JP2014206149A - Rotary hermetic compressor - Google Patents

Rotary hermetic compressor Download PDF

Info

Publication number
JP2014206149A
JP2014206149A JP2013085688A JP2013085688A JP2014206149A JP 2014206149 A JP2014206149 A JP 2014206149A JP 2013085688 A JP2013085688 A JP 2013085688A JP 2013085688 A JP2013085688 A JP 2013085688A JP 2014206149 A JP2014206149 A JP 2014206149A
Authority
JP
Japan
Prior art keywords
main bearing
peripheral surface
groove
rotary
oil supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013085688A
Other languages
Japanese (ja)
Other versions
JP2014206149A5 (en
Inventor
亮太 増本
Ryota Masumoto
亮太 増本
谷 真男
Masao Tani
谷  真男
毅司 井沢
Takeshi Izawa
毅司 井沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013085688A priority Critical patent/JP2014206149A/en
Priority to CN201420184665.8U priority patent/CN203856721U/en
Publication of JP2014206149A publication Critical patent/JP2014206149A/en
Publication of JP2014206149A5 publication Critical patent/JP2014206149A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent interruption of an oil film by not forming an oil supply groove at a load receiving side.SOLUTION: Oil supply grooves are respectively formed on a region not supporting a compression load of an inner peripheral face of a main bearing 6, and a region not supporting a load in accompany with centrifugal force of an outer peripheral face of a rotating shaft 10, of a sliding portion between the rotating shaft 10 and the main bearing 6, and an oil supply groove is not formed in the direction of receiving a load, thus interruption of an oil film can be prevented.

Description

本発明は、密閉容器内に圧縮機要素とこの圧縮機要素を駆動する電動機要素を収納するロータリー式密閉型圧縮機に関する。   The present invention relates to a rotary hermetic compressor in which a compressor element and an electric motor element that drives the compressor element are housed in a sealed container.

この種のロータリー式密閉型圧縮機は、密閉容器内に、圧縮機要素とこの圧縮機要素を駆動する電動機要素と冷凍機油とを収納している。そして、密閉容器の電動機要素を挟む一方の側に設けた吸入管から冷媒を吸入し、圧縮機要素にて圧縮し、高圧・高温の蒸気冷媒にして電動機要素を通過させ、密閉容器の電動機要素を挟む他方の側に設けた吐出管から吐出するようになっている。   This type of rotary hermetic compressor stores a compressor element, an electric motor element that drives the compressor element, and refrigerating machine oil in a hermetic container. Then, the refrigerant is sucked from the suction pipe provided on one side of the motor element of the hermetic container, compressed by the compressor element, passed through the motor element as a high-pressure / high-temperature vapor refrigerant, and the motor element of the hermetic container It discharges from the discharge pipe provided in the other side which pinches | interposes.

このようなものにおいて、電動機要素の回転子が回転することで圧縮機要素の回転軸が回転し、圧縮機要素のシリンダー、ローリングピストン、ベーンによって構成される内部空間である圧縮室内で吸入、吐出が繰り返され、冷媒が圧縮される。圧縮室の上下にはそれぞれ主軸受と副軸受が設けられ、回転軸は主軸受と副軸受に嵌め込まれている。回転軸下部には軸心部に給油孔が形成され、給油孔には給油ブレードが挿入されている。回転軸が回転すると、給油ブレードが冷凍機油を吸い上げ、給油孔から各摺動部へ冷凍機油が給油される。この冷凍機油は、回転軸と主軸受および副軸受との間の給油溝によって、回転軸と軸受との間に給油され油膜を形成し、回転軸に働く荷重を支持する。したがって、回転軸への給油性を確保するために、回転軸と主軸受および副軸受との間には給油溝が必要である。従来のロータリー式密閉型圧縮機では、給油溝は主軸受および副軸受の内周面または回転軸の外周面に形成されている(例えば、特許文献1,2,3参照)。   In such a case, the rotating shaft of the compressor element is rotated by the rotation of the rotor of the motor element, and suction and discharge are performed in a compression chamber which is an internal space constituted by the cylinder, the rolling piston, and the vane of the compressor element. Is repeated and the refrigerant is compressed. A main bearing and a sub bearing are provided above and below the compression chamber, respectively, and the rotating shaft is fitted in the main bearing and the sub bearing. An oil supply hole is formed in the shaft center portion at the lower part of the rotation shaft, and an oil supply blade is inserted into the oil supply hole. When the rotating shaft rotates, the oil supply blade sucks up the refrigerating machine oil, and the refrigerating machine oil is supplied from the oil supply hole to each sliding portion. The refrigerating machine oil is supplied between the rotary shaft and the bearing by an oil supply groove between the rotary shaft and the main bearing and the sub-bearing to form an oil film, and supports a load acting on the rotary shaft. Therefore, an oil supply groove is required between the rotary shaft and the main bearing and the sub-bearing in order to ensure oil supply to the rotary shaft. In the conventional rotary type hermetic compressor, the oil supply groove is formed on the inner peripheral surface of the main bearing and the sub-bearing or on the outer peripheral surface of the rotary shaft (for example, see Patent Documents 1, 2, and 3).

特開2007−270818号公報(図1)Japanese Patent Laying-Open No. 2007-270818 (FIG. 1) 実開平03−006080号公報(図1)Japanese Utility Model Publication No. 03-006080 (FIG. 1) 特開平04−047191号公報(図1)Japanese Unexamined Patent Publication No. 04-047191 (FIG. 1)

回転軸にかかる荷重は、主に、圧縮室の吸入側圧縮室と吐出側圧縮室の圧力差による圧縮荷重と、回転軸および電動機要素の回転子の回転に伴う遠心力の荷重である。回転軸が一周するうち、圧縮荷重を受けるのは、吸入側圧縮室のある特定の範囲であり、ベーンの位置を起点(0°)として偏心軸部が180°回動する位置までの範囲、すなわち0°〜180°の範囲である。これに対し、遠心力の荷重の方向は、回転軸と、回転軸に連結された回転子の偏心荷重方向によって決定され、回転子側の偏心荷重は、一般にバランスウェイトで吸収されるようになっている。また、回転軸の偏心荷重の方向は、回転軸の偏心軸部の偏心方向であり、回転軸側から見ればほぼ一定であり、回転軸の回転に追随し回転する。   The load applied to the rotation shaft is mainly a compression load due to a pressure difference between the suction-side compression chamber and the discharge-side compression chamber of the compression chamber, and a centrifugal force load accompanying the rotation of the rotation shaft and the rotor of the motor element. While the rotation shaft makes one round, the compression load is received in a specific range of the suction side compression chamber, and the range from the vane position to the starting point (0 °) to the position where the eccentric shaft portion rotates 180 °, That is, it is in the range of 0 ° to 180 °. On the other hand, the direction of centrifugal force load is determined by the rotating shaft and the eccentric load direction of the rotor connected to the rotating shaft, and the eccentric load on the rotor side is generally absorbed by the balance weight. ing. The direction of the eccentric load of the rotating shaft is the eccentric direction of the eccentric shaft portion of the rotating shaft, and is substantially constant when viewed from the rotating shaft side, and rotates following the rotation of the rotating shaft.

よって、従来の密閉型電動圧縮機では、回転軸に油溝を設けた場合には、回転軸が一周するうち、圧縮荷重を受ける側に給油溝が形成される位相が存在する。また、主軸受に給油溝を設けた場合には、回転軸の回転に伴い遠心力の荷重のかかる方向も追随し回転するので、一周するうち、遠心力の荷重を受ける側に給油溝が形成される位相が存在する。荷重を受ける側に給油溝が形成されると、給油溝が油膜反力を逃がしてしまい、油膜反力が低減され、油膜が途切れる恐れがある。   Therefore, in the conventional hermetic electric compressor, when an oil groove is provided on the rotary shaft, there is a phase in which the oil supply groove is formed on the side receiving the compression load while the rotary shaft makes one round. In addition, when the main bearing is provided with an oil groove, the direction in which the centrifugal load is applied follows the rotation of the rotating shaft, so it rotates. There is a phase to be played. If the oil supply groove is formed on the side receiving the load, the oil supply groove releases the oil film reaction force, the oil film reaction force is reduced, and the oil film may be interrupted.

本発明は、前記の課題を解決するためになされたもので、荷重を受ける側に給油溝が形成されないようにして、油膜が途切れることを防止できるようにすることを目的とする。   The present invention has been made to solve the above-described problem, and an object of the present invention is to prevent an oil film from being interrupted by preventing an oil supply groove from being formed on a load receiving side.

本発明に係るロータリー式密閉型圧縮機は、密閉容器内の上部に電動要素を、その下部に前記電動要素に回転軸で連結された圧縮要素を収納し、圧縮要素は、回転軸上に一体化された偏心軸部と、偏心軸部が挿入されるリング状のシリンダーと、偏心軸部に勘合しシリンダーに収納されるローリングピストンと、シリンダー内に摺動自在に挿入されて一端がローリングピストンの外周面に当接し、シリンダー内を吸入側圧縮室と吐出側圧縮室とに画成するベーンと、シリンダーの軸方向両端の開口を上下から閉塞する主軸受および副軸受とを備えたロータリー式密閉型圧縮機において、回転軸と主軸受との摺動部のうち、主軸受の内周面の圧縮荷重を支持しない部位と、回転軸の外周面の遠心力に伴う荷重を支持しない部位に、それぞれ給油溝を設けたものである。   A rotary hermetic compressor according to the present invention stores an electric element in an upper portion of a hermetic container and a compression element connected to the electric element by a rotary shaft in a lower portion thereof, and the compression element is integrated on the rotary shaft. Eccentric shaft part, a ring-shaped cylinder into which the eccentric shaft part is inserted, a rolling piston fitted into the eccentric shaft part and housed in the cylinder, and slidably inserted into the cylinder with one end being a rolling piston A rotary type comprising a vane that is in contact with the outer peripheral surface of the cylinder and that defines the inside of the cylinder into a suction side compression chamber and a discharge side compression chamber, and a main bearing and a sub bearing that vertically close the openings at both ends in the axial direction of the cylinder In the hermetic compressor, in the sliding part between the rotating shaft and the main bearing, the portion that does not support the compressive load on the inner peripheral surface of the main bearing and the portion that does not support the load accompanying the centrifugal force on the outer peripheral surface of the rotating shaft. , Refueling each In which the provided.

本発明に係るロータリー式密閉型圧縮機においては、回転軸と主軸受との摺動部のうち、主軸受の内周面の圧縮荷重を支持しない部位と、回転軸の外周面の遠心力に伴う荷重を支持しない部位に、それぞれ給油溝を設けたので、荷重を受ける方向には給油溝が形成されない。このため、油膜が途切れることがなく、信頼性が向上する。   In the rotary type hermetic compressor according to the present invention, the sliding portion between the rotating shaft and the main bearing is subjected to the centrifugal force of the portion that does not support the compressive load on the inner peripheral surface of the main bearing and the outer peripheral surface of the rotating shaft. Since the oil supply grooves are provided in the portions that do not support the accompanying load, the oil supply grooves are not formed in the direction of receiving the load. For this reason, the oil film is not interrupted and the reliability is improved.

本発明の原理を説明するためのロータリー式密閉型圧縮機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the rotary type hermetic compressor for demonstrating the principle of this invention. 本発明の原理を説明するためのロータリー式密閉型圧縮機の圧縮要素を副軸受側から見た模式図である。It is the schematic diagram which looked at the compression element of the rotary type hermetic compressor for explaining the principle of the present invention from the sub bearing side. 本発明の原理を説明するためのロータリー式密閉型圧縮機の圧縮要素を副軸受側から見た模式図である。It is the schematic diagram which looked at the compression element of the rotary type hermetic compressor for explaining the principle of the present invention from the sub bearing side. 本発明の実施形態1に係るロータリー式密閉型圧縮機の主軸受を示す斜視図である。It is a perspective view which shows the main bearing of the rotary type hermetic compressor which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るロータリー式密閉型圧縮機の回転軸を示す正面図および側面図である。It is the front view and side view which show the rotating shaft of the rotary type closed compressor which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係るロータリー式密閉型圧縮機の回転軸と主軸受を示す断面図である。It is sectional drawing which shows the rotating shaft and main bearing of the rotary type hermetic compressor which concern on Embodiment 2 of this invention. 本発明の実施形態3に係るロータリー式密閉型圧縮機の回転軸と主軸受を示す断面図である。It is sectional drawing which shows the rotating shaft and main bearing of the rotary type hermetic compressor which concern on Embodiment 3 of this invention. 本発明の実施形態4に係るロータリー式密閉型圧縮機の回転軸と主軸受を示す断面図である。It is sectional drawing which shows the rotating shaft and main bearing of the rotary type hermetic compressor which concern on Embodiment 4 of this invention. 本発明の実施形態5に係るロータリー式密閉型圧縮機の回転軸と主軸受を示す断面図である。It is sectional drawing which shows the rotating shaft and main bearing of the rotary type hermetic compressor which concern on Embodiment 5 of this invention.

まず、本発明の原理を図1〜図3を用いて説明する。図1は本発明の原理を説明するためのロータリー式密閉型圧縮機を示す縦断面図である。図2は本発明の原理を説明するためのロータリー式密閉型圧縮機の圧縮要素を副軸受側から見た模式図である。図3は本発明の原理を説明するためのロータリー式密閉型圧縮機の圧縮要素を副軸受側から見た模式図であり、(a)は偏心軸部が偏心方向をベーン側に向けた角度θ=0°のときの状態、(b)は偏心軸部が90°回動した角度θ=90°のときの状態、(c)は偏心軸部が180°回動した角度θ=180°のときの状態、(d)は偏心軸部が270°回動した角度θ=270°のときの状態を、それぞれ示している。   First, the principle of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view showing a rotary type hermetic compressor for explaining the principle of the present invention. FIG. 2 is a schematic view of the compression element of the rotary type hermetic compressor for explaining the principle of the present invention as seen from the auxiliary bearing side. FIG. 3 is a schematic view of the compression element of the rotary hermetic compressor for explaining the principle of the present invention as seen from the sub-bearing side, and (a) is an angle at which the eccentric shaft portion faces the eccentric direction toward the vane side. The state when θ = 0 °, (b) is the state when the eccentric shaft portion is rotated by 90 °, and θ is the state when θ = 90 °, and (c) is the angle when the eccentric shaft portion is rotated by 180 ° θ = 180 °. (D) shows the state when the eccentric shaft portion is rotated by 270 ° and the angle θ is 270 °.

図1に示すように、密閉型圧縮機100は、上部容器1aと下部容器1bとで構成される密閉容器1内に、冷媒を圧縮する圧縮要素50と、この圧縮要素50を駆動する電動要素60を収納している。圧縮要素50と電動要素60とは、回転軸10で連結され、圧縮要素50が密閉容器1の下部に、電動要素60が密閉容器1の上部に収納されている。回転軸10は、上部の主軸部10aと、下部の副軸部10bと、これらの間に形成された偏心軸部10cとから構成されている。   As shown in FIG. 1, a hermetic compressor 100 includes a compression element 50 that compresses a refrigerant in an airtight container 1 that includes an upper container 1a and a lower container 1b, and an electric element that drives the compression element 50. 60 is stored. The compression element 50 and the electric element 60 are connected by the rotary shaft 10, and the compression element 50 is accommodated in the lower part of the sealed container 1 and the electric element 60 is accommodated in the upper part of the sealed container 1. The rotating shaft 10 includes an upper main shaft portion 10a, a lower sub shaft portion 10b, and an eccentric shaft portion 10c formed therebetween.

圧縮要素50は、図1および図2に示すように、リング状のシリンダー5内に回転軸10の偏心軸部10cに勘合するローリングピストン8が収納されている。シリンダー5には、溝が設けられ、この溝内に径方向に往復運動するベーン9が設置されているとともに、ベーン9を挟む周方向の両側に吸入口5aと吐出口5bとが形成されている。ベーン9は、その一端がローリングピストン8の外周面に当接しながら摺動することで、圧縮室を形成する。つまり、ベーン9は、シリンダー5の内周とローリングピストン8の外周との間に形成される圧縮室を、吸入口5aに連通する吸入側圧縮室14と吐出口5bに連通する吐出側圧縮室15とに画成する。シリンダー5の軸方向両端の開口部は、主軸受6および副軸受7で閉塞されている。   As shown in FIGS. 1 and 2, the compression element 50 has a ring-shaped cylinder 5 in which a rolling piston 8 that fits into an eccentric shaft portion 10 c of the rotary shaft 10 is housed. The cylinder 5 is provided with a groove, and a vane 9 that reciprocates in the radial direction is installed in the groove. A suction port 5a and a discharge port 5b are formed on both sides in the circumferential direction across the vane 9. Yes. One end of the vane 9 slides while abutting against the outer peripheral surface of the rolling piston 8 to form a compression chamber. In other words, the vane 9 has a compression chamber formed between the inner periphery of the cylinder 5 and the outer periphery of the rolling piston 8, and a discharge side compression chamber that communicates with the suction side compression chamber 14 and the discharge port 5 b. It is defined as 15. Openings at both axial ends of the cylinder 5 are closed by a main bearing 6 and a sub-bearing 7.

電動要素60は、図1のように固定子3aと回転子3bとを備え、例えばブラシレスDCモーターである。固定子3aのリード線31は、密閉容器1の外部から電力を供給できるように、上部容器1aに設けられたガラス端子32に接続される。また、固定子鉄心は、外径が下部容器1bの中間部の内径よりも大きく、下部容器1bに焼嵌めされ、固定されている。   As shown in FIG. 1, the electric element 60 includes a stator 3a and a rotor 3b, and is, for example, a brushless DC motor. The lead wire 31 of the stator 3a is connected to a glass terminal 32 provided in the upper container 1a so that electric power can be supplied from the outside of the sealed container 1. The stator core has an outer diameter larger than the inner diameter of the intermediate portion of the lower container 1b, and is shrink-fitted and fixed to the lower container 1b.

回転子鉄心は、内径が回転軸10の外径より小さく、回転軸10は、主軸部10aが回転子鉄心に焼嵌めされ、固定される。   The rotor core has an inner diameter smaller than the outer diameter of the rotary shaft 10, and the rotary shaft 10 is fixed by shrink-fitting the main shaft portion 10 a to the rotor core.

密閉容器1に隣接して、液冷媒を貯留するアキュームレーターと冷媒音を消音する役割を有する吸入マフラー33が設けられ、吸入マフラー33は吸入連結管34によってシリンダー5に連結されている。   An accumulator that stores liquid refrigerant and a suction muffler 33 that silences the refrigerant sound are provided adjacent to the hermetic container 1, and the suction muffler 33 is connected to the cylinder 5 by a suction connection pipe 34.

シリンダー5で圧縮された冷媒ガスは、密閉容器1内に吐出され、電動要素60を通り、吐出管35から冷凍サイクル装置へ送り出される。   The refrigerant gas compressed by the cylinder 5 is discharged into the sealed container 1, passes through the electric element 60, and is sent out from the discharge pipe 35 to the refrigeration cycle apparatus.

回転軸10の下部の軸心部には、給油孔11が形成され、給油孔11内に、給油ブレード12が挿入されている。回転軸10が回転すると、給油ブレード12が冷凍機油を吸い上げ、給油孔13a,13bから各摺動部へ冷凍機油が給油される。この冷凍機油は、回転軸10の外周面または主軸受6および副軸受7の内周面に形成された給油溝4a,4bから、回転軸10と主軸受6および副軸受7との間に給油され油膜を形成し、回転軸10に働く荷重を支持する。回転軸10にかかる荷重は、主に、圧縮室の吸入側圧縮室14と吐出側圧縮室15との圧力差に伴う圧縮荷重と、回転軸10および回転子3bの回転の遠心力に伴う荷重である。   An oil supply hole 11 is formed in the shaft center portion of the lower portion of the rotary shaft 10, and an oil supply blade 12 is inserted into the oil supply hole 11. When the rotating shaft 10 rotates, the oil supply blade 12 sucks up the refrigerating machine oil, and the refrigerating machine oil is supplied to the sliding portions from the oil supply holes 13a and 13b. The refrigerating machine oil is supplied between the rotary shaft 10 and the main bearing 6 and the auxiliary bearing 7 from the oil supply grooves 4 a and 4 b formed on the outer peripheral surface of the rotary shaft 10 or the inner peripheral surfaces of the main bearing 6 and the auxiliary bearing 7. Then, an oil film is formed and a load acting on the rotary shaft 10 is supported. The load applied to the rotating shaft 10 mainly includes a compressive load associated with a pressure difference between the suction side compression chamber 14 and the discharge side compression chamber 15 of the compression chamber, and a load associated with the centrifugal force of the rotation of the rotating shaft 10 and the rotor 3b. It is.

図3に示すように、圧縮荷重201は、ベーン9の先端とローリングピストン8の外周面との接触面を接触面Aとし、ローリングピストン8の外周面とシリンダー5の内周面との接触面を接触面Bとすると、これら2つの接触面A,Bをつなぐ仮想面Cに垂直に、かつ圧縮空間から吸入空間の方向に働く。例えば、図3(a)のようにローリングピストン8によってベーン9が溝内に後退させられたときの偏心軸部10cの角度の位置、つまり偏心軸部10cが偏心方向をベーン9側に向けたときの角度θをθ=0°とする。この角度(θ=0°)位置では、吸入口5aと吐出口5bとが連通しているため、圧力差は生じない。   As shown in FIG. 3, the compression load 201 has a contact surface A as a contact surface between the tip of the vane 9 and the outer peripheral surface of the rolling piston 8, and a contact surface between the outer peripheral surface of the rolling piston 8 and the inner peripheral surface of the cylinder 5. Is a contact surface B, it works perpendicular to the virtual surface C connecting these two contact surfaces A and B and in the direction from the compression space to the suction space. For example, as shown in FIG. 3A, the angular position of the eccentric shaft portion 10c when the vane 9 is retracted into the groove by the rolling piston 8, that is, the eccentric shaft portion 10c has the eccentric direction directed to the vane 9 side. The angle θ at this time is θ = 0 °. At this angle (θ = 0 °) position, there is no pressure difference because the suction port 5a and the discharge port 5b communicate with each other.

偏心軸部10cを図3(b)のように偏心方向を90°(θ=90°)回動させた状態では、ベーン9によって圧縮室が吸入空間である吸入側圧縮室14と圧縮空間である吐出側圧縮室15とに画成されて、圧力差が発生しており、圧縮空間から吸入空間に向けて約45°の方向に圧縮荷重201が働いている。このとき、圧縮荷重201を支持するのは、回転軸10と軸受間の負荷方向に存在する部位202である。   When the eccentric shaft portion 10c is rotated 90 ° (θ = 90 °) in the eccentric direction as shown in FIG. 3B, the vane 9 causes the compression chamber to be a suction side compression chamber 14 and a compression space. A pressure difference is generated between the discharge side compression chamber 15 and the compression load 201 works in a direction of about 45 ° from the compression space toward the suction space. At this time, the portion 202 existing in the load direction between the rotary shaft 10 and the bearing supports the compression load 201.

偏心軸部10cを図3(c)のように偏心方向を180°(θ=180°)回動させた状態では、圧縮空間(吐出側圧縮室15)から吸入空間(吸入側圧縮室14)に向けて約90°の方向に圧縮荷重201が働いている。このとき、圧縮荷重201を支持するのは、回転軸10と軸受間の負荷方向に存在する部位203である。   When the eccentric shaft portion 10c is rotated 180 ° (θ = 180 °) in the eccentric direction as shown in FIG. 3C, the suction space (suction side compression chamber 14) is changed from the compression space (discharge side compression chamber 15). A compressive load 201 is acting in the direction of about 90 ° toward the head. At this time, the portion 203 existing in the load direction between the rotary shaft 10 and the bearing supports the compression load 201.

偏心軸部10cを図3(d)のように偏心方向を270°(θ=270°)回動させた状態では、圧縮空間(吐出側圧縮室15)から吸入空間(吸入側圧縮室14)に向けて約135°の方向に圧縮荷重201が働いている。このとき、圧縮荷重201を支持するのは、回転軸10と軸受間の負荷方向に存在する部位204である。   When the eccentric shaft portion 10c is rotated 270 ° (θ = 270 °) in the eccentric direction as shown in FIG. 3D, the suction space (suction side compression chamber 14) is changed from the compression space (discharge side compression chamber 15). A compressive load 201 is acting in the direction of about 135 ° toward the surface. At this time, the portion 204 existing in the load direction between the rotary shaft 10 and the bearing supports the compression load 201.

すなわち、圧縮荷重201が作用する方向は、回転軸10が一周するうちで180°<θ<360°の部位にくることはなく、常に0<θ<180°の範囲にある。つまり、圧縮室内の圧力は、180°<θ<360°の範囲の圧力が0°<θ<180°の範囲の圧力よりも高い。このため、圧縮荷重201は、回転軸10を0°<θ<180°の範囲の側へ押し付けるように作用する。つまり、圧縮荷重201を受けるのは、吸入側圧縮室14の特定の範囲であり、0°<θ<180°の範囲である。また、圧縮荷重201は、回転軸10と主軸受6との間の主に下部の0°<θ<180°の範囲で支持される。よって、軸受内周の180°<θ<360°の部位に給油溝17を設ければ、負荷を支持する部位には給油溝17がない状態を実現できる。   In other words, the direction in which the compressive load 201 acts does not reach the region of 180 ° <θ <360 ° as the rotary shaft 10 makes a round, and is always in the range of 0 <θ <180 °. That is, the pressure in the compression chamber is higher in the range of 180 ° <θ <360 ° than in the range of 0 ° <θ <180 °. For this reason, the compressive load 201 acts to press the rotary shaft 10 toward the side in the range of 0 ° <θ <180 °. That is, the compression load 201 is received in a specific range of the suction side compression chamber 14 and in a range of 0 ° <θ <180 °. The compressive load 201 is supported in a range of 0 ° <θ <180 ° mainly between the rotary shaft 10 and the main bearing 6 at the lower part. Therefore, if the oil supply groove 17 is provided in a portion of the bearing inner periphery at 180 ° <θ <360 °, a state in which the oil supply groove 17 is not provided in the portion supporting the load can be realized.

一方、遠心力に伴う荷重の方向は、回転軸10と、回転軸10に連結された回転子3bの偏心荷重方向によって決定される。遠心力に伴う回転子3bのふれ回りは、回転子3bの上端の一側部と回転子3bの下端の他側部に取り付けられる図示しないバランスウエイトによって吸収される。また、遠心力に伴い回転軸10に加わる荷重の方向は、偏心軸部10cの偏心方向である。この偏心軸部10cの偏心方向の角度φを0°とすると、遠心力に伴う荷重の方向は、回転軸10側から見れば一定(φ=0°)であるが、主軸受6側から見れば回転軸10の回転に追随して回転する。遠心力に伴う荷重は、回転軸10と主軸受6との間の主に上部の全周で支持されるが、回転軸10側から見れば特定の部位(φ=0°)で支持される。   On the other hand, the direction of the load accompanying the centrifugal force is determined by the eccentric load direction of the rotating shaft 10 and the rotor 3b connected to the rotating shaft 10. The whirling of the rotor 3b due to the centrifugal force is absorbed by a balance weight (not shown) attached to one side of the upper end of the rotor 3b and the other side of the lower end of the rotor 3b. Moreover, the direction of the load applied to the rotating shaft 10 with the centrifugal force is the eccentric direction of the eccentric shaft portion 10c. If the angle φ of the eccentric direction of the eccentric shaft portion 10c is 0 °, the direction of the load accompanying the centrifugal force is constant (φ = 0 °) when viewed from the rotating shaft 10 side, but can be viewed from the main bearing 6 side. For example, it rotates following the rotation of the rotating shaft 10. The load accompanying the centrifugal force is supported mainly on the entire upper periphery between the rotating shaft 10 and the main bearing 6, but is supported at a specific portion (φ = 0 °) when viewed from the rotating shaft 10 side. .

すなわち、回転軸10には圧縮荷重201を受ける位相が存在し、主軸受6には遠心力の荷重を受ける位相が存在する。荷重を受ける側に給油溝4a,4bが形成されると、給油溝4a,4bが油膜反力を逃がしてしまい、油膜反力が低減され、給油溝4a,4bからの油膜が途切れ、荷重を支持できない恐れがある。換言すれば、荷重を受けない側に給油溝4a,4bを形成できれば、給油溝4a,4bが油膜反力を逃がすようなことがなくなり、給油溝4a,4bからの油膜が途切れることがなくなって、信頼性の高いロータリー式密閉型圧縮機が得られる。以下、荷重を受けない側に給油溝を形成した実施形態について説明する。   That is, the rotating shaft 10 has a phase that receives a compressive load 201, and the main bearing 6 has a phase that receives a centrifugal force load. When the oil supply grooves 4a and 4b are formed on the load receiving side, the oil supply grooves 4a and 4b release the oil film reaction force, the oil film reaction force is reduced, the oil film from the oil supply grooves 4a and 4b is interrupted, and the load is reduced. There is a fear that it cannot be supported. In other words, if the oil supply grooves 4a and 4b can be formed on the side not receiving the load, the oil supply grooves 4a and 4b will not let the oil film reaction force escape, and the oil film from the oil supply grooves 4a and 4b will not be interrupted. A highly reliable rotary hermetic compressor can be obtained. Hereinafter, an embodiment in which an oil supply groove is formed on the side not receiving a load will be described.

実施形態1.
図4は本発明の実施形態1に係るロータリー式密閉型圧縮機の主軸受を示す斜視図である。図5は本発明の実施形態1に係るロータリー式密閉型圧縮機の回転軸を示す正面図および側面図である。各図中、前述の原理の説明と同一部分には、同一符号を付してある。なお、説明に当たっては前述の図1〜図3を参照するものとする。
本発明の実施形態1に係るロータリー式密閉型圧縮機は、回転軸10と主軸受6との間の上部における回転軸10の外周面に給油溝16を形成し、回転軸10と主軸受6との間の下部における主軸受6内周面に、給油溝17を形成している。
Embodiment 1. FIG.
FIG. 4 is a perspective view showing a main bearing of the rotary hermetic compressor according to the first embodiment of the present invention. FIG. 5 is a front view and a side view showing a rotating shaft of the rotary hermetic compressor according to the first embodiment of the present invention. In each figure, the same reference numerals are given to the same parts as those described above for the principle. In the description, reference will be made to FIGS.
In the rotary hermetic compressor according to the first embodiment of the present invention, an oil supply groove 16 is formed on the outer peripheral surface of the rotary shaft 10 in the upper part between the rotary shaft 10 and the main bearing 6. An oil supply groove 17 is formed on the inner peripheral surface of the main bearing 6 at the lower portion between the two.

すなわち、本発明の実施形態1に係るロータリー式密閉型圧縮機では、軸が一周するうち、回転軸10と主軸受6との間の180°<θ<360°の範囲は、圧縮室内の圧力が0°<θ<180°の範囲の圧力よりも高い。このため、圧縮荷重201は、回転軸10を0°<θ<180°の範囲の側へ押し付けるように作用し、180°<θ<360°の範囲では圧縮荷重201を支持しない。したがって、回転軸10と主軸受6との間の下部における主軸受6の内周面の圧縮荷重201を受けない180°<θ<360°の範囲に図4のように給油溝17を形成し、給油溝17が油膜反力を逃がすのを防ぎ、油膜が途切れるのを防止する。   That is, in the rotary hermetic compressor according to the first embodiment of the present invention, the range of 180 ° <θ <360 ° between the rotary shaft 10 and the main bearing 6 during the rotation of the shaft is the pressure in the compression chamber. Is higher than the pressure in the range of 0 ° <θ <180 °. For this reason, the compressive load 201 acts to press the rotary shaft 10 toward the range of 0 ° <θ <180 °, and does not support the compressive load 201 in the range of 180 ° <θ <360 °. Therefore, the oil supply groove 17 is formed in the range of 180 ° <θ <360 ° that does not receive the compressive load 201 on the inner peripheral surface of the main bearing 6 at the lower portion between the rotary shaft 10 and the main bearing 6 as shown in FIG. The oil supply groove 17 prevents the oil film reaction force from escaping and prevents the oil film from being interrupted.

また、遠心力に伴い回転軸10に加わる荷重の方向は、偏心軸部10cの偏心方向である。この偏心軸部10cの偏心方向の角度φを0°とすると、遠心力に伴う荷重の方向は、回転軸10側から見れば一定(φ=0°)であるが、主軸受6側から見れば回転軸10の回転に伴い回転している。すなわち、遠心力に伴う荷重は、回転軸10と主軸受6との間の主に上部の全周で支持されるが、回転軸10側から見れば特定の部位(φ=0°)で支持される。したがって、回転軸10と主軸受6との間の上部における回転軸10の外周面のφ=0°とは反対側の遠心力に伴う荷重を受けない90°<φ<270°の範囲に図5のように給油溝16を形成し、遠心力に伴う荷重によって、給油溝16が油膜反力を逃がすのを防ぎ、油膜が途切れるのを防止する。それ以外の構成は、原理の説明に用いた図1および図2のものと同一である。   Moreover, the direction of the load applied to the rotating shaft 10 with the centrifugal force is the eccentric direction of the eccentric shaft portion 10c. If the angle φ of the eccentric direction of the eccentric shaft portion 10c is 0 °, the direction of the load accompanying the centrifugal force is constant (φ = 0 °) when viewed from the rotating shaft 10 side, but can be viewed from the main bearing 6 side. For example, the rotating shaft 10 rotates. That is, the load accompanying the centrifugal force is supported mainly on the entire upper circumference between the rotary shaft 10 and the main bearing 6, but is supported at a specific portion (φ = 0 °) when viewed from the rotary shaft 10 side. Is done. Therefore, in the range of 90 ° <φ <270 ° that does not receive a load due to the centrifugal force on the opposite side to φ = 0 ° of the outer peripheral surface of the rotary shaft 10 in the upper part between the rotary shaft 10 and the main bearing 6. 5, the oil supply groove 16 is formed, and the oil supply groove 16 is prevented from escaping the oil film reaction force by the load accompanying the centrifugal force, and the oil film is prevented from being interrupted. Other configurations are the same as those in FIGS. 1 and 2 used for explaining the principle.

このように構成された回転軸10と主軸受6とを持つロータリー式密閉型圧縮機において、回転軸10と主軸受6との間の荷重を支持する部位には、常に給油溝が存在しない状態を実現することができる。換言すれば、回転軸10と主軸受6との間の荷重を支持しない部位に、給油溝16,17を形成することができる。   In the rotary type hermetic compressor having the rotary shaft 10 and the main bearing 6 configured as described above, there is always no oil supply groove in a portion that supports the load between the rotary shaft 10 and the main bearing 6. Can be realized. In other words, the oil supply grooves 16 and 17 can be formed in a portion that does not support the load between the rotary shaft 10 and the main bearing 6.

以上のように、回転軸10と主軸受6との摺動部のうち、圧縮荷重201を支持する下側と、遠心力の荷重を支持する上側とで、それぞれ主軸受6の内周と回転軸10の外周面の特定の箇所に選択的に給油溝16,17を形成することで、常に荷重を受ける側には給油溝がない状態を実現でき、信頼性の高い回転軸10を持つロータリー式密閉型圧縮機を得ることができる。   As described above, the inner circumference and the rotation of the main bearing 6 are respectively rotated on the lower side that supports the compressive load 201 and the upper side that supports the load of the centrifugal force among the sliding portions of the rotating shaft 10 and the main bearing 6. By forming the oil supply grooves 16 and 17 selectively at specific locations on the outer peripheral surface of the shaft 10, it is possible to realize a state where there is no oil supply groove on the side that receives the load at all times, and the rotary having the highly reliable rotary shaft 10. A type hermetic compressor can be obtained.

実施形態2.
図6は本発明の実施形態2に係るロータリー式密閉型圧縮機の回転軸と主軸受を示す断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。なお、説明に当たってはここでも前述の図1〜図3を参照するものとする。
本発明の実施形態2に係るロータリー式密閉型圧縮機は、図6のように主軸受6の内周面の圧縮荷重201を受けない180°<θ<360°の範囲に形成した給油溝17と、回転軸10の外周面の遠心力に伴う荷重を受けない90°<φ<270°の範囲に形成した給油溝16とをつなぐ環状溝18を、回転軸10外周面に形成したものであり、それ以外の構成は、原理の説明に用いた図1および図2のものと同一である。
Embodiment 2. FIG.
FIG. 6 is a cross-sectional view showing a rotary shaft and a main bearing of a rotary hermetic compressor according to Embodiment 2 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals. . In the description, the above-described FIGS. 1 to 3 are referred to here.
The rotary type hermetic compressor according to the second embodiment of the present invention includes an oil supply groove 17 formed in a range of 180 ° <θ <360 ° that does not receive the compression load 201 on the inner peripheral surface of the main bearing 6 as shown in FIG. And an annular groove 18 is formed on the outer peripheral surface of the rotary shaft 10 to connect the oil supply groove 16 formed in the range of 90 ° <φ <270 ° that does not receive a load due to the centrifugal force on the outer peripheral surface of the rotary shaft 10. The other configuration is the same as that of FIGS. 1 and 2 used for explaining the principle.

本発明の実施形態2に係るロータリー式密閉型圧縮機においては、給油溝16,17をつなぐ環状溝18を回転軸10外周面に形成しているので、前述の実施形態1の持つ効果に加え、給油溝17に給油された冷凍機油を、環状溝18を介して給油溝16へ安定して給油することができるという利点がある。   In the rotary hermetic compressor according to the second embodiment of the present invention, since the annular groove 18 that connects the oil supply grooves 16 and 17 is formed on the outer peripheral surface of the rotary shaft 10, in addition to the effects of the first embodiment described above. There is an advantage that the refrigerating machine oil supplied to the oil supply groove 17 can be stably supplied to the oil supply groove 16 via the annular groove 18.

以上のように、環状溝18が冷凍機油の流路の役割を果たすことで、給油溝17と給油溝16間の給油性を高めることができ、信頼性の高い回転軸10を持つロータリー式密閉型圧縮機を得ることができる。   As described above, the annular groove 18 serves as a flow path for the refrigerating machine oil, so that the oil supply performance between the oil supply groove 17 and the oil supply groove 16 can be improved, and the rotary type hermetically sealed rotary shaft 10 is provided. A mold compressor can be obtained.

実施形態3.
図7は本発明の実施形態3に係るロータリー式密閉型圧縮機の回転軸と主軸受を示す断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。なお、説明に当たってはここでも前述の図1〜図3を参照するものとする。
本発明の実施形態3に係るロータリー式密閉型圧縮機は、図7のように主軸受6の内周面の圧縮荷重201を受けない180°<θ<360°の範囲に形成した給油溝17と、回転軸10の外周面の遠心力に伴う荷重を受けない90°<φ<270°の範囲に形成した給油溝16とをつなぐ環状溝19を、主軸受6の内周面に形成したものであり、それ以外の構成は、原理の説明に用いた図1および図2のものと同一である。
Embodiment 3. FIG.
FIG. 7 is a cross-sectional view showing a rotary shaft and a main bearing of a rotary hermetic compressor according to a third embodiment of the present invention. In the figure, the same parts as those of the first embodiment are denoted by the same reference numerals. . In the description, the above-described FIGS. 1 to 3 are referred to here.
The rotary hermetic compressor according to the third embodiment of the present invention is provided with an oil supply groove 17 formed in a range of 180 ° <θ <360 ° that does not receive the compression load 201 on the inner peripheral surface of the main bearing 6 as shown in FIG. An annular groove 19 is formed on the inner peripheral surface of the main bearing 6 to connect the oil supply groove 16 formed in a range of 90 ° <φ <270 ° that is not subjected to a load associated with the centrifugal force on the outer peripheral surface of the rotary shaft 10. The rest of the configuration is the same as that of FIGS. 1 and 2 used to explain the principle.

本発明の実施形態3に係るロータリー式密閉型圧縮機においては、給油溝16,17をつなぐ環状溝19を主軸受6の内周面に形成しているので、前述の実施形態1の持つ効果に加え、給油溝17に給油された冷凍機油を、環状溝19を介して給油溝16へ安定して給油することができるという利点がある。   In the rotary hermetic compressor according to the third embodiment of the present invention, the annular groove 19 that connects the oil supply grooves 16 and 17 is formed on the inner peripheral surface of the main bearing 6, so the effect of the first embodiment described above. In addition, there is an advantage that the refrigerating machine oil supplied to the oil supply groove 17 can be stably supplied to the oil supply groove 16 via the annular groove 19.

以上のように、環状溝19が冷凍機油の流路の役割を果たすことで、給油溝17と給油溝16間の給油性を高めることができ、信頼性の高い回転軸10を持つロータリー式密閉型圧縮機を得ることができる。   As described above, the annular groove 19 serves as a flow path for the refrigerating machine oil, so that the oil supply performance between the oil supply groove 17 and the oil supply groove 16 can be improved, and the rotary type hermetically sealed rotary shaft 10 is highly reliable. A mold compressor can be obtained.

実施形態4.
図8は本発明の実施形態4に係るロータリー式密閉型圧縮機の回転軸と主軸受を示す断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。なお、説明に当たってはここでも前述の図1〜図3を参照するものとする。
本発明の実施形態4に係るロータリー式密閉型圧縮機は、図8のように回転軸10の給油溝16となる部分と主軸受6の給油溝17となる部分の間となる回転軸の外周面に、給油溝16を形成する際に逃がしとなる段部20を形成したものであり、それ以外の構成は、原理の説明に用いた図1および図2のものと同一である。
Embodiment 4 FIG.
FIG. 8 is a cross-sectional view showing a rotary shaft and a main bearing of a rotary hermetic compressor according to Embodiment 4 of the present invention. In the figure, the same parts as those of Embodiment 1 are given the same reference numerals. . In the description, the above-described FIGS. 1 to 3 are referred to here.
The rotary type hermetic compressor according to the fourth embodiment of the present invention has an outer periphery of a rotating shaft between a portion that becomes the oil groove 16 of the rotating shaft 10 and a portion that becomes the oil groove 17 of the main bearing 6 as shown in FIG. A step portion 20 is formed on the surface to be escaped when the oil supply groove 16 is formed, and other configurations are the same as those in FIGS. 1 and 2 used for explaining the principle.

本発明の実施形態4に係るロータリー式密閉型圧縮機においては、回転軸10の外周面に、給油溝16を形成する際の逃がしとなる段部20を形成しているので、給油溝16を端部まで目的の深さ・形状に形成することが容易となる。   In the rotary hermetic compressor according to the fourth embodiment of the present invention, the step portion 20 is formed on the outer peripheral surface of the rotary shaft 10 as a relief when the oil supply groove 16 is formed. It becomes easy to form the target depth and shape up to the end.

以上のように、段部20が給油溝16を形成する際の逃がしの役割を果たすことで、給油溝16を端部まで目的の深さ・形状に形成でき、信頼性の高い回転軸10を持つロータリー式密閉型圧縮機を得ることができる。   As described above, the step portion 20 serves as a relief when the oil supply groove 16 is formed, so that the oil supply groove 16 can be formed to a desired depth and shape up to the end, and the highly reliable rotary shaft 10 can be formed. A rotary type hermetic compressor can be obtained.

実施形態5.
図9は本発明の実施形態5に係るロータリー式密閉型圧縮機の回転軸と主軸受を示す断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。なお、説明に当たってはここでも前述の図1〜図3を参照するものとする。
本発明の実施形態5に係るロータリー式密閉型圧縮機は、図9のように主軸受6の内周面の主軸受6の給油溝17となる部分と回転軸10の給油溝16となる部分の間となる主軸受6の内周面に、給油溝17を形成する際に逃がしとなる段部21を形成したものであり、それ以外の構成は、原理の説明に用いた図1および図2のものと同一である。
Embodiment 5. FIG.
FIG. 9 is a cross-sectional view showing a rotary shaft and a main bearing of a rotary hermetic compressor according to Embodiment 5 of the present invention. In the drawing, the same parts as those in Embodiment 1 are given the same reference numerals. . In the description, the above-described FIGS. 1 to 3 are referred to here.
As shown in FIG. 9, the rotary hermetic compressor according to the fifth embodiment of the present invention has a portion that becomes the oil supply groove 17 of the main bearing 6 and a portion that becomes the oil supply groove 16 of the rotary shaft 10 on the inner peripheral surface of the main bearing 6. A step portion 21 is formed on the inner peripheral surface of the main bearing 6 that is in between, and a relief portion 17 is formed when the oil supply groove 17 is formed. Other configurations are shown in FIG. 1 and FIG. Same as 2.

本発明の実施形態5に係るロータリー式密閉型圧縮機においては、主軸受6の内周面に、給油溝17を形成する際の逃がしとなる段部21を形成しているので、給油溝17を端部まで目的の深さ・形状に形成することが容易となる。   In the rotary hermetic compressor according to the fifth embodiment of the present invention, since the stepped portion 21 serving as a relief when the oil supply groove 17 is formed is formed on the inner peripheral surface of the main bearing 6, the oil supply groove 17 is formed. Can be easily formed to a desired depth and shape up to the end.

以上のように、段部21が給油溝17を形成する際の逃がしの役割を果たすことで、給油溝17を端部まで目的の深さ・形状に形成でき、信頼性の高い回転軸10を持つロータリー式密閉型圧縮機を得ることができる。   As described above, the step portion 21 serves as a relief when the oil supply groove 17 is formed, so that the oil supply groove 17 can be formed to a desired depth and shape up to the end, and the highly reliable rotary shaft 10 can be formed. A rotary type hermetic compressor can be obtained.

1 密閉容器、1a 上部容器、1b 下部容器、3a 固定子、3b 回転子、4a,4b,16,17 給油溝、5 シリンダー、5a 吸入口、5b 吐出口、6 主軸受、7 副軸受、8 ローリングピストン、9 ベーン、10 回転軸、10a 主軸部、10b 副軸部、10c 偏心軸部、11 給油孔、12 給油ブレード、13a,13b 給油孔、14 吸入側圧縮室、15 吐出側圧縮室、18,19 環状溝、20,21 段部、31 リード線、32 ガラス端子、33 吸入マフラー、34 吸入連結管、35 吐出管、50 圧縮要素、60 電動要素、100 密閉型圧縮機、201 圧縮荷重、202,203,204 部位、A,B 接触面、C 仮想面。   1 Sealed container, 1a Upper container, 1b Lower container, 3a Stator, 3b Rotor, 4a, 4b, 16, 17 Oil supply groove, 5 Cylinder, 5a Suction port, 5b Discharge port, 6 Main bearing, 7 Secondary bearing, 8 Rolling piston, 9 vane, 10 rotary shaft, 10a main shaft, 10b countershaft, 10c eccentric shaft, 11 oil supply hole, 12 oil supply blade, 13a, 13b oil supply hole, 14 suction side compression chamber, 15 discharge side compression chamber, 18, 19 annular groove, 20, 21 step, 31 lead wire, 32 glass terminal, 33 suction muffler, 34 suction connection pipe, 35 discharge pipe, 50 compression element, 60 electric element, 100 hermetic compressor, 201 compression load , 202, 203, 204 site, A, B contact surface, C virtual surface.

Claims (5)

密閉容器内の上部に電動要素を、その下部に前記電動要素に回転軸で連結された圧縮要素を収納し、
前記圧縮要素は、
前記回転軸上に一体化された偏芯軸部と、
前記偏芯軸部が挿入されるリング状のシリンダーと、
前記偏心軸部に勘合し前記シリンダーに収納されるローリングピストンと、
前記シリンダー内に摺動自在に挿入されて一端が前記ローリングピストンの外周面に当接し、該シリンダー内を吸入側圧縮室と吐出側圧縮室とに画成するベーンと、
前記シリンダーの軸方向両端の開口を上下から閉塞する主軸受および副軸受とを備えたロータリー式密閉型圧縮機において、
前記回転軸と前記主軸受との摺動部のうち、前記主軸受の内周面の圧縮荷重を支持しない部位と、前記回転軸の外周面の遠心力に伴う荷重を支持しない部位に、それぞれ給油溝を設けたことを特徴とするロータリー式密閉型圧縮機。
An electric element is stored in the upper part of the sealed container, and a compression element connected to the electric element by a rotating shaft is stored in the lower part thereof.
The compression element is
An eccentric shaft integrated on the rotating shaft;
A ring-shaped cylinder into which the eccentric shaft portion is inserted;
A rolling piston that fits into the eccentric shaft and is housed in the cylinder;
A vane that is slidably inserted into the cylinder and has one end abutting against the outer peripheral surface of the rolling piston and defining the inside of the cylinder into a suction side compression chamber and a discharge side compression chamber;
In a rotary type hermetic compressor provided with a main bearing and a sub-bearing that close the openings at both ends in the axial direction of the cylinder from above and below,
Of the sliding parts of the rotating shaft and the main bearing, each of the portions that do not support the compressive load of the inner peripheral surface of the main bearing and the portions that do not support the load associated with the centrifugal force of the outer peripheral surface of the rotating shaft, A rotary type hermetic compressor provided with an oiling groove.
前記主軸受の内周面の前記圧縮荷重を支持しない部位の給油溝は、前記回転軸と前記主軸受との摺動部の下部に配置され、前記回転軸の外周面の遠心力に伴う荷重を支持しない部位の給油溝は、前記回転軸と前記主軸受との摺動部の上部に配置されており、
前記主軸受側の給油溝と前記回転軸側の給油溝とをつなぐ環状溝が前記回転軸の外周面に更に設けられていることを特徴とする請求項1記載のロータリー式密閉型圧縮機。
An oil supply groove in a portion of the inner peripheral surface of the main bearing that does not support the compressive load is disposed at a lower portion of a sliding portion between the rotary shaft and the main bearing, and a load accompanying centrifugal force on the outer peripheral surface of the rotary shaft. The portion of the oil supply groove that does not support is disposed at the upper part of the sliding portion between the rotating shaft and the main bearing,
2. The rotary hermetic compressor according to claim 1, wherein an annular groove that connects the oil bearing groove on the main bearing side and the oil groove on the rotating shaft side is further provided on the outer peripheral surface of the rotating shaft.
前記主軸受の内周面の前記圧縮荷重を支持しない部位の給油溝は、前記回転軸と前記主軸受との摺動部の下部に配置され、前記回転軸の外周面の遠心力に伴う荷重を支持しない部位の給油溝は、前記回転軸と前記主軸受との摺動部の上部に配置されており、
前記主軸受側の給油溝と前記回転軸側の給油溝とをつなぐ環状溝が前記主軸受の内周面に更に設けられていることを特徴とする請求項1記載のロータリー式密閉型圧縮機。
An oil supply groove in a portion of the inner peripheral surface of the main bearing that does not support the compressive load is disposed at a lower portion of a sliding portion between the rotary shaft and the main bearing, and a load accompanying centrifugal force on the outer peripheral surface of the rotary shaft. The portion of the oil supply groove that does not support is disposed at the upper part of the sliding portion between the rotating shaft and the main bearing,
2. The rotary hermetic compressor according to claim 1, wherein an annular groove connecting the oil bearing groove on the main bearing side and the oil groove on the rotating shaft side is further provided on an inner peripheral surface of the main bearing. .
前記主軸受の内周面の前記圧縮荷重を支持しない部位の給油溝は、前記回転軸と前記主軸受との摺動部の下部に配置され、前記回転軸の外周面の遠心力に伴う荷重を支持しない部位の給油溝は、前記回転軸と前記主軸受との摺動部の上部に配置されており、
前記主軸受側の給油溝と前記回転軸側の給油溝との間となる部分の前記回転軸の外周面に、当該回転軸に給油溝を形成する際の逃がしとなる段部が更に設けられていることを特徴とする請求項1記載のロータリー式密閉型圧縮機。
An oil supply groove in a portion of the inner peripheral surface of the main bearing that does not support the compressive load is disposed at a lower portion of a sliding portion between the rotary shaft and the main bearing, and a load accompanying centrifugal force on the outer peripheral surface of the rotary shaft. The portion of the oil supply groove that does not support is disposed at the upper part of the sliding portion between the rotating shaft and the main bearing,
On the outer peripheral surface of the rotary shaft at a portion between the oil bearing groove on the main bearing side and the oil groove on the rotary shaft side, a step portion serving as a relief when the oil groove is formed on the rotary shaft is further provided. The rotary hermetic compressor according to claim 1, wherein
前記主軸受の内周面の前記圧縮荷重を支持しない部位の給油溝は、前記回転軸と前記主軸受との摺動部の下部に配置され、前記回転軸の外周面の遠心力に伴う荷重を支持しない部位の給油溝は、前記回転軸と前記主軸受との摺動部の上部に配置されており、
前記主軸受側の給油溝と前記回転軸側の給油溝との間となる部分の前記主軸受の内周面に、当該主軸受に給油溝を形成する際の逃がしとなる段部が更に設けられていることを特徴とする請求項1記載のロータリー式密閉型圧縮機。
An oil supply groove in a portion of the inner peripheral surface of the main bearing that does not support the compressive load is disposed at a lower portion of a sliding portion between the rotary shaft and the main bearing, and a load accompanying centrifugal force on the outer peripheral surface of the rotary shaft. The portion of the oil supply groove that does not support is disposed at the upper part of the sliding portion between the rotating shaft and the main bearing,
On the inner peripheral surface of the main bearing at a portion between the oil bearing groove on the main bearing side and the oil groove on the rotating shaft side, there is further provided a step portion that serves as a relief when the oil groove is formed in the main bearing. The rotary hermetic compressor according to claim 1, wherein the rotary hermetic compressor is provided.
JP2013085688A 2013-04-16 2013-04-16 Rotary hermetic compressor Pending JP2014206149A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013085688A JP2014206149A (en) 2013-04-16 2013-04-16 Rotary hermetic compressor
CN201420184665.8U CN203856721U (en) 2013-04-16 2014-04-16 Rotary type closed compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085688A JP2014206149A (en) 2013-04-16 2013-04-16 Rotary hermetic compressor

Publications (2)

Publication Number Publication Date
JP2014206149A true JP2014206149A (en) 2014-10-30
JP2014206149A5 JP2014206149A5 (en) 2015-10-29

Family

ID=51606576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085688A Pending JP2014206149A (en) 2013-04-16 2013-04-16 Rotary hermetic compressor

Country Status (2)

Country Link
JP (1) JP2014206149A (en)
CN (1) CN203856721U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053221A (en) * 2015-09-07 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Electric compressor
KR20230166371A (en) * 2022-05-30 2023-12-07 엘지전자 주식회사 Scroll compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105715550A (en) * 2016-04-11 2016-06-29 珠海格力节能环保制冷技术研究中心有限公司 Pump body assembly and compressor with pump body assembly
KR102387189B1 (en) * 2020-05-22 2022-04-15 엘지전자 주식회사 Rotary compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210285A (en) * 1985-03-14 1986-09-18 Toshiba Corp Rotary compressor
JPS62153590A (en) * 1985-12-27 1987-07-08 Toshiba Corp Rotary compressor
JPH01167488A (en) * 1987-12-21 1989-07-03 Daewoo Electronics Co Ltd Oiling structure of horizontal type rotary type compressor
JPH11247785A (en) * 1997-12-08 1999-09-14 Carrier Corp Motor bearing lubricating device for rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210285A (en) * 1985-03-14 1986-09-18 Toshiba Corp Rotary compressor
JPS62153590A (en) * 1985-12-27 1987-07-08 Toshiba Corp Rotary compressor
JPH01167488A (en) * 1987-12-21 1989-07-03 Daewoo Electronics Co Ltd Oiling structure of horizontal type rotary type compressor
JPH11247785A (en) * 1997-12-08 1999-09-14 Carrier Corp Motor bearing lubricating device for rotary compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053221A (en) * 2015-09-07 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Electric compressor
KR20230166371A (en) * 2022-05-30 2023-12-07 엘지전자 주식회사 Scroll compressor
KR102673753B1 (en) * 2022-05-30 2024-06-11 엘지전자 주식회사 Scroll compressor

Also Published As

Publication number Publication date
CN203856721U (en) 2014-10-01

Similar Documents

Publication Publication Date Title
KR101587286B1 (en) compressor
EP3409949B1 (en) Rotary compressor having two cylinders
KR20140136795A (en) Scroll compressor
JP2014206149A (en) Rotary hermetic compressor
JP2017150425A (en) Two-cylinder type sealed compressor
JP5657144B2 (en) Vane type compressor
JP2017150424A (en) Two-cylinder type sealed compressor
JP2010226932A (en) Electric rotary machine, and refrigerant compressor and fluid compressor using the same, and method for assembling the electric rotary machine
US10502209B2 (en) Scroll compressor and air conditioning apparatus including the same
JP6791302B2 (en) Compressor
JP2015105574A (en) Rotary compressor
JP6419186B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2014206149A5 (en)
WO2015025459A1 (en) Scroll compressor
JP2013224606A (en) Refrigerant compressor
JP5328536B2 (en) Scroll compressor
KR101563368B1 (en) compressor
KR102201409B1 (en) A rotary compressor
JP2019002313A (en) Scroll compressor
JP6195466B2 (en) Scroll compressor
JP2013108375A (en) Rotary compressor
KR101567087B1 (en) compressor
KR101557506B1 (en) compressor
JP2009115067A (en) Two-stage compression rotary compressor
WO2019142315A1 (en) Rotary compressor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161122