JP2014201726A - Ceramic fluorescent body, manufacturing method thereof, and light emitting device - Google Patents

Ceramic fluorescent body, manufacturing method thereof, and light emitting device Download PDF

Info

Publication number
JP2014201726A
JP2014201726A JP2013081542A JP2013081542A JP2014201726A JP 2014201726 A JP2014201726 A JP 2014201726A JP 2013081542 A JP2013081542 A JP 2013081542A JP 2013081542 A JP2013081542 A JP 2013081542A JP 2014201726 A JP2014201726 A JP 2014201726A
Authority
JP
Japan
Prior art keywords
phosphor
ceramic
light
ceramic phosphor
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013081542A
Other languages
Japanese (ja)
Inventor
貴志 秋野
Takashi Akino
貴志 秋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013081542A priority Critical patent/JP2014201726A/en
Publication of JP2014201726A publication Critical patent/JP2014201726A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Silicon Compounds (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic fluorescent body which emits red light.SOLUTION: A ceramic fluorescent body is obtained by: mixing CASN fluophor represented by general formula that is (CaSrM)SiAlN, where an element M is Eu or Ce, x and y are numbers satisfying 0≤x<0.4 and 0<y<0.5, and alumina particles, at a prescribed ratio; performing uniaxial molding to prepare a molded body; and then firing. The ceramic fluorescent body has similar light emitting characteristics as the CASN fluophor and is strong against heat and provides high luminance light emission as it is a ceramic.

Description

LED素子と、当該LED素子が発する光を吸収し、異なる波長の光(蛍光)を発する蛍光体とを組み合わせた発光装置が広く用いられている。従来の発光装置では、蛍光体は樹脂中に粉末或いは粒子として分散させたものをLED素子を覆うように配置していたが、近年、蛍光体を所定の形状を持つセラミック板(蛍光体プレート)としてLD(半導体レーザー)やLED等の光源と対向して配置したものも開発されている。   A light-emitting device that combines an LED element and a phosphor that absorbs light emitted from the LED element and emits light of different wavelengths (fluorescence) is widely used. In a conventional light emitting device, a phosphor dispersed in a resin as powder or particles is disposed so as to cover an LED element. Recently, a phosphor is a ceramic plate (phosphor plate) having a predetermined shape. As an example, an LD (semiconductor laser) or an LED or the like arranged opposite to a light source has been developed.

光源と蛍光体の組み合わせは、発光装置に求められる色味によって種々の組み合わせがありえるが、最も広く用いられている組み合わせは、青色LEDとYAG等の黄色発光の蛍光体である。   There are various combinations of the light source and the phosphor depending on the color required for the light emitting device. The most widely used combination is a blue LED and a yellow light emitting phosphor such as YAG.

しかしこのような青色LEDとYAGの組み合わせでは、発光スペクトルに赤色成分が少ないため、赤いものがくすんで見える等の問題がある。この問題に対し、半導体発光層を形成する基板として、赤色光を発するCrを含有させたアルミナ基板を用いる技術(特許文献1)や、クロムで付活されたアルミナ相を含む光変換用セラミック複合体を用いる技術(特許文献2)が提案されている。   However, such a combination of a blue LED and YAG has a problem that the red color appears dull because the emission spectrum has few red components. To solve this problem, a technology using an alumina substrate containing Cr that emits red light as a substrate for forming a semiconductor light emitting layer (Patent Document 1), or a ceramic composite for light conversion including an alumina phase activated by chromium A technique using a body (Patent Document 2) has been proposed.

特開2001−156336号公報JP 2001-156336 A 特開2006−169422号公報JP 2006-169422 A

クロムで付活されたアルミナは、690nm付近に発光波長ピークがあり、青色LEDとYAGを組み合わせた発光装置の赤色成分不足を補うものではあるが、半値幅が狭く、十分な色再現性が得られるとは言い難い。   Alumina activated with chromium has a light emission wavelength peak near 690 nm, which compensates for the shortage of the red component of a light emitting device combining a blue LED and YAG, but has a narrow half-value width and sufficient color reproducibility. It's hard to say that

一方、半値幅が広く色再現性に優れた赤色蛍光体として、CaAlSiN:Eu蛍光体(カズン蛍光体と呼ばれている)が知られているが、カズン蛍光体は原料の一つである窒化カルシウムが大気中で不安定であるため、セラミック蛍光体を作製する場合の必須工程である原料の金型成形を大気中で行うことができない。またカズン蛍光体自体は大気中で安定であるが、粉末粒径が数十μmと粒成長を起こしているため、カズン蛍光体粉末を金型成型しようとしても内部に空孔が形成されるため強靭性が悪く成形体を得ることが難しい。以上のことから、これまでカズン蛍光体のセラミックを得ることはできていない。 On the other hand, a CaAlSiN 3 : Eu phosphor (referred to as a “casun phosphor”) is known as a red phosphor having a wide half-value width and excellent color reproducibility. Since calcium nitride is unstable in the atmosphere, it is impossible to mold the raw material in the atmosphere, which is an essential process for producing a ceramic phosphor. In addition, although the Cousin phosphor itself is stable in the atmosphere, since the powder particle size has grown to several tens of μm, voids are formed inside when trying to mold the Cousin phosphor powder. It is difficult to obtain a molded article because of poor toughness. From the above, it has not been possible to obtain a ceramic of a counsel phosphor.

