JP2014202329A - External surface griding method of bearing roller and roller bearing - Google Patents

External surface griding method of bearing roller and roller bearing Download PDF

Info

Publication number
JP2014202329A
JP2014202329A JP2013081061A JP2013081061A JP2014202329A JP 2014202329 A JP2014202329 A JP 2014202329A JP 2013081061 A JP2013081061 A JP 2013081061A JP 2013081061 A JP2013081061 A JP 2013081061A JP 2014202329 A JP2014202329 A JP 2014202329A
Authority
JP
Japan
Prior art keywords
roller
bearing
grinding
bearing roller
chamfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013081061A
Other languages
Japanese (ja)
Inventor
平野 秀和
Hidekazu Hirano
秀和 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2013081061A priority Critical patent/JP2014202329A/en
Publication of JP2014202329A publication Critical patent/JP2014202329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce edge loads generated between a raceway ring of a roller bearing and shoulders of a roller.SOLUTION: By grinding a rolling face 3a of a bearing roller 3 and chamfers 8, 11 formed at shoulders 3b, 3c of both sides of the bearing roller so as to be smoothly connected to each other, smooth shapes of connecting parts 9, 12 between the chamfers 8, 11 and the rolling face 3a can be uniformly formed in the circumferential direction, and edge loads which are generated at the connecting parts 9, 12 between the rolling face 3a of the roller 3 and the chamfers 8, 11 during the operation of a roller bearing embedded with the roller 3 can be reduced.

Description

本発明は、転動面の両側にチャンファ(面取り部)が形成された軸受用ころの外面研削方法とそれによって研削されたころを用いたころ軸受に関する。   The present invention relates to an outer surface grinding method for a bearing roller in which chamfers (chamfered portions) are formed on both sides of a rolling surface, and a roller bearing using a roller ground by the method.

内輪と外輪(以下、あわせて「軌道輪」ともいう。)の間に各種の軸受用ころ(以下、単に「ころ」ともいう。)を組み込んだころ軸受では、一般に、軌道輪やころの早期破損を防止するため、ころの肩部(軸方向端部)と軌道輪との間で発生する応力(以下、「エッジロード」と称する。)が高くならないように、ころの転動面の両側にチャンファを形成している。   In roller bearings in which various bearing rollers (hereinafter also simply referred to as “rollers”) are incorporated between an inner ring and an outer ring (hereinafter also referred to as “bearing rings”), in general, the early stage of the bearing rings and rollers In order to prevent breakage, both sides of the rolling surface of the roller should be used so that stress (hereinafter referred to as “edge load”) generated between the shoulder (axial end) of the roller and the race is not increased. Has formed a chamfa.

ところが、実際のころの製造工程では、通常、ころの素材を鍛造や切削で成形した後、その素材の転動面や端面の研削は行うが、チャンファ部分は研削しないので(例えば、特許文献1参照。)、研削された転動面と素材の状態のまま残されたチャンファとが滑らかに繋がらず、その繋ぎ部でエッジロードが発生するおそれがある。このため、転動面や端面の研削加工後にころ全体に対するバレル加工を行って、転動面とチャンファとの間の繋ぎ部を丸めるようにしている場合もある(例えば、特許文献2参照。)。   However, in an actual roller manufacturing process, usually, after rolling the roller material by forging or cutting, the rolling surface and end surface of the material are ground, but the chamfer portion is not ground (for example, Patent Document 1). See)), the ground rolling surface and the chamfer left in the state of the material are not smoothly connected, and an edge load may occur at the connecting portion. For this reason, after grinding of a rolling surface or an end surface, barrel processing may be performed on the entire roller to round the joint between the rolling surface and the chamfer (for example, see Patent Document 2). .

上記特許文献2に記載されているようにころの研削加工後にバレル加工を行っても、研削を受けた転動面ところの素材成形時に形成したチャンファとの間の繋ぎ部の形状は、バレル加工の条件によって、またころの周方向位置によってもばらつきが生じやすく、必ずしも転動面とチャンファとを滑らかに繋ぐことができるとは限らない。したがって、このようなバレル加工を施したころを組み込んだころ軸受でも、ころの転動面とチャンファとの間の繋ぎ部で高いエッジロードが発生して軌道輪やころが早期破損するおそれがある。   Even if barrel processing is performed after grinding of rollers as described in Patent Document 2, the shape of the connecting portion between the chamfer formed at the time of forming the material on the rolling contact surface is subjected to barrel processing. Due to the above conditions, and also depending on the circumferential position of the roller, variations are likely to occur, and the rolling surface and the chamfer cannot always be smoothly connected. Therefore, even with a roller bearing incorporating such a barrel-processed roller, a high edge load may occur at the joint between the roller rolling surface and the chamfer, and the races and rollers may be prematurely damaged. .

