水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとに基づいて、当該水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとの間の相対的な反射強度比を算出する強度算出部と、
    前記強度算出部により算出された前記相対的な反射強度比に基づいて、前記水による吸収が存在する波長帯域での吸光度を算出する吸光度算出部と、
    前記成形物の推定水分量から推定される吸光度と、前記吸光度算出部により算出された前記吸光度と、の乖離度合いに応じて、前記表面状態を判定する表面状態判定部と、
    を備える
    ことを特徴とする、表面状態判定装置。
  2. 前記表面状態判定部は、
    前記水による吸収が存在する波長帯域での吸光度と前記成形物の水分量とで規定される座標平面での、前記成形物の水分量を算出する際に利用される検量線を利用し、前記算出された吸光度の前記検量線からの離隔度合いを表す指標を算出し、
    算出した前記指標を、前記乖離度合いとする
    ことを特徴とする、請求項1に記載の表面状態判定装置。
  3. 前記表面状態判定部は、算出した前記指標が所定の閾値以下である場合に、前記成形物の表面状態は良好であると判定する
    ことを特徴とする、請求項2に記載の表面状態判定装置。
  4. 前記成形物は、前記少なくとも2種類の物質を混練することで製造され、
    前記表面状態判定部は、算出した前記指標が所定の閾値超過である場合に、前記少なくとも2種類の物質の混練が不足していると判定する
    ことを特徴とする、請求項2又は3に記載の表面状態判定装置。
  5. 前記表面状態判定部は、前記推定水分量と前記検量線とを用いて算出される推定吸光度と、前記吸光度算出部により算出された吸光度と、の差分を、前記指標とする
    ことを特徴とする、請求項2〜4の何れか1項に記載の表面状態判定装置。
  6. 前記表面状態判定部は、前記座標平面において、前記吸光度算出部により算出された吸光度と前記推定水分量とで規定される点と、前記検量線との離隔距離を、前記指標とする
    ことを特徴とする、請求項2〜4の何れか1項に記載の表面状態判定装置。
  7. 前記吸光度算出部により算出された前記吸光度と、検量線と、に基づいて、前記成形物の水分量を算出する水分量算出部を更に備える
    ことを特徴とする、請求項1〜6の何れか1項に記載の表面状態判定装置。
  8. 前記強度算出部は、白色校正板での赤外光の反射強度の測定データを利用し、前記測定データのそれぞれを前記白色校正板の対応する波長での前記測定データで除することで校正反射強度を算出し、算出した校正反射強度を用いて前記相対的な反射強度比を算出する
    ことを特徴とする、請求項1〜7の何れか1項に記載の表面状態判定装置。
  9. 前記成形物は、粉状コークスと消石灰とを混練することで得られる改質コークスである
    ことを特徴とする、請求項1〜8の何れか1項に記載の表面状態判定装置。
  10. 互いに異なる赤外線反射強度を有する少なくとも2種類の物質から製造される成形物の表面状態を、前記成形物の赤外線反射強度の測定結果に基づいて判定する方法であって、
    前記測定結果を示した測定データのうち、水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとに基づいて、当該水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとの間の相対的な反射強度比を算出する強度算出ステップと、
    前記強度算出ステップにて算出された前記相対的な反射強度比に基づいて、前記水による吸収が存在する波長帯域での吸光度を算出する吸光度算出ステップと、
    前記成形物の推定水分量から推定される吸光度と、前記吸光度算出ステップにて算出された前記吸光度と、の乖離度合いに応じて、前記表面状態を判定する表面状態判定ステップと、
    を含む
    ことを特徴とする、表面状態判定方法。
  11. 互いに異なる赤外線反射強度を有する少なくとも2種類の物質から製造される成形物の表面状態を、前記成形物の赤外線反射強度の測定結果に基づいて判定するシステムであって、
    前記成形物を所定の波長帯域の前記赤外光を利用して測定し、前記成形物の測定結果を示した測定データを生成する赤外線測定装置と、
    前記赤外線測定装置により生成された前記測定データを利用して、前記成形物の表面状態を判定する表面状態判定装置と、
    を備え、
    前記表面状態判定装置は、
    前記測定結果を示した測定データのうち、水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとに基づいて、当該水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとの間の相対的な反射強度比を算出する強度算出部と、
    前記強度算出部により算出された前記相対的な反射強度比に基づいて、前記水による吸収が存在する波長帯域での吸光度を算出する吸光度算出部と、
    前記成形物の推定水分量から推定される吸光度と、前記吸光度算出部により算出された前記吸光度と、の乖離度合いに応じて、前記表面状態を判定する表面状態判定部と、
    を有する
    ことを特徴とする、表面状態判定システム。
  12. コンピュータを、互いに異なる赤外線反射強度を有する少なくとも2種類の物質から製造される成形物の表面状態を、前記成形物の赤外線反射強度の測定結果に基づいて判定する装置として機能させるためのプログラムであって、
    コンピュータに、
    前記測定結果を示した測定データのうち、水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとに基づいて、当該水による吸収が存在する波長帯域での測定データと、水による吸収が存在しない波長帯域での測定データとの間の相対的な反射強度比を算出する強度算出機能と、
    前記強度算出機能により算出された前記相対的な反射強度比に基づいて、前記水による吸収が存在する波長帯域での吸光度を算出する吸光度算出機能と、
    前記成形物の推定水分量から推定される吸光度と、前記吸光度算出機能により算出された前記吸光度と、の乖離度合いに応じて、前記表面状態を判定する表面状態判定機能と、
    を実現させるためのプログラム。
JP2013089231A 2013-04-22 2013-04-22 表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム Active JP6036517B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013089231A JP6036517B2 (ja) 2013-04-22 2013-04-22 表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013089231A JP6036517B2 (ja) 2013-04-22 2013-04-22 表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム

Publications (2)

Publication Number Publication Date
JP2014211414A true JP2014211414A (ja) 2014-11-13
JP6036517B2 JP6036517B2 (ja) 2016-11-30

Family

ID=51931266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013089231A Active JP6036517B2 (ja) 2013-04-22 2013-04-22 表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム

Country Status (1)

Country Link
JP (1) JP6036517B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014462A (ja) * 2013-07-03 2015-01-22 新日鐵住金株式会社 被覆状態判定装置、被覆状態判定方法、被覆状態判定システム及びプログラム
CN105784630A (zh) * 2016-03-01 2016-07-20 国网新疆电力公司电力科学研究院 一种基于红外光谱分析方法的硅橡胶胶含量检测方法
JP2019138824A (ja) * 2018-02-14 2019-08-22 株式会社Screenホールディングス 検査装置、検査方法、錠剤印刷装置および錠剤印刷方法
JP2020148471A (ja) * 2019-03-11 2020-09-17 株式会社神戸製鋼所 表面状態判定方法及び表面状態判定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190837A (ja) * 1984-03-12 1985-09-28 Kansai Coke & Chem Co Ltd 粉粒体石炭の水分測定法
JPH0882598A (ja) * 1994-09-13 1996-03-26 Chino Corp 水分計
WO2000028303A1 (fr) * 1998-11-05 2000-05-18 Hitachi, Ltd. Procede permettant de mesurer une teneur en eau, dispositif permettant de mesurer ladite teneur en eau, et procede permettant de produire un dispositif electronique
JP2006047688A (ja) * 2004-08-04 2006-02-16 Ricoh Co Ltd 静電荷現像用トナー及び評価方法
WO2010004999A1 (ja) * 2008-07-07 2010-01-14 新日本製鐵株式会社 配合原料の水分測定方法及び水分測定装置
JP2012063275A (ja) * 2010-09-16 2012-03-29 Toyota Motor Corp 車両鋼板における化成被覆率の簡易計測方法及びその装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190837A (ja) * 1984-03-12 1985-09-28 Kansai Coke & Chem Co Ltd 粉粒体石炭の水分測定法
JPH0882598A (ja) * 1994-09-13 1996-03-26 Chino Corp 水分計
WO2000028303A1 (fr) * 1998-11-05 2000-05-18 Hitachi, Ltd. Procede permettant de mesurer une teneur en eau, dispositif permettant de mesurer ladite teneur en eau, et procede permettant de produire un dispositif electronique
JP2000146834A (ja) * 1998-11-05 2000-05-26 Hitachi Ltd 水分測定方法および水分測定装置および電気機器製造方法
JP2006047688A (ja) * 2004-08-04 2006-02-16 Ricoh Co Ltd 静電荷現像用トナー及び評価方法
WO2010004999A1 (ja) * 2008-07-07 2010-01-14 新日本製鐵株式会社 配合原料の水分測定方法及び水分測定装置
JP4890645B2 (ja) * 2008-07-07 2012-03-07 新日本製鐵株式会社 配合原料の水分測定方法
JP2012063275A (ja) * 2010-09-16 2012-03-29 Toyota Motor Corp 車両鋼板における化成被覆率の簡易計測方法及びその装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014462A (ja) * 2013-07-03 2015-01-22 新日鐵住金株式会社 被覆状態判定装置、被覆状態判定方法、被覆状態判定システム及びプログラム
CN105784630A (zh) * 2016-03-01 2016-07-20 国网新疆电力公司电力科学研究院 一种基于红外光谱分析方法的硅橡胶胶含量检测方法
JP2019138824A (ja) * 2018-02-14 2019-08-22 株式会社Screenホールディングス 検査装置、検査方法、錠剤印刷装置および錠剤印刷方法
JP7170400B2 (ja) 2018-02-14 2022-11-14 株式会社Screenホールディングス 検査装置、検査方法、錠剤印刷装置および錠剤印刷方法
JP2020148471A (ja) * 2019-03-11 2020-09-17 株式会社神戸製鋼所 表面状態判定方法及び表面状態判定装置
JP7150640B2 (ja) 2019-03-11 2022-10-11 株式会社神戸製鋼所 残存状態判定方法及び残存状態判定装置