本発明は、カズン蛍光体を含むセラミック蛍光体を提供することを課題とする。   An object of the present invention is to provide a ceramic phosphor containing a counsel phosphor.

本発明者は、カズン蛍光体の成形について鋭意研究した結果、カズン蛍光体よりも粒子径の小さいアルミナ粒子を混合して成形することにより、粒成長を起こしたカズン蛍光体粒子を用いても、空孔が形成されることなく緻密な成形体が得られること、この成形体を焼成することにより、カズン蛍光体を含むセラミック蛍光体が得られることを見出し、本発明に至ったものである。   As a result of diligent research on the formation of the cozin phosphor, the present inventor has mixed and molded alumina particles having a particle diameter smaller than that of the cozin phosphor, so that even when using cozin phosphor particles that have undergone grain growth, The present inventors have found that a dense molded body can be obtained without forming pores, and that a ceramic phosphor containing a cousin phosphor can be obtained by firing the molded body.

すなわち本発明のセラミック蛍光体は、下記一般式で表されるカズン蛍光体とAlとを含むものである。
一般式:(Ca1-x-ySrxy)SiAlN3
(式中、元素MはEu又はCeを表し、x及びyは0≦x<0.4、0<y<0.5を満す数である。)
In other words, the ceramic phosphor of the present invention includes a cousin phosphor represented by the following general formula and Al 2 O 3 .
General formula: (Ca 1-xy Sr x M y) SiAlN 3
(In the formula, the element M represents Eu or Ce, and x and y are numbers satisfying 0 ≦ x <0.4 and 0 <y <0.5.)

また本発明のセラミック蛍光体の製造方法は、下記一般式で表されるカズン蛍光体粒子とAl粒子とを混合し、成形するステップと、成型後の混合物を焼成するステップとを含むものである。
一般式:(Ca1-x-ySrxy)SiAlN3
(式中、元素MはEu又はCeを表し、x及びyは0≦x<0.4、0<y<0.5を満す数である。)
Further, the method for producing a ceramic phosphor of the present invention includes a step of mixing and molding cozun phosphor particles represented by the following general formula and Al 2 O 3 particles, and a step of firing the mixture after molding. It is a waste.
General formula: (Ca 1-xy Sr x M y) SiAlN 3
(In the formula, the element M represents Eu or Ce, and x and y are numbers satisfying 0 ≦ x <0.4 and 0 <y <0.5.)

本発明によれば、従来、セラミック蛍光体とすることが困難であったカズン蛍光体を主成分とするセラミック蛍光体が提供される。本発明のセラミック蛍光体はすべて無機物で構成されているため熱に強く高輝度が得られる。本発明のセラミック蛍光体を用いることにより、セラミック蛍光体を利用した発光装置の演色性を向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, the ceramic fluorescent substance which has the cozin fluorescent substance which has been difficult to make a ceramic fluorescent substance as a main component conventionally is provided. Since all the ceramic phosphors of the present invention are made of an inorganic material, they are resistant to heat and provide high luminance. By using the ceramic phosphor of the present invention, the color rendering properties of a light-emitting device using the ceramic phosphor can be improved.

本発明のセラミック蛍光体の相構造を模式的に示す図The figure which shows typically the phase structure of the ceramic fluorescent substance of this invention 本発明のセラミック蛍光体の製造工程における成形体の内部構造を模式的に示す図The figure which shows typically the internal structure of the molded object in the manufacturing process of the ceramic fluorescent substance of this invention 実施例におけるセラミック蛍光体の発光スペクトル測定方法を説明する図The figure explaining the emission-spectrum measuring method of the ceramic fluorescent substance in an Example 実施例のセラミック蛍光体の発光スペクトルを示す図The figure which shows the emission spectrum of the ceramic fluorescent substance of an Example 従来の赤色発光蛍光プレートの発光スペクトルを示す図The figure which shows the emission spectrum of the conventional red light emission fluorescent plate 本発明の発光装置の実施形態を示す概略構成図Schematic configuration diagram showing an embodiment of a light emitting device of the present invention

以下、本発明のセラミック蛍光体とその製造方法の実施形態を説明する。
本発明のセラミック蛍光体は、カズン蛍光体相とアルミナ相が含まれるセラミック複合体で、図1に模式的に示すように、カズン蛍光体相11とカズン蛍光体相11との間が、アルミナ相12で充填された構造を持つと推定される。
Hereinafter, embodiments of the ceramic phosphor of the present invention and the manufacturing method thereof will be described.
The ceramic phosphor of the present invention is a ceramic composite that includes a cousin phosphor phase and an alumina phase. As schematically shown in FIG. Presumed to have a structure filled with phase 12.

カズン蛍光体相11を構成するカズン蛍光体10は、上記一般式で表される蛍光体であり、CaSiAlNを骨格として、Ca元素の一部を付活元素であるEuまたはCeで置換した構造を持つ。またCaは一部Srで置換されていてもよい。励起波長は400〜490nmであり、Euの場合には、発光ピーク波長が650±10nmの赤色発光となり、Ceの場合には、発光ピーク波長が570〜603nm付近であり、橙色発光となる。 The cousin phosphor 10 constituting the cousin phosphor phase 11 is a phosphor represented by the above general formula, and has a structure in which CaSiAlN 3 is used as a skeleton and a part of Ca element is replaced by Eu or Ce as an activator element. have. Further, Ca may be partially substituted with Sr. The excitation wavelength is 400 to 490 nm. In the case of Eu, red emission with an emission peak wavelength of 650 ± 10 nm is obtained, and in the case of Ce, the emission peak wavelength is around 570 to 603 nm, resulting in orange emission.