一方、本出願人は、ころの両端面の中心部を支持し、外周面の断面形状がR形状とされた砥石の回転軸線をころの軸方向に対して傾斜させ、その傾斜角度を保持したまま、ころをその軸心まわりに回転させ、砥石を回転させながらころの軸方向と径方向へ相対的に平行移動させることにより、ころの転動面と両方の肩部を連続的に研削する外面研削方法を提案している(特許文献3参照。)。   On the other hand, the present applicant supports the center part of both end faces of the roller, inclines the rotation axis of the grindstone whose outer peripheral surface has a R-shaped cross section with respect to the axial direction of the roller, and maintains the inclination angle. The roller rolling surface and both shoulders are continuously ground by rotating the roller around its axis and moving the wheel relatively parallel in the axial and radial directions while rotating the grindstone. An external grinding method has been proposed (see Patent Document 3).

この外面研削方法によれば、ころの転動面とその両側のチャンファとの間に未研削の繋ぎ部が残ることはなく、その繋ぎ部の形状もころの周方向位置によらず安定したものとすることができる。   According to this outer surface grinding method, an unground joint is not left between the roller rolling surface and the chamfers on both sides thereof, and the shape of the joint is stable regardless of the circumferential position of the roller. It can be.

特開2003−300133号公報JP 2003-300133 A 特開平9−76029号公報JP-A-9-76029 特開2008−161997号公報JP 2008-161997 A

しかしながら、特許文献3に記載の外面研削方法を採用しても、転動面とチャンファの形状によっては、その繋ぎ部で比較的高いエッジロードが発生するおそれがあり、必ずしも確実に軌道輪やころの早期破損を防止できるとは限らない。   However, even if the outer surface grinding method described in Patent Document 3 is adopted, depending on the shape of the rolling surface and the chamfer, there is a possibility that a relatively high edge load may be generated at the connecting portion. It is not always possible to prevent early damage.

そこで、本発明の課題は、ころ軸受の軌道輪ところの肩部との間で生じるエッジロードを軽減することである。   SUMMARY OF THE INVENTION An object of the present invention is to reduce the edge load generated between the roller bearing raceway and the shoulder.

上記の課題を解決するために、本発明は、ころ軸受の外輪および内輪と接する転動面の両側にチャンファが形成された軸受用ころの両端面の中心部を支持し、外周面の断面形状がR形状とされた砥石の回転軸線を前記軸受用ころの軸方向に対して傾斜させ、その傾斜角度を保持したまま、前記軸受用ころをその軸心まわりに回転させ、前記砥石を回転させながら軸受用ころの軸方向と径方向へ相対的に平行移動させることにより、前記軸受用ころの外面の研削を行う外面研削方法において、前記軸受用ころの転動面とその両側のチャンファとが滑らかに繋がるように研削する構成を採用した。これにより、ころの転動面とチャンファの繋ぎ部の滑らかな形状を周方向に均一に形成することができ、このころを組み込んだころ軸受の運転中に、ころの転動面とチャンファの繋ぎ部で発生するエッジロードを低く抑えることができる。   In order to solve the above-mentioned problems, the present invention supports the center part of both end faces of a roller for bearing in which chamfers are formed on both sides of a rolling surface in contact with an outer ring and an inner ring of a roller bearing, and a cross-sectional shape of an outer peripheral face The rotation axis of the grindstone having an R shape is tilted with respect to the axial direction of the bearing roller, and while maintaining the tilt angle, the bearing roller is rotated about its axis to rotate the grindstone. However, in the outer surface grinding method for grinding the outer surface of the bearing roller by parallel translation in the axial direction and the radial direction of the bearing roller, the rolling surface of the bearing roller and the chamfers on both sides thereof are Adopted a configuration to grind smoothly. As a result, the smooth shape of the connecting part between the roller rolling surface and the chamfer can be uniformly formed in the circumferential direction. During the operation of the roller bearing incorporating this roller, the roller rolling surface and the chamfer are connected. The edge load generated in the section can be kept low.

ここで、前記軸受用ころの軸方向と平行な断面で、前記転動面とその両側のチャンファとの間にR形状の繋ぎ部を設け、前記繋ぎ部と転動面の境界で繋ぎ部の接線の方向を転動面の稜線の方向と一致させ、前記繋ぎ部とチャンファの境界で繋ぎ部の接線の方向をチャンファの稜線の方向と一致させるようにすれば、ころの転動面とチャンファとを一層滑らかに繋げることができ、エッジロードをさらに軽減することができる。   Here, in a cross section parallel to the axial direction of the bearing roller, an R-shaped connecting portion is provided between the rolling surface and the chamfers on both sides thereof, and the connecting portion is formed at the boundary between the connecting portion and the rolling surface. If the direction of the tangent is made to coincide with the direction of the ridgeline of the rolling surface, and the direction of the tangent of the joining portion is made to coincide with the direction of the ridgeline of the chamfer at the boundary between the joining portion and the chamfer, the rolling surface of the roller and the chamfer Can be connected more smoothly, and the edge load can be further reduced.

