JP2014205811A - Ultraviolet ray shielding film - Google Patents

Ultraviolet ray shielding film Download PDF

Info

Publication number
JP2014205811A
JP2014205811A JP2013085459A JP2013085459A JP2014205811A JP 2014205811 A JP2014205811 A JP 2014205811A JP 2013085459 A JP2013085459 A JP 2013085459A JP 2013085459 A JP2013085459 A JP 2013085459A JP 2014205811 A JP2014205811 A JP 2014205811A
Authority
JP
Japan
Prior art keywords
particles
ultraviolet
shielding film
shielded
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013085459A
Other languages
Japanese (ja)
Inventor
重直 圓山
Shigenao Maruyama
重直 圓山
宏樹 江目
Hiroki Gonome
宏樹 江目
淳之介 岡島
Junnosuke Okajima
淳之介 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2013085459A priority Critical patent/JP2014205811A/en
Publication of JP2014205811A publication Critical patent/JP2014205811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultraviolet ray shielding film which can be used for plastics or objects installed in outdoor, whose raw materials are easily produced, and with which a uniform ultraviolet ray shielding effect to a surface of an object to be shielded is obtained.SOLUTION: The ultraviolet ray shielding film comprises: a base material transparent to visible light; and particles which are distributed in the base material and have a prescribed particle diameter so that ultraviolet components of solar light are scattered or absorbed. The ultraviolet ray shielding film is formed by applying a coating material, obtained by blending the particles in the base material, on the surface of an object to be shielded or sticking a film in which the particles are distributed in the base material on the surface of an object to be shielded. The particles are preferably composed of at least one of zinc oxide having particle diameters of 50-100 nm, titanium oxide having particle diameters of 60-100nm, and zirconia having particle diameters of 100-200nm. Further, it is preferable that the particles are distributed in a volume fraction 0.3 to 1.2% in the base material.

Description

本発明は、紫外線遮蔽膜に関する。   The present invention relates to an ultraviolet shielding film.

紫外線が物質の結合に作用し、生物の組織や物質の寿命に悪影響を与えることは周知である。特に産業の分野では、プラスチックの劣化など、多くの部材に影響を及ぼしている。従来、このような紫外線による劣化を防ぐため、樹脂や硬化性バインダーなどの基材と、酸化チタンの微粒子とを含んだ塗膜が開発されている(例えば、特許文献1、2または3参照)。   It is well known that ultraviolet rays affect substance binding and adversely affect the life of living organisms and substances. Particularly in the industrial field, it affects many components such as plastic deterioration. Conventionally, in order to prevent such deterioration due to ultraviolet rays, a coating film containing a substrate such as a resin or a curable binder and fine particles of titanium oxide has been developed (see, for example, Patent Documents 1, 2, or 3). .

特開平9−194235号公報Japanese Patent Laid-Open No. 9-194235 特開2004−2563号公報Japanese Patent Laid-Open No. 2004-2563 特開2012−168377号公報JP 2012-168377 A

しかしながら、特許文献1に記載のコーティング被膜は、酸化チタンと銅または銅化合物とを溶解させた溶液を被遮蔽物の表面に塗布した後、100℃〜1000℃の温度で焼成して形成されるものであり、被遮蔽物として、プラスチック等の熱により変形するものや、屋外に既に設置されているもの等には使用できないという課題があった。また、特許文献2に記載の塗膜は、酸化チタンの微粒子を40〜90重量%の割合で多量に含んでいるため、その微粒子をバインダーに均一に分布させるのが難しく、紫外線遮蔽効果に偏りが生じるという課題があった。また、特許文献3に記載のハードコート膜は、バインダーの樹脂に配合される紫外線遮蔽粒子として、酸化チタン粒子の表面に、表面処理層と被膜層とを形成したものを製造する必要があり、紫外線遮蔽粒子の製造に手間やコストが嵩むという課題があった。   However, the coating film described in Patent Document 1 is formed by applying a solution in which titanium oxide and copper or a copper compound are dissolved to the surface of an object to be shielded and then firing at a temperature of 100 ° C. to 1000 ° C. However, there is a problem that the object to be shielded cannot be used for a material that is deformed by heat such as plastic, or that is already installed outdoors. In addition, since the coating film described in Patent Document 2 contains a large amount of titanium oxide fine particles in a proportion of 40 to 90% by weight, it is difficult to uniformly distribute the fine particles in the binder, and it is biased to the ultraviolet shielding effect. There was a problem that occurred. In addition, the hard coat film described in Patent Document 3 needs to produce a surface treatment layer and a coating layer formed on the surface of titanium oxide particles as ultraviolet shielding particles blended in a binder resin. There has been a problem that labor and cost increase in the production of the ultraviolet shielding particles.

本発明は、このような課題に着目してなされたもので、プラスチックや屋外のものに使用することができ、原材料の製造が容易で、被遮蔽物の表面に対して均一な紫外線遮蔽効果が得られる紫外線遮蔽膜を提供することを目的とする。   The present invention has been made by paying attention to such problems, and can be used for plastics and outdoor ones. It is easy to manufacture raw materials and has a uniform ultraviolet shielding effect on the surface of an object to be shielded. It aims at providing the ultraviolet-ray shielding film obtained.