カズン蛍光体とアルミナの比率(カズン蛍光体:アルミナ)は、重量比で0:10を超え、7.5:2.5以下であることが好ましく、2:8〜7:3であることがより好ましい。   The ratio of cozin phosphor to alumina (cozin phosphor: alumina) is preferably more than 0:10 and not more than 7.5: 2.5 by weight, and preferably 2: 8 to 7: 3. More preferred.

カズン蛍光体の量がセラミック蛍光体全体に対し75重量%以下であることにより、緻密な構造を得ることができる。またカズン蛍光体の量は、用途にもよるが25重量%より少ないと十分な発光が得られないので、25重量%以上であることが好ましい。   A dense structure can be obtained when the amount of the cozin phosphor is 75% by weight or less with respect to the entire ceramic phosphor. Further, although the amount of the cascading phosphor depends on the use, if it is less than 25% by weight, sufficient light emission cannot be obtained, so that it is preferably 25% by weight or more.

本発明のセラミック蛍光体は、上述したカズン蛍光体とアルミナの他に、YAG蛍光体や、540〜550nmに発光ピーク波長を持つβ−SiAlON蛍光体や585〜590nmに発光ピーク波長を持つα−SiAlON蛍光体などの蛍光体を1種以上含むことができる。これら蛍光体の含有割合を適宜調整することにより、セラミック蛍光体としての発光スペクトルを任意に調整することができる。   The ceramic phosphor of the present invention includes a YAG phosphor, a β-SiAlON phosphor having an emission peak wavelength at 540 to 550 nm, and an α- having an emission peak wavelength at 585 to 590 nm, in addition to the above-described cozun phosphor and alumina. One or more phosphors such as SiAlON phosphor can be included. By appropriately adjusting the content ratio of these phosphors, the emission spectrum of the ceramic phosphor can be arbitrarily adjusted.

本発明のセラミック蛍光体が、実質的にカズン蛍光体とアルミナとの二成分系である場合には、セラミック蛍光体は、カズン蛍光体と同様の蛍光特性を持つ。すなわち、400〜490nmの青色で励起されて発光し、Eu付活の場合、発光ピーク波長は650±10nm、Ce付活の場合、発光ピーク波長は570〜603nmである。また発光ピークの半値幅は100nm以上であり、他の蛍光体からの光と混合したときに優れた演色性を示す。   In the case where the ceramic phosphor of the present invention is substantially a two-component system composed of a cozin phosphor and alumina, the ceramic phosphor has the same fluorescence characteristics as the cozin phosphor. That is, it emits light when excited by blue of 400 to 490 nm, and in the case of Eu activation, the emission peak wavelength is 650 ± 10 nm, and in the case of Ce activation, the emission peak wavelength is 570 to 603 nm. Further, the half width of the emission peak is 100 nm or more, and exhibits excellent color rendering when mixed with light from other phosphors.

本発明のセラミック蛍光体は、板状、円筒状、半円状など任意の形状とすることができ、励起光を発する光源例えばLED素子やLD素子と組み合わせて赤色や橙色を発する発光装置として利用できるほか、他のセラミック蛍光体(蛍光体プレート)と組み合わせて任意の色例えば白色を発する発光装置を組み立てることも可能である。   The ceramic phosphor of the present invention can have any shape such as a plate shape, a cylindrical shape, or a semicircular shape, and is used as a light emitting device that emits red or orange light in combination with a light source that emits excitation light, such as an LED element or an LD element. In addition, it is also possible to assemble a light emitting device that emits an arbitrary color such as white in combination with other ceramic phosphors (phosphor plates).

本発明の発光装置の実施形態を図6に示す。図6に示す発光装置100は、基本的な要素として、波長400〜490nmの光を発するLD光源31と、LD光源31に対し対向配置された発光体33と、LD光源31と発光体33との間に所定の角度をもって配置されたダイクロイックミラー35とから構成されている。これら要素は、図示しないケース等に収納されており、LD光源31から発せられる励起光の進行方向と交差する方向に光取り出し口37が設けられている。   An embodiment of the light emitting device of the present invention is shown in FIG. The light-emitting device 100 shown in FIG. 6 includes, as basic elements, an LD light source 31 that emits light having a wavelength of 400 to 490 nm, a light-emitting body 33 that is disposed to face the LD light source 31, and an LD light source 31 and a light-emitting body 33. And a dichroic mirror 35 disposed at a predetermined angle. These elements are housed in a case (not shown) or the like, and a light extraction port 37 is provided in a direction crossing the traveling direction of the excitation light emitted from the LD light source 31.

発光体33は、基板331上に配置されたセラミック蛍光体333から成る。セラミック蛍光体333は、基板331に接着される面に金属膜や誘電体多層膜などの反射層が形成され、接合剤によって基板331に接着されている。セラミック蛍光体は、本発明のカズン蛍光体及びアルミナを含むセラミック蛍光体であり、さらにYAG等の蛍光体を含んでいてもよい。   The light emitter 33 is made of a ceramic phosphor 333 disposed on the substrate 331. The ceramic phosphor 333 has a reflective layer such as a metal film or a dielectric multilayer film formed on the surface to be bonded to the substrate 331, and is bonded to the substrate 331 with a bonding agent. The ceramic phosphor is a ceramic phosphor containing the cousin phosphor of the present invention and alumina, and may further contain a phosphor such as YAG.

