JP2014198827A - Method for manufacturing conductive polymer fine-particle dispersoid, and method for manufacturing electrolytic capacitor using conductive polymer fine-particle dispersoid - Google Patents

Method for manufacturing conductive polymer fine-particle dispersoid, and method for manufacturing electrolytic capacitor using conductive polymer fine-particle dispersoid Download PDF

Info

Publication number
JP2014198827A
JP2014198827A JP2014016551A JP2014016551A JP2014198827A JP 2014198827 A JP2014198827 A JP 2014198827A JP 2014016551 A JP2014016551 A JP 2014016551A JP 2014016551 A JP2014016551 A JP 2014016551A JP 2014198827 A JP2014198827 A JP 2014198827A
Authority
JP
Japan
Prior art keywords
conductive polymer
polymer fine
polyanion
electrolytic capacitor
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014016551A
Other languages
Japanese (ja)
Other versions
JP5948592B2 (en
Inventor
高谷 和宏
Kazuhiro Takatani
和宏 高谷
青山 達治
Tatsuji Aoyama
達治 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2014016551A priority Critical patent/JP5948592B2/en
Publication of JP2014198827A publication Critical patent/JP2014198827A/en
Application granted granted Critical
Publication of JP5948592B2 publication Critical patent/JP5948592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce ESR of an electrolytic capacitor.SOLUTION: A method for manufacturing a conductive polymer fine-particle dispersoid includes preparing a fluid dispersion containing a monomer having a π-conjugated structure, polyanion, and a solvent. The polyanion when the monomer is then subjected to oxidation polymerization contains at least one of polystyrene sulfonate and a salt thereof in which the color tone of a solution obtained by dissolving the polyanion in water so as to have a concentration of 2% is not less than 10 nor more than 1000 in Hazen color number measured by APHA method.

Description

本発明は、帯電防止剤、電解コンデンサ用電解質、表示素子等に応用される導電性高分子微粒子分散体の製造方法、およびこの導電性高分子微粒子分散体を用いた電解コンデンサの製造方法に関する。   The present invention relates to a method for producing a conductive polymer fine particle dispersion applied to an antistatic agent, an electrolyte for an electrolytic capacitor, a display element, and the like, and a method for producing an electrolytic capacitor using the conductive polymer fine particle dispersion.

ドーパントを添加された、π共役構造を有する高分子は、高い導電性を示すことが知られている。ドーパントとは導電性を発現させるための物質である。この高い導電性に加えて、化学的、物理的に安定なことから、帯電防止剤や表示素子に使用されている。また、電解コンデンサの固体電解質の材料として用いることが提案されている。   It is known that a polymer having a π-conjugated structure to which a dopant is added exhibits high conductivity. A dopant is a substance for developing conductivity. In addition to this high conductivity, it is chemically and physically stable, so it is used in antistatic agents and display elements. It has also been proposed to use it as a solid electrolyte material for electrolytic capacitors.

このようなπ共役構造を有する導電性高分子の作製方法の一例として、ドーパントを共存させた状態で、酸化剤を用いてモノマーを酸化重合する方法が知られている。例えば、モノマーとして3,4−エチレンジオキシチオフェンを用い、ドーパントとしてポリスチレンスルホン酸を用いると、ポリスチレンスルホン酸がドープされた、高い導電性を有するポリ3,4−エチレンジオキシチオフェンを調製できる。この方法で調製されたポリ3,4−エチレンジオキシチオフェンは水中に分散した微粒子の状態である。すなわち、上記の方法によれば、導電性高分子微粒子分散体を調製することができる(例えば、特許文献1)。   As an example of a method for producing a conductive polymer having such a π-conjugated structure, a method is known in which a monomer is oxidatively polymerized using an oxidant in the state where a dopant is present. For example, when 3,4-ethylenedioxythiophene is used as a monomer and polystyrenesulfonic acid is used as a dopant, poly3,4-ethylenedioxythiophene doped with polystyrenesulfonic acid and having high conductivity can be prepared. The poly 3,4-ethylenedioxythiophene prepared by this method is in the form of fine particles dispersed in water. That is, according to the above method, a conductive polymer fine particle dispersion can be prepared (for example, Patent Document 1).