また、前記軸受用ころの端面を研削する際に、前記砥石を前記軸受用ころの外周側から中心に向けて平行移動させて研削を行うようにすれば、砥石を逆方向に移動させる場合に比べて、効率よくかつ高精度で研削を行うことができる。砥石の側面がころの端面と干渉することがなく、砥石の切込量を大きくしても、砥石の姿勢が不安定になりにくいからである。   Further, when grinding the end face of the bearing roller, if the grinding wheel is moved by parallel translation from the outer peripheral side of the bearing roller toward the center, the grinding stone is moved in the reverse direction. In comparison, grinding can be performed efficiently and with high accuracy. This is because the side face of the grindstone does not interfere with the end face of the roller, and even if the cutting depth of the grindstone is increased, the posture of the grindstone is not likely to be unstable.

本発明の外面研削方法は、前記軸受用ころの転動面が円筒形、円錐台形またはたる形である場合に有効に適用することができる。   The outer surface grinding method of the present invention can be effectively applied when the rolling surface of the bearing roller has a cylindrical shape, a truncated cone shape or a barrel shape.

ここで、前記軸受用ころが、円錐台形またはたる形の転動面を有し、一端面が他端面よりも大径に形成され、その一端面を前記外輪または内輪の端部に設けられた鍔部に案内されて転動するものである場合は、この軸受用ころの一端面とチャンファとが滑らかに繋がるように研削することにより、ころの一端面がこのころを組み込んだころ軸受の軌道輪の鍔部と摺動する際に、そのチャンファとの繋ぎ部と軌道輪の鍔部の間に発生する応力を軽減して、軌道輪やころの早期摩耗等の不具合を生じにくくすることができる。   Here, the bearing roller has a frustoconical or barrel-shaped rolling surface, one end surface is formed to have a larger diameter than the other end surface, and the one end surface is provided at the end of the outer ring or inner ring. If the roller is guided by the collar and rolls, the end surface of the roller is ground so that the one end surface of the roller and the chamfer are smoothly connected, so that the end surface of the roller incorporates this roller. When sliding with the collar part of the ring, the stress generated between the connecting part with the chamfer and the collar part of the bearing ring can be reduced, and problems such as premature wear of the bearing ring and rollers can be made difficult to occur. it can.

本発明のころ軸受は、上記構成の外面研削方法で研削された軸受用ころを組み込んだものであり、円筒ころ軸受、円錐ころ軸受、自動調心ころ軸受またはスラスト自動調心ころ軸受に有効に適用することができる。   The roller bearing of the present invention incorporates a bearing roller ground by the outer surface grinding method having the above configuration, and is effective for a cylindrical roller bearing, a tapered roller bearing, a self-aligning roller bearing or a thrust self-aligning roller bearing. Can be applied.

本発明は、上述したように、軸受用ころの転動面とその両側のチャンファとが滑らかに繋がるように研削するものであるから、このころを組み込んだころ軸受の運転中に、ころの転動面とチャンファの繋ぎ部で発生するエッジロードを低く抑えることができる。したがって、ころ軸受の軌道輪およびころに加わる局所的な負荷が軽減され、長寿命化が図れる。   In the present invention, as described above, grinding is performed so that the rolling surface of the bearing roller and the chamfers on both sides thereof are smoothly connected to each other. Edge load generated at the connecting portion between the moving surface and the chamfer can be kept low. Therefore, the local load applied to the bearing ring and the roller of the roller bearing is reduced, and the life can be extended.

実施形態のころ軸受の要部の縦断面図Longitudinal sectional view of main parts of roller bearing of embodiment 図1のころの研削方法を説明する平面図FIG. 1 is a plan view illustrating a method for grinding the roller of FIG. a、bは、それぞれ図2のころの一方の肩部付近および他方の肩部付近の拡大平面断面図a and b are enlarged plan sectional views in the vicinity of one shoulder portion and the other shoulder portion of the roller in FIG. a、bは、それぞれ図2の砥石の移動方向によるころ端面研削態様の違いを説明する模式図FIGS. 2A and 2B are schematic diagrams for explaining the difference in the roller end face grinding mode depending on the moving direction of the grindstone in FIG. 2.

以下、図面に基づき、本発明の実施形態を説明する。このころ軸受は、図1に示すように、球面軌道1aを有する外輪1と、二列の軌道溝2aを有する内輪2と、外輪1の球面軌道1aと内輪2の各軌道溝2aとの間に組み込まれる複数の軸受用たる形ころ3と、各ころ3を周方向に等間隔で保持する保持器4とを備えた自動調心ころ軸受である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the roller bearing includes an outer ring 1 having a spherical raceway 1a, an inner ring 2 having two rows of raceway grooves 2a, a spherical raceway 1a of the outer ring 1, and a raceway groove 2a of the inner ring 2. Is a self-aligning roller bearing provided with a plurality of roller-shaped roller bearings 3 incorporated in the holder and a retainer 4 that holds the rollers 3 at equal intervals in the circumferential direction.