ダイクロイックミラー35は透過する波長と反射する波長に対する設計が異なる光学部材であり、ここではLD光源31からの励起光を透過するが発光体33からの光は反射する。これにより、LD光源31からの励起光はダイクロイックミラー35を透過して、発光体33のセラミック蛍光体333を照射する。セラミック蛍光体333は励起光を吸収して、それを構成する蛍光体の種類と混合割合に応じた所定のピーク波長の光を発する。セラミック蛍光体333の光のうち基板331側に向かう光は反射層で反射され、殆どの光が発光体33の光出射面から出射される。発光体33からの光はダイクロイックミラー35で反射され、光取り出し口37から取り出される。   The dichroic mirror 35 is an optical member having a different design with respect to the transmitted wavelength and the reflected wavelength. Here, the dichroic mirror 35 transmits the excitation light from the LD light source 31 but reflects the light from the light emitter 33. As a result, the excitation light from the LD light source 31 passes through the dichroic mirror 35 and irradiates the ceramic phosphor 333 of the light emitter 33. The ceramic phosphor 333 absorbs excitation light and emits light having a predetermined peak wavelength according to the type and mixing ratio of the phosphors constituting the ceramic phosphor. Of the light from the ceramic phosphor 333, the light traveling toward the substrate 331 is reflected by the reflective layer, and most of the light is emitted from the light exit surface of the light emitter 33. Light from the illuminant 33 is reflected by the dichroic mirror 35 and extracted from the light extraction port 37.

なお図6は、本発明の発光装置の一例であり、本発明の発光装置は、波長400〜490nmの光を発する光源と、その光源からの光を受光する位置に配置されたセラミック蛍光体と、セラミック蛍光体からの光を取り出す手段とを備えるものであれば、種々の公知の発光装置に適用することが可能である。例えば、LED素子の上に間隔をおいて蛍光体プレートを配置した構造の発光装置や、上述した構造の発光装置に他の光学要素を組み合わせた発光装置などに適用することができる。   FIG. 6 shows an example of the light-emitting device of the present invention. The light-emitting device of the present invention includes a light source that emits light having a wavelength of 400 to 490 nm, and a ceramic phosphor that is disposed at a position to receive light from the light source. As long as it has means for extracting light from the ceramic phosphor, it can be applied to various known light-emitting devices. For example, the present invention can be applied to a light emitting device having a structure in which a phosphor plate is disposed on an LED element with a space therebetween, or a light emitting device in which another optical element is combined with the light emitting device having the above-described structure.

次に本発明のセラミック蛍光体の製造方法について説明する。   Next, a method for producing the ceramic phosphor of the present invention will be described.

本発明のセラミック蛍光体の製造方法は、その原料として、カズン蛍光体粒子とアルミナ粒子を用いることが特徴である。一般に、セラミック蛍光体は、蛍光体の原料である金属化合物、主として酸化物や塩の粉末を金型で成形し、冷間静水圧成形して成形体とした後、焼成することによって焼結体として製造される。しかし、カズン蛍光体は、原料である窒化カルシウムが大気中で不安定なため、通常大気中で行われる金型成形を行うことができない。そこで本発明では、大気中で安定なカズン蛍光体粒子を、アルミナ粒子とともに成形することによって安定な構造の成形体を得る。   The method for producing a ceramic phosphor of the present invention is characterized in that cozun phosphor particles and alumina particles are used as raw materials. In general, a ceramic phosphor is a sintered body obtained by forming a metal compound, mainly an oxide or salt powder, which is a raw material of the phosphor, with a mold, cold isostatic pressing to form a molded body, and then firing the molded body. Manufactured as. However, in the case of the phosphor, the raw material calcium nitride is unstable in the atmosphere, so that it is not possible to perform the molding that is usually performed in the atmosphere. Therefore, in the present invention, a molded body having a stable structure is obtained by molding cozin phosphor particles stable in the atmosphere together with alumina particles.

原料となるカズン蛍光体は、窒化ケイ素、窒化アルミニウム、窒化カルシウム、酸化ユーロピウムの各粉末を窒化ホウ素製のルツボに入れ、約10気圧の窒素雰囲気中で、約1800℃で反応させることにより合成することができる。合成後のカズン蛍光体は、粒成長した状態で得られる。本発明ではこの粒成長した平均粒子径数μm〜数十μmのカズン蛍光体を用いる。   The Casun phosphor as a raw material is synthesized by putting each powder of silicon nitride, aluminum nitride, calcium nitride, and europium in a boron nitride crucible and reacting at about 1800 ° C. in a nitrogen atmosphere of about 10 atm. be able to. The synthesized phosphor is obtained in the state of grain growth. In the present invention, the cohered phosphor having an average particle diameter of several μm to several tens of μm is used.

アルミナ(Al)は、結晶系によってα−アルミナ(六方晶系)、γ−アルミナ(立方晶系)などいくつかの種類があり、特に限定されないが、最も一般的なα―アルミナを用いることができる。アルミナの平均粒子径は、カズン蛍光体よりも平均粒子径が小さいことが好ましく、具体的には、1μm以下であることが好ましく、500nm以下であることがより好ましく、300nm以下であることがさらに好ましい。粒子径の小さいアルミナ粒子を用いることにより、金型で一軸成形したときに、図2に示すように、アルミナ粒子がカズン蛍光体粒子の隙間を埋め尽くすように入り込み、成形体中に空孔(ポア)が形成されるのを防止でき、その後の焼成工程において緻密な構造の焼結体を得ることができる。 There are several types of alumina (Al 2 O 3 ), such as α-alumina (hexagonal crystal) and γ-alumina (cubic crystal), depending on the crystal system. Can be used. The average particle diameter of alumina is preferably smaller than the average particle diameter of the Cousin phosphor. Specifically, it is preferably 1 μm or less, more preferably 500 nm or less, and further preferably 300 nm or less. preferable. By using alumina particles having a small particle diameter, when uniaxially molded with a mold, as shown in FIG. 2, the alumina particles enter so as to fill the gaps between the cascading phosphor particles, and voids ( The formation of pores can be prevented, and a sintered body having a dense structure can be obtained in the subsequent firing step.

カズン蛍光体とアルミナの割合は、カズン蛍光体:アルミナの重量比で0:10〜7.5:2.5が好ましく、2:8〜7:3がより好ましい。本発明のセラミック蛍光体は、原料として、カズン蛍光体以外の蛍光体、例えばYAG蛍光体やSiAlON蛍光体を含むことができるが、その場合にも、カズン蛍光体の含有量は、原料全体の25〜75重量%の間であることが好ましい。これにより演色性を向上できるとともに、熱に強いものとすることができる。この際、強い励起光で発光させる場合には、温度消光を抑制するために熱伝導性の高いアルミナの量を増やした方が好ましく、弱い励起光で発光させる場合には、カズン蛍光体の量を増やすことが好ましい。   The ratio of the cozin phosphor to alumina is preferably 0:10 to 7.5: 2.5, more preferably 2: 8 to 7: 3, in terms of the weight ratio of cozin phosphor: alumina. The ceramic phosphor of the present invention can contain a phosphor other than the kazun phosphor, such as a YAG phosphor or a SiAlON phosphor, as a raw material. It is preferably between 25 and 75% by weight. As a result, the color rendering properties can be improved and the heat resistance can be increased. At this time, when emitting light with strong excitation light, it is preferable to increase the amount of high thermal conductivity alumina in order to suppress temperature quenching, and when emitting light with weak excitation light, the amount of cousin phosphor Is preferably increased.

上述した原料粒子を混合し、金型を用いて所望の形状(たとえば板状)に成形する。金型成形の条件は10〜30Mpaとする。金型成形は一軸成形であるので、その後、冷間静水圧成形(CIP)を行うことが好ましい。冷間静水圧成形は圧力100〜180MPa程度で約5〜10分程度行う。これにより内部構造が図2に示したような構造の成形体が得られる。次に、この成形体をアルミナ等のるつぼで、窒素雰囲気中で焼成し焼結体としてセラミック蛍光体を得る。焼成の温度は1300℃〜1600℃とし、焼成時間は約3時間程度であることが好ましい。焼結後、発光装置に利用できる所望の形状に加工する。   The raw material particles described above are mixed and formed into a desired shape (for example, a plate shape) using a mold. The mold forming conditions are 10 to 30 MPa. Since the mold molding is uniaxial molding, it is preferable to perform cold isostatic pressing (CIP) thereafter. Cold isostatic pressing is performed at a pressure of about 100 to 180 MPa for about 5 to 10 minutes. As a result, a molded body having an internal structure as shown in FIG. 2 is obtained. Next, this molded body is fired in a nitrogen atmosphere with a crucible such as alumina to obtain a ceramic phosphor as a sintered body. The firing temperature is preferably 1300 ° C. to 1600 ° C., and the firing time is preferably about 3 hours. After sintering, it is processed into a desired shape that can be used in a light emitting device.

このようにして製造される本発明のセラミック蛍光体は、内部に構造をもろくする原因となる空孔が含まれていないので堅牢で、温度特性に優れている。また有機物を含まないので耐熱性が高く、温度による特性変化も非常に小さい。   The ceramic phosphor of the present invention produced in this way is robust and excellent in temperature characteristics because it does not contain pores that cause the structure to become brittle. In addition, since it does not contain organic substances, it has high heat resistance and changes in characteristics due to temperature are very small.

以下、本発明のセラミック蛍光体の実施例を説明する。以下の実施例において、特に断らない限り、「%」は重量%を意味する。   Examples of the ceramic phosphor of the present invention will be described below. In the following examples, “%” means wt% unless otherwise specified.

<実施例1>
平均粒子径0.17μm、純度99.99%のα‐アルミナの粉末200mgと、平均粒子径10μm、純度99.99%のカズン蛍光体粒子(CnAlSiN:Eu)200mgを、ボールミルによって4時間混合し、十分に混合した混合物を得た。次に得られた混合粉末を30MPaで一軸金型成形を行った後、さらに150MPaで冷間静水圧成形(CIP)を行い成形体(サイズ:直径13mm×厚さ1mmの円柱状)とした。この成形体をアルミナるつぼ中で、窒素雰囲気1500℃で約3時間焼成し焼結体を得た。
<Example 1>
200 mg of α-alumina powder having an average particle size of 0.17 μm and a purity of 99.99% and 200 mg of casun phosphor particles (CnAlSiN 3 : Eu) having an average particle size of 10 μm and a purity of 99.99% are mixed for 4 hours by a ball mill. And a well-mixed mixture was obtained. Next, the obtained mixed powder was subjected to uniaxial die molding at 30 MPa, and then cold isostatic pressing (CIP) was further performed at 150 MPa to obtain a molded body (size: cylindrical shape having a diameter of 13 mm × thickness of 1 mm). This molded body was fired in an alumina crucible at 1500 ° C. for about 3 hours to obtain a sintered body.