Also Published As

Publication number Publication date
JP6036517B2 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6036517B2 (ja) 表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム
US20190049297A1 (en) Method for Correcting Measuring-Point-Free Temperature Compensation Model During Online Application of Near Infrared Spectrum Analyzer
US20200090314A1 (en) System and method for determining a condition of an object
WO2015096788A1 (zh) 用于检测容装体中的样品的拉曼光谱检测方法
JP5425027B2 (ja) ランダムノイズ信号の検出及びフィルタリング方法
KR20220149498A (ko) 분광 정량화를 위한 감소된 오긍정 식별
US20090192743A1 (en) Sampling estimating method, sampling inspection estimating apparatus, and computer readable medium storing sampling inspection estimating program
JP2013228241A (ja) 測定装置、方法、プログラム、記録媒体
JP2011191129A (ja) 錠剤検査装置、錠剤包装装置、錠剤検査方法及び錠剤包装方法
US20220299493A1 (en) System using machine learning model to determine food item ripeness
JP6036516B2 (ja) 表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム
Shahin et al. Predicting dehulling efficiency of lentils based on seed size and shape characteristics measured with image analysis
JP2016191677A (ja) 検体分析装置、血液凝固分析装置、検体分析方法、及びコンピュータプログラム
WO2020152757A1 (ja) 加工状態検出装置、レーザ加工機および機械学習装置
Sun et al. Surface gloss evaluation of apples based on computer vision and support vector machine method
EP4328685A1 (en) Process monitoring
JP6555164B2 (ja) 粒子径分布測定装置、データ処理方法及びデータ処理プログラム
JP6061031B2 (ja) 分光分析システムおよび該方法
Celikovic et al. Control oriented modeling of twin-screw granulation in the ConsiGmaTM-25 production plant
JP6065770B2 (ja) 被覆状態判定装置、被覆状態判定方法、被覆状態判定システム及びプログラム
CN108037085A (zh) 基于光谱特征的金属工件表面缺陷检测方法
CN107664655B (zh) 用于表征分析物的方法以及装置
Yip et al. Classification of structurally related commercial contrast media by near infrared spectroscopy
Mohan et al. Terahertz time of flight spectroscopy as a coating thickness reference method for partial least squares near infrared spectroscopy models
FR2918775A1 (fr) Normalisation des variables de processus dans un processus de fabrication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R151 Written notification of patent or utility model registration

Ref document number: 6036517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350