JP2014204181A - Acoustic wave resonance device and ladder type filter - Google Patents

Acoustic wave resonance device and ladder type filter Download PDF

Info

Publication number
JP2014204181A
JP2014204181A JP2013076576A JP2013076576A JP2014204181A JP 2014204181 A JP2014204181 A JP 2014204181A JP 2013076576 A JP2013076576 A JP 2013076576A JP 2013076576 A JP2013076576 A JP 2013076576A JP 2014204181 A JP2014204181 A JP 2014204181A
Authority
JP
Japan
Prior art keywords
power consumption
acoustic wave
distance
elastic wave
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013076576A
Other languages
Japanese (ja)
Inventor
永二 藤森
Eiji Fujimori
永二 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2013076576A priority Critical patent/JP2014204181A/en
Priority to CN201410119421.6A priority patent/CN104104354A/en
Publication of JP2014204181A publication Critical patent/JP2014204181A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an acoustic wave resonance device capable of enhancing electric power resistance even with a higher frequency.SOLUTION: An acoustic wave resonant device 1 includes n pieces of acoustic wave resonators which are connected with each other in series, configured by dividing a single virtual acoustic wave resonator, between an input end and an output end. Assuming that inter-stage distance which is a distance between adjoining acoustic wave resonators is L, the number of stages is n, an impedance which is represented by log N of intersection cross width (λ) of a virtual acoustic wave resonator before division multiplied with an electrode finger is Z, and further, power consumption ratio which is a ratio relative to power consumption in a configuration having a virtual acoustic wave resonator of power consumption of the acoustic wave resonance device is P, the inter-stage distance L satisfies a following formula (1): L≤{P-(3.19n×10-1.57n×10+1.17)}/{(-1.20n+3.32)Z×10+(5.10n-12.3)×10}.

Description

本発明は、弾性表面波や弾性境界波などを用いた弾性波共振装置及び該弾性波共振装置を有するラダー型フィルタに関する。   The present invention relates to an elastic wave resonance device using a surface acoustic wave, a boundary acoustic wave, and the like, and a ladder filter having the elastic wave resonance device.

従来、フィルタ装置などに様々な弾性波共振子が広く用いられている。例えば下記の特許文献1には、複数の弾性波共振子を用いたラダー型フィルタが開示されている。このラダー型フィルタでは、弾性表面波共振子により直列腕共振子及び並列腕共振子が構成されている。また、1つの直列腕共振子が、互いに直列に接続された3個の共振子に分割されている。すなわち、3段の直列腕共振子に分割することにより、耐電力性が高められている。   Conventionally, various acoustic wave resonators are widely used in filter devices and the like. For example, Patent Document 1 below discloses a ladder type filter using a plurality of elastic wave resonators. In this ladder type filter, a series arm resonator and a parallel arm resonator are constituted by surface acoustic wave resonators. One series arm resonator is divided into three resonators connected in series with each other. That is, by dividing into three-stage series arm resonators, power durability is improved.

特開2001−156588号公報JP 2001-156588 A

特許文献1に記載のように、従来、1つの弾性波共振子を互いに直列に接続された複数段の弾性波共振子に分割することにより耐電力性を高め得ることが知られている。   As described in Patent Document 1, it is conventionally known that power durability can be improved by dividing one acoustic wave resonator into a plurality of stages of acoustic wave resonators connected in series.

しかしながら、特許文献1に記載のラダー型フィルタにおいて、単に1つの直列腕共振子を3段の共振子に直列分割しただけでは、高周波化を図った場合、耐電力性を十分に改善することができないことがわかった。   However, in the ladder type filter described in Patent Document 1, if a single series arm resonator is simply divided into three stages of resonators in series, the power durability can be sufficiently improved when the frequency is increased. I found it impossible.

本発明の目的は、高周波化を図った場合においても耐電力性を十分に高め得る、弾性波共振装置及び該弾性波共振装置を有するラダー型フィルタを提供することにある。   An object of the present invention is to provide an elastic wave resonance device and a ladder type filter having the elastic wave resonance device that can sufficiently improve power durability even when a high frequency is achieved.

本発明の弾性波共振装置は、入力端と出力端との間において、仮想の弾性波共振子をn段に分割することにより構成された、互いに直列に接続されたn個(nは整数)の弾性波共振子を備える。本発明では、隣り合う弾性波共振子間の距離である段間距離をL、段数をn、分割前の仮想の弾性波共振子の交差幅(λ)×電極指の対数Nで表されるインピーダンスをZとし、弾性波共振装置の消費電力の仮想の上記弾性波共振子を有する構成の消費電力に対する割合である消費電力比をPとしたときに、段間距離Lが下記の式(1)を満たしている。   The elastic wave resonance device of the present invention is formed by dividing a virtual elastic wave resonator into n stages between an input end and an output end, and n pieces (n is an integer) connected in series with each other. The elastic wave resonator is provided. In the present invention, the distance between steps, which is the distance between adjacent acoustic wave resonators, is represented by L, the number of steps is n, the intersection width (λ) of virtual acoustic wave resonators before division × the number N of pairs of electrode fingers. When the impedance is Z and the power consumption ratio, which is the ratio of the power consumption of the acoustic wave resonator to the power consumption of the configuration having the virtual acoustic wave resonator, is P, the interstage distance L is expressed by the following equation (1). ) Is satisfied.

L≦{P―(3.19n×10−2−1.57n×10−1+1.17)}/{(−1.20n+3.32)Z×10−6+(5.10n−12.3)×10−3} …式(1) L ≦ {P− (3.19n 2 × 10 −2 −1.57 n × 10 −1 +1.17)} / {(− 1.20n + 3.32) Z × 10 −6 + (5.10n−12. 3) × 10 −3 } Formula (1)

本発明に係るラダー型フィルタは、入力端と出力端との間の直列腕に設けられたn個以上の複数の直列腕共振子と、直列腕とグラウンド電位との間に接続された並列腕共振子とを備えるラダー型フィルタであり、複数の直列腕共振子のうち、n個の直列腕共振子が、請求項1に記載の弾性波共振装置からなる。   A ladder filter according to the present invention includes a plurality of n or more series arm resonators provided in a series arm between an input end and an output end, and a parallel arm connected between the series arm and a ground potential. It is a ladder type filter provided with a resonator, and n series arm resonators consist of an elastic wave resonance apparatus of Claim 1 among a plurality of series arm resonators.

本発明に係る弾性波共振装置によれば、段間距離Lが式(1)を満たしているため、高周波化を図った場合でも、耐電力性を効果的に高めることが可能となる。   According to the elastic wave resonance apparatus according to the present invention, since the interstage distance L satisfies the formula (1), it is possible to effectively improve the power durability even when the frequency is increased.