得られた焼結体(セラミック蛍光体)について以下のように蛍光スペクトルを測定した。まず図3に示すように、直径200μmの円形の穴があいているアルミ製の板(厚み:0.5mm)20を用意し、このアルミ製板の上に、穴をふさぐように焼結体10を載せてシリコーン樹脂で接着した。次いで穴の反対側から、ピーク波長405nmの半導体レーザー30を焼結体に照射した。焼結体からの発光を積分球で集光した後、分光光度計(大塚電子株式会社製)を用いてスペクトルを測定した。また得られたスペクトルから発光ピーク波長で規格化した発光強度を算出した。結果を図4に示す。また比較例として、CrドープAlの発光スペクトルを図5に示す。 The fluorescence spectrum of the obtained sintered body (ceramic phosphor) was measured as follows. First, as shown in FIG. 3, an aluminum plate (thickness: 0.5 mm) 20 having a circular hole having a diameter of 200 μm is prepared, and a sintered body is formed so as to close the hole on the aluminum plate. 10 was put and adhered with silicone resin. Next, the sintered body was irradiated with a semiconductor laser 30 having a peak wavelength of 405 nm from the opposite side of the hole. The light emitted from the sintered body was condensed with an integrating sphere, and then the spectrum was measured using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd.). Further, the emission intensity normalized by the emission peak wavelength was calculated from the obtained spectrum. The results are shown in FIG. As a comparative example, the emission spectrum of Cr-doped Al 2 O 3 is shown in FIG.

図4に示すように、このセラミック蛍光体はピーク波長が653nmで、半幅値が105nmであった。図5に示すCrドープAlの半幅値(約5nm)に比べ、大幅に半幅値が広がっており、他の蛍光体プレートと併用することで演色性の高い照明光を得られることがわかる。 As shown in FIG. 4, this ceramic phosphor had a peak wavelength of 653 nm and a half-width value of 105 nm. Compared with the half-width value (about 5 nm) of Cr-doped Al 2 O 3 shown in FIG. 5, the half-width value is significantly widened, and it is possible to obtain illumination light with high color rendering properties when used in combination with other phosphor plates. Recognize.

本発明によれば、熱に強く、輝度が高く且つ演色性に優れた発光装置を実現できる。   According to the present invention, it is possible to realize a light emitting device that is resistant to heat, has high luminance, and is excellent in color rendering.

10・・・焼結体(セラミック蛍光体)、11・・・カズン蛍光体相、12・・・アルミナ相、31・・・光源、33・・・発光体、331・・・セラミック蛍光体、100・・・発光装置。 DESCRIPTION OF SYMBOLS 10 ... Sintered body (ceramic phosphor), 11 ... Casun phosphor phase, 12 ... Alumina phase, 31 ... Light source, 33 ... Luminescent body, 331 ... Ceramic phosphor, 100: Light emitting device.

Claims (8)

下記一般式で表されるカズン蛍光体とAlとを含むセラミック蛍光体。
一般式:(Ca1-x-ySrxy)SiAlN3
(式中、元素MはEu又はCeを表し、x及びyは0≦x<0.4、0<y<0.5を満す数である。)
A ceramic phosphor containing a counsel phosphor represented by the following general formula and Al 2 O 3 .
General formula: (Ca 1-xy Sr x M y) SiAlN 3
(In the formula, the element M represents Eu or Ce, and x and y are numbers satisfying 0 ≦ x <0.4 and 0 <y <0.5.)
下記一般式で表されるカズン蛍光体とAlとを含み、400〜490nmの青色で励起されて発光し、発光ピーク波長が650±10nm、半値幅が100nm以上であるセラミック蛍光体。
一般式:(Ca1-x-ySrxEuy)SiAlN3
(式中、x及びyは0≦x<0.4、0<y<0.5を満す数である。)
A ceramic phosphor that contains a cousin phosphor represented by the following general formula and Al 2 O 3 , emits light when excited with a blue color of 400 to 490 nm, has an emission peak wavelength of 650 ± 10 nm, and a half-value width of 100 nm or more.
General formula: (Ca 1-xy Sr x Eu y ) SiAlN 3
(In the formula, x and y are numbers satisfying 0 ≦ x <0.4 and 0 <y <0.5.)
前記カズン蛍光体とAlの割合が重量比で0:10を超え、7.5:2.5以下であることを特徴とする請求項1または2に記載のセラミック蛍光体。 3. The ceramic phosphor according to claim 1, wherein a ratio of the cozin phosphor and Al 2 O 3 is more than 0:10 and not more than 7.5: 2.5 by weight ratio. 下記一般式で表されるカズン蛍光体粒子とAl粒子とを混合し、成形するステップと、
成形後の成形体を焼成するステップとを含む、カズン蛍光体含有セラミックの製造方法。
一般式:(Ca1-x-ySrxy)SiAlN3
(式中、元素MはEu又はCeを表し、x及びyは0≦x<0.4、0<y<0.5を満す数である。)
Mixing and molding the counsel phosphor particles represented by the following general formula and Al 2 O 3 particles;
And a step of firing the molded body after molding.
General formula: (Ca 1-xy Sr x M y) SiAlN 3
(In the formula, the element M represents Eu or Ce, and x and y are numbers satisfying 0 ≦ x <0.4 and 0 <y <0.5.)
前記成形するステップは、金型を用いた一軸成形ステップと冷間静水圧成形ステップとを含むことを特徴とする請求項4に記載のセラミック蛍光体の製造方法。   The method for producing a ceramic phosphor according to claim 4, wherein the forming step includes a uniaxial forming step using a mold and a cold isostatic forming step. Al粒子の粒子径が300nm以下であることを特徴とする請求項4又は5に記載のセラミック蛍光体の製造方法。 The method for producing a ceramic phosphor according to claim 4 or 5, wherein the particle diameter of the Al 2 O 3 particles is 300 nm or less. カズン蛍光体粒子に対するAl粒子の割合が、重量比で3:1以上であることを特徴とする請求項4ないし6いずれか1項に記載のセラミック蛍光体の製造方法。 The method for producing a ceramic phosphor according to any one of claims 4 to 6, wherein the ratio of Al 2 O 3 particles to cozun phosphor particles is 3: 1 or more by weight. 波長400〜490nmの光を発する光源と、前記光源からの光を受光する位置に配置されたセラミック蛍光体からなる発光体とを備えた発光装置であって、前記セラミック蛍光体が請求項1ないし3のいずれか一項に記載のセラミック蛍光体である発光装置。   A light emitting device comprising: a light source that emits light having a wavelength of 400 to 490 nm; and a light emitter made of a ceramic phosphor disposed at a position to receive light from the light source, wherein the ceramic phosphor is claimed in claim 1. 4. A light emitting device which is the ceramic phosphor according to any one of 3 above.
JP2013081542A 2013-04-09 2013-04-09 Ceramic fluorescent body, manufacturing method thereof, and light emitting device Pending JP2014201726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081542A JP2014201726A (en) 2013-04-09 2013-04-09 Ceramic fluorescent body, manufacturing method thereof, and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081542A JP2014201726A (en) 2013-04-09 2013-04-09 Ceramic fluorescent body, manufacturing method thereof, and light emitting device

Publications (1)

Publication Number Publication Date
JP2014201726A true JP2014201726A (en) 2014-10-27

Family

ID=52352463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081542A Pending JP2014201726A (en) 2013-04-09 2013-04-09 Ceramic fluorescent body, manufacturing method thereof, and light emitting device

Country Status (1)

Country Link
JP (1) JP2014201726A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100485A (en) * 2014-11-21 2016-05-30 日亜化学工業株式会社 Wavelength conversion member and manufacturing method thereof, and light-emitting device
JP2017107071A (en) * 2015-12-10 2017-06-15 日本電気硝子株式会社 Wavelength conversion member and wavelength conversion element, and light emitting device using the same
WO2017098730A1 (en) * 2015-12-11 2017-06-15 パナソニックIpマネジメント株式会社 Wavelength converter, wavelength conversion member, and light-emitting device
WO2017179521A1 (en) * 2016-04-12 2017-10-19 パナソニックIpマネジメント株式会社 Wavelength conversion member
CN109837085A (en) * 2017-11-27 2019-06-04 日亚化学工业株式会社 The manufacturing method and wavelength converting member of wavelength converting member
CN110342939A (en) * 2018-04-06 2019-10-18 日亚化学工业株式会社 Manufacturing method, ceramic composite and the light emitting device of ceramic composite
JP2019182731A (en) * 2018-04-06 2019-10-24 日亜化学工業株式会社 Manufacturing method of ceramic composite, ceramic composite and light-emitting device
WO2020070995A1 (en) * 2018-10-04 2020-04-09 デンカ株式会社 Phosphor plate and light-emitting device using same
US10753574B2 (en) 2015-01-21 2020-08-25 Mitsubishi Chemical Corporation Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor
JP2020203828A (en) * 2017-11-27 2020-12-24 日亜化学工業株式会社 Wavelength conversion member manufacturing method and wavelength conversion member
WO2021093567A1 (en) * 2019-11-12 2021-05-20 深圳市绎立锐光科技开发有限公司 Fluorescent ceramic and light source device
US11292963B2 (en) 2017-12-08 2022-04-05 Nichia Corporation Wavelength converting member and method for producing the same
JP7339788B2 (en) 2019-06-28 2023-09-06 デンカ株式会社 Method for manufacturing phosphor plate and method for manufacturing light emitting device using the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100485A (en) * 2014-11-21 2016-05-30 日亜化学工業株式会社 Wavelength conversion member and manufacturing method thereof, and light-emitting device
US10753574B2 (en) 2015-01-21 2020-08-25 Mitsubishi Chemical Corporation Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor
JP2017107071A (en) * 2015-12-10 2017-06-15 日本電気硝子株式会社 Wavelength conversion member and wavelength conversion element, and light emitting device using the same
WO2017098730A1 (en) * 2015-12-11 2017-06-15 パナソニックIpマネジメント株式会社 Wavelength converter, wavelength conversion member, and light-emitting device
CN108369982A (en) * 2015-12-11 2018-08-03 松下知识产权经营株式会社 Wavelength conversion body, wavelength converting member and light-emitting device
JPWO2017098730A1 (en) * 2015-12-11 2018-10-04 パナソニックIpマネジメント株式会社 Wavelength converter, wavelength conversion member, and light emitting device
US10836958B2 (en) 2016-04-12 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member
JPWO2017179521A1 (en) * 2016-04-12 2019-03-07 パナソニックIpマネジメント株式会社 Wavelength conversion member
WO2017179521A1 (en) * 2016-04-12 2017-10-19 パナソニックIpマネジメント株式会社 Wavelength conversion member
US11387390B2 (en) 2017-11-27 2022-07-12 Nichia Corporation Method for producing wavelength converting member, and wavelength converting member
CN109837085A (en) * 2017-11-27 2019-06-04 日亚化学工业株式会社 The manufacturing method and wavelength converting member of wavelength converting member
JP2020203828A (en) * 2017-11-27 2020-12-24 日亜化学工業株式会社 Wavelength conversion member manufacturing method and wavelength conversion member
CN109837085B (en) * 2017-11-27 2023-11-28 日亚化学工业株式会社 Method for manufacturing wavelength conversion member, and wavelength conversion member
JP7277788B2 (en) 2017-11-27 2023-05-19 日亜化学工業株式会社 Method for manufacturing wavelength conversion member and wavelength conversion member
US11292963B2 (en) 2017-12-08 2022-04-05 Nichia Corporation Wavelength converting member and method for producing the same
JP2019182731A (en) * 2018-04-06 2019-10-24 日亜化学工業株式会社 Manufacturing method of ceramic composite, ceramic composite and light-emitting device
CN110342939A (en) * 2018-04-06 2019-10-18 日亚化学工业株式会社 Manufacturing method, ceramic composite and the light emitting device of ceramic composite
JP7208473B2 (en) 2018-04-06 2023-01-19 日亜化学工業株式会社 CERAMIC COMPOSITE MANUFACTURING METHOD, CERAMIC COMPOSITE, AND LIGHT EMITTING DEVICE
US11149193B2 (en) 2018-04-06 2021-10-19 Nichia Corporation Method for producing ceramic composite material, ceramic composite material, and light emitting device
CN112789343A (en) * 2018-10-04 2021-05-11 电化株式会社 Phosphor plate and light emitting device using the same
JPWO2020070995A1 (en) * 2018-10-04 2021-09-30 デンカ株式会社 Fluorescent plate and light emitting device using it
JP7325431B2 (en) 2018-10-04 2023-08-14 デンカ株式会社 Method for manufacturing phosphor plate and light emitting device using phosphor plate
CN112789343B (en) * 2018-10-04 2023-11-10 电化株式会社 Phosphor plate and light emitting device using the same
WO2020070995A1 (en) * 2018-10-04 2020-04-09 デンカ株式会社 Phosphor plate and light-emitting device using same
JP7339788B2 (en) 2019-06-28 2023-09-06 デンカ株式会社 Method for manufacturing phosphor plate and method for manufacturing light emitting device using the same
WO2021093567A1 (en) * 2019-11-12 2021-05-20 深圳市绎立锐光科技开发有限公司 Fluorescent ceramic and light source device

Similar Documents

Publication Publication Date Title
JP2014201726A (en) Ceramic fluorescent body, manufacturing method thereof, and light emitting device
Li et al. CaAlSiN 3: Eu 2+ translucent ceramic: a promising robust and efficient red color converter for solid state laser displays and lighting
Raukas et al. Ceramic phosphors for light conversion in LEDs
RU2455731C2 (en) Illumination system having monolithic ceramic luminescence converter
US11111433B2 (en) Transparent fluorescent sialon ceramic and method of producing same
US10873009B2 (en) Barrier layer functioned novel-structure ceramic converter materials and light emitting devices
US10023796B2 (en) Illumination system comprising composite monolithic ceramic luminescence converter
TWI486254B (en) Light emissive ceramic laminate and method of making same
EP2308106B1 (en) An optical element for a light emitting device and a method of manufacturing thereof
JP6805243B2 (en) Stable red ceramic phosphors and technologies containing them
JP2009515333A (en) Light emitting device having improved CaAlSiN light conversion material
EP2531572B1 (en) Phosphor converted led
JP2013227481A (en) Ceramic composite
US11292963B2 (en) Wavelength converting member and method for producing the same
JP2020073993A (en) Manufacturing method of wavelength conversion member
JP6763422B2 (en) Manufacturing method of wavelength conversion member and wavelength conversion member
WO2018038259A1 (en) Nitride phosphor particle dispersion-type sialon ceramic, fluorescent member, and method for producing nitride phosphor particle dispersion-type sialon ceramic
KR20160135294A (en) Ceramic composite material for optical conversion, production method therefor, and light-emitting device provided with same
JP2013056999A (en) Ceramic composite
KR20220087490A (en) Phosphor plate, light emitting device and manufacturing method of phosphor plate
EP3678266A1 (en) Light emitting device
WO2019020566A1 (en) Beta-sialon wavelength converters and methods of making the same
US11447696B2 (en) Fluorescent member, its manufacturing method, and light-emitting apparatus
KR20210072024A (en) Phosphor plate and light emitting device using same
JP7322306B1 (en) ceramic phosphor array