上記目的を達成するために、本発明に係る紫外線遮蔽膜は、可視光に対して透明な基材と、太陽光の紫外線成分を散乱および吸収可能に、前記基材中に分布した所定の粒径を有する粒子とを、有することを特徴とする。   In order to achieve the above object, an ultraviolet shielding film according to the present invention comprises a base material transparent to visible light, and predetermined particles distributed in the base material so as to be able to scatter and absorb ultraviolet components of sunlight. It has the particle | grains which have a diameter.

本発明に係る紫外線遮蔽膜は、例えば、基材中に粒子を配合したものを、被遮蔽物の表面に塗布したり、基材中に粒子が分布したフィルムを、被遮蔽物の表面に貼り付けたりすることにより形成することができる。このため、プラスチックや屋外のものにも使用することができる。基材が可視光に対して透明であるため、被遮蔽物の色調を維持することができる。なお、基材は、可視光に対して透明であればいかなるものであってもよく、例えばプラスチックやガラス、アクリル樹脂製のバインダーなどから成っていてもよい。   The ultraviolet shielding film according to the present invention is applied, for example, to a surface of an object to be shielded by mixing particles in the base material, or a film having particles distributed in the base material is pasted on the surface of the object to be shielded. It can be formed by attaching. For this reason, it can be used for plastics and outdoor ones. Since the base material is transparent to visible light, the color tone of the object to be shielded can be maintained. The substrate may be any material as long as it is transparent to visible light, and may be made of, for example, a plastic, glass, an acrylic resin binder, or the like.

また、基材中に分布した粒子により、太陽光の紫外線成分を吸収・散乱させるため、プラスチック等の被遮蔽物が紫外線により変質するのを効果的に防ぐことができる。粒子による紫外線成分の吸収・散乱を適切に考慮に入れることにより、効率よく紫外線遮蔽効果を得ることができる。このように、紫外線による被遮蔽物の劣化や強度低下を防止することができ、被遮蔽物の寿命を延ばすことができる。   Moreover, since the ultraviolet component of sunlight is absorbed and scattered by the particles distributed in the base material, it is possible to effectively prevent the shielded object such as plastic from being deteriorated by the ultraviolet ray. By properly taking into account the absorption and scattering of the ultraviolet component by the particles, an ultraviolet shielding effect can be obtained efficiently. In this way, it is possible to prevent deterioration of the shielded object and strength reduction due to ultraviolet rays, thereby extending the life of the shielded object.

図1に示すような、基板(被遮蔽物)の表面に形成された、可視光に対して透明な基材中に粒子が分布している被膜について、粒子による光の散乱および吸収による減衰は、以下のようにして計算することができる。まず、散乱効率Qsca,吸収効率Qabs,減衰効率Qextは、次の(1)式の関係を有している。
ここで、入射電磁波の波長λに比べて粒径が大きい粒子の場合には、その減衰断面積は、幾何光学的に扱うことができ、粒子の幾何断面積に等しくなる。しかし、粒径と電磁波の波長とが同程度の場合には、波動光学的に取り扱わなければならず、回折の影響も考慮しなければならなくなるため、幾何断面積に比べて大きくも小さくもなりうる。
As shown in FIG. 1, with respect to a coating formed on the surface of a substrate (shielded object) in which particles are distributed in a base material transparent to visible light, attenuation due to scattering and absorption of light by the particles is It can be calculated as follows. First, the scattering efficiency Q sca , the absorption efficiency Q abs , and the attenuation efficiency Q ext have the relationship of the following equation (1).
Here, in the case of a particle having a particle size larger than the wavelength λ of the incident electromagnetic wave, the attenuation cross-sectional area can be handled geometrically and is equal to the geometric cross-sectional area of the particle. However, if the particle size and the wavelength of the electromagnetic wave are comparable, they must be handled by wave optics, and the influence of diffraction must be taken into account. sell.

また、実際に散乱効率、減衰効率を求める際に用いられる式は、次の(2)式および(3)式で表される。
In addition, equations used when actually obtaining the scattering efficiency and the attenuation efficiency are expressed by the following equations (2) and (3).

ここで、xは粒径パラメータ(size parameter)と呼ばれ、(4)式で表される。また、a,bはMie散乱係数と呼ばれ、y=mxとすると、(5)式で表される。ここで、rは球形粒子の半径、mは複素屈折率を表す。
Here, x is called a particle size parameter (size parameter), and is expressed by equation (4). Further, a n and b n are called Mie scattering coefficients, and when y = mx, they are expressed by equation (5). Here, r represents the radius of the spherical particle, and m represents the complex refractive index.

(1)〜(5)式を用い、酸化亜鉛(ZnO)、ジルコニア(ZrO)、酸化チタン(TiO)の各粒子について、粒子直径dに対する紫外光(λ=300nm)および可視光(λ=500nm)の減衰効率Qextを計算した結果を、図2に示す。図2に示すように、粒子が酸化亜鉛の場合、粒径が40nm〜200nm、ジルコニアの場合、粒径が100nm〜200nm、酸化チタンの場合、粒径が50nm〜100nmのとき、可視光の減衰が小さく、紫外線の減衰が大きくなっており、可視光の透過率が高い状態で、紫外線遮蔽効果を高めることができる。特に、粒子が酸化亜鉛の場合、粒径が50nm〜100nm、酸化チタンの場合、粒径が60nm〜100nmのとき、可視光の透過率が高い状態で、より紫外線遮蔽効果を高めることができる。 Using the formulas (1) to (5), for each particle of zinc oxide (ZnO), zirconia (ZrO 2 ), and titanium oxide (TiO 2 ), ultraviolet light (λ = 300 nm) and visible light (λ FIG. 2 shows the result of calculating the attenuation efficiency Q ext ( = 500 nm). As shown in FIG. 2, when the particle is zinc oxide, the particle size is 40 nm to 200 nm, when the particle is zirconia, the particle size is 100 nm to 200 nm, and when the particle is titanium oxide, the attenuation of visible light is 50 nm to 100 nm. Is small, the attenuation of ultraviolet rays is large, and the ultraviolet ray shielding effect can be enhanced in a state where the transmittance of visible light is high. In particular, when the particle is zinc oxide, when the particle size is 50 nm to 100 nm, and when the particle size is titanium oxide, when the particle size is 60 nm to 100 nm, the ultraviolet light shielding effect can be further enhanced with a high visible light transmittance.

このように、図2から、本発明に係る紫外線遮蔽膜で、前記粒子は、粒径が50〜100nmの酸化亜鉛、粒径が60〜100nmの酸化チタン、および粒径が100〜200nmのジルコニアのうちの少なくとも1つから成ることが好ましい。また、粒子は、酸化亜鉛、ジルコニア、酸化チタンに限らず、炭酸カルシウム(CaCO)から成っていても、炭酸カルシウムを含んでいてもよい。本発明に係る紫外線遮蔽膜は、これらの粒子の表面に膜などを形成する必要がなく、膜の原材料を容易に製造することができる。なお、粒子は、球状でなくともよく、角張っていても、凹凸を有していてもよい。 Thus, from FIG. 2, in the ultraviolet shielding film according to the present invention, the particles are zinc oxide having a particle size of 50 to 100 nm, titanium oxide having a particle size of 60 to 100 nm, and zirconia having a particle size of 100 to 200 nm. Preferably, it consists of at least one of the following. The particles are not limited to zinc oxide, zirconia, and titanium oxide, and may be made of calcium carbonate (CaCO 3 ) or may contain calcium carbonate. The ultraviolet shielding film according to the present invention does not need to form a film or the like on the surface of these particles, and can easily produce the raw material of the film. Note that the particles do not have to be spherical, and may be angular or uneven.

本発明に係る紫外線遮蔽膜で、前記粒子は、0.3乃至1.2%の体積分率で前記基材中に分布していることが好ましい。この場合、特に可視光の透過率と、紫外線遮蔽効果とのバランスがよく、被遮蔽物の色調を維持した状態で、紫外線による劣化を効果的に防ぐことができる。また、粒子の配合が比較的少ないため、基材中に均一に分布させやすく、被遮蔽物の表面に対して均一な紫外線遮蔽効果を得ることができる。   In the ultraviolet shielding film according to the present invention, the particles are preferably distributed in the base material at a volume fraction of 0.3 to 1.2%. In this case, in particular, the visible light transmittance and the ultraviolet shielding effect are well balanced, and deterioration due to ultraviolet rays can be effectively prevented while maintaining the color tone of the object to be shielded. Moreover, since there are comparatively few compounding of particles, it is easy to distribute uniformly in a base material, and can obtain the uniform ultraviolet-ray shielding effect with respect to the surface of a to-be-shielded object.

本発明に係る紫外線遮蔽膜は、前記粒子が酸化亜鉛から成り、膜厚が1乃至100μmであってもよい。また、本発明に係る紫外線遮蔽膜は、前記粒子がジルコニアから成り、膜厚が1乃至130μmであってもよい。これらの場合、特に可視光の透過率と、紫外線遮蔽効果とのバランスがよく、被遮蔽物の色調を維持した状態で、紫外線による劣化を効果的に防ぐことができる。   In the ultraviolet shielding film according to the present invention, the particles may be made of zinc oxide and may have a thickness of 1 to 100 μm. In the ultraviolet shielding film according to the present invention, the particles may be made of zirconia and the film thickness may be 1 to 130 μm. In these cases, the balance between visible light transmittance and ultraviolet shielding effect is particularly good, and deterioration due to ultraviolet rays can be effectively prevented while maintaining the color tone of the object to be shielded.

本発明に係る紫外線遮蔽膜は、被遮蔽物の表面に塗布して形成された塗膜、または被遮蔽物の表面に貼り付けられたフィルムから成ることが好ましい。この場合、被遮蔽物の表面に容易に形成されて、紫外線による劣化を防ぐことができる。   The ultraviolet shielding film according to the present invention is preferably composed of a coating film formed by coating on the surface of the object to be shielded or a film attached to the surface of the object to be shielded. In this case, it is easily formed on the surface of the object to be shielded, and deterioration due to ultraviolet rays can be prevented.

本発明によれば、プラスチックや屋外のものに使用することができ、原材料の製造が容易で、被遮蔽物の表面に対して均一な紫外線遮蔽効果が得られる紫外線遮蔽膜を提供することができる。   According to the present invention, it is possible to provide an ultraviolet shielding film that can be used for plastics and outdoor materials, can easily produce raw materials, and can obtain a uniform ultraviolet shielding effect on the surface of an object to be shielded. .

本発明に係る紫外線遮蔽膜の原理を示す側面図である。It is a side view which shows the principle of the ultraviolet-ray shielding film which concerns on this invention. 本発明に係る紫外線遮蔽膜の、粒子が(a)酸化亜鉛、(b)ジルコニア、(c)酸化チタンのときの、粒子直径dに対する減衰効率Qextの計算結果を示すグラフである。It is a graph which shows the calculation result of attenuation | damping efficiency Qext with respect to particle diameter d when the particle | grains are (a) zinc oxide, (b) zirconia, (c) titanium oxide of the ultraviolet-ray shielding film which concerns on this invention. 本発明の実施の形態の紫外線遮蔽膜の、粒子が酸化亜鉛のときの、光の波長λに対する透過率τの測定結果を示すグラフである。It is a graph which shows the measurement result of the transmittance | permeability (tau) with respect to wavelength (lambda) of light when the particle | grains are zinc oxide of the ultraviolet-ray shielding film of embodiment of this invention. 本発明の実施の形態の紫外線遮蔽膜の、粒子が酸化亜鉛から成り、(a)酸化亜鉛粒子の粒径、(b)膜厚、(c)酸化亜鉛粒子の体積分率を変えたときの、光の波長λに対する透過率τの測定結果を示すグラフである。In the ultraviolet shielding film according to the embodiment of the present invention, the particles are made of zinc oxide, and (a) the particle size of the zinc oxide particles, (b) the film thickness, and (c) the volume fraction of the zinc oxide particles are changed. 5 is a graph showing a measurement result of transmittance τ with respect to light wavelength λ. 本発明の実施の形態の紫外線遮蔽膜の、粒子が酸化チタンから成り、酸化チタン粒子の粒径および膜厚を変えたときの、光の波長λに対する透過率τの測定結果を示すグラフである。It is a graph which shows the measurement result of the transmittance | permeability (tau) with respect to wavelength (lambda) of light when particle | grains consist of titanium oxide and the particle size and film thickness of a titanium oxide particle are changed of the ultraviolet-ray shielding film of embodiment of this invention. . 本発明の実施の形態の紫外線遮蔽膜の、粒子がジルコニアから成り、膜厚を変えたときの、光の波長λに対する透過率τの測定結果を示すグラフである。It is a graph which shows the measurement result of the transmittance | permeability (tau) with respect to wavelength (lambda) of light when a particle | grain consists of zirconia and the film thickness was changed of the ultraviolet-ray shielding film of embodiment of this invention.

以下、図面に基づき、本発明の実施の形態について説明する。
図3乃至図6は、本発明の実施の形態の紫外線遮蔽膜を示している。
本発明の実施の形態の紫外線遮蔽膜は、可視光に対して透明な基材と、太陽光の紫外線成分を散乱および吸収可能に、基材中に分布した粒子とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
3 to 6 show the ultraviolet shielding film according to the embodiment of the present invention.
The ultraviolet shielding film according to the embodiment of the present invention includes a base material transparent to visible light and particles distributed in the base material so as to be able to scatter and absorb ultraviolet components of sunlight.

基材は、アクリル樹脂製のバインダーから成り、可視光に対して透明である。
粒子は、粒径が50〜100nmの酸化亜鉛(ZnO)、粒径が60〜100nmの酸化チタン(TiO)、粒径が100〜200nmのジルコニア(ZrO)または炭酸カルシウム(CaCO)のうちの少なくとも1つから成っている。
The substrate is made of an acrylic resin binder and is transparent to visible light.
The particles are made of zinc oxide (ZnO) having a particle size of 50 to 100 nm, titanium oxide (TiO 2 ) having a particle size of 60 to 100 nm, zirconia (ZrO 2 ) or calcium carbonate (CaCO 3 ) having a particle size of 100 to 200 nm. It consists of at least one of them.

本発明の実施の形態の紫外線遮蔽膜は、基材中に粒子を配合したものを、被遮蔽物の表面に塗布して形成される。なお、本発明の実施の形態の紫外線遮蔽膜は、基材中に粒子が分布したフィルムを、被遮蔽物の表面に貼り付けて形成されてもよい。   The ultraviolet shielding film according to the embodiment of the present invention is formed by applying a mixture of particles in a substrate to the surface of an object to be shielded. The ultraviolet shielding film according to the embodiment of the present invention may be formed by attaching a film in which particles are distributed in a base material to the surface of an object to be shielded.

本発明の実施の形態の紫外線遮蔽膜は、プラスチックや屋外のものにも使用することができる。基材が可視光に対して透明であるため、被遮蔽物の色調を維持することができる。また、基材中に分布した粒子により、太陽光の紫外線成分を散乱させるだけでなく、吸収することもできるため、プラスチック等の被遮蔽物が紫外線により変質するのを効果的に防ぐことができる。粒子による紫外線成分の吸収を考慮に入れることにより、散乱の効果のみを考慮して設計する場合に比べて、粒子の配合割合を抑制することができ、効率よく紫外線遮蔽効果を得ることができる。このように、紫外線による被遮蔽物の劣化や強度低下を防止することができ、被遮蔽物の寿命を延ばすことができる。   The ultraviolet shielding film of the embodiment of the present invention can also be used for plastics and outdoor ones. Since the base material is transparent to visible light, the color tone of the object to be shielded can be maintained. Moreover, since the particles distributed in the substrate can not only scatter but also absorb the ultraviolet component of sunlight, it is possible to effectively prevent the shielded object such as plastic from being deteriorated by ultraviolet rays. . By taking into account the absorption of the ultraviolet component by the particles, the mixing ratio of the particles can be suppressed and the ultraviolet shielding effect can be obtained efficiently as compared with the case of designing considering only the scattering effect. In this way, it is possible to prevent deterioration of the shielded object and strength reduction due to ultraviolet rays, thereby extending the life of the shielded object.

本発明の実施の形態の紫外線遮蔽膜は、被遮蔽物の表面に塗布するだけで容易に形成され、紫外線による劣化を防ぐことができる。また、基材に配合される粒子の表面に膜などを形成する必要がなく、膜の原材料を容易に製造することができる。   The ultraviolet shielding film according to the embodiment of the present invention can be easily formed only by coating on the surface of an object to be shielded, and deterioration due to ultraviolet rays can be prevented. Further, it is not necessary to form a film or the like on the surface of the particles to be blended with the base material, and the raw material of the film can be easily manufactured.

このような本発明の実施の形態の紫外線遮蔽膜の応用として、例えば、本発明の実施の形態の紫外線遮蔽膜を有機ELの表面に形成することにより、可視光を透過させつつ、材料のシリコンが劣化するのを防ぐことができ、有機ELの長寿命化を図ることができる。また、LED電球の内側に形成することにより、可視光を透過させつつ、人間の眼に悪影響を及ぼす青色光および近紫外線を遮断することができる。   As an application of the ultraviolet shielding film according to the embodiment of the present invention, for example, by forming the ultraviolet shielding film according to the embodiment of the present invention on the surface of the organic EL, the material silicon is transmitted while transmitting visible light. Can be prevented, and the life of the organic EL can be extended. Moreover, by forming inside the LED bulb, it is possible to block blue light and near ultraviolet light that adversely affect human eyes while transmitting visible light.

粒子として酸化亜鉛を用いた紫外線遮蔽膜について、分光光度計により、光の透過率の測定を行った。
酸化亜鉛粒子の粒径が100nm、体積分率が1.0%、膜厚が40μmの紫外線遮蔽膜を、プラスチックフィルム上に形成して、光の透過率τの測定を行った。その結果を、図3に示す。なお、図3には、比較のため、プラスチックフィルムの透過率も示している。図3に示すように、紫外域の波長λ=300nmでは、透過率が1.8%と紫外線をほぼ完全に遮蔽している。それに対し、可視光域の波長λ=500nmでは、透過率が70%であり、外観への影響がほとんど認められないことが確認された。
About the ultraviolet shielding film using zinc oxide as particles, the light transmittance was measured with a spectrophotometer.
An ultraviolet shielding film having a zinc oxide particle size of 100 nm, a volume fraction of 1.0%, and a film thickness of 40 μm was formed on a plastic film, and light transmittance τ was measured. The result is shown in FIG. In FIG. 3, the transmittance of the plastic film is also shown for comparison. As shown in FIG. 3, at a wavelength λ = 300 nm in the ultraviolet region, the transmittance is 1.8%, and the ultraviolet rays are almost completely shielded. On the other hand, at a wavelength λ = 500 nm in the visible light region, the transmittance was 70%, and it was confirmed that there was almost no influence on the appearance.

次に、酸化亜鉛粒子を用いた紫外線遮蔽膜をガラス基板上に形成し、酸化亜鉛粒子の粒径、膜厚、および酸化亜鉛粒子の体積分率をそれぞれ変えたときの、光の透過率τの変化を調べた。それらの結果を、図4(a)〜(c)に示す。なお、図4(a)における酸化亜鉛粒子の体積分率は1.0%である。図4(a)に示すように、酸化亜鉛粒子の粒径が35nmの場合、高い可視光透過率を維持しているが、紫外線透過率も約50%と高くなっている。これに対し、粒径65nmおよび100nmの場合には、粒径35nmの場合と比べ、わずかに可視光透過率が減少しているものの、紫外線透過率は大きく低下しており、それぞれ約30%および約20%となっている。このように、粒径65nmおよび100nmの場合には、可視光の透過率と、紫外線遮蔽効果とのバランスがよく、被遮蔽物の色調を維持した状態で、紫外線による劣化を効果的に防ぐことができるといえる。   Next, an ultraviolet light shielding film using zinc oxide particles is formed on a glass substrate, and the light transmittance τ when the particle size, film thickness, and volume fraction of zinc oxide particles are changed, respectively. I examined the changes. The results are shown in FIGS. 4 (a) to (c). In addition, the volume fraction of the zinc oxide particle in Fig.4 (a) is 1.0%. As shown in FIG. 4A, when the particle diameter of the zinc oxide particles is 35 nm, high visible light transmittance is maintained, but the ultraviolet transmittance is as high as about 50%. On the other hand, in the case of the particle diameters of 65 nm and 100 nm, although the visible light transmittance is slightly decreased as compared with the case of the particle diameter of 35 nm, the ultraviolet light transmittance is greatly reduced, which is about 30% and About 20%. Thus, in the case of particle diameters of 65 nm and 100 nm, the balance between the visible light transmittance and the ultraviolet shielding effect is good, and the deterioration by ultraviolet rays is effectively prevented while maintaining the color tone of the shielded object. Can be said.

また、図4(b)に示すように、膜厚が6μm〜70μmの場合、高い可視光透過率を維持しつつ、紫外線透過率も約30%以下となっている。また、膜厚が増加するに従って、可視光および紫外線の透過率が減少しており、特に、膜厚が40μmおよび70μmの場合に紫外線透過率の減少が大きく、紫外線遮蔽効果が高いことが確認された。   Further, as shown in FIG. 4B, when the film thickness is 6 μm to 70 μm, the ultraviolet transmittance is about 30% or less while maintaining a high visible light transmittance. In addition, the transmittance of visible light and ultraviolet light decreased as the film thickness increased. In particular, when the film thickness was 40 μm and 70 μm, the decrease in ultraviolet light transmittance was large, and it was confirmed that the ultraviolet shielding effect was high. It was.

また、図4(c)に示すように、酸化亜鉛粒子の体積分率が0.5%の場合、高い可視光透過率を維持しているが、紫外線透過率は約50%になっている。体積分率が1.0%の場合には、0.5%の場合と比べ、わずかに可視光透過率が減少しているものの、紫外線透過率は大きく低下しており、約25%となっている。このように、体積分率が1.0%の場合には、可視光の透過率と、紫外線遮蔽効果とのバランスがよく、被遮蔽物の色調を維持した状態で、紫外線による劣化を効果的に防ぐことができるといえる。   In addition, as shown in FIG. 4C, when the volume fraction of zinc oxide particles is 0.5%, high visible light transmittance is maintained, but ultraviolet transmittance is about 50%. . When the volume fraction is 1.0%, the visible light transmittance is slightly decreased as compared with the case where the volume fraction is 0.5%, but the ultraviolet transmittance is greatly reduced to about 25%. ing. Thus, when the volume fraction is 1.0%, there is a good balance between the transmittance of visible light and the ultraviolet shielding effect, and deterioration due to ultraviolet rays is effective while maintaining the color tone of the shielded object. It can be said that it can be prevented.

粒子として酸化チタンを用いた紫外線遮蔽膜について、分光光度計により、光の透過率の測定を行った。
酸化チタン粒子の粒径が80nm、膜厚が10μmの紫外線遮蔽膜、および、粒径が50nm、膜厚が7μmの紫外線遮蔽膜について、プラスチックフィルム上に形成したときの、光の透過率τの測定を行った。その結果を、図5に示す。なお、酸化チタン粒子の体積分率は0.5%である。また、図5には、比較のため、プラスチックフィルムの透過率も示している。
About the ultraviolet shielding film which used the titanium oxide as particle | grains, the transmittance | permeability of light was measured with the spectrophotometer.
The light transmittance τ when a titanium oxide particle having a particle diameter of 80 nm and a film thickness of 10 μm and an ultraviolet light shielding film having a particle diameter of 50 nm and a film thickness of 7 μm are formed on a plastic film. Measurements were made. The result is shown in FIG. The volume fraction of titanium oxide particles is 0.5%. FIG. 5 also shows the transmittance of the plastic film for comparison.

図5に示すように、酸化チタン粒子の粒径が50nmの場合、高い可視光透過率を維持しているが、紫外線透過率も約65%と高くなっている。これに対し、粒径80nmの場合には、粒径50nmの場合と比べ、わずかに可視光透過率が減少しているものの、紫外線透過率は大きく低下しており、約50%となっている。このように、粒径80nmの場合には、可視光の透過率と、紫外線遮蔽効果とのバランスがよく、被遮蔽物の色調を維持した状態で、紫外線による劣化を効果的に防ぐことができるといえる。   As shown in FIG. 5, when the particle diameter of the titanium oxide particles is 50 nm, a high visible light transmittance is maintained, but the ultraviolet transmittance is as high as about 65%. On the other hand, when the particle size is 80 nm, the visible light transmittance is slightly reduced as compared with the case where the particle size is 50 nm, but the ultraviolet light transmittance is greatly reduced, which is about 50%. . Thus, when the particle diameter is 80 nm, the balance between the visible light transmittance and the ultraviolet shielding effect is good, and deterioration due to ultraviolet rays can be effectively prevented while maintaining the color tone of the shielded object. It can be said.

粒子としてジルコニアを用いた紫外線遮蔽膜について、分光光度計により、光の透過率の測定を行った。
ジルコニア粒子の粒径を90nmとし、膜厚を変えたときの、光の透過率τの測定を行った。その結果を、図6に示す。なお、紫外線遮蔽膜は、ガラス基板上に形成している。また、ジルコニア粒子の体積分率は1.0%である。また、図6には、比較のため、ガラス基板の透過率も示している。
About the ultraviolet shielding film using zirconia as particles, the light transmittance was measured by a spectrophotometer.
The light transmittance τ was measured when the particle diameter of the zirconia particles was changed to 90 nm and the film thickness was changed. The result is shown in FIG. The ultraviolet shielding film is formed on the glass substrate. The volume fraction of zirconia particles is 1.0%. FIG. 6 also shows the transmittance of the glass substrate for comparison.

図6に示すように、遠紫外線等の波長λが300nm以下の紫外線に対しては、紫外線遮蔽膜の膜厚に関係なく、透過率τがほぼ0%になっており、ほぼ完全に遮蔽していることが確認された。これに対し、波長λが300nm以上の紫外線および可視光に対しては、膜厚が大きくなるに従って、透過率τが減少している。特に、膜厚が12μm、40μm、120μmのとき、可視光から紫外線にかけての領域で、透過率τが比較的大きく減少しており、被遮蔽物の色調を維持した状態で、紫外線による劣化を防ぐことができるといえる。   As shown in FIG. 6, the transmittance τ is almost 0% for ultraviolet rays having a wavelength λ of 300 nm or less, such as far ultraviolet rays, regardless of the film thickness of the ultraviolet shielding film, and is almost completely shielded. It was confirmed that On the other hand, with respect to ultraviolet rays and visible light having a wavelength λ of 300 nm or more, the transmittance τ decreases as the film thickness increases. In particular, when the film thickness is 12 μm, 40 μm, and 120 μm, the transmittance τ is relatively reduced in the region from visible light to ultraviolet light, and deterioration due to ultraviolet light is prevented while maintaining the color tone of the shielded object. It can be said that it is possible.

Claims (7)

可視光に対して透明な基材と、
太陽光の紫外線成分を散乱および吸収可能に、前記基材中に分布した所定の粒径を有する粒子とを、
有することを特徴とする紫外線遮蔽膜。
A substrate transparent to visible light;
Particles having a predetermined particle size distributed in the substrate so as to scatter and absorb the ultraviolet component of sunlight,
An ultraviolet shielding film comprising:
前記粒子は酸化亜鉛、酸化チタン、ジルコニア、および炭酸カルシウムのうちの少なくとも1つから成ることを特徴とする請求項1記載の紫外線遮蔽膜。   2. The ultraviolet shielding film according to claim 1, wherein the particles are made of at least one of zinc oxide, titanium oxide, zirconia, and calcium carbonate. 前記粒子は、粒径が50〜100nmの酸化亜鉛、粒径が60〜100nmの酸化チタン、および粒径が100〜200nmのジルコニアのうちの少なくとも1つから成ることを特徴とする請求項1記載の紫外線遮蔽膜。   2. The particle according to claim 1, wherein the particle comprises at least one of zinc oxide having a particle size of 50 to 100 nm, titanium oxide having a particle size of 60 to 100 nm, and zirconia having a particle size of 100 to 200 nm. UV shielding film. 前記粒子は、0.3乃至1.2%の体積分率で前記基材中に分布していることを特徴とする請求項1乃至3のいずれか1項に記載の紫外線遮蔽膜。   4. The ultraviolet shielding film according to claim 1, wherein the particles are distributed in the base material at a volume fraction of 0.3 to 1.2%. 前記粒子が酸化亜鉛から成り、膜厚が1乃至100μmであることを特徴とする請求項1乃至4のいずれか1項に記載の紫外線遮蔽膜。   The ultraviolet shielding film according to claim 1, wherein the particles are made of zinc oxide and have a thickness of 1 to 100 μm. 前記粒子がジルコニアから成り、膜厚が1乃至130μmであることを特徴とする請求項1乃至4のいずれか1項に記載の紫外線遮蔽膜。   The ultraviolet shielding film according to claim 1, wherein the particles are made of zirconia and have a thickness of 1 to 130 μm. 被遮蔽物の表面に塗布して形成された塗膜、または被遮蔽物の表面に貼り付けられたフィルムから成ることを特徴とする請求項1乃至6のいずれか1項に記載の紫外線遮蔽膜。
The ultraviolet shielding film according to any one of claims 1 to 6, comprising a coating film formed by coating on a surface of an object to be shielded or a film attached to the surface of the object to be shielded. .
JP2013085459A 2013-04-16 2013-04-16 Ultraviolet ray shielding film Pending JP2014205811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085459A JP2014205811A (en) 2013-04-16 2013-04-16 Ultraviolet ray shielding film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085459A JP2014205811A (en) 2013-04-16 2013-04-16 Ultraviolet ray shielding film

Publications (1)

Publication Number Publication Date
JP2014205811A true JP2014205811A (en) 2014-10-30

Family

ID=52119641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085459A Pending JP2014205811A (en) 2013-04-16 2013-04-16 Ultraviolet ray shielding film

Country Status (1)

Country Link
JP (1) JP2014205811A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017142386A (en) * 2016-02-10 2017-08-17 ウシオ電機株式会社 Ultraviolet rays filter layer, method for forming ultraviolet rays filter layer, ultraviolet rays filter, grid polarization element, and polarized light irradiation device
WO2023063123A1 (en) * 2021-10-15 2023-04-20 デンカ株式会社 Composition for ultraviolet light reflection
WO2023171512A1 (en) * 2022-03-08 2023-09-14 デンカ株式会社 Composition for ultraviolet light reflection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121639A (en) * 1999-10-29 2001-05-08 Toray Ind Inc Laminated sheet
JP2003335905A (en) * 2002-05-22 2003-11-28 Unitika Ltd Aqueous dispersion, method for producing the same and ultraviolet light-shading film
JP2004002563A (en) * 2002-05-31 2004-01-08 Ishihara Sangyo Kaisha Ltd Transparent ultraviolet barrier coating film
JP2006307125A (en) * 2005-02-02 2006-11-09 Toto Ltd Ultraviolet shielding material
JP2007121814A (en) * 2005-10-31 2007-05-17 Toray Ind Inc White film for reflecting member of surface light source
JP2010111546A (en) * 2008-11-07 2010-05-20 Central Japan Railway Co Ultraviolet-shielding overcoat agent, method for forming ultraviolet-shielding overcoat layer, and member provided with ultraviolet-shielding overcoat layer
WO2012133369A1 (en) * 2011-03-30 2012-10-04 東レ株式会社 Laminated sheet and solar cell using same
WO2012165620A1 (en) * 2011-06-03 2012-12-06 日産化学工業株式会社 Metal oxide particles containing titanium oxide coated with silicon dioxide-tin(iv) oxide complex oxide
JP2013001578A (en) * 2011-06-13 2013-01-07 Sakai Chem Ind Co Ltd Zinc oxide, method for producing zinc oxide, cosmetic, coating composition, and resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121639A (en) * 1999-10-29 2001-05-08 Toray Ind Inc Laminated sheet
JP2003335905A (en) * 2002-05-22 2003-11-28 Unitika Ltd Aqueous dispersion, method for producing the same and ultraviolet light-shading film
JP2004002563A (en) * 2002-05-31 2004-01-08 Ishihara Sangyo Kaisha Ltd Transparent ultraviolet barrier coating film
JP2006307125A (en) * 2005-02-02 2006-11-09 Toto Ltd Ultraviolet shielding material
JP2007121814A (en) * 2005-10-31 2007-05-17 Toray Ind Inc White film for reflecting member of surface light source
JP2010111546A (en) * 2008-11-07 2010-05-20 Central Japan Railway Co Ultraviolet-shielding overcoat agent, method for forming ultraviolet-shielding overcoat layer, and member provided with ultraviolet-shielding overcoat layer
WO2012133369A1 (en) * 2011-03-30 2012-10-04 東レ株式会社 Laminated sheet and solar cell using same
WO2012165620A1 (en) * 2011-06-03 2012-12-06 日産化学工業株式会社 Metal oxide particles containing titanium oxide coated with silicon dioxide-tin(iv) oxide complex oxide
JP2013001578A (en) * 2011-06-13 2013-01-07 Sakai Chem Ind Co Ltd Zinc oxide, method for producing zinc oxide, cosmetic, coating composition, and resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017142386A (en) * 2016-02-10 2017-08-17 ウシオ電機株式会社 Ultraviolet rays filter layer, method for forming ultraviolet rays filter layer, ultraviolet rays filter, grid polarization element, and polarized light irradiation device
WO2023063123A1 (en) * 2021-10-15 2023-04-20 デンカ株式会社 Composition for ultraviolet light reflection
WO2023171512A1 (en) * 2022-03-08 2023-09-14 デンカ株式会社 Composition for ultraviolet light reflection

Similar Documents

Publication Publication Date Title
Yalçın et al. Colored radiative cooling coatings with nanoparticles
Iwata et al. Bio‐inspired bright structurally colored colloidal amorphous array enhanced by controlling thickness and black background
Van der Heggen et al. Counting the photons: Determining the absolute storage capacity of persistent phosphors
KR101927558B1 (en) Antiglare film, polarizing plate, image display apparatus and process for manufacturing antiglare film
CN1289924C (en) Light diffusing agent, light diffusing sheet, and nonglare sheet
JP7402609B2 (en) Low sparkle matte coat and manufacturing method
WO2005067524A3 (en) Nanocrystal doped matrixes
UA107372C2 (en) COLOR SYSTEM REFLECTING SOLAR RADIATION, COLOR COMPOSITION AND ITS APPLICATION
EA201071052A1 (en) TRANSPARENT SUBSTRATE CONTAINING ANTI-REFLECTIVE COATING
JP2010072616A5 (en)
GB0814515D0 (en) Photostability
JPWO2016142992A1 (en) Composition for forming light scattering complex, light scattering complex and method for producing the same
CN107709430B (en) Composite systems and its preparation method and application comprising matrix and scattering ingredient
JP6021029B2 (en) Optical member, lighting cover and lighting fixture
JP2014205811A (en) Ultraviolet ray shielding film
Yi et al. Development of super road heat-reflective coating and its field application
CN106873053B (en) Manufacturing method, display, anti-glare, polarizing film and the image display device of display, anti-glare
CN107703568A (en) Optical reflection film and back light for liquid crystal display device unit
Chou et al. The effects of TiO2 diffuser-loaded encapsulation on corrected color temperature uniformity of remote phosphor white LEDs
Ziaeemehr et al. Increasing solar reflectivity of building envelope materials to mitigate urban heat islands: State-of-the-art review
JP2013065024A5 (en)
JP6241574B2 (en) Transparent resin composition and heat ray shielding film
WO2009054255A1 (en) Optical resin material and optical elements made by using the same
JP2020140082A (en) Wavelength conversion sheet and backlight unit
Moon et al. Broadband Omnidirectional Diffuse Mirrors with Hierarchically Designed All-Dielectric Surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228