前記ころ3は、図2に示すように、その外面が研削されて、転動面3aがたる形に形成され、転動面3aの両側の肩部3b、3cにチャンファが形成されている。そして、一端面3dが他端面3eよりも大径に形成され(以下、「大端面」と称する。)、その大端面3dを内輪2の端部に設けられた鍔部2bに案内されて転動するようになっている(図1参照)。また、両側の端面3d、3eの中心にはセンタ穴3fが設けられており、大端面3dはセンタ穴3f周辺部を除いてころ3の軸方向と直交するように研削されている。   As shown in FIG. 2, the outer surface of the roller 3 is ground to form a rolling surface 3a, and chamfers are formed on shoulders 3b and 3c on both sides of the rolling surface 3a. The one end surface 3d is formed to have a larger diameter than the other end surface 3e (hereinafter referred to as “large end surface”), and the large end surface 3d is guided by a flange 2b provided at the end of the inner ring 2 to roll. (See FIG. 1). A center hole 3f is provided at the center of both end faces 3d and 3e, and the large end face 3d is ground so as to be orthogonal to the axial direction of the roller 3 except for the periphery of the center hole 3f.

ここで、ころ3の研削に用いられる円筒研削盤は、ころ3を支持して回転駆動する主軸台5および心押し台6と、主軸台5の回転軸線Wに対して傾斜した回転軸線Tのまわりに回転駆動される砥石7とを備え、その砥石7がCNC装置(図示省略)の数値制御によって、ころ3の軸方向(Z方向)と径方向(X方向)に移動するようになっている。 Here, cylindrical grinder is used for grinding of rollers 3, rollers 3 and headstock 5 and tailstock 6 for rotating and supporting the axis of rotation is inclined relative to the axis of rotation W A headstock 5 T A grindstone 7 that is rotationally driven around A , and the grindstone 7 is moved in the axial direction (Z direction) and the radial direction (X direction) of the roller 3 by numerical control of a CNC device (not shown). It has become.

この円筒研削盤の砥石7は磨耗の非常に少ないCBN砥石であり、その外周面7aの断面形状は、ディスク型ロータリドレッサを用いたプロファイル成形によりR形状とされている。なお、一般に、R形状を有する砥石で研削した面の理論粗さは、下記(1)式で算出される。
Ry=F/(8×R)×1000 ・・・・(1)
ここで、Ry:最大高さ(μm)
F:砥石の送り(=Z方向速度/主軸回転数)(mm/rev)
R:砥石のR形状の曲率半径(mm)
この(1)式から、砥石のR形状の曲率半径が大きいほど研削面の粗さは小さくなることがわかる。したがって、この実施形態でも、砥石7のR形状はその加工時の制約条件内で可能な限り大きな曲率半径とする。
The grindstone 7 of this cylindrical grinder is a CBN grindstone with very little wear, and the cross-sectional shape of the outer peripheral surface 7a is formed into an R shape by profile molding using a disk-type rotary dresser. In general, the theoretical roughness of the surface ground with the R-shaped grindstone is calculated by the following equation (1).
Ry = F 2 / (8 × R) × 1000 (1)
Where Ry: Maximum height (μm)
F: Grinding wheel feed (= Z direction speed / spindle speed) (mm / rev)
R: radius of curvature of the R shape of the grindstone (mm)
From this equation (1), it can be seen that the roughness of the grinding surface decreases as the radius of curvature of the R shape of the grindstone increases. Therefore, also in this embodiment, the R shape of the grindstone 7 has a radius of curvature that is as large as possible within the constraints during processing.

また、CBN砥石を使用しているため、砥石の形状崩れが少ない、ドレスにより表面が新しくなり位置精度がずれない、加工変質層(白層)が生じない、プロセスゲージにより狙い寸法までの追込み研削が可能である、といった利点がある。なお、CBN砥石の研削性能を高めるために、砥石周速は120m/sec以上とすることが望ましい。   In addition, since the CBN grindstone is used, there is little deformation of the grindstone shape, the surface is renewed by the dress and the positional accuracy does not shift, the work-affected layer (white layer) does not occur, and additional grinding to the target dimension by the process gauge There is an advantage that it is possible. In addition, in order to improve the grinding performance of the CBN grindstone, the grindstone peripheral speed is desirably 120 m / sec or more.

そして、この円筒研削盤では、主軸台5および心押し台6のセンタ5a、6aをころ3の両端面3d、3eのセンタ穴3fに嵌入してころ3を支持し、この状態でころ3をその軸心まわりに回転させながら、回転駆動された砥石7を図2中に実線で示した位置Aから一点鎖線で示した各位置B、C、Dへと順次移動させることにより、砥石7の外周面7aをR形状のいずれかの点でころ3の他方の肩部3c、転動面3a、一方の肩部3bおよび大端面3dと点接触させて、いわゆるプロファイル研削を行えるようになっている。したがって、ころ3の外面を同一の回転軸線Wで研削できるし、研削対象のころ3の長さの制限がない。 In this cylindrical grinding machine, the centers 5a and 6a of the headstock 5 and the tailstock 6 are fitted into the center holes 3f of both end surfaces 3d and 3e of the roller 3 to support the roller 3, and in this state the roller 3 is The grindstone 7 that is rotationally driven while being rotated about its axis is sequentially moved from the position A indicated by the solid line in FIG. 2 to the respective positions B, C, and D indicated by the alternate long and short dash lines. The outer peripheral surface 7a is brought into point contact with the other shoulder 3c of the roller 3, the rolling surface 3a, the one shoulder 3b, and the large end surface 3d at any point of the R shape so that so-called profile grinding can be performed. Yes. Thus, the roller to 3 the outer surface can be ground at the same rotational axis W A, there is no length limit of the roller 3 of the grinding target.

なお、転動面3aおよび肩部3b、3c研削時(A−C間)は、研削力が砥石7の回転軸線Tに直交しており、砥石7が安定して支持されているので、前述の(1)式から求められる砥石7の送りが可能であるが、大端面3d研削時(C−D間)は、研削力が砥石7の回転軸線Tと平行に作用し、砥石7に大きなモーメントが生じて砥石7の支持が不安定になりやすいので、砥石7の送りをA−C間の60〜80%に遅くすることが望ましい。 Incidentally, the rolling surface 3a and the shoulder portion 3b, at 3c grinding (between A-C), the grinding force are perpendicular to the axis of rotation T A of the grinding wheel 7, the grinder 7 is stably supported, While it is possible feed of the grinding wheel 7 obtained from the equation (1), at the large end face 3d grinding (between C-D), the grinding force is applied parallel to the rotational axis T a of the grinding wheel 7, grinding wheel 7 Therefore, it is desirable to slow the feed of the grindstone 7 to 60 to 80% between A and C.

ここで、ころ3外面の各部位の研削順序を上記のようにした理由について説明する。いま、仮に図4(a)に示すように、ころ3の大端面3dを研削する際に、砥石7をころ3の中心側から外周に向けて平行移動させると、砥石7の切込量によってはその側面がころ3の大端面3dと干渉し、研削抵抗が大きくなって砥石7が逃げてしまい、十分な研削精度が得られないおそれがある。一方、砥石7側面がころ大端面3dと干渉しないように砥石7の切込量を小さくすると、研削作業の効率が低下する。   Here, the reason why the grinding order of each part of the outer surface of the roller 3 is as described above will be described. Now, as shown in FIG. 4A, when grinding the large end surface 3 d of the roller 3, if the grindstone 7 is translated from the center side of the roller 3 toward the outer periphery, the amount of cut of the grindstone 7 The side surface interferes with the large end surface 3d of the roller 3, the grinding resistance increases, and the grindstone 7 escapes, so that sufficient grinding accuracy may not be obtained. On the other hand, if the cutting amount of the grindstone 7 is reduced so that the side surface of the grindstone 7 does not interfere with the roller large end surface 3d, the efficiency of the grinding operation is lowered.

これに対し、図4(b)に示すように、ころ3の大端面3dを研削する際に、砥石7をころ3の外周側から中心に向けて平行移動させると、砥石7はR形状の外周面7aのみでころ3に接触し、その側面がころ大端面3dと干渉することがない。このため、砥石7の切込量を大きくしても、研削中の砥石7の姿勢が安定しているので、図4(a)の場合に比べて、効率よくかつ高精度で研削を行うことができる。   On the other hand, as shown in FIG. 4B, when grinding the large end surface 3d of the roller 3, when the grindstone 7 is translated from the outer peripheral side of the roller 3 toward the center, the grindstone 7 has an R shape. Only the outer peripheral surface 7a comes into contact with the roller 3, and its side surface does not interfere with the roller large end surface 3d. For this reason, even if the cutting amount of the grindstone 7 is increased, since the posture of the grindstone 7 during grinding is stable, grinding can be performed more efficiently and with higher accuracy than in the case of FIG. Can do.

したがって、実施形態では、ころ大端面3d研削時の砥石7の移動方向が図4(b)の方向となり、かつころ3の外周面と連続的に研削が行われるように、研削順序を決定している。なお、ころ3外面の各部位の研削順序は、必ずしも実施形態と同じにする必要はなく、例えば、ころ3の外周側をC→B→Aの順に研削した後、大端面3dを図4(b)の方向で研削するようにしてもよい。   Therefore, in the embodiment, the grinding order is determined so that the moving direction of the grindstone 7 at the time of grinding the roller large end surface 3d is the direction of FIG. 4B and grinding is continuously performed on the outer peripheral surface of the roller 3. ing. In addition, the grinding order of each part of the outer surface of the roller 3 is not necessarily the same as that of the embodiment. For example, after grinding the outer peripheral side of the roller 3 in the order of C → B → A, the large end surface 3d is shown in FIG. You may make it grind in the direction of b).

上記の円筒研削盤でプロファイル研削されたころ3は、図3(a)に示すように、その軸方向と平行な断面で、一方の肩部3bの中央部分に単一のR形状のチャンファ8が設けられ、このチャンファ8と転動面3aとの間にR形状の第1の繋ぎ部9が、大端面3dとの間にR形状の第2の繋ぎ部10がそれぞれ設けられている。第1の繋ぎ部9は、その接線の方向が転動面3aとの境界Kで転動面3aの稜線の方向と一致し、チャンファ8との境界Kでチャンファ8の接線(稜線)の方向と一致するように形成されている。一方、第2の繋ぎ部10は、その接線の方向がチャンファ8との境界Kでチャンファ8の接線(稜線)の方向と一致し、大端面3dとの境界Kで大端面3dの稜線の方向と一致するように形成されている。 As shown in FIG. 3A, the roller 3 profile-ground by the above cylindrical grinder has a single R-shaped chamfer 8 at the center of one shoulder 3b in a cross section parallel to the axial direction. The R-shaped first connecting portion 9 is provided between the chamfer 8 and the rolling surface 3a, and the R-shaped second connecting portion 10 is provided between the large end surface 3d. The first connecting portion 9 coincides with the direction of the ridge line of the rolling surface 3a direction of the tangent line at the boundary K 1 between the rolling surface 3a, the tangent of the chamfer 8 at the boundary K 2 of the chamfer 8 (ridge) It is formed so as to coincide with the direction of. On the other hand, the second connection portion 10, the ridge line of the tangential direction coincides with the direction of the tangent line (ridge line) at the boundary K 3 of the chamfer 8 between the chamfer 8, the large end face 3d at the boundary K 4 between the large end face 3d It is formed so as to coincide with the direction of.

また、図3(b)に示すように、ころ3の他方の肩部3cには、ころ3の軸方向と平行な断面で、小径側の端面(他端面)3eに直接繋がるテーパ状のチャンファ11が設けられ、このチャンファ11と転動面3aとの間にR形状の第3の繋ぎ部12が設けられている。第3の繋ぎ部12は、その接線の方向が転動面3aとの境界Kで転動面3aの稜線の方向と一致し、チャンファ11との境界Kでチャンファ11の稜線の方向と一致するように形成されている。 Further, as shown in FIG. 3B, the other shoulder 3c of the roller 3 has a tapered chamfer directly connected to the end surface (other end surface) 3e on the small diameter side in a cross section parallel to the axial direction of the roller 3. 11 is provided, and an R-shaped third connecting portion 12 is provided between the chamfer 11 and the rolling surface 3a. The third connection portion 12 coincides with the direction of the ridge line of the rolling surface 3a direction of the tangent line at the boundary K 5 of the rolling surface 3a, the direction of the ridge of the chamfer 11 at the boundary K 6 with chamfer 11 It is formed to match.

なお、このころ3は、図2に示すように、その両端面のセンタ穴3fで支持されて回転するので、一方の肩部3bと転動面3aとの境界K、一方の肩部3bと大端面3dとの境界Kおよび他方の肩部3cと転動面3aとの境界Kは、すべて回転軸線Wに対して同芯であり、ころ3をころ軸受に組み込んだときにころ3の回転を妨げるものではない。 As shown in FIG. 2, the roller 3 is supported by the center holes 3f on both end faces and rotates, so that the boundary K 1 between the shoulder 3b and the rolling surface 3a, and the shoulder 3b. the boundary K 5 of the boundary K 4 and the other shoulder 3c and the rolling surface 3a of the large end face 3d are all concentric relative to the axis of rotation W a, when incorporating the rollers 3 in the roller bearing This does not hinder the rotation of the roller 3.

このころ軸受は、上述したように、ころ3の外面をプロファイル研削して、その両方の肩部3b、3cのチャンファ8、11と転動面3aとの間に断面R形状の繋ぎ部9、12を設け、各繋ぎ部9、12の接線の方向が、転動面3aとの境界K、Kで転動面3aの稜線の方向と一致し、チャンファ8、11との境界K2、でチャンファ8、11の稜線の方向と一致するようにしたので、ころ3の転動面3aとチャンファ8、11とが周方向に均一に滑らかに繋がり、その繋ぎ部9、12で高いエッジロードが発生することがない。また、ころ3の大端面3dと一方の肩部3bのチャンファ8も同様に滑らかに繋がっているので、大端面3dが内輪2の鍔部2bと摺動する際にその繋ぎ部10に発生する応力を軽減することができる。 As described above, in this roller bearing, the outer surface of the roller 3 is profile-ground, and the joint portion 9 having a R-shaped cross section is formed between the chamfers 8 and 11 of both the shoulder portions 3b and 3c and the rolling surface 3a. 12, the direction of the tangent of each connecting portion 9, 12 coincides with the direction of the ridgeline of the rolling surface 3 a at the boundaries K 1 , K 5 with the rolling surface 3 a, and the boundary K 2 with the chamfers 8, 11. , K 6 so as to coincide with the direction of the ridgeline of the chamfers 8 and 11, the rolling surface 3 a of the roller 3 and the chamfers 8 and 11 are uniformly and smoothly connected in the circumferential direction. High edge load does not occur. Further, since the large end surface 3d of the roller 3 and the chamfer 8 of the one shoulder portion 3b are similarly smoothly connected to each other, the large end surface 3d is generated in the connecting portion 10 when the large end surface 3d slides on the flange portion 2b of the inner ring 2. Stress can be reduced.

したがって、外輪1、内輪2およびころ3に加わる局所的な負荷が小さく、軌道輪1、2やころ3の破損や早期摩耗を生じにくいので、長期間にわたって安定して使用することができる。また、回転トルクが小さくなり、高精度の回転が得られるという利点もある。   Therefore, the local load applied to the outer ring 1, the inner ring 2 and the roller 3 is small, and the races 1, 2 and the roller 3 are not easily damaged or prematurely worn, and can be used stably for a long period of time. Further, there is an advantage that the rotational torque is reduced and high-precision rotation can be obtained.

なお、上述した実施形態では、ころ3の一方の肩部3bのチャンファ8の形状を、軸方向と平行な断面で単一のR形状としたが、他方の肩部3cのチャンファ11と同様に単一のテーパ状としたり、ころ3の軸心となす角度が異なる複数のテーパを繋げたものとしてもよい。   In the above-described embodiment, the shape of the chamfer 8 of the one shoulder portion 3b of the roller 3 is a single R shape in a cross section parallel to the axial direction, but similarly to the chamfer 11 of the other shoulder portion 3c. A single taper shape or a plurality of tapers having different angles with the axis of the roller 3 may be connected.

また、本発明は、実施形態のような自動調心ころ軸受に限らず、スラスト自動調心ころ軸受や、転動面が円筒形のころを組み込んだ円筒ころ軸受、転動面が円錐台形のころを組み込んだ円錐ころ軸受にも有効に適用をすることができる。   Further, the present invention is not limited to the self-aligning roller bearing as in the embodiment, but includes a thrust self-aligning roller bearing, a cylindrical roller bearing incorporating a roller having a cylindrical rolling surface, and a rolling surface having a truncated cone shape. It can be effectively applied to a tapered roller bearing incorporating a roller.

1 外輪
2 内輪
3 ころ
3a 転動面
3b、3c 肩部
3d 大端面(一端面)
3e 他端面
4 保持器
5 主軸台
6 心押し台
7 砥石
8、11 チャンファ
9、10、12 繋ぎ部
〜K境界
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Inner ring 3 Roller 3a Rolling surface 3b, 3c Shoulder part 3d Large end surface (one end surface)
3e end surface 4 cage 5 headstock 6 tailstock 7 grindstone 8, 11 chamfer 9, 10, 12 connecting portion K 1 ~K 6 boundaries

Claims (7)

ころ軸受の外輪および内輪と接する転動面の両側にチャンファが形成された軸受用ころの両端面の中心部を支持し、外周面の断面形状がR形状とされた砥石の回転軸線を前記軸受用ころの軸方向に対して傾斜させ、その傾斜角度を保持したまま、前記軸受用ころをその軸心まわりに回転させ、前記砥石を回転させながら軸受用ころの軸方向と径方向へ相対的に平行移動させることにより、前記軸受用ころの外面の研削を行う外面研削方法において、前記軸受用ころの転動面とその両側のチャンファとが滑らかに繋がるように研削することを特徴とする軸受用ころの外面研削方法。   The center axis of both end faces of the roller for bearing in which chamfers are formed on both sides of the rolling contact surface that contacts the outer ring and the inner ring of the roller bearing, and the rotational axis of the grindstone whose outer peripheral surface has an R shape is used as the bearing. The bearing roller is tilted with respect to the axial direction, and while maintaining the tilt angle, the bearing roller is rotated around its axis, and the wheel is rotated and the bearing roller is rotated relative to the axial direction and the radial direction. In the outer surface grinding method for grinding the outer surface of the bearing roller by parallel translation, the rolling surface of the bearing roller and the chamfers on both sides thereof are ground smoothly. Surface grinding method for rollers. 前記軸受用ころの軸方向と平行な断面で、前記転動面とその両側のチャンファとの間にR形状の繋ぎ部を設け、前記繋ぎ部と転動面の境界で繋ぎ部の接線の方向を転動面の稜線の方向と一致させ、前記繋ぎ部とチャンファの境界で繋ぎ部の接線の方向をチャンファの稜線の方向と一致させたことを特徴とする請求項1に記載の軸受用ころの外面研削方法。   In a cross section parallel to the axial direction of the bearing roller, an R-shaped connecting portion is provided between the rolling surface and the chamfers on both sides thereof, and the tangential direction of the connecting portion at the boundary between the connecting portion and the rolling surface The roller for bearing according to claim 1, wherein the direction of the ridgeline of the rolling surface is made to coincide with the direction of the ridgeline of the chamfer at the boundary between the joint and the chamfer. External grinding method. 前記軸受用ころの端面を研削する際に、前記砥石を前記軸受用ころの外周側から中心に向けて平行移動させて研削を行うことを特徴とする請求項1または2に記載の軸受用ころの外面研削方法。   3. The bearing roller according to claim 1, wherein when grinding the end surface of the bearing roller, the grinding is performed by moving the grindstone parallel from the outer peripheral side of the bearing roller toward the center. 4. External grinding method. 前記軸受用ころは、その転動面が円筒形のものであることを特徴とする請求項1乃至3のいずれかに記載の軸受用ころの外面研削方法。   4. The outer surface grinding method for a bearing roller according to claim 1, wherein the bearing roller has a cylindrical rolling surface. 前記軸受用ころは、その転動面が円錐台形またはたる形のものであることを特徴とする請求項1乃至3のいずれかに記載の軸受用ころの外面研削方法。   4. The method of grinding a bearing roller according to claim 1, wherein the roller of the bearing has a truncated cone shape or a barrel shape. 前記軸受用ころは、一端面が他端面よりも大径に形成され、その一端面を前記外輪または内輪の端部に設けられた鍔部に案内されて転動するものであり、この軸受用ころの一端面とチャンファとが滑らかに繋がるように研削することを特徴とする請求項5に記載の軸受用ころの外面研削方法。   The bearing roller has one end surface formed to have a larger diameter than the other end surface, and the one end surface is rolled by being guided by a flange portion provided at an end portion of the outer ring or the inner ring. 6. The method of grinding an outer surface of a roller for a bearing according to claim 5, wherein grinding is performed so that the one end surface of the roller and the chamfer are smoothly connected. 請求項1乃至6のいずれかに記載の外面研削方法で研削された軸受用ころを組み込んだころ軸受。   A roller bearing incorporating a bearing roller ground by the outer surface grinding method according to claim 1.
JP2013081061A 2013-04-09 2013-04-09 External surface griding method of bearing roller and roller bearing Pending JP2014202329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081061A JP2014202329A (en) 2013-04-09 2013-04-09 External surface griding method of bearing roller and roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081061A JP2014202329A (en) 2013-04-09 2013-04-09 External surface griding method of bearing roller and roller bearing

Publications (1)

Publication Number Publication Date
JP2014202329A true JP2014202329A (en) 2014-10-27

Family

ID=52352945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081061A Pending JP2014202329A (en) 2013-04-09 2013-04-09 External surface griding method of bearing roller and roller bearing

Country Status (1)

Country Link
JP (1) JP2014202329A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874858A (en) * 1994-08-31 1996-03-19 Ntn Corp Roller for roller bearing and its working method
JPH08320022A (en) * 1995-05-26 1996-12-03 Ntn Corp Roller bearing
JP2008161997A (en) * 2007-01-04 2008-07-17 Ntn Corp Cylindrical grinding machine and external surface grinding method therewith
JP2010014154A (en) * 2008-07-01 2010-01-21 Ntn Corp Bearing roller, bearing and bearing roller processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874858A (en) * 1994-08-31 1996-03-19 Ntn Corp Roller for roller bearing and its working method
JPH08320022A (en) * 1995-05-26 1996-12-03 Ntn Corp Roller bearing
JP2008161997A (en) * 2007-01-04 2008-07-17 Ntn Corp Cylindrical grinding machine and external surface grinding method therewith
JP2010014154A (en) * 2008-07-01 2010-01-21 Ntn Corp Bearing roller, bearing and bearing roller processing method

Similar Documents

Publication Publication Date Title
JP5661235B2 (en) Bearing roller processing method
JP5444642B2 (en) Combination bearing
JP5935520B2 (en) Method of manufacturing rolling bearing race
JP6798780B2 (en) Tapered roller bearing
CN103357799B (en) Rolling manufactures the equipment of complicated shape ring-type element
JP6323136B2 (en) Roller bearing ring, roller bearing and power transmission device
US20100058593A1 (en) Method of producing outer ring of self- alinging bearing
JP2017089845A (en) Rolling bearing
CN106870556B (en) Rolling bearing
JP4211718B2 (en) Machining method of raceway surface of outer ring of double row angular contact ball bearing
JP2006009891A (en) Roller bearing
CN105715676B (en) Double row spherical roller bearing, method of manufacturing and wind turbine bearing structure
JP2010169182A (en) Roller bearing
WO2015016345A1 (en) Roller bearing and method for producing roller bearing
JP2014202329A (en) External surface griding method of bearing roller and roller bearing
JP6881003B2 (en) Polishing tools for tapered rollers, methods for polishing tapered rollers, and methods for manufacturing tapered roller bearings.
KR100774237B1 (en) Self-aligning roller bearing and method of processing the same
JP2005048881A (en) Manufacturing method of raceway ring of combination bearing, single row bearing and multi-row bearing, and combination bearing, single row bearing and multi-row bearing
US9771979B2 (en) Manufacturing method for tapered roller, and tapered roller bearing
JP6517105B2 (en) Superfinishing method of roller bearing rolling surface
JP2014016007A (en) Tripod type constant velocity joint and manufacturing method thereof
JP2014194244A (en) Self-aligning roller bearing
KR101779785B1 (en) Four-point contact ball bearing
JP2024074598A (en) bearing
JP2009197871A (en) Rolling roller, its manufacturing method, and linear guide device equipped with the rolling roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170704