特開2008−222850号公報JP 2008-222850 A

前述のような従来の方法で得られた導電性高分子微粒子分散体から溶媒成分を除去することで導電性高分子が得られる。しかしながらこのような導電性高分子を、電解コンデンサの固体電解質として用いる場合、導電性高分子皮膜の形成方法や形成条件によって、ESRが高くなる場合がある。したがって、π共役構造を有する導電性高分子微粒子分散体を電解コンデンサの固体電解質に採用するためには、導電性高分子皮膜の形成方法や形成条件を最適化する必要がある。   A conductive polymer can be obtained by removing the solvent component from the conductive polymer fine particle dispersion obtained by the conventional method as described above. However, when such a conductive polymer is used as a solid electrolyte of an electrolytic capacitor, ESR may be increased depending on the method and conditions for forming the conductive polymer film. Therefore, in order to employ the conductive polymer fine particle dispersion having a π-conjugated structure as the solid electrolyte of the electrolytic capacitor, it is necessary to optimize the method and conditions for forming the conductive polymer film.

上記課題を解決するために、本発明は、π共役構造を有するモノマーとポリアニオンと溶媒と含む分散液を調整し、その後、前記モノマーを酸化重合させることにより導電性高分子微粒子分散体を調製する導電性高分子微粒子分散体の製造方法であって、前記ポリアニオンは、濃度が2%となるように前記ポリアニオンを水に溶解した水溶液の色相がAPHA法で測定したハーゼン色数で10以上1000以下である、ポリスチレンスルホン酸及びその塩の少なくとも一方を含むことを特徴とする。   In order to solve the above-mentioned problems, the present invention prepares a conductive polymer fine particle dispersion by adjusting a dispersion containing a monomer having a π-conjugated structure, a polyanion, and a solvent, and then oxidatively polymerizing the monomer. A method for producing a conductive polymer fine particle dispersion, wherein the polyanion has a Hazen color number of 10 or more and 1,000 or less in terms of the Hazen color number measured by the APHA method in an aqueous solution in which the polyanion is dissolved in water so that the concentration is 2%. It contains at least one of polystyrene sulfonic acid and its salt.

また、本発明は、誘電体層を有する陽極体と導電性高分子の固体電解質層とを含む電解コンデンサの製造方法であって、前記固体電解質層は、本発明による導電性高分子微粒子分散体の製造方法により得られる導電性高分子微粒子分散体により形成することを特徴とする。   The present invention also relates to a method of manufacturing an electrolytic capacitor including an anode body having a dielectric layer and a solid electrolyte layer of a conductive polymer, wherein the solid electrolyte layer is a conductive polymer fine particle dispersion according to the present invention. The conductive polymer fine particle dispersion obtained by the production method is used.

上記製造方法によって調製された導電性高分子微粒子分散体を、電解コンデンサの固体電解質の形成材料に適用すれば、電解コンデンサのESRを大幅に低減することができる。   When the conductive polymer fine particle dispersion prepared by the above manufacturing method is applied to a material for forming a solid electrolyte of an electrolytic capacitor, ESR of the electrolytic capacitor can be greatly reduced.

図1は、本発明の実施の形態による製造方法で調製された導電性高分子微粒子分散体を用いた電解コンデンサの概略を示す一部切り欠き斜視図である。FIG. 1 is a partially cutaway perspective view showing an outline of an electrolytic capacitor using a conductive polymer fine particle dispersion prepared by a manufacturing method according to an embodiment of the present invention. 図2は、図1に示す電解コンデンサにおけるコンデンサ素子の部分断面図である。FIG. 2 is a partial cross-sectional view of the capacitor element in the electrolytic capacitor shown in FIG.

以下に本発明の実施の形態について、図1、図2を参照しながら説明する。図1は、本発明の実施の形態による製造方法で調製された導電性高分子微粒子分散体を用いた電解コンデンサの概略を示す一部切り欠き斜視図である。図2は、図1に示す電解コンデンサにおけるコンデンサ素子の部分断面図である。   Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a partially cutaway perspective view showing an outline of an electrolytic capacitor using a conductive polymer fine particle dispersion prepared by a manufacturing method according to an embodiment of the present invention. FIG. 2 is a partial cross-sectional view of the capacitor element in the electrolytic capacitor shown in FIG.

図1に示すように、電解コンデンサは、コンデンサ素子10と、金属製のケース14と、封口材13とを有する。ケース14はコンデンサ素子10を収容し、封口材13はケース14の開口を封止している。ケース14と封口材13はコンデンサ素子10を封止する外装体を構成している。   As shown in FIG. 1, the electrolytic capacitor includes a capacitor element 10, a metal case 14, and a sealing material 13. The case 14 accommodates the capacitor element 10, and the sealing material 13 seals the opening of the case 14. The case 14 and the sealing material 13 constitute an exterior body that seals the capacitor element 10.

図2に示すように、コンデンサ素子10は、陽極1と陰極2と、これらの間に介在するセパレータ4と固体電解質層5とを有する。陽極1は、アルミニウム箔の表面をエッチングにより粗面化し、この表面に化成処理により誘電体酸化皮膜層3を形成して作製されている。陰極2もