JP2014206210A - Speed control device - Google Patents

Speed control device Download PDF

Info

Publication number
JP2014206210A
JP2014206210A JP2013083602A JP2013083602A JP2014206210A JP 2014206210 A JP2014206210 A JP 2014206210A JP 2013083602 A JP2013083602 A JP 2013083602A JP 2013083602 A JP2013083602 A JP 2013083602A JP 2014206210 A JP2014206210 A JP 2014206210A
Authority
JP
Japan
Prior art keywords
shaft member
moving member
cylinder
moving
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013083602A
Other languages
Japanese (ja)
Other versions
JP6218420B2 (en
Inventor
高橋 大輔
Daisuke Takahashi
大輔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOK Bearing Co Ltd
Original Assignee
TOK Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOK Bearing Co Ltd filed Critical TOK Bearing Co Ltd
Priority to JP2013083602A priority Critical patent/JP6218420B2/en
Priority to CN201410131125.8A priority patent/CN104100668B/en
Publication of JP2014206210A publication Critical patent/JP2014206210A/en
Application granted granted Critical
Publication of JP6218420B2 publication Critical patent/JP6218420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a speed control device which expands a rotation angle range of a shaft member and changes a resistance force in the rotation process.SOLUTION: A speed control device includes: a shaft member 2 rotatably supported by a cylinder 1; a moving member 8 through which the shaft member 2 penetrates, the moving member 8 which is restricted from rotating relative to the cylinder 1 or the shaft member 2 and may be moved in an axial direction by a rotation force of the shaft member 2; a pair of fluid chambers 9,10 which are divided in the cylinder 1 by the moving member 8; and a clearance 11 between an outer periphery of the moving member 8 and an inner periphery 1d of the cylinder 1 or a clearance 14 between an inner periphery of the moving member 8 and an outer periphery of the shaft member 2. Sizes of the clearances 11, 14 are changed in a moving direction of the moving member 8 by a shape of an inner peripheral surface of the cylinder or an outer peripheral surface of the shaft member to change flow resistance of a fluid flowing through the clearances 11, 14.

Description

この発明は、移動部材の移動速度を制御するための速度制御装置に関する。   The present invention relates to a speed control device for controlling the moving speed of a moving member.

従来から、例えばピアノの蓋や便座などが閉まる時の衝撃を緩和するために、回転軸に設けて上記蓋や便座などの落下速度を制御する、様々な速度制御装置が提案されている。
この種のものとして、特許文献1〜3に示すダンパ装置が知られているが、これらは、粘性流体を封入したシリンダ内に、回転可能に支持された軸部材を備え、この軸部材の回転力に対して抵抗力を作用させるものである。
2. Description of the Related Art Conventionally, various speed control devices that are provided on a rotating shaft and control the falling speed of the lid, toilet seat, etc. have been proposed in order to mitigate the impact when a piano lid, toilet seat, etc. are closed.
As this type, the damper devices shown in Patent Documents 1 to 3 are known. These damper devices include a shaft member rotatably supported in a cylinder filled with a viscous fluid. A resistance force acts on the force.

上記特許文献1〜3に記載されたダンパ装置の基本的な構造はすべて同じであり、それらの具体的構造は、次のとおりである。
上記軸部材の外周にはシリンダ内周に向かって突出する羽根部を形成し、シリンダの内周には軸部材に向かって突出する隔壁部を形成している。これら羽根部と隔壁部とによって区画される流体室を形成し、軸部材の回転によってその容積が縮小する流体室から拡大する流体室へ粘性流体が流入するときの流動抵抗に応じた抵抗力が移動部材に対して発揮されるようにしている。そして、この抵抗力によって移動部材の移動速度を制御していた。
なお、上記のような流動抵抗による抵抗力を、相対回転位置や、回転方向に応じて変化させるために、流路となる隙間の大きさを調整したり、チェック弁機構を設けたりしたものも知られている。
The basic structures of the damper devices described in Patent Documents 1 to 3 are all the same, and their specific structures are as follows.
A blade portion protruding toward the inner periphery of the cylinder is formed on the outer periphery of the shaft member, and a partition wall portion protruding toward the shaft member is formed on the inner periphery of the cylinder. A fluid chamber defined by the blade portion and the partition portion is formed, and a resistance force corresponding to the flow resistance when the viscous fluid flows into the fluid chamber expanding from the fluid chamber whose volume is reduced by the rotation of the shaft member is It is designed to be exerted on the moving member. And the moving speed of the moving member was controlled by this resistance force.
In addition, in order to change the resistance force due to the flow resistance as described above according to the relative rotation position and the rotation direction, the size of the gap serving as the flow path is adjusted, or a check valve mechanism is provided. Are known.

特開平08−109940号公報Japanese Patent Laid-Open No. 08-109940 特開2002−295561号公報JP 2002-295561 A 特開2004−183888号公報JP 2004-183888 A

上記のように、羽根部と隔壁部とによって流体室を円周方向に区画する構成では、軸部材とシリンダとの相対回転可能な角度範囲が、羽根部と隔壁部とが衝突するまでの範囲に限られてしまう。つまり、相対回転角度が360°未満に限られてしまう。実際には、羽根部や隔壁部にも回転方向の寸法が必要になるので、回転可能な角度は300°程度が上限となる。
このような回転角度でも、ピアノの蓋や便座のように回転角度範囲が小さい場合には問題はない。しかし、複数回転するような場合、例えば、長尺の部材を巻き取ったり繰り出したりするような装置には、上記特許文献1〜3に示すような構造のダンパ装置を速度制御装置として適用することは難しかった。
As described above, in the configuration in which the fluid chamber is partitioned in the circumferential direction by the blade portion and the partition wall portion, the angle range in which the shaft member and the cylinder can be rotated relative to each other is the range until the blade portion and the partition wall portion collide with each other. It will be limited to. That is, the relative rotation angle is limited to less than 360 °. Actually, since the blade portion and the partition wall also need a dimension in the rotation direction, the upper limit of the rotatable angle is about 300 °.
Even with such a rotation angle, there is no problem when the rotation angle range is small, such as a piano lid or toilet seat. However, in the case of multiple rotations, for example, a damper device having a structure as shown in Patent Documents 1 to 3 is applied as a speed control device to a device that winds or feeds a long member. Was difficult.

一方、上記羽根部や隔壁部を設けないで、回転角度範囲に限界をなくすことも考えられる。その場合には、軸部材とシリンダ内壁との隙間を小さくして、その隙間でのせん断抵抗によって移動に対する抵抗力を得ることになるが、この場合、抵抗力は常時一定になる。つまり、上記長尺部材の巻き取り過程や繰り出し過程の途中で、抵抗力に変化を付けることができず、結果として移動速度を任意に制御することができなかった。
この発明の目的は、軸部材の回転角度範囲を大きくすることができるとともに、回転過程において抵抗力を変化させることができる速度制御装置を提供することである。
On the other hand, it is also conceivable to eliminate the limit of the rotation angle range without providing the blade part and the partition part. In that case, the clearance between the shaft member and the inner wall of the cylinder is reduced and a resistance to movement is obtained by the shear resistance in the clearance. In this case, the resistance is always constant. That is, the resistance force cannot be changed during the winding process and the feeding process of the long member, and as a result, the moving speed cannot be arbitrarily controlled.
An object of the present invention is to provide a speed control device capable of increasing a rotation angle range of a shaft member and changing a resistance force in a rotation process.

第1の発明は、シリンダと、シリンダに回転可能に支持された軸部材と、上記軸部材を貫通させるとともに、上記シリンダあるいは軸部材との相対回転を規制され、上記軸部材の回転力によって軸方向に移動可能にした移動部材と、この移動部材によって上記シリンダ内に区画された一対の流体室と、上記移動部材の外周と上記シリンダの内周あるいは上記移動部材の内周と上記軸部材の外周との間の隙間とを備え、上記隙間を介して流れる流体の流動抵抗によって上記軸部材の回転力に対する抵抗力を発揮させる速度制御装置であって、上記シリンダの内周面あるいは上記軸部材の外周面の形状によって、上記移動部材の移動位置に応じて形成される上記隙間の大きさを変化させ、この隙間を介して流れる流体の流動抵抗を変化させることを特徴とする。   According to a first aspect of the present invention, a cylinder, a shaft member rotatably supported by the cylinder, and the shaft member are penetrated, and relative rotation with the cylinder or the shaft member is restricted. A moving member that is movable in a direction, a pair of fluid chambers partitioned in the cylinder by the moving member, an outer periphery of the moving member, an inner periphery of the cylinder or an inner periphery of the moving member, and the shaft member A speed control device including a gap between the outer periphery and a resistance against a rotational force of the shaft member by a flow resistance of a fluid flowing through the gap, the inner peripheral surface of the cylinder or the shaft member The size of the gap formed according to the movement position of the moving member is changed according to the shape of the outer peripheral surface of the moving member, and the flow resistance of the fluid flowing through the gap is changed And features.

第2の発明は、上記移動部材に、上記一対の流体室間を連通可能にした連通路及びこの連通路を開閉するチェック弁を設けるとともに、このチェック弁は上記移動部材の移動方向に応じて開閉する構成にしたことを特徴とする。
なお、上記チェック弁が移動部材の移動方向に応じて開閉するとは、移動部材が一方へ移動するときには開弁状態となり、他方へ移動するときには閉弁状態となるということである。
According to a second aspect of the present invention, the moving member is provided with a communication path that allows communication between the pair of fluid chambers and a check valve that opens and closes the communication path, and the check valve is provided in accordance with the moving direction of the moving member. It is characterized by being configured to open and close.
The opening and closing of the check valve according to the moving direction of the moving member means that the valve is opened when the moving member moves to one side, and the valve is closed when moved to the other side.

第1の発明では、軸部材の回転力によって移動部材を軸方向に移動させ、この移動部材の外周とシリンダ内周との間の隙間、あるいは移動部材の内周と軸部材の外周との間の隙間を流れる流体の流動抵抗を利用して、移動部材の移動速度を制御するようにしている。そのため、従来の羽根部を設けた装置のように軸部材の回転角度範囲が限定されることなく、複数回転に対応するような大きな可動範囲内で移動部材に対する抵抗力を発揮させることができる。
また、流体が通過する隙間の大きさを変化させているため、隙間の大きさに応じて流体の流動抵抗が変化し、結果として移動部材の移動速度や軸部材の回転速度を制御することができる。
In the first invention, the moving member is moved in the axial direction by the rotational force of the shaft member, and a gap between the outer periphery of the moving member and the cylinder inner periphery, or between the inner periphery of the moving member and the outer periphery of the shaft member. The moving speed of the moving member is controlled using the flow resistance of the fluid flowing through the gap. Therefore, the rotational angle range of the shaft member is not limited as in the conventional apparatus provided with the blade portion, and the resistance force to the moving member can be exhibited within a large movable range corresponding to a plurality of rotations.
Further, since the size of the gap through which the fluid passes is changed, the flow resistance of the fluid changes according to the size of the gap, and as a result, the moving speed of the moving member and the rotational speed of the shaft member can be controlled. it can.

第2の発明では、チェック弁で開閉される連通路を備えているため、移動部材の移動方向によって抵抗力を発揮させたり、発揮させなかったりすることができる。   In 2nd invention, since the communicating path opened and closed by a check valve is provided, resistance force can be exhibited or it cannot be exhibited according to the moving direction of a moving member.

図1はこの発明の第1実施形態の断面図である。FIG. 1 is a sectional view of a first embodiment of the present invention. 図2は図1のII-II線断面図である。2 is a cross-sectional view taken along line II-II in FIG. 図3は図1のIII-III線断面図である。3 is a cross-sectional view taken along line III-III in FIG. 図4は第1実施形態の隙間の形状を説明するための模式図であり、連通孔8d,8dの中心を通る断面図に相当する。FIG. 4 is a schematic diagram for explaining the shape of the gap of the first embodiment, and corresponds to a cross-sectional view passing through the centers of the communication holes 8d and 8d. 図5は第3実施形態の断面図である。FIG. 5 is a cross-sectional view of the third embodiment. 図6は図5のVI-VI線断面図である。6 is a cross-sectional view taken along line VI-VI in FIG. 図7は図5のVII-VII線断面図である。7 is a cross-sectional view taken along line VII-VII in FIG. 図8は第3実施形態の隙間の形状を説明するための模式図であり、連通孔8d,8dの中心を通る断面図に相当する。FIG. 8 is a schematic view for explaining the shape of the gap of the third embodiment, and corresponds to a cross-sectional view passing through the centers of the communication holes 8d and 8d.

この発明の第1実施形態は図1〜3に示すように、シリンダ1内に軸部材2を回転可能に支持するとともに、上記シリンダ1内に流体を封入している。
上記シリンダ1は、一方の端部に大径の開口1aを備え、他端側は軸孔1bを形成した底部1cを備えている。
また、シリンダ1の内周1dは、図4に示すように底部1cから開口1aに向かって内径が大きくなるようなテーパー状にしている。図4は、後で説明するガイド凸部1e及びガイド凹部8bを避けた箇所での断面図に相当する模式図で、内周1dの形状をわかり易くするために、内周1dの傾斜を極端に表わしている。実際には底部1c側の内径D1と開口側の内径D2との差は微小で、上記内周1dの軸方向の傾斜はほとんどわからない程度のものである。
さらに、上記内周1dには、後で説明する移動部材8とシリンダ1との相対回転を規制し、軸方向の移動をガイドするため、軸方向に連続する一対のガイド凸部1eを形成している。
In the first embodiment of the present invention, as shown in FIGS. 1 to 3, a shaft member 2 is rotatably supported in a cylinder 1 and a fluid is sealed in the cylinder 1.
The cylinder 1 includes a large-diameter opening 1a at one end, and a bottom 1c having a shaft hole 1b at the other end.
Further, the inner periphery 1d of the cylinder 1 is tapered so that the inner diameter increases from the bottom 1c toward the opening 1a as shown in FIG. FIG. 4 is a schematic view corresponding to a cross-sectional view at a location avoiding the guide convex portion 1e and the guide concave portion 8b, which will be described later. In order to easily understand the shape of the inner periphery 1d, the inclination of the inner periphery 1d is extremely increased. It represents. Actually, the difference between the inner diameter D1 on the bottom portion 1c side and the inner diameter D2 on the opening side is very small, and the inclination of the inner circumference 1d in the axial direction is almost unknown.
Further, a pair of guide protrusions 1e that are continuous in the axial direction are formed on the inner circumference 1d in order to restrict relative rotation between the moving member 8 and the cylinder 1 described later and guide the movement in the axial direction. ing.

また、図1に示すように、上記シリンダ1の開口1aには環状のキャップ3を嵌めている。このキャップ3の中央には軸孔3aを形成し、この軸孔3aで軸部材2の一方の端部側に形成した小径部2aを回転可能に支持している。上記軸孔3aにはシール溝3bを形成し、そこにOリング4を嵌めこんでいる。
また、キャップ3の外周に環状のシール溝3cを形成し、このシール溝3cにもOリング5を嵌めている。
Further, as shown in FIG. 1, an annular cap 3 is fitted in the opening 1 a of the cylinder 1. A shaft hole 3a is formed at the center of the cap 3, and a small diameter portion 2a formed on one end side of the shaft member 2 is rotatably supported by the shaft hole 3a. A seal groove 3b is formed in the shaft hole 3a, and an O-ring 4 is fitted therein.
An annular seal groove 3c is formed on the outer periphery of the cap 3, and an O-ring 5 is fitted in the seal groove 3c.

さらに、上記軸部材2の他方の端部付近にフランジ2bを備え、このフランジ2bより軸方向外側には環状のシール溝2cを形成している。この環状凹部2cにOリング6を組み込み、このOリング6を介して軸部材2のフランジ側端部を、底部1cの軸孔1bで回転可能に支持している。
そして、上記Oリング4〜6によってシリンダ1内の流体が漏れ出ないようにしている。
なお、図中、符号7は上記キャップ3の抜け止め機能を有するCリングである。但し、上記キャップ3の抜け止めは上記Cリング7に限らない。上記Cリング7を用いる代わりに、キャップ3とシリンダ1とを溶着したり、ねじ結合したりしてもよい。
Further, a flange 2b is provided in the vicinity of the other end of the shaft member 2, and an annular seal groove 2c is formed on the outer side in the axial direction from the flange 2b. An O-ring 6 is incorporated in the annular recess 2c, and the flange side end of the shaft member 2 is rotatably supported by the shaft hole 1b of the bottom 1c via the O-ring 6.
The O-rings 4 to 6 prevent fluid in the cylinder 1 from leaking out.
In the figure, reference numeral 7 denotes a C-ring having a function of preventing the cap 3 from coming off. However, retaining of the cap 3 is not limited to the C ring 7. Instead of using the C-ring 7, the cap 3 and the cylinder 1 may be welded or screwed together.

上記軸部材2は中空部材で、中心には図示しない駆動軸などを挿入するための軸孔2eを貫通させている。また、この軸孔2eの一端側を、その断面形状を六角形にした六角孔2fとしている。そして、上記軸孔2eに挿入する駆動軸などの先端付近の断面形状を、上記六角孔2fに一致する六角形とし、その六角形の部分を上記六角孔2fに挿入することによって上記六角孔2fを軸の回り止めとして機能させ、上記両軸が一体化して回転するようにしている。但し、上記回り止めとしては、六角孔2fに限らず、断面形状が円以外であればよく、例えば多角形や楕円、切欠き部を備えたものなどでも構わない。
なお、この第1実施形態では、先端側の断面を六角形にした上記駆動軸などをシリンダ1の底部1c側から上記軸孔2eに挿入するようにしている。しかし、上記駆動軸などの挿入は、シリンダ1のどちら側からでもかまわない。例えば、駆動軸を上記開口1a側から挿入し、その先端部分を六角孔2fに一致させるようにしてもよい。
The shaft member 2 is a hollow member, and a shaft hole 2e for inserting a drive shaft (not shown) is passed through the center. One end side of the shaft hole 2e is a hexagonal hole 2f having a hexagonal cross section. Then, the cross-sectional shape near the tip of the drive shaft or the like to be inserted into the shaft hole 2e is a hexagon that matches the hexagon hole 2f, and the hexagonal portion 2f is inserted into the hexagon hole 2f by inserting the hexagonal portion into the hexagon hole 2f. Is made to function as a detent of the shaft so that both the shafts rotate together. However, the anti-rotation is not limited to the hexagonal hole 2f, and the cross-sectional shape may be other than a circle. For example, a polygon, an ellipse, or a notch may be used.
In the first embodiment, the drive shaft having a hexagonal cross section on the tip side is inserted into the shaft hole 2e from the bottom 1c side of the cylinder 1. However, the drive shaft and the like can be inserted from either side of the cylinder 1. For example, the drive shaft may be inserted from the opening 1a side, and the tip end portion may be aligned with the hexagonal hole 2f.

さらにまた、軸部材2の小径部2aとフランジ2bとの間の外周には雄ねじ2dを形成し、この雄ねじ2dには、後で詳しく説明するリング状の移動部材8の雌ねじ8aを嵌め合わせ、軸部材2を移動部材8に貫通させている。
この移動部材8によって、上記シリンダ1の内周と軸部材2の外周とで形成される空間を第1の流体室9と第2の流体室10とに区画している。但し、移動部材8の外周とシリンダ内周1dとの間には図1には表われないわずかな隙間11が形成される(図2〜4参照)。
Furthermore, a male screw 2d is formed on the outer periphery between the small diameter portion 2a of the shaft member 2 and the flange 2b, and a female screw 8a of a ring-shaped moving member 8 which will be described in detail later is fitted to the male screw 2d. The shaft member 2 is passed through the moving member 8.
By this moving member 8, a space formed by the inner periphery of the cylinder 1 and the outer periphery of the shaft member 2 is partitioned into a first fluid chamber 9 and a second fluid chamber 10. However, a slight gap 11 not shown in FIG. 1 is formed between the outer periphery of the moving member 8 and the cylinder inner periphery 1d (see FIGS. 2 to 4).

なお、上記したように、シリンダ1の内周1dは、図4に示すテーパー状をしているので、軸方向位置によってシリンダ1の内径寸法が異なっている。そのため、上記隙間11の大きさは、移動部材8の軸方向位置によって変化する。言い換えれば、移動部材8の軸方向位置によって上記隙間11の大きさが決まる。
そして、この第1実施形態では、移動部材8が、シリンダ1の底部1c側から開口1a側へ近づくにしたがって、すなわち矢印B方向へ移動するにしたがって上記隙間11が大きくなる。
As described above, the inner circumference 1d of the cylinder 1 has a tapered shape shown in FIG. 4, and therefore the inner diameter dimension of the cylinder 1 varies depending on the axial position. Therefore, the size of the gap 11 varies depending on the axial position of the moving member 8. In other words, the size of the gap 11 is determined by the axial position of the moving member 8.
And in this 1st Embodiment, the said clearance gap 11 becomes large as the moving member 8 approaches the opening 1a side from the bottom 1c side of the cylinder 1, ie, moves to the arrow B direction.

また、上記移動部材8であって、図2における上下位置には、上記シリンダ1のガイド凸部1eを嵌めこむ一対のガイド凹部8bを形成している。これらガイド凹部8bにシリンダ1の上記ガイド凸部1eを嵌め合わせることによって移動部材8の回転を阻止し、軸部材2が回転したとき移動部材8が軸方向に移動するようにしている。
なお、この第1実施形態では、移動部材8とシリンダ1との相対回転を規制するためにシリンダ1に上記ガイド凸部1eを形成し、移動部材8にガイド凹部8bを形成しているが、ガイド凸部とガイド凹部とはいずれか一方をシリンダ1側に形成し、いずれか他方を移動部材8側に形成すればよく、どちらがガイド凸部でもガイド凹部でもかまわない。
Further, a pair of guide recesses 8b into which the guide protrusions 1e of the cylinder 1 are fitted are formed at the upper and lower positions in FIG. The guide protrusion 1e of the cylinder 1 is fitted into these guide recesses 8b to prevent the movement member 8 from rotating. When the shaft member 2 rotates, the movement member 8 moves in the axial direction.
In the first embodiment, the guide protrusion 1e is formed in the cylinder 1 and the guide recess 8b is formed in the moving member 8 in order to restrict relative rotation between the moving member 8 and the cylinder 1. Any one of the guide convex portion and the guide concave portion may be formed on the cylinder 1 side, and the other one may be formed on the moving member 8 side, either of which may be the guide convex portion or the guide concave portion.

さらに、移動部材8には、円周方向に配置した複数の連通孔8c,8dと、直径上に対向配置した一対のねじ孔8eとを貫通させている。上記ガイド凹部8bに対応する図中の上下位置には、他の連通孔8dよりも直径を小さくした連通孔8cを貫通させ、他の位置には連通孔8cよりも直径の大きな連通孔8dを貫通させている。
上記連通孔8cの直径を連通孔8dの直径よりも小さくしているのは、その位置が上記ガイド凹部8bの位置に対応しているからで、連通孔8cの周囲の肉厚を確保するためである。
Further, the moving member 8 has a plurality of communication holes 8c, 8d arranged in the circumferential direction and a pair of screw holes 8e arranged opposite to each other in diameter. In the upper and lower positions in the figure corresponding to the guide recess 8b, a communication hole 8c having a diameter smaller than that of the other communication hole 8d is passed, and a communication hole 8d having a diameter larger than that of the communication hole 8c is provided at the other position. It penetrates.
The reason why the diameter of the communication hole 8c is smaller than the diameter of the communication hole 8d is that the position corresponds to the position of the guide recess 8b, so that the thickness around the communication hole 8c is secured. It is.

但し、連通孔8c,8dの位置や直径は、図2に示す第1実施形態のものに限らない。上記移動部材8を貫通する連通孔8c,8dの断面積の総和が、この発明の連通路として必要な通路面積になればよい。なお、上記連通路の流路面積は、シリンダ1の内周1dと移動部材8の外周との間に形成される隙間11の断面積に比べて十分に大きくし、流体が上記連通路を通過するときの流動抵抗が、隙間11を通過するときの流動抵抗に比べて無視できるようにしておく。   However, the positions and diameters of the communication holes 8c and 8d are not limited to those of the first embodiment shown in FIG. The sum of the cross-sectional areas of the communication holes 8c and 8d penetrating the moving member 8 only needs to be a passage area necessary as the communication passage of the present invention. The flow passage area of the communication passage is sufficiently larger than the cross-sectional area of the gap 11 formed between the inner periphery 1d of the cylinder 1 and the outer periphery of the moving member 8, and fluid passes through the communication passage. In this case, the flow resistance is set to be negligible compared to the flow resistance when passing through the gap 11.

さらに、移動部材8であって、図3に示した一方の端面には上記連通孔8c、8dを覆う板状の弁部材12を設け、この弁部材12を上記一対のねじ孔8eにねじ止めるねじ部材13で固定している。
この弁部材12は、移動部材8の端面にほぼ一致するドーナツ形状をしているが、図3における上下位置に、シリンダ1のガイド凸部1eを回避するための切欠き12aを備えている。
なお、この第1実施形態では弁部材12を移動部材8にねじ止めしているが、上記弁部材12の取り付け方法はねじ止めに限らない。例えば、弁部材12あるいは移動部材8に設けた凸部を、移動部材8あるいは弁部材12に設けた凹部や孔に圧入したり、一方の部材に形成したフックを他方の部材に形成した凹部にはめ込んだりする所謂スナップフィットなどでもよい。
Further, the movable member 8 is provided with a plate-like valve member 12 covering the communication holes 8c and 8d on one end face shown in FIG. 3, and the valve member 12 is screwed to the pair of screw holes 8e. It is fixed with a screw member 13.
The valve member 12 has a donut shape substantially coinciding with the end face of the moving member 8, but is provided with a notch 12 a for avoiding the guide convex portion 1 e of the cylinder 1 at the vertical position in FIG. 3.
In addition, in this 1st Embodiment, although the valve member 12 is screwed to the moving member 8, the attachment method of the said valve member 12 is not restricted to screwing. For example, a convex portion provided on the valve member 12 or the moving member 8 is press-fitted into a concave portion or hole provided on the moving member 8 or the valve member 12, or a hook formed on one member is formed on the concave portion formed on the other member. A so-called snap fit that fits in may also be used.

また、上記弁部材12は、上記一方の流体室9の圧力が他方の流体室10の圧力より大きいときには、移動部材8に押し付けられて上記連通孔8c,8dを閉じ、一方の流体室9の圧力が他方の圧力室10の圧力より小さくなったときには移動部材8から離れて上記連通孔8c,8dを開き、この発明のチェック弁を構成する。
なお、上記弁部材12は、図3における左右方向の直径上に設けた一対のねじ部材13によって移動部材8に固定されているので、上記第2の流体室の圧力が第1の流体室の圧力より大きくなったとき、上記ねじ部材13,13を通る直径を境に折れ曲がるように変形して開弁する。
Further, when the pressure of the one fluid chamber 9 is larger than the pressure of the other fluid chamber 10, the valve member 12 is pressed against the moving member 8 to close the communication holes 8 c and 8 d, When the pressure becomes lower than the pressure in the other pressure chamber 10, the communication holes 8c and 8d are opened away from the moving member 8 to constitute the check valve of the present invention.
Since the valve member 12 is fixed to the moving member 8 by a pair of screw members 13 provided on the diameter in the left-right direction in FIG. 3, the pressure of the second fluid chamber is the same as that of the first fluid chamber. When the pressure becomes larger than the pressure, the valve is deformed so as to be bent at the diameter passing through the screw members 13 and 13 and opened.

上記のように構成した速度制御装置の作用を以下に説明する。
ここでは、軸部材2に図示しない駆動軸を挿入固定し、その駆動軸を介して軸部材2を回転させるとき、その回転力に対して抵抗力を発揮させる場合について説明する。
なお、この第1実施形態では、軸部材2が、図1に矢印で示した時計回りCWに回転すると、移動部材8は矢印A方向に移動し、反時計回りCCWに回転すると移動部材8は矢印B方向へ移動するものとする。なお、軸部材2の回転方向は、シリンダ1の底部1c側から見た場合のものである。
The operation of the speed control device configured as described above will be described below.
Here, a case where a drive shaft (not shown) is inserted and fixed in the shaft member 2 and the shaft member 2 is rotated via the drive shaft will exhibit a resistance force against the rotational force.
In the first embodiment, when the shaft member 2 rotates clockwise CW indicated by an arrow in FIG. 1, the moving member 8 moves in the direction of arrow A, and when it rotates counterclockwise CCW, the moving member 8 is It shall move in the direction of arrow B. Note that the rotation direction of the shaft member 2 is the one seen from the bottom 1c side of the cylinder 1.

上記軸部材2が時計回りCWに回転し、移動部材8が矢印A方向へ移動すると、第1の流体室9が拡大し、第2の流体室10が縮小する。第2の流体室10が縮小すれば、第1の流体室9より第2の流体室10の圧力が高くなるので、その圧力作用によって弁部材12が開弁し、連通路を構成する連通孔8c,8dを開く。この連通孔8c,8dが開けば、流体は、この連通孔8c,8dを介して第2の流体室10から第1の流体室9へ流入する。上記連通孔8c,8dの流路面積の総和は十分に大きく設定されているので、これら連通孔8c,8dを介して流体が流れるときの流動抵抗は無視できる。つまり、軸部材2が時計回りCWに回転する場合には、移動部材8に対する抵抗力、すなわち軸部材2の回転力に対する抵抗力は無視できる。   When the shaft member 2 rotates clockwise CW and the moving member 8 moves in the direction of arrow A, the first fluid chamber 9 expands and the second fluid chamber 10 contracts. If the second fluid chamber 10 is reduced, the pressure of the second fluid chamber 10 becomes higher than that of the first fluid chamber 9, so that the valve member 12 is opened by the pressure action, and the communication hole constituting the communication path Open 8c and 8d. When the communication holes 8c and 8d are opened, the fluid flows from the second fluid chamber 10 to the first fluid chamber 9 through the communication holes 8c and 8d. Since the sum of the flow path areas of the communication holes 8c and 8d is set sufficiently large, the flow resistance when the fluid flows through the communication holes 8c and 8d can be ignored. That is, when the shaft member 2 rotates clockwise CW, the resistance force to the moving member 8, that is, the resistance force to the rotation force of the shaft member 2 can be ignored.

これに対し、軸部材2が反時計回りCCWに回転し、移動部材8が矢印B方向へ移動すると、第1の流体室9が縮小し、第2の流体室10が拡大する。第2の流体室10が拡大すれば、第2の流体室10より第1の流体室9の圧力が高くなるので、その圧力作用によって弁部材12が閉弁し、連通路を構成する連通孔8c,8dを閉じる。このように、上記連通孔8c,8dが閉じれば、第1の流体室9から第2の流体室10へ流れる流体は、図4の矢印bのように、移動部材8の外周に形成される上記隙間11を通過することになる。   On the other hand, when the shaft member 2 rotates counterclockwise CCW and the moving member 8 moves in the arrow B direction, the first fluid chamber 9 is contracted and the second fluid chamber 10 is expanded. If the second fluid chamber 10 expands, the pressure in the first fluid chamber 9 becomes higher than that in the second fluid chamber 10, so that the valve member 12 is closed by the action of the pressure, and the communication hole constituting the communication path Close 8c and 8d. As described above, when the communication holes 8c and 8d are closed, the fluid flowing from the first fluid chamber 9 to the second fluid chamber 10 is formed on the outer periphery of the moving member 8 as indicated by an arrow b in FIG. It will pass through the gap 11.

この隙間11は、上記したような微小な隙間なので、流体の流動抵抗は大きくなり、この流動抵抗が移動部材8に対する抵抗力や、軸部材2の回転に対する抵抗力として作用する。
つまり、この第1実施形態の速度制御装置では、軸部材2が時計回りCWに回転する場合には、流動抵抗に基づく抵抗力は発揮されず、反時計回りCCWに回転する場合にのみ抵抗力が発揮される。
Since the gap 11 is a minute gap as described above, the flow resistance of the fluid increases, and this flow resistance acts as a resistance force against the moving member 8 and a resistance force against the rotation of the shaft member 2.
That is, in the speed control device of the first embodiment, when the shaft member 2 rotates clockwise CW, the resistance based on the flow resistance is not exhibited, and only when the shaft member 2 rotates counterclockwise CCW. Is demonstrated.

また、上記隙間11の大きさは、図4に示すように軸方向において変化しているため、この隙間11を通過する流体の流動抵抗も変化する。その結果、上記移動部材8に対する抵抗力が変化し、この変化した抵抗力によって移動部材8や軸部材の速度も変化する。
この第1実施形態では、上記隙間11の大きさをシリンダ1の底部1cから開口1aに向かって連続的に大きくなるようにしている。そのため、軸部材2が反時計回りCCWに回転したときに発揮される抵抗力は徐々に小さくなる。
このように、この第1実施形態の速度制御装置では、軸部材2の回転方向によって回転力に対する抵抗力を発揮させたり、発揮させなかったりすることができる。さらに、発揮する抵抗力に変化を付け、移動部材8や軸部材2の速度を変化させることができる。
Further, since the size of the gap 11 changes in the axial direction as shown in FIG. 4, the flow resistance of the fluid passing through the gap 11 also changes. As a result, the resistance force to the moving member 8 changes, and the speed of the moving member 8 and the shaft member also changes due to the changed resistance force.
In the first embodiment, the size of the gap 11 is continuously increased from the bottom 1c of the cylinder 1 toward the opening 1a. Therefore, the resistance force exerted when the shaft member 2 rotates counterclockwise CCW gradually decreases.
As described above, in the speed control device of the first embodiment, the resistance force to the rotational force can be exhibited or not exhibited depending on the rotation direction of the shaft member 2. Furthermore, the resistance force exerted can be changed, and the speed of the moving member 8 and the shaft member 2 can be changed.

また、軸部材2の回転角度範囲は、従来の羽根部と隔壁部とを備えたダンパ装置のように、1回転以内に限定されることがない。軸部材2の回転角度範囲は、上記移動部材8の軸方向の移動範囲に対応するが、軸部材2は複数回転も可能である。そして、軸部材2の軸方向長さを長くすれば、その分移動部材8の移動範囲が大きくなり、それに伴って軸部材2の回転可能範囲も大きくなる。但し、軸部材2の回転と移動部材8の移動範囲との関係は、上記雄ねじ2d及び雌ねじ8aのピッチによっても変わる。ねじピッチを大きくすれば、軸部材2の一回転あたりの移動部材8の軸方向の移動距離が大きくなり、ねじピッチを小さくすれば、一回転あたりの移動部材8の軸方向の移動距離が小さくなる。なお、上記ねじピッチが小さいほど、移動部材8の動きがよりスムーズになる。   In addition, the rotation angle range of the shaft member 2 is not limited to one rotation as in a damper device having a conventional blade portion and a partition wall portion. The rotation angle range of the shaft member 2 corresponds to the movement range of the moving member 8 in the axial direction. And if the axial direction length of the shaft member 2 is lengthened, the movement range of the movement member 8 will become large correspondingly, and the rotatable range of the shaft member 2 will also become large in connection with it. However, the relationship between the rotation of the shaft member 2 and the moving range of the moving member 8 also varies depending on the pitch of the male screw 2d and the female screw 8a. If the screw pitch is increased, the moving distance in the axial direction of the moving member 8 per rotation of the shaft member 2 is increased, and if the screw pitch is decreased, the moving distance in the axial direction of the moving member 8 per rotation is decreased. Become. In addition, the movement of the moving member 8 becomes smoother as the screw pitch is smaller.

上記のような速度制御装置は、例えば長尺部材の巻き取り装置などに適用し、軸部材2を複数回回転させて使用することができる。例えば、軸部材2を時計回りCWに回転させて長尺部材を巻き取るときには、抵抗力を作用させないでスムーズに巻き取り、反時計回りCCWに回転させて繰り出す際にのみ、抵抗力を発揮させることもできる。   The speed control device as described above can be applied to, for example, a winding device for a long member, and can be used by rotating the shaft member 2 a plurality of times. For example, when the shaft member 2 is rotated clockwise CW and the long member is wound, the winding is smoothly performed without applying the resistance force, and the resistance force is exerted only when the counter member is rotated counterclockwise CCW and fed out. You can also.

なお、上記第1実施形態では、軸部材2が反時計回りCCWに回転する際に発揮される抵抗力が徐々に弱くなるように構成しているため、移動部材8が矢印B方向へ移動する過程で、徐々に移動速度を上げることもできる。
しかし、発揮させる抵抗力は上記シリンダ1の内周1dの形状によって様々な変化を付けることができる。
例えば、シリンダ1の内周1dの傾斜を、図4とは反対にして、底部1cから開口1aに向かって内径が小さくなるようにしてもよい。このようにすれば、軸部材2が反時計回りCCWに回転したとき、矢印B方向へ移動する移動部材8の外周とシリンダ1の内周1dとの隙間11は徐々に小さくなる。
In the first embodiment, since the resistance exerted when the shaft member 2 rotates counterclockwise CCW is configured to gradually weaken, the moving member 8 moves in the arrow B direction. In the process, the moving speed can be gradually increased.
However, the resistance force to be exerted can be variously changed depending on the shape of the inner periphery 1d of the cylinder 1.
For example, the inner diameter 1d of the cylinder 1 may be inclined opposite to that shown in FIG. 4 so that the inner diameter decreases from the bottom 1c toward the opening 1a. In this way, when the shaft member 2 rotates counterclockwise CCW, the gap 11 between the outer periphery of the moving member 8 moving in the arrow B direction and the inner periphery 1d of the cylinder 1 gradually decreases.

上記隙間11が徐々に小さくなれば、移動部材8の移動に伴って、矢印bで示す流れの流動抵抗が徐々に大きくなり、抵抗力を徐々に大きくすることができる。このような装置は、例えば、軸部材2に連携した錘などの重力作用によって軸部材2を反時計回りCCWに回転させるようなとき、重りの落下によって増加する回転速度を、徐々に大きくなる抵抗力によって抑え、落下速度を一定に制御するような場合に利用することもできる。また、移動終端において抵抗力を最大にして、衝撃を吸収するダンパ装置としても利用できる。   If the gap 11 is gradually reduced, the flow resistance of the flow indicated by the arrow b gradually increases with the movement of the moving member 8, and the resistance force can be gradually increased. Such a device has a resistance that gradually increases the rotational speed that increases due to the fall of the weight when the shaft member 2 is rotated counterclockwise CCW by the action of gravity such as a weight linked to the shaft member 2. It can also be used in the case where the fall speed is controlled to be constant and controlled by a force. It can also be used as a damper device that absorbs impact by maximizing resistance at the end of movement.

また、シリンダ1の内周1dの形状によって、上記隙間11の大きさを一方向に向かって大きくしたり、小さくしたりするだけでなく、シリンダ1の両端に向かって大きくなるようにしたり、一定の大きさとなる部分を形成したり、様々に変化させることができる。
このように、隙間11の大きさを様々に変化させることによって、上記抵抗力の大きさに変化を付けたり、抵抗力が効き始めるタイミングを調整したりすることもでき、それによって移動部材8の軸方向の移動速度や、軸部材2の回転速度を制御することができる。
Further, depending on the shape of the inner periphery 1d of the cylinder 1, the size of the gap 11 is not only increased or decreased in one direction, but also increased toward both ends of the cylinder 1 or fixed. The part which becomes the size of can be formed or changed variously.
In this way, by changing the size of the gap 11 in various ways, it is possible to change the magnitude of the resistance force, or to adjust the timing at which the resistance force begins to be effective. The moving speed in the axial direction and the rotational speed of the shaft member 2 can be controlled.

さらに、抵抗力を発揮させる回転方向は、軸部材2の反時計回りCCW方向に限らない。もし、軸部材2が時計回りCWに回転したときにのみ、力を発揮させるようにするためには、移動部材8に対する上記弁部材12の取り付け位置を、シリンダ1の底部1c側に変更すればよい。あるいは、雄ねじ2d及び雌ねじ1fのねじ山を逆ねじにすれば、軸部材2の回転方向と移動部材8の移動方向との関係を、上記とは反対にすることができる。   Furthermore, the rotation direction in which the resistance force is exerted is not limited to the counterclockwise CCW direction of the shaft member 2. In order to exert the force only when the shaft member 2 rotates clockwise CW, the attachment position of the valve member 12 with respect to the moving member 8 is changed to the bottom 1c side of the cylinder 1. Good. Alternatively, if the threads of the male screw 2d and the female screw 1f are reverse screws, the relationship between the rotational direction of the shaft member 2 and the moving direction of the moving member 8 can be reversed.

なお、上記第1実施形態では、移動部材8に連通孔8c,8d及び弁部材12を設けたが、これらを設けなくてもよい。
その場合を、第2実施形態として以下に説明する。
この第2実施形態は、上記移動部材8に連通孔8c,8d及び弁部材12を備えていない以外は上記第1実施形態と同じ構成である。したがって、第1実施形態と同じ構成要素については第1実施形態と同じ符号を用い、第1実施形態と同じ構成要素についての説明は省略する。また、以下の説明にも図1及び図4を参照する。
In the first embodiment, the communication holes 8c and 8d and the valve member 12 are provided in the moving member 8. However, these may not be provided.
Such a case will be described below as a second embodiment.
The second embodiment has the same configuration as the first embodiment except that the moving member 8 is not provided with communication holes 8c and 8d and a valve member 12. Therefore, the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description of the same components as those of the first embodiment is omitted. The following description is also made with reference to FIGS.

この第2実施形態では、移動部材8に連通孔8c,8dを形成していないため、軸部材2の回転方向がいずれの場合、すなわち移動部材8の移動方向が矢印A,Bのいずれの場合にも、流体が上記隙間11を流れ、流動抵抗が抵抗力として発揮されることになる。
すなわち、軸部材2が時計方向CWに回転し、移動部材8が図4において矢印A方向へ移動すると、流体は隙間11を矢印aのように流れ、その流動抵抗によって抵抗力が発揮される。この抵抗力は、移動部材8が底部1cへ近づくにしたがって大きくなって、移動部材8の移動速度をより小さくするように機能する。
一方、軸部材2が反時計回りCCWへ回転する場合には、移動部材8が矢印B方向へ移動し、上記第1実施形態と同様に流体が隙間11を矢印bの様に流れ、流動抵抗は徐々に小さくなって、移動部材8の移動、すなわち軸部材の回転力に対する抵抗力も徐々に小さくなる。
In this 2nd Embodiment, since the communicating holes 8c and 8d are not formed in the moving member 8, when the rotation direction of the shaft member 2 is any, that is, when the moving direction of the moving member 8 is any of the arrows A and B In addition, the fluid flows through the gap 11 and the flow resistance is exhibited as a resistance force.
That is, when the shaft member 2 rotates in the clockwise direction CW and the moving member 8 moves in the direction of arrow A in FIG. 4, the fluid flows through the gap 11 as indicated by the arrow a, and resistance is exerted by the flow resistance. This resistance force increases as the moving member 8 approaches the bottom 1c, and functions to reduce the moving speed of the moving member 8.
On the other hand, when the shaft member 2 rotates counterclockwise CCW, the moving member 8 moves in the direction of the arrow B, and the fluid flows through the gap 11 as shown by the arrow b in the same manner as in the first embodiment. Gradually decreases, and the movement of the moving member 8, that is, the resistance force against the rotational force of the shaft member also gradually decreases.

つまり、この第2実施形態では、軸部材2の回転方向が時計回りCW、反時計回りCCWのいずれの場合にも抵抗力が発揮される。そして、どちらの回転方向においても流動抵抗に変化を付け、速度制御することができる。
この第2実施形態の装置では、軸部材2に入力される回転力が一定の場合には、移動部材8が底部1cに近づくにしたがって移動速度は徐々に小さくなり、反対に開口1aに近づくにしたがって移動速度が徐々に大きくなる。
なお、この第2実施形態においても、シリンダ1の内周1dの形状によって隙間11の大きさを様々に変化させることができる。
That is, in the second embodiment, the resistance force is exhibited when the rotation direction of the shaft member 2 is either the clockwise CW or the counterclockwise CCW. In either rotation direction, the flow resistance can be changed and the speed can be controlled.
In the apparatus of the second embodiment, when the rotational force input to the shaft member 2 is constant, the moving speed gradually decreases as the moving member 8 approaches the bottom 1c, and conversely approaches the opening 1a. Therefore, the moving speed gradually increases.
In the second embodiment, the size of the gap 11 can be changed variously depending on the shape of the inner periphery 1d of the cylinder 1.

図5〜図8示す第3実施形態は、シリンダ1内に回転可能に支持された軸部材2と、この軸部材2が貫通するとともに、軸部材2の回転に伴って軸方向に移動する移動部材8を備え、この移動部材8によってシリンダ1内を第1の流体室9と第2の流体室10とに区画している点は上記第1実施形態と同じである。
この第3実施形態において、上記第1実施形態と同じ構成要素には上記第1実施形態と同じ符号を用い、詳細な説明は省略する。そして、以下には、第1実施形態と異なる点を中心に説明する。
The third embodiment shown in FIGS. 5 to 8 includes a shaft member 2 rotatably supported in the cylinder 1, and the shaft member 2 penetrates and moves in the axial direction as the shaft member 2 rotates. A member 8 is provided, and the cylinder 1 is partitioned into a first fluid chamber 9 and a second fluid chamber 10 by the moving member 8, which is the same as in the first embodiment.
In the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted. And below, it demonstrates centering on a different point from 1st Embodiment.

第3実施形態の速度制御装置は、軸部材2の外周2gと移動部材8の内周8fとの間に隙間14を形成し、この隙間14を流れる流体の流動抵抗を利用して速度を制御するように構成した装置であり、この点が第1実施形態と異なる点である。
そして、この第3実施形態では、図5〜7に示すように、軸部材2の外周2gに、軸方向に連続する一対のガイド凹部2hを形成し、移動部材8の内周8fに、上記ガイド凹部2gに一致する一対のガイド凸部8gを形成している。このガイド凸部8gを上記ガイド凹部2hに嵌め合わせることによって軸部材2と移動部材8との相対回転を規制し、軸部材2が回転すると移動部材8も回転するようにしている。
但し、上記ガイド凹部及びガイド凸部は、いずれか一方を軸部材2側に形成し、いずれか他方を移動部材8側に形成すればよく、どちらがガイド凹部でもガイド凸部でもかまわない。
The speed control device of the third embodiment forms a gap 14 between the outer circumference 2g of the shaft member 2 and the inner circumference 8f of the moving member 8, and controls the speed using the flow resistance of the fluid flowing through the gap 14. This is a device configured as described above, and this point is different from the first embodiment.
And in this 3rd Embodiment, as shown to FIGS. 5-7, a pair of guide recessed part 2h which continues in an axial direction is formed in the outer periphery 2g of the shaft member 2, and the said inner periphery 8f of the moving member 8 is above-mentioned. A pair of guide convex portions 8g that coincide with the guide concave portions 2g are formed. By fitting the guide convex portion 8g into the guide concave portion 2h, relative rotation between the shaft member 2 and the moving member 8 is restricted, and when the shaft member 2 rotates, the moving member 8 also rotates.
However, one of the guide recess and the guide protrusion may be formed on the shaft member 2 side, and the other may be formed on the moving member 8 side, either of which may be a guide recess or a guide protrusion.

また、移動部材8の外周には雄ねじ8hを形成し、この雄ねじ8hにかみ合う雌ねじ1fをシリンダ1の内周に形成して、両者を結合している。
したがって、上記軸部材2の回転力によって移動部材8が回転すると、この移動部材8は上記雌ねじ1fのねじ溝に沿って軸方向に移動する。
この第3実施形態においては、軸部材2が時計回りCWに回転すると、移動部材8は矢印B方向へ移動し、反時計回りCCWに回転すると矢印A方向へ移動する。この軸部材2の回転方向は、シリンダ1の底部1c側から見た場合のものである。
Further, a male screw 8h is formed on the outer periphery of the moving member 8, and a female screw 1f meshing with the male screw 8h is formed on the inner periphery of the cylinder 1 to couple them together.
Therefore, when the moving member 8 is rotated by the rotational force of the shaft member 2, the moving member 8 moves in the axial direction along the thread groove of the female screw 1f.
In the third embodiment, when the shaft member 2 rotates clockwise CW, the moving member 8 moves in the arrow B direction, and when it rotates counterclockwise CCW, it moves in the arrow A direction. The rotation direction of the shaft member 2 is that seen from the bottom 1c side of the cylinder 1.

なお、この第3実施形態の軸部材2も、その中心に軸方向に貫通する軸孔2e、六角孔2fを備え、この軸孔2eに挿入した図示しない駆動軸を介して回転力を入力できる点は、上記第1実施形態と同じである。
そして、上記軸部材2をシリンダ1に回転可能に支持する構成は、第1実施形態と同じである。
また、上記移動部材8には、上記第1実施形態と同様に、複数の連通孔8c,8dを貫通させるとともに、これら貫通孔8c,8dを開閉する弁部材12を取り付けている。
The shaft member 2 of the third embodiment also has a shaft hole 2e and a hexagonal hole 2f penetrating in the axial direction at the center thereof, and rotational force can be input via a drive shaft (not shown) inserted into the shaft hole 2e. The point is the same as in the first embodiment.
And the structure which supports the said shaft member 2 to the cylinder 1 rotatably is the same as 1st Embodiment.
In addition, as in the first embodiment, the moving member 8 is provided with a valve member 12 that passes through the plurality of communication holes 8c and 8d and opens and closes the through holes 8c and 8d.

一方、上記軸部材2は、図8に示すように、その直径をシリンダ1の底部1c側から開口1aに向かって連続的に小さくしている。
図8は、上記凸部1e及びガイド凹部8bを避けた箇所での断面図に相当する模式図で、軸部材2の外周の形状をわかり易くするために、軸部材2の外周2gの傾斜を極端に表わしている。実際には底部1c側の内径D3と開口側の内径D4との差は微小で、上記外周2gの軸方向の傾斜はほとんどわからない程度のものである。
On the other hand, as shown in FIG. 8, the diameter of the shaft member 2 is continuously reduced from the bottom 1c side of the cylinder 1 toward the opening 1a.
FIG. 8 is a schematic view corresponding to a cross-sectional view at a location where the convex portion 1e and the guide concave portion 8b are avoided. In order to make the shape of the outer periphery of the shaft member 2 easier to understand, the inclination of the outer periphery 2g of the shaft member 2 is extremely increased. It represents. Actually, the difference between the inner diameter D3 on the bottom 1c side and the inner diameter D4 on the opening side is very small, and the inclination of the outer periphery 2g in the axial direction is almost unknown.

このように構成した速度制御装置の作用を以下に説明する。
軸部材2を時計回りCW方向へ回転させると、移動部材8も時計回りCW方向へ回転する。移動部材8が時計回りCWに回転すれば、シリンダ1の雌ねじ1fに沿って矢印B方向へ移動する。移動部材8が矢印A方向へ移動すると、第1の流体室9が収縮するので、その圧力によって弁部材12が閉弁する。したがって、流体は上記隙間14を通過し、隙間14の大きさに対応した流動抵抗が、移動部材8へ抵抗力として作用する。上記隙間14は、移動部材8が矢印B方向へ移動するにしたがって徐々に大きくなるので、上記抵抗力が徐々に小さくなる。この抵抗力によって移動速度が制御される。
The operation of the speed control device configured as described above will be described below.
When the shaft member 2 is rotated in the clockwise CW direction, the moving member 8 is also rotated in the clockwise CW direction. When the moving member 8 rotates clockwise CW, the moving member 8 moves in the direction of arrow B along the female screw 1 f of the cylinder 1. When the moving member 8 moves in the arrow A direction, the first fluid chamber 9 contracts, and the valve member 12 is closed by the pressure. Therefore, the fluid passes through the gap 14 and a flow resistance corresponding to the size of the gap 14 acts on the moving member 8 as a resistance force. Since the gap 14 gradually increases as the moving member 8 moves in the direction of arrow B, the resistance force gradually decreases. The moving speed is controlled by this resistance force.

これに対し、軸部材2を反時計回りCCW方向へ回転させると、移動部材8も時計回りCW方向へ回転する。移動部材8が時計回りに回転すれば、シリンダ1の雌ねじ1fに沿って矢印A方向へ移動する。移動部材8が矢印A方向へ移動すると、第2の流体室10が収縮するので、その圧力によって弁部材12が開弁する。したがって、流体は連通孔8c,8dを通過し、その際の流動抵抗は無視できる。したがって、移動部材8の速度を抑えるような抵抗力は作用しないことになる。
この第3実施形態の速度装置も、上記第1実施形態と同様に軸部材2が複数回転するような装置に用い、移動部材8の移動速度を制御することができる。
On the other hand, when the shaft member 2 is rotated in the counterclockwise CCW direction, the moving member 8 is also rotated in the clockwise CW direction. If the moving member 8 rotates clockwise, it moves in the direction of arrow A along the internal thread 1 f of the cylinder 1. When the moving member 8 moves in the direction of arrow A, the second fluid chamber 10 contracts, and the valve member 12 is opened by the pressure. Therefore, the fluid passes through the communication holes 8c and 8d, and the flow resistance at that time can be ignored. Therefore, a resistance force that suppresses the speed of the moving member 8 does not act.
The speed device of the third embodiment can also be used in a device in which the shaft member 2 rotates a plurality of times as in the first embodiment, and the moving speed of the moving member 8 can be controlled.

また、上記軸部材2の外周2gの傾斜の方向や、傾斜位置などを様々に設定することによって、上記隙間14の大きさを変化させれば、移動部材8や軸部材2の速度を様々に制御することができる。
さらに、上記第3実施形態の装置の移動部材8に、連通孔8c,8d及び弁部材12を設けなければ、軸部材2の回転方向が時計回りCW、反時計回りCCWのいずれの場合にも、流動抵抗による抵抗力を発揮させて移動速度を制御できるようになる。
Also, if the size of the gap 14 is changed by variously setting the direction of inclination of the outer periphery 2g of the shaft member 2 and the position of the inclination, the speed of the moving member 8 and the shaft member 2 can be varied. Can be controlled.
Furthermore, if the communication member 8c, 8d and the valve member 12 are not provided in the moving member 8 of the apparatus of the third embodiment, the rotation direction of the shaft member 2 is either clockwise CW or counterclockwise CCW. The moving speed can be controlled by exerting a resistance force caused by the flow resistance.

なお、上記実施形態では、軸部材2の中心に貫通する軸孔2eを設けて、この貫通孔に駆動軸など、連結すべき外部装置の軸を挿入するようにしているが、軸孔2eは貫通孔に限らず、一方の端部を塞いでもよいし、駆動軸などの先端を挿入するための凹部でもよい。
または、軸部材2に軸孔や凹部を形成せずに、軸部材2の端部をシリンダ1の端部から突出させ、この突出部に駆動軸などを連結するようにしてもよい。
但し、上記実施形態のように、駆動軸などを軸部材2に挿入するようにした場合、シリンダ1の端部から軸部材2の突出がなく、速度制御装置全体をコンパクトにできる。
In the above embodiment, a shaft hole 2e that penetrates in the center of the shaft member 2 is provided, and a shaft of an external device to be connected, such as a drive shaft, is inserted into the through hole. Not only the through hole but also one end may be closed, or a recess for inserting a tip such as a drive shaft may be used.
Alternatively, without forming a shaft hole or a recess in the shaft member 2, the end portion of the shaft member 2 may protrude from the end portion of the cylinder 1, and a drive shaft or the like may be connected to the protruding portion.
However, when the drive shaft or the like is inserted into the shaft member 2 as in the above embodiment, the shaft member 2 does not protrude from the end of the cylinder 1, and the entire speed control device can be made compact.

速度に変化を付けることが必要な様々な装置に適用可能である。   It can be applied to various devices that require a change in speed.

1 シリンダ
1d 内周
1e ガイド凸部
1f 雌ねじ
2 軸部材
2d 雄ねじ
2g 外周
2h ガイド凹部
8 移動部材
8a 雌ねじ
8b ガイド凹部
8c、8d (連通路である)連通孔
8f 内周
8g ガイド凸部
8h 雄ねじ
9 第1の流体室
10 第2の流体室
11 隙間
12 (チェック弁である)弁部材
14 隙間
DESCRIPTION OF SYMBOLS 1 Cylinder 1d Inner periphery 1e Guide convex part 1f Female thread 2 Shaft member 2d Male screw 2g Outer periphery 2h Guide recessed part 8 Moving member 8a Female thread 8b Guide recessed part 8c, 8d (It is a communicating path) Communication hole 8f Inner circumference 8g Guide convex part 8h Male thread 9 First fluid chamber 10 Second fluid chamber 11 Gap 12 Valve member 14 (which is a check valve) Gap

Claims (2)

シリンダと、
シリンダに回転可能に支持された軸部材と、
上記軸部材を貫通させるとともに、上記シリンダあるいは軸部材との相対回転を規制され、上記軸部材の回転力によって軸方向に移動可能にした移動部材と、
この移動部材によって上記シリンダ内に区画された一対の流体室と、
上記移動部材の外周と上記シリンダの内周との間の隙間あるいは上記移動部材の内周と上記軸部材の外周との間の隙間とを備え、
上記隙間を介して流れる流体の流動抵抗によって軸部材の回転力に対する抵抗力を発揮させる速度制御装置であって、
上記シリンダの内周面あるいは上記軸部材の外周面の形状によって、上記移動部材の移動位置に応じて形成される上記隙間の大きさを変化させ、
上記隙間を介して流れる流体の流動抵抗を変化させることを特徴とした速度制御装置。
A cylinder,
A shaft member rotatably supported by the cylinder;
A moving member that penetrates the shaft member and is restricted in relative rotation with the cylinder or the shaft member and is movable in the axial direction by the rotational force of the shaft member;
A pair of fluid chambers defined in the cylinder by the moving member;
A clearance between the outer periphery of the moving member and the inner periphery of the cylinder or a clearance between the inner periphery of the moving member and the outer periphery of the shaft member;
A speed control device that exerts resistance to the rotational force of the shaft member by the flow resistance of the fluid flowing through the gap,
Depending on the shape of the inner peripheral surface of the cylinder or the outer peripheral surface of the shaft member, the size of the gap formed according to the movement position of the moving member is changed,
A speed control device characterized by changing a flow resistance of a fluid flowing through the gap.
上記移動部材に、上記一対の流体室間を連通可能にした連通路及びこの連通路を開閉するチェック弁を設けるとともに、このチェック弁は上記移動部材の移動方向に応じて開閉する構成にしたことを特徴とする請求項1に記載の速度制御装置。
The moving member is provided with a communication path that enables communication between the pair of fluid chambers and a check valve that opens and closes the communication path, and the check valve is configured to open and close according to the moving direction of the moving member. The speed control apparatus according to claim 1.
JP2013083602A 2013-04-12 2013-04-12 Speed control device Active JP6218420B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013083602A JP6218420B2 (en) 2013-04-12 2013-04-12 Speed control device
CN201410131125.8A CN104100668B (en) 2013-04-12 2014-04-02 Speed control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083602A JP6218420B2 (en) 2013-04-12 2013-04-12 Speed control device

Publications (2)

Publication Number Publication Date
JP2014206210A true JP2014206210A (en) 2014-10-30
JP6218420B2 JP6218420B2 (en) 2017-10-25

Family

ID=51669096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083602A Active JP6218420B2 (en) 2013-04-12 2013-04-12 Speed control device

Country Status (2)

Country Link
JP (1) JP6218420B2 (en)
CN (1) CN104100668B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106122348A (en) * 2016-06-30 2016-11-16 安徽工程大学 Be suitable to the damping adjustment device of hydraulic damper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940944A (en) * 1972-08-24 1974-04-17
JPS63270935A (en) * 1987-04-28 1988-11-08 Shiyuuwa Kogyo Kk Oil damper
JPH08135710A (en) * 1994-11-07 1996-05-31 Nhk Spring Co Ltd Shock absorber
JP2003130115A (en) * 2001-10-23 2003-05-08 Oiles Ind Co Ltd Damper

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842619A (en) * 1994-07-28 1996-02-16 Nifco Inc Rotating damper
US6464052B1 (en) * 2002-02-13 2002-10-15 Chun-Sung Hsiao Rotatable hydraulic damper
CN102440715B (en) * 2011-08-17 2013-09-18 王湘冀 Slow-falling rotating shaft structure
CN202811971U (en) * 2012-07-25 2013-03-20 东莞市培尓电子有限公司 Damper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940944A (en) * 1972-08-24 1974-04-17
JPS63270935A (en) * 1987-04-28 1988-11-08 Shiyuuwa Kogyo Kk Oil damper
JPH08135710A (en) * 1994-11-07 1996-05-31 Nhk Spring Co Ltd Shock absorber
JP2003130115A (en) * 2001-10-23 2003-05-08 Oiles Ind Co Ltd Damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106122348A (en) * 2016-06-30 2016-11-16 安徽工程大学 Be suitable to the damping adjustment device of hydraulic damper

Also Published As

Publication number Publication date
JP6218420B2 (en) 2017-10-25
CN104100668A (en) 2014-10-15
CN104100668B (en) 2018-01-05

Similar Documents

Publication Publication Date Title
US9115519B2 (en) Damping structure
JP4972361B2 (en) Rotary valve
JP4395427B2 (en) Damper device and method for manufacturing damper device
KR100839199B1 (en) Flow rate control valve
KR20170089780A (en) Fluid―filled piston cylinder unit
JP6722373B2 (en) Braking rotary shaft mechanism
US9492041B1 (en) Adjustable rotary damper for toilet seats
JP2016090037A (en) Rotor damper
JP4625451B2 (en) Rotary damper
JP6218420B2 (en) Speed control device
WO2017204022A1 (en) Rotary damper
JP4965474B2 (en) Damper device
JP2020092242A (en) Sealed container
JP4885617B2 (en) Door check device
JP6258179B2 (en) Valve opening adjustment mechanism
JP6647967B2 (en) One-way rotary damper
JP4470649B2 (en) Damper and hinge mechanism with damper for automobile door using the same
KR100414520B1 (en) Rotary type oil damper
JP2004316674A (en) Rotary valve
JP2012246955A (en) Valve
JP5147248B2 (en) Damper device
JP2008082462A (en) Rotary damper
JP2007309377A (en) Rotary damper device
JP2000227135A (en) Shock absorber
JP6413346B2 (en) Toilet seat unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170926

R150 Certificate of patent or registration of utility model

Ref document number: 6218420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250