本発明の一実施形態に係る弾性波共振装置の模式的平面図である。1 is a schematic plan view of an acoustic wave resonance device according to an embodiment of the present invention. 共振周波数が3.6GHzである弾性波共振子において、段間距離が100λの場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 100λ in an elastic wave resonator having a resonance frequency of 3.6 GHz. 共振周波数が3.6GHzである弾性波共振子において、段間距離が70λの場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 70λ in an elastic wave resonator having a resonance frequency of 3.6 GHz. 共振周波数が3.6GHzである弾性波共振子において、段間距離が50λの場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 50 (lambda) in the elastic wave resonator whose resonance frequency is 3.6 GHz. 共振周波数が3.6GHzである弾性波共振子において、段間距離が30λの場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。In the elastic wave resonator whose resonance frequency is 3.6 GHz, it is a figure which shows the ideal value and the simulation result of the relationship between the number of steps of an elastic wave resonance apparatus and power consumption when the distance between steps is 30λ. 共振周波数が3.6GHzである弾性波共振子において、段間距離が10λの場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。In the elastic wave resonator whose resonance frequency is 3.6 GHz, it is a figure which shows the ideal value of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption when the distance between steps is 10λ, and a simulation result. 共振周波数が2.9GHzである弾性波共振子において、段間距離が80λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 80λ in an elastic wave resonator having a resonance frequency of 2.9 GHz. 共振周波数が2.9GHzである弾性波共振子において、段間距離が56λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 56λ in an elastic wave resonator having a resonance frequency of 2.9 GHz. 共振周波数が2.9GHzである弾性波共振子において、段間距離が40λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 40 (lambda) in the elastic wave resonator whose resonance frequency is 2.9 GHz. 共振周波数が2.9GHzである弾性波共振子において、段間距離が24λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and the simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption when the inter-step distance is 24λ in an elastic wave resonator having a resonance frequency of 2.9 GHz. 共振周波数が2.9GHzである弾性波共振子において、段間距離が8λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 8λ in the elastic wave resonator whose resonance frequency is 2.9 GHz, and a simulation result. 共振周波数が2.4GHzである弾性波共振子において、段間距離が66.7λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 66.7 (lambda) in the elastic wave resonator whose resonance frequency is 2.4 GHz, and a simulation result. 共振周波数が2.4GHzである弾性波共振子において、段間距離が46.7λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 46.7 (lambda) in the elastic wave resonator whose resonance frequency is 2.4 GHz. 共振周波数が2.4GHzである弾性波共振子において、段間距離が33.3λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。In the elastic wave resonator whose resonance frequency is 2.4 GHz, it is a figure which shows the ideal value of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case an interstage distance is 33.3 (lambda), and a simulation result. 共振周波数が2.4GHzである弾性波共振子において、段間距離が20.0λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 20.0 (lambda) in the elastic wave resonator whose resonance frequency is 2.4 GHz. 共振周波数が2.4GHzである弾性波共振子において、段間距離が6.7λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 6.7λ in an elastic wave resonator having a resonance frequency of 2.4 GHz. 共振周波数が1.8GHzである弾性波共振子において、段間距離が50λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value of the relationship between the number of steps of an elastic wave resonance apparatus, and a power consumption in case the distance between steps is 50 (lambda) in the elastic wave resonator whose resonance frequency is 1.8 GHz, and a simulation result. 共振周波数が1.8GHzである弾性波共振子において、段間距離が35λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value of the relationship between the number of stages of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 35 (lambda) in the elastic wave resonator whose resonance frequency is 1.8 GHz, and a simulation result. 共振周波数が1.8GHzである弾性波共振子において、段間距離が25λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 25 (lambda) in the elastic wave resonator whose resonance frequency is 1.8 GHz. 共振周波数が1.8GHzである弾性波共振子において、段間距離が15λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 15 (lambda) in the elastic wave resonator whose resonance frequency is 1.8 GHz. 共振周波数が1.8GHzである弾性波共振子において、段間距離が5λである場合の弾性波共振装置の段数と消費電力との関係の理想値とシミュレーション結果とを示す図である。It is a figure which shows the ideal value and simulation result of the relationship between the number of steps of an elastic wave resonance apparatus, and power consumption in case the distance between steps is 5λ in an elastic wave resonator having a resonance frequency of 1.8 GHz. 共振周波数が3.6GHzであり、λ=1.0μm、段間距離Lが50λである1段の弾性波共振子における周波数と消費電力との関係を示す図である。It is a figure which shows the relationship between the frequency and power consumption in the 1 step | paragraph elastic wave resonator whose resonance frequency is 3.6 GHz, (lambda) = 1.0micrometer, and the distance L between steps is 50 (lambda). 共振周波数が3.6GHzであり、λ=1.0μm、段間距離Lが50λである2段の弾性波共振子における周波数と消費電力との関係を示す図である。It is a figure which shows the relationship between the frequency and power consumption in a two-stage elastic wave resonator whose resonance frequency is 3.6 GHz, λ = 1.0 μm, and the interstage distance L is 50λ. 共振周波数が3.6GHzであり、λ=1.0μm、段間距離Lが50λである3段の弾性波共振子における周波数と消費電力との関係を示す図である。It is a figure which shows the relationship between the frequency and power consumption in a 3 step | paragraph elastic wave resonator whose resonance frequency is 3.6 GHz, (lambda) = 1.0 micrometer, and the distance L between steps is 50 (lambda). 共振周波数が3.6GHzであり、λ=1.0μm、段間距離Lが50λである4段の弾性波共振子における周波数と消費電力との関係を示す図である。It is a figure which shows the relationship between the frequency and power consumption in the 4-stage elastic wave resonator whose resonance frequency is 3.6 GHz, (lambda) = 1.0 micrometer, and the distance L between steps is 50 (lambda). 共振周波数が3.6GHzであり、λ=1.0μm、段間距離Lが50λである5段の弾性波共振子における周波数と消費電力との関係を示す図である。It is a figure which shows the relationship between the frequency and power consumption in the 5-stage elastic wave resonator whose resonance frequency is 3.6 GHz, (lambda) = 1.0 micrometer, and the distance L between steps is 50 (lambda). 共振周波数が3.6GHzであり、λ=1.0μm、段間距離Lが50λである6段の弾性波共振子における周波数と消費電力との関係を示す図である。It is a figure which shows the relationship between the frequency and power consumption in the 6 step | paragraph elastic wave resonator whose resonance frequency is 3.6 GHz, (lambda) = 1.0 micrometer, and the distance L between steps is 50 (lambda). 2段構成の弾性波共振装置における段間距離と消費電力比との関係を示す図である。It is a figure which shows the relationship between the interstage distance and power consumption ratio in the elastic wave resonance apparatus of 2 steps | paragraphs structure. 3段構成の弾性波共振装置における段間距離と消費電力比との関係を示す図である。It is a figure which shows the relationship between the interstage distance and power consumption ratio in the elastic wave resonance apparatus of 3 steps | paragraphs. 4段構成の弾性波共振装置における段間距離と消費電力比との関係を示す図である。It is a figure which shows the relationship between the interstage distance and power consumption ratio in the elastic wave resonance apparatus of 4 steps | paragraphs structure. 5段構成の弾性波共振装置における段間距離と消費電力比との関係を示す図である。It is a figure which shows the relationship between the distance between steps | paragraphs, and power consumption ratio in the elastic wave resonance apparatus of 5 steps | paragraphs. 6段構成の弾性波共振装置における段間距離と消費電力比との関係を示す図である。It is a figure which shows the relationship between the distance between steps | paragraphs, and power consumption ratio in the elastic wave resonance apparatus of 6 steps | paragraphs. 2段構成の弾性波共振装置における段間距離と消費電力と、インピーダンスZ=W×Nとの関係を示す図である。It is a figure which shows the relationship between the distance between steps, power consumption, and impedance Z = WxN in the elastic wave resonance apparatus of 2 steps | paragraphs structure. 3段構成の弾性波共振装置における段間距離と消費電力と、インピーダンスZ=W×Nとの関係を示す図である。It is a figure which shows the relationship between the distance between steps, power consumption, and impedance Z = WxN in the elastic wave resonance apparatus of 3 steps | paragraphs structure. 4段構成の弾性波共振装置における段間距離と消費電力と、インピーダンスZ=W×Nとの関係を示す図である。It is a figure which shows the relationship between the distance between steps, power consumption, and impedance Z = WxN in the elastic wave resonance apparatus of 4 steps | paragraphs structure. 5段構成の弾性波共振装置における段間距離と消費電力と、インピーダンスZ=W×Nとの関係を示す図である。It is a figure which shows the relationship between the distance between steps | paragraphs, power consumption, and impedance Z = WxN in the elastic wave resonance apparatus of 5 steps | paragraphs. 6段構成の弾性波共振装置における段間距離と消費電力と、インピーダンスZ=W×Nとの関係を示す図である。It is a figure which shows the relationship between the distance between steps | paragraphs, power consumption, and impedance Z = WxN in the elastic wave resonance apparatus of 6 steps | paragraphs. シミュレーションにより得られた消費電力比と、式(1)により求められた消費電力比との関係を示す図である。It is a figure which shows the relationship between the power consumption ratio obtained by simulation, and the power consumption ratio calculated | required by Formula (1). 交差幅W(λ)×N(対数)を、IDT電極の容量との関係を示す図である。It is a figure which shows the relationship between intersection width W ((lambda)) xN (logarithm) with the capacity | capacitance of an IDT electrode. 弾性波共振子における段数と破壊電力比との関係を示す図である。It is a figure which shows the relationship between the stage number in an acoustic wave resonator, and a destruction power ratio. 本発明が適用されるラダー型フィルタの一例を示す回路図である。It is a circuit diagram showing an example of a ladder type filter to which the present invention is applied.

以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。   Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.

図1は、本発明の一実施形態に係る弾性波共振装置の模式的平面図である。弾性波共振装置1は、弾性表面波を利用した弾性表面波共振装置である。弾性波共振装置1は、圧電基板2上に、図示の電極構造を形成することにより構成されている。この電極構造では、入力電極3と出力電極4との間に、1つの弾性波共振子を3分割することにより構成された3個の弾性波共振子5〜7が設けられている。すなわち、弾性波共振子5〜7が入力電極3と出力電極4との間において直列に接続されている。   FIG. 1 is a schematic plan view of an elastic wave resonance device according to an embodiment of the present invention. The surface acoustic wave resonance device 1 is a surface acoustic wave resonance device using surface acoustic waves. The acoustic wave resonance device 1 is configured by forming the illustrated electrode structure on a piezoelectric substrate 2. In this electrode structure, three acoustic wave resonators 5 to 7 configured by dividing one acoustic wave resonator into three are provided between the input electrode 3 and the output electrode 4. That is, the acoustic wave resonators 5 to 7 are connected in series between the input electrode 3 and the output electrode 4.

弾性波共振子5〜7は、それぞれ、IDT電極5a〜7aと、反射器5b,5c〜7b,7cとを有する。すなわち、弾性波共振子5〜7は、それぞれ、1ポート型弾性波共振子である。   The acoustic wave resonators 5 to 7 have IDT electrodes 5a to 7a and reflectors 5b, 5c to 7b, and 7c, respectively. That is, each of the elastic wave resonators 5 to 7 is a 1-port elastic wave resonator.

入力電極3と弾性波共振子5とが線路8により電気的に接続されている。また、弾性波共振子5,6は線路9により、弾性波共振子6,7は線路10により接続されている。さらに、弾性波共振子7と出力電極4とが線路11により接続されている。   The input electrode 3 and the acoustic wave resonator 5 are electrically connected by a line 8. The elastic wave resonators 5 and 6 are connected by a line 9, and the elastic wave resonators 6 and 7 are connected by a line 10. Further, the acoustic wave resonator 7 and the output electrode 4 are connected by a line 11.

弾性波共振装置1においては、隣り合う弾性波共振子5,6間の距離及び弾性波共振子6,7間の距離である段間距離をLとする。段数をnとするが、本実施形態ではn=3である。分割前の仮想の共振子の交差幅(単位はλ)×電極指の対数で表されるインピーダンスをZとする。この場合、弾性波共振装置1の消費電力の上記仮想の分割前の弾性波共振子の消費電力に対する割合である消費電力比をPとしたとき、段間距離Lが下記の式(1)を満たしている。   In the acoustic wave resonance device 1, let L be the distance between adjacent acoustic wave resonators 5 and 6 and the distance between the acoustic wave resonators 6 and 7. Although the number of stages is n, in this embodiment, n = 3. Let Z be the impedance represented by the intersection width (unit: λ) of the virtual resonator before division × the logarithm of the electrode finger. In this case, when the power consumption ratio, which is the ratio of the power consumption of the acoustic wave resonator 1 to the power consumption of the acoustic wave resonator before the virtual division, is P, the interstage distance L is expressed by the following equation (1). Satisfies.

L≦{P―(3.19n×10−2−1.57n×10−1+1.17)}/{(−1.20n+3.32)Z×10−6+(5.10n−12.3)×10−3} …式(1) L ≦ {P− (3.19n 2 × 10 −2 −1.57 n × 10 −1 +1.17)} / {(− 1.20n + 3.32) Z × 10 −6 + (5.10n−12. 3) × 10 −3 } Formula (1)

本実施形態では、段間距離Lが式(1)を満たすため、後述するように、高周波化を図った場合であっても、耐電力性を効果的に高めることができる。理論的には、1つの仮想の弾性波共振子を直列分割した構成では、分割数すなわち段数が大きくなるにつれ、消費電力は小さくなるはずである。しかしながら、2GHz以下の周波数帯では問題にならなかったが、2GHzを超え、より高周波域に達すると、耐電力性が十分に得られないことがわかった。これを、図2〜図21を参照して説明する。   In this embodiment, since the interstage distance L satisfies the formula (1), the power durability can be effectively improved even when the frequency is increased as described later. Theoretically, in a configuration in which one virtual elastic wave resonator is divided in series, the power consumption should decrease as the number of divisions, that is, the number of stages, increases. However, although it did not become a problem in the frequency band of 2 GHz or less, it has been found that sufficient power durability cannot be obtained when the frequency band exceeds 2 GHz and reaches a higher frequency range. This will be described with reference to FIGS.

なお、前提とした構成は、圧電基板2としてニオブ酸リチウムを用いた各弾性波共振装置についてのものである。   The presupposed configuration is for each acoustic wave resonance device using lithium niobate as the piezoelectric substrate 2.

図2〜図6により、共振周波数が3.6GHz、すなわち波長λが1.0μmである弾性波共振装置における段間距離依存性を示す。ここでは、段間距離を、図2では100λすなわち100μm、図3では70λすなわち70μm、図4では50λすなわち50μm、図5では30λすなわち30μm、図6では、10λすなわち10μmとした。図2〜図6における各段間距離における段数と消費電力との関係について理想値とシミュレーション結果とを示す。理想値とは、上記弾性表面波装置において、共振子を直列分割数で割ることにより求められた設計値である。シミュレーション結果は上記構成の弾性波共振子について、配線の影響を考慮した回路により消費電力をシミュレーションにより求めた値である。   2 to 6 show the inter-step distance dependency in an acoustic wave resonance device having a resonance frequency of 3.6 GHz, that is, a wavelength λ of 1.0 μm. Here, the interstage distance is 100λ or 100 μm in FIG. 2, 70λ or 70 μm in FIG. 3, 50λ or 50 μm in FIG. 4, 30λ or 30 μm in FIG. 5, 10λ or 10 μm in FIG. The ideal value and simulation result are shown about the relationship between the number of steps | paragraphs in each inter-step distance in FIGS. 2-6, and power consumption. The ideal value is a design value obtained by dividing the resonator by the number of series divisions in the surface acoustic wave device. The simulation result is a value obtained by simulating the power consumption of the elastic wave resonator having the above-described configuration by a circuit in consideration of the influence of the wiring.

図2〜図6から明らかなように、理想値に比べ、段数が高くなるにつれ消費電力が大きくなることがわかる。すなわち、段数を高めたとしても、段数が高くなるにつれ消費電力が理想値からずれ、大きくなることがわかる。   As is apparent from FIGS. 2 to 6, it can be seen that the power consumption increases as the number of stages increases compared to the ideal value. That is, even if the number of stages is increased, the power consumption deviates from the ideal value and increases as the number of stages increases.

また、この理想値からのずれの量が、段間距離によって変化することもわかる。図2〜図6によれば、段間距離が大きくなるほどこのずれが大きくなっていることがわかる。   It can also be seen that the amount of deviation from the ideal value varies depending on the interstage distance. 2 to 6, it can be seen that this deviation increases as the inter-step distance increases.

図7〜図11は、共振周波数2.9GHzすなわち波長λが1.25μmである弾性波共振装置における消費電力と段数との関係の段間距離依存性を示す図である。図7では、段間距離を80λすなわち100μm、図8では56λすなわち70μm、図9では40λすなわち50μm、図10では24λすなわち30μm、図11では8λすなわち10μmとしている。   7 to 11 are diagrams showing the inter-step distance dependency of the relationship between the power consumption and the number of steps in an elastic wave resonance device having a resonance frequency of 2.9 GHz, that is, the wavelength λ is 1.25 μm. 7, the inter-step distance is 80λ or 100 μm, FIG. 8 is 56λ or 70 μm, FIG. 9 is 40λ or 50 μm, FIG. 10 is 24λ or 30 μm, and FIG. 11 is 8λ or 10 μm.

図7〜図11から、共振周波数2.9GHzの場合においても、図2〜図6の場合と同様に、段数が高くなるにつれ、消費電力が理想値からずれ、大きくなることがわかる。またこの場合においても、段間距離が大きくなるにつれ、消費電力のずれが大きくなることがわかる。   7 to 11, it can be seen that even in the case of the resonance frequency of 2.9 GHz, as in the case of FIGS. 2 to 6, the power consumption deviates from the ideal value and increases as the number of stages increases. Also in this case, it can be seen that the deviation in power consumption increases as the inter-step distance increases.

図12〜図16は、共振周波数が2.4GHzすなわち波長λが1.50μmである弾性波共振子における消費電力と段数との関係を示す図である。図12では、段間距離が66.7λすなわち100μmであり、図13では46.7λすなわち70μmであり、図14では33.3λすなわち50μmであり、図15では20.0λすなわち30μmであり、図16では6.7λすなわち10μmである。図12〜図16においても、同様に、段数が大きくなるにつれ、理想値よりも消費電力が大きくなっていることがわかる。また、段間距離が大きくなるにつれ、消費電力のずれ量が大きくなっていることがわかる。   12 to 16 are diagrams showing the relationship between the power consumption and the number of stages in an acoustic wave resonator having a resonance frequency of 2.4 GHz, that is, a wavelength λ of 1.50 μm. 12, the inter-step distance is 66.7λ or 100 μm, FIG. 13 is 46.7λ or 70 μm, FIG. 14 is 33.3λ or 50 μm, FIG. 15 is 20.0λ or 30 μm, 16 is 6.7λ, that is, 10 μm. Similarly in FIGS. 12 to 16, it can be seen that the power consumption is larger than the ideal value as the number of stages is increased. It can also be seen that the amount of power consumption shift increases as the inter-step distance increases.

図17〜図21は、共振周波数1.8GHzすなわち波長λが2.00μmである弾性波共振子における消費電力と段数との関係を示す図である。図17では、段間距離が50λすなわち100μmであり、図18では35λすなわち70μmであり、図19では25λすなわち50μmであり、図20では15λすなわち30μmであり、図21では5λすなわち10μmである。図17〜図21から明らかなように、図17〜図21ではシミュレーションによる消費電力値は理想値ほど変わっていないことがわかる。共振周波数1.8GHzの場合には、上記のように段数が大きくなっても、消費電力はさほど大きくならないことがわかる。   17 to 21 are diagrams showing the relationship between the power consumption and the number of stages in an acoustic wave resonator having a resonance frequency of 1.8 GHz, that is, a wavelength λ of 2.00 μm. 17, the inter-step distance is 50λ or 100 μm, FIG. 18 is 35λ or 70 μm, FIG. 19 is 25λ or 50 μm, FIG. 20 is 15λ or 30 μm, and FIG. 21 is 5λ or 10 μm. As is apparent from FIGS. 17 to 21, it can be seen that the power consumption values by simulation are not changed as much as ideal values in FIGS. 17 to 21. When the resonance frequency is 1.8 GHz, the power consumption does not increase so much even if the number of stages is increased as described above.

これに対して、図2〜図16では、段数が大きくなると、消費電力が理想値より大きくなっていた。これは、2.4GHz以上と高周波化するに従って、段間の線路の影響を無視できなくなるためと考えられる。   On the other hand, in FIGS. 2 to 16, the power consumption is larger than the ideal value when the number of stages is increased. This is probably because the influence of the line between stages cannot be ignored as the frequency becomes higher than 2.4 GHz.

図22〜図27は、弾性波共振装置における多段化による消費電力変化を示す図である。ここでは、波長λ=1.0μmとしてシミュレーションを行った。また、段間距離Lについては50λ、線路長=段間距離×(段数−1)とした。共振周波数は3.6GHz帯であり、波長λ=1.0μmである。図22〜図27の横軸は周波数(MHz)を、縦軸は1mWの電力を投入した場合の消費電力値を示す。   22 to 27 are diagrams showing a change in power consumption due to multi-stages in the elastic wave resonance device. Here, the simulation was performed with the wavelength λ = 1.0 μm. The interstage distance L was 50λ, and the line length = interstage distance × (number of stages−1). The resonance frequency is the 3.6 GHz band, and the wavelength λ = 1.0 μm. 22 to 27, the horizontal axis represents the frequency (MHz), and the vertical axis represents the power consumption value when 1 mW of power is input.

図22は1段品すなわち線路長が0λの場合の結果を示す。図23〜図27は、それぞれ、2段構成すなわち線路長=50λ、3段構成すなわち線路長=100λ、4段構成すなわち線路長=150λ、5段構成すなわち線路長=200λ、6段構成すなわち線路長=250λの場合の結果を示す。なお図23〜図27における1段、2段、3段、4段、5段、6段等の曲線は、それぞれ、各段の共振子の消費電力を示す。すなわち、図23における実線で示す1段は1段目の消費電力の弾性波共振子であり、一点鎖線で示す2段は2段目の消費電力値を示す。   FIG. 22 shows the result when the one-stage product, that is, the line length is 0λ. 23 to 27 are respectively a two-stage configuration, that is, a line length = 50λ, a three-stage configuration, that is, a line length = 100λ, a four-stage configuration, that is, a line length = 150λ, a five-stage configuration, that is, a line length = 200λ, and a six-stage configuration, that is, a line. The result in the case of length = 250λ is shown. In FIGS. 23 to 27, curves such as 1st stage, 2nd stage, 3rd stage, 4th stage, 5th stage, and 6th stage indicate the power consumption of the resonator of each stage. That is, the first stage indicated by the solid line in FIG. 23 is an elastic wave resonator of the first stage power consumption, and the second stage indicated by the alternate long and short dash line indicates the power consumption value of the second stage.

また、図23〜図27においては消費電力理想値を破線で示す。この消費電力理想値とは、弾性表面波装置において、共振子を直列分割数で割ることにより求められた各段数における消費電力を意味する。図23〜図27から明らかなように、段数が大きくなるにつれ、消費電力の理想値からのずれが大きくなっていることがわかる。特に、各複数段構成の場合、最終段の弾性波共振子において、消費電力が大きくなっていることがわかる。例えば、図26では、5段構成において5段目の弾性波共振子における消費電力が3660〜3670MHz付近で大きなピークを示していることがわかる。ここで段数の順番は入力電極から出力電極へ至る順番である。従って、5段構成における5段目の弾性波共振子とは、入力電極側から数えて5段目の弾性波共振子である。   23 to 27, the ideal power consumption value is indicated by a broken line. This ideal value of power consumption means the power consumption at each number of stages obtained by dividing the resonator by the number of series divisions in the surface acoustic wave device. As is apparent from FIGS. 23 to 27, it can be seen that the deviation from the ideal value of the power consumption increases as the number of stages increases. In particular, in the case of each multi-stage configuration, it can be seen that the power consumption is large in the last-stage acoustic wave resonator. For example, in FIG. 26, it can be seen that the power consumption in the fifth-stage acoustic wave resonator in the five-stage configuration shows a large peak around 3660-3670 MHz. Here, the order of the number of stages is the order from the input electrode to the output electrode. Therefore, the fifth-stage acoustic wave resonator in the five-stage configuration is the fifth-stage acoustic wave resonator counted from the input electrode side.

同様に、図25及び図27の4段構成及び6段構成においては、それぞれ、4段目及び6段目の弾性波共振子において、消費電力がやはり大きくなっていることがわかる。   Similarly, in the four-stage configuration and the six-stage configuration in FIGS. 25 and 27, it can be seen that the power consumption is still large in the fourth-stage and sixth-stage elastic wave resonators, respectively.

本願発明者は、上記図2〜図27の結果をもとに、消費電力と段間距離との関係を求めた。結果を図28〜図32に示す。このシミュレーションでは、横軸を段間距離とし、縦軸を消費電力比とした。消費電力比とは、弾性波共振装置1の消費電力の分割前の1個の対応する弾性波共振子を用いた共振装置の消費電力に対する割合である。図28は、2段構成、図29〜図32には、それぞれ、3段構成、4段構成、5段構成及び6段構成の場合の結果を示す。   This inventor calculated | required the relationship between power consumption and interstage distance based on the result of the said FIGS. The results are shown in FIGS. In this simulation, the horizontal axis is the interstage distance, and the vertical axis is the power consumption ratio. The power consumption ratio is a ratio with respect to the power consumption of the resonance device using one corresponding elastic wave resonator before the power consumption of the elastic wave resonance device 1 is divided. FIG. 28 shows the results in the case of the two-stage configuration, and FIGS. 29 to 32 show the results in the case of the three-stage configuration, the four-stage configuration, the five-stage configuration, and the six-stage configuration.

図28〜図32において、段間距離を種々異ならせた場合の結果に基づき、消費電力比をy、段間距離をxとし、yのxによる依存性を式で表した。結果は図28〜図32中に示したように、以下の通りとなる。   28 to 32, the power consumption ratio is y, the inter-stage distance is x, and the dependence of y on x is expressed by an expression based on the results when the inter-stage distance is varied. As shown in FIGS. 28 to 32, the results are as follows.

図28:2段構成の場合
y=1.262×10−3×x+9.895×10−1
=4.396×10−1
図29:3段構成の場合
y=3.026×10−3×x+9.777×10−1
=8.215×10−1
図30:4段構成の場合
y=6.230×10−3×x+1.039
=9.045×10−1
図31:5段構成の場合
y=9.067×10−3×x+1.171
=9.501×10−1
図32:6段構成の場合
y=1.170×10−2×x+1.332
=9.466×10−1
FIG. 28: Two-stage configuration y = 1.262 × 10 −3 × x + 9.895 × 10 −1
R 2 = 4.396 × 10 −1
FIG. 29: In the case of a three-stage configuration y = 3.026 × 10 −3 × x + 9.777 × 10 −1
R 2 = 8.215 × 10 −1
FIG. 30: 4-stage configuration y = 6.230 × 10 −3 × x + 1.039
R 2 = 9.045 × 10 −1
FIG. 31: In the case of a five-stage configuration y = 9.067 × 10 −3 × x + 1.171
R 2 = 9.501 × 10 −1
FIG. 32: 6-stage configuration y = 1.170 × 10 −2 × x + 1.332
R 2 = 9.466 × 10 −1

図28及び図29に示すように、2段構成及び3段構成では、段間距離を小さくしていくことにより、消費電力比をほぼ1に近づけることができる。これに対して、図30〜図32に示すように、4段構成、5段構成及び6段構成の場合、段間距離を10μmよりも低めたとしても、消費電力比は1になり難い。これは、消費電力が共振子のインピーダンス依存性を示すからである。この点については、後程説明する。   As shown in FIG. 28 and FIG. 29, in the two-stage configuration and the three-stage configuration, the power consumption ratio can be made close to 1 by decreasing the interstage distance. On the other hand, as shown in FIGS. 30 to 32, in the case of the four-stage configuration, the five-stage configuration, and the six-stage configuration, even if the interstage distance is made lower than 10 μm, the power consumption ratio is unlikely to be 1. This is because the power consumption shows the impedance dependency of the resonator. This point will be described later.

図28〜図32では、各弾性波共振子のインピーダンスZは固定した。すなわち、インピーダンスZ=交差幅W(λ)×電極指の対数N(対)で表されるが、このW×N=1800とした。また、λについては、0.9〜1.5μmの間で変化させた。   28 to 32, the impedance Z of each acoustic wave resonator is fixed. That is, impedance Z = intersection width W (λ) × number of electrode finger pairs N (pairs), where W × N = 1800. Further, λ was changed between 0.9 and 1.5 μm.

上記図28〜図32の結果から、2段構成〜6段構成におけるZを固定し、かつλを変更した場合の消費電力Pと段間距離Lとの関係は以下の通りとなる。   From the results of FIGS. 28 to 32, the relationship between the power consumption P and the interstage distance L when Z is fixed and λ is changed in the two-stage configuration to the six-stage configuration is as follows.

2段構成:P=1.262L×10−3+9.895×10−1 …式(2a)
3段構成:P=3.026L×10−3+9.777×10−1 …式(2b)
4段構成:P=6.230L×10−3+1.039 …式(2c)
5段構成:P=9.067L×10−3+1.171 …式(2d)
6段構成:P=1.170L×10−2+1.332 …式(2e)
Two-stage configuration: P = 1.262 L × 10 −3 + 9.895 × 10 −1 Formula (2a)
Three-stage configuration: P = 3.026 L × 10 −3 + 9.777 × 10 −1 Formula (2b)
Four-stage configuration: P = 6.230L × 10 −3 +1.039 (2c)
5-stage configuration: P = 9.067L × 10 −3 +1.171 Formula (2d)
Six-stage configuration: P = 1.170 L × 10 −2 +1.332 Equation (2e)

次に、2段構成〜6段構成の弾性波共振装置における消費電力比と段間距離と上記弾性波共振子のインピーダンスZとの関係を求めた。結果を図33〜図37に示す。図33〜図37においては、段間距離と消費電力とインピーダンスZ=W×Nとの関係が示されている。図33は2段構成の場合の結果を、図34〜図37は、それぞれ、3段、4段、5段及び6段構成の結果を示す。   Next, the relationship between the power consumption ratio, the interstage distance, and the impedance Z of the acoustic wave resonator in the acoustic wave resonator having the two-stage configuration to the six-stage configuration was obtained. The results are shown in FIGS. 33 to 37 show the relationship among the interstage distance, power consumption, and impedance Z = W × N. FIG. 33 shows the results for the two-stage configuration, and FIGS. 34 to 37 show the results for the three-stage, four-stage, five-stage, and six-stage configurations, respectively.

図33〜図37から明らかなように、同じ段数及び段間距離であってもインピーダンスL=W×Nの値が変化すると、消費電力比が変化することがわかる。この図33〜図37の各結果を式で表すと以下の式(3a)〜式(3c)の通りとなる。なお、2段構成及び3段構成では、図33及び図34から明らかなように、インピーダンスZ=W×Nを変更しても、その差すなわち消費電力の差はほとんどないため無視し得ると考えられる。   As can be seen from FIGS. 33 to 37, the power consumption ratio changes when the value of impedance L = W × N changes even with the same number of steps and the distance between steps. Each result of FIGS. 33 to 37 is expressed by the following equations (3a) to (3c). In the two-stage configuration and the three-stage configuration, as apparent from FIGS. 33 and 34, even if the impedance Z = W × N is changed, there is almost no difference, that is, a difference in power consumption. It is done.

4段構成の場合:図35
P=(−1.749Z×10−6+9.448×10−3)L+1.039 …式(3a)
5段構成の場合:図36
P=(−2.655Z×10−6+1.454×10−2)L+1.171 …式(3b)
6段構成の場合:図37
P=(−4.057Z×10−6+2.050×10−2)L+1.332 …式(3c)
In the case of a four-stage configuration: FIG.
P = (− 1.749Z × 10 −6 + 9.448 × 10 −3 ) L + 1.039 Formula (3a)
In the case of a 5-stage configuration: FIG.
P = (− 2.655Z × 10 −6 + 1.454 × 10 −2 ) L + 1.171 Formula (3b)
In the case of a six-stage configuration: FIG.
P = (− 4.057Z × 10 −6 + 2.050 × 10 −2 ) L + 1.332 Formula (3c)

前述した式(2a)〜式(2e)と、式(3a)〜式(3c)と、2段構成及び3段構成の場合、Zの変化による消費電力Pの差を無視した内容を考慮し、段数をnとすると、Pと、L、Z及びnの関係は以下の式の通りとなる。   In the case of the above-described formulas (2a) to (2e), formulas (3a) to (3c), and the two-stage configuration and the three-stage configuration, the content ignoring the difference in the power consumption P due to the change in Z is considered. When the number of stages is n, the relationship between P and L, Z, and n is as follows.

すなわち、λ≦1.50μmであり、かつ共振周波数2.4GHz以上の場合、
P={(−1.20n+3.32)Z×10−6+(5.10n−12.3)×10−3}L+3.19n×10−2−1.57n×10−1+1.17 …式(4)
上記式(4)を変形すると、L={P―(3.19n×10−2−1.57n×10−1+1.17)}/{(−1.20n+3.32)Z×10−6+(5.10n−12.3)×10−3
That is, when λ ≦ 1.50 μm and the resonance frequency is 2.4 GHz or more,
P = {(− 1.20n + 3.32) Z × 10 −6 + (5.10n−12.3) × 10 −3 } L + 3.19 n 2 × 10 −2 −1.57 n × 10 −1 +1.17 ... Formula (4)
When the above equation (4) is transformed, L = {P− (3.19n 2 × 10 −2 −1.57 n × 10 −1 +1.17)} / {(− 1.20n + 3.32) Z × 10 − 6 + (5.10n-12.3) × 10 -3}

従って、消費電力比を低減するには、
L≦{P―(3.19n×10−2−1.57n×10−1+1.17)}/{(−1.20n+3.32)Z×10−6+(5.10n−12.3)×10−3} …式(1)
を満たすように段間距離Lを定めればよい。
Therefore, to reduce the power consumption ratio,
L ≦ {P− (3.19n 2 × 10 −2 −1.57 n × 10 −1 +1.17)} / {(− 1.20n + 3.32) Z × 10 −6 + (5.10n−12. 3) × 10 −3 } Formula (1)
The interstage distance L may be determined so as to satisfy

よって、例えば、P≦1.20とするには、式(5)を満たすようにL、n及びZを決定すればよい。   Therefore, for example, in order to satisfy P ≦ 1.20, L, n, and Z may be determined so as to satisfy Expression (5).

L(n,Z)≦{1.20−3.19n×10−2−1.57n×10−1+1.17)}/{(−1.20n+3.32)Z×10−6+(5.10n−12.3)×10−3} …式(5) L (n, Z) ≦ {1.20-3.19n 2 × 10 −2 −1.57 n × 10 −1 +1.17)} / {(− 1.20n + 3.32) Z × 10 −6 + ( 5.10n-12.3) × 10 −3 } Expression (5)

また、上記式(1)から、例えば1つの弾性波共振子を3段の弾性波共振子に直列分割した構造では、段間距離Lは下記の式(6)を満たすように構成すればよいことがわかる。   Further, from the above formula (1), for example, in a structure in which one elastic wave resonator is divided into three stages of elastic wave resonators, the interstage distance L may be configured to satisfy the following formula (6). I understand that.

L=(P−0.986)/(−2.80Z×10−7+3.00×10−3 …式(6) L = (P−0.986) / (− 2.80Z × 10 −7 + 3.00 × 10−3) Formula (6)

但し、λ≦1.50かつ共振周波数は2.4GHz以上が上記と同様に前提である。また右辺の分母は正の値となる。   However, it is assumed that λ ≦ 1.50 and the resonance frequency is 2.4 GHz or more in the same manner as described above. The denominator on the right side is a positive value.

例えば、Z=4500の場合、消費電力の悪化を10%以内に抑えたい場合、以下の通りとなる。すなわち、P≦1.1とすればよいため、式(6)より、L≦65とすればよい。すなわち、段間距離Lを65μm以下に設定すればよい。   For example, in the case of Z = 4500, when it is desired to suppress the deterioration of power consumption to within 10%, the result is as follows. That is, since P ≦ 1.1 is satisfied, L ≦ 65 may be satisfied from Expression (6). That is, the interstage distance L may be set to 65 μm or less.

また、弾性波共振子を4段に直列分割した構成の場合、段間距離Lは下記の式(7)で表わされる。   In the case where the acoustic wave resonator is divided in series in four stages, the interstage distance L is expressed by the following equation (7).

L=(P−1.052)/(−1.480Z×10−6+8.100×10−3 …式(7) L = (P−1.052) / (− 1.480Z × 10 −6 + 8.100 × 10 −3 ... (7)

ここでも、λは1.50以下であり、かつ共振周波数は2.4GHz以上が前提である。また右辺の分母は正の値となる。   Here, it is assumed that λ is 1.50 or less and the resonance frequency is 2.4 GHz or more. The denominator on the right side is a positive value.

Z=4500とし、多段化した場合の消費電力の悪化量を10%以内に抑えたいとする。この場合、P≦1.1とすればよいため、式(7)よりL≦33λとすればよい。すなわち、段間距離を33μm以下とすればよい。   Suppose that Z = 4500 and the amount of power consumption deterioration in the case of multiple stages is suppressed to within 10%. In this case, since P ≦ 1.1 is satisfied, L ≦ 33λ may be satisfied from Expression (7). That is, the interstage distance may be set to 33 μm or less.

以上の通り、本実施形態によれば、高周波化を図った場合においても、耐電力性を効果的に高め得ることがわかる。   As described above, according to the present embodiment, it is understood that the power durability can be effectively improved even when the frequency is increased.

なお、確認のためにシミュレーション条件に下記の表1に示すようにλ及びW×Nを設定し、弾性波共振装置1の消費電力Pをシミュレーションにより求めた。このシミュレーション値と、式(4)により求めた消費電力Pの値との関係を図38に示す。図38から明らかなように、上記式(4)による消費電力値が、弾性波共振装置における消費電力値に高い相関を有していることが確かめられた。   For confirmation, λ and W × N were set as simulation conditions as shown in Table 1 below, and the power consumption P of the acoustic wave resonance device 1 was obtained by simulation. FIG. 38 shows the relationship between the simulation value and the value of the power consumption P obtained by Expression (4). As is clear from FIG. 38, it was confirmed that the power consumption value according to the above equation (4) has a high correlation with the power consumption value in the acoustic wave resonance device.

Figure 2014204181
Figure 2014204181

なお、図39は、交差幅W×対数Nと、IDT電極の容量との関係を示す図である。図39から明らかなように、W×Nが増加するにつれIDT電極の容量が大きくなる。すなわち、容量が大きくなるとインピーダンスが小さくなり、消費電力を小さくし得る。W×N=Z、IDT電極の容量をCとすると、図39より、インピーダンスZと容量Cとの関係は下記の通りとなる。   FIG. 39 is a diagram showing the relationship between the intersection width W × the logarithm N and the capacity of the IDT electrode. As is apparent from FIG. 39, the capacity of the IDT electrode increases as W × N increases. That is, as the capacity increases, the impedance decreases and the power consumption can be reduced. Assuming that W × N = Z and the capacitance of the IDT electrode is C, the relationship between the impedance Z and the capacitance C is as follows from FIG.

Z=(C+0.0016)/0.0008   Z = (C + 0.0016) /0.0008

図40は、上記実施形態による段間距離Lを調整した場合と、段間距離を調整していない比較例における段数と破壊電力比との関係を示す図である。これは、共振周波数が3.6GHzの弾性波共振装置について測定した。破壊電力比は、以下の要領でステップアップ耐電力試験を実施し、そのときの1段構成の耐電力を1としたときの各段数の弾性波共振装置の破壊電力の割合を示す。   FIG. 40 is a diagram illustrating the relationship between the number of stages and the breakdown power ratio in the case where the interstage distance L according to the above embodiment is adjusted and in a comparative example in which the interstage distance is not adjusted. This was measured for an acoustic wave resonator having a resonance frequency of 3.6 GHz. The breakdown power ratio indicates the ratio of the breakdown power of each stage of the acoustic wave resonance device when the step-up power resistance test is performed in the following manner and the power resistance of the one-stage configuration at that time is 1.

ステップアップ耐電力試験の方法:消費電力のピークの周波数位置において、小電力から徐々に電力を上げて電力投入して、製品が破壊する電力値を求め、破壊電力とした。   Step-up power durability test method: At the frequency position of the peak of power consumption, the power was gradually increased from the small power and the power was turned on to determine the power value at which the product was destroyed, and this was taken as the breakdown power.

図40から明らかなように、段間距離を調整していない比較例では、3段以上の複数段構成になると段数が増加しても、破壊電力比が高くならないことがわかる。これに対して、上記実施形態によれば、段数を高めた場合、期待通りに耐電力性を高め得ることがわかる。   As can be seen from FIG. 40, in the comparative example in which the inter-step distance is not adjusted, the breakdown power ratio does not increase even if the number of steps is increased in a multi-step configuration of three or more steps. On the other hand, according to the said embodiment, when the number of steps is increased, it can be seen that the power durability can be improved as expected.

本実施形態の弾性波共振装置は、弾性表面波や弾性境界波などの様々な弾性波を利用した弾性波共振装置に適用することができ、またラダー型フィルタの直列腕共振子として好適に用いることができる。図41は、本発明が適用されるラダー型フィルタの一例を示す回路図である。ラダー型フィルタ21は、入力端と出力端とを結ぶ直列腕に、複数の直列腕共振子S1〜S3を有する。また直列腕とグラウンド電位とを結ぶ並列腕に並列腕共振子P1〜P4が設けられている。この直列腕共振子S1〜S3のうち少なくとも1個の直列腕共振子を、本発明に従って、n個の直列腕共振子を直列に接続した弾性波共振装置により構成することが望ましい。それによって、耐電力性を効果的に高めることができる。   The elastic wave resonance device of this embodiment can be applied to an elastic wave resonance device using various elastic waves such as a surface acoustic wave and a boundary acoustic wave, and is preferably used as a series arm resonator of a ladder type filter. be able to. FIG. 41 is a circuit diagram showing an example of a ladder type filter to which the present invention is applied. The ladder type filter 21 has a plurality of series arm resonators S1 to S3 on a series arm connecting the input end and the output end. Parallel arm resonators P1 to P4 are provided on the parallel arm connecting the series arm and the ground potential. According to the present invention, at least one series arm resonator among the series arm resonators S1 to S3 is preferably constituted by an elastic wave resonance device in which n series arm resonators are connected in series. Thereby, the power durability can be effectively increased.

なお、本発明は、ラダー型フィルタ以外の様々な弾性波フィルタにも適用することができる。   The present invention can also be applied to various acoustic wave filters other than ladder type filters.

1…弾性波共振装置
2…圧電基板
3…入力電極
4…出力電極
5〜7…弾性波共振子
5a…IDT電極
5b,5c…反射器
6a…IDT電極
6b,6c…反射器
7a…IDT電極
7b,7c…反射器
8〜11…線路
21…ラダー型フィルタ
P1〜P4…並列腕共振子
S1〜S3…直列腕共振子
DESCRIPTION OF SYMBOLS 1 ... Elastic wave resonance apparatus 2 ... Piezoelectric substrate 3 ... Input electrode 4 ... Output electrodes 5-7 ... Elastic wave resonator 5a ... IDT electrode 5b, 5c ... Reflector 6a ... IDT electrode 6b, 6c ... Reflector 7a ... IDT electrode 7b, 7c ... reflectors 8-11 ... line 21 ... ladder type filters P1-P4 ... parallel arm resonators S1-S3 ... series arm resonators

Claims (2)

入力端と出力端との間において、仮想の弾性波共振子をn段に分割することにより構成された、互いに直列に接続されたn個(nは整数)の弾性波共振子を備える弾性波共振装置であって、
隣り合う弾性波共振子間の距離である段間距離をL、段数をn、分割前の仮想の弾性波共振子の交差幅(λ)×電極指の対数Nで表わされるインピーダンスをZとし、前記弾性波共振装置の消費電力の前記仮想の弾性波共振子を有する構成の消費電力に対する割合である消費電力比をPとしたときに、段間距離Lが下記の式(1)を満たす、弾性波共振装置。
L≦{P―(3.19n×10−2−1.57n×10−1+1.17)}/{(−1.20n+3.32)Z×10−6+(5.10n−12.3)×10−3} …式(1)
An elastic wave including n (n is an integer) elastic wave resonators connected in series, which is configured by dividing a virtual elastic wave resonator into n stages between an input end and an output end A resonant device,
The interstage distance, which is the distance between adjacent acoustic wave resonators, is L, the number of stages is n, the impedance represented by the intersection width (λ) of the virtual acoustic wave resonator before the division × the number N of the pairs of electrode fingers is Z, When the power consumption ratio, which is the ratio of the power consumption of the acoustic wave resonator to the power consumption of the configuration having the virtual acoustic wave resonator, is P, the interstage distance L satisfies the following formula (1): Elastic wave resonance device.
L ≦ {P− (3.19n 2 × 10 −2 −1.57 n × 10 −1 +1.17)} / {(− 1.20n + 3.32) Z × 10 −6 + (5.10n−12. 3) × 10 −3 } Formula (1)
入力端と出力端との間の直列腕に設けられた前記n個以上の複数の直列腕共振子と、前記直列腕とグラウンド電位との間に接続された並列腕共振子とを備え、
前記複数の直列腕共振子のうち、n個の直列腕共振子が、請求項1に記載の弾性波共振装置からなる、ラダー型フィルタ。
The n or more series arm resonators provided in the series arm between the input end and the output end, and a parallel arm resonator connected between the series arm and a ground potential,
The ladder type filter in which n number of series arm resonators of the plurality of series arm resonators includes the acoustic wave resonance device according to claim 1.
JP2013076576A 2013-04-02 2013-04-02 Acoustic wave resonance device and ladder type filter Pending JP2014204181A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013076576A JP2014204181A (en) 2013-04-02 2013-04-02 Acoustic wave resonance device and ladder type filter
CN201410119421.6A CN104104354A (en) 2013-04-02 2014-03-27 Elastic Wave Resonance Device And Ladder Type Filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013076576A JP2014204181A (en) 2013-04-02 2013-04-02 Acoustic wave resonance device and ladder type filter

Publications (1)

Publication Number Publication Date
JP2014204181A true JP2014204181A (en) 2014-10-27

Family

ID=51672209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076576A Pending JP2014204181A (en) 2013-04-02 2013-04-02 Acoustic wave resonance device and ladder type filter

Country Status (2)

Country Link
JP (1) JP2014204181A (en)
CN (1) CN104104354A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028641B (en) * 2015-09-09 2021-04-20 株式会社村田制作所 Variable frequency filter and high frequency front end circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0738039B1 (en) * 1995-04-12 2000-06-28 Matsushita Electric Industrial Co., Ltd. Resonator ladder surface acoustic wave filter
JP2001156588A (en) * 1999-11-26 2001-06-08 Kyocera Corp Surface acoustic wave device
JP3844725B2 (en) * 2002-09-30 2006-11-15 富士通メディアデバイス株式会社 Surface acoustic wave filter and surface acoustic wave duplexer having the same
WO2007148510A1 (en) * 2006-06-21 2007-12-27 Murata Manufacturing Co., Ltd. Elastic wave filter device and duplexer
JP4306794B2 (en) * 2008-11-18 2009-08-05 パナソニック株式会社 Antenna duplexer

Also Published As

Publication number Publication date
CN104104354A (en) 2014-10-15

Similar Documents

Publication Publication Date Title
US11601114B2 (en) Surface acoustic wave device and surface acoustic wave filter
JP6024863B1 (en) Ladder type filter and duplexer
JP5942740B2 (en) Ladder type filter and duplexer
JP6142924B2 (en) Tunable filter
KR100323270B1 (en) Saw filter with inter-stage matching saw resonator
JP3844725B2 (en) Surface acoustic wave filter and surface acoustic wave duplexer having the same
CN107210732B (en) Composite filter device
KR101686006B1 (en) Ladder filter and duplexer
JP6284800B2 (en) Surface acoustic wave device and filter
JP6332101B2 (en) Surface acoustic wave filter
KR101793055B1 (en) Ladder filter
US6972644B2 (en) Surface acoustic wave ladder filter device having resonators with different electrode pitches and electrostatic capacitances
JP2013081068A (en) One-chip leaky surface acoustic wave device
JPH10242799A (en) Surface acoustic wave filter
JP5784217B2 (en) Elastic wave device
JP2023003114A (en) Surface acoustic wave resonator, elastic wave filter, and multiplexer
JP2014204181A (en) Acoustic wave resonance device and ladder type filter
JP2010251889A (en) Acoustic wave resonator and ladder type filter using the same
JP5842513B2 (en) Ladder type filter
WO2020020643A1 (en) Saw device with a slanted resonator
JP2024030169A (en) Acoustic wave device and method for manufacturing acoustic wave device
JPH09331233A (en) Surface acoustic wave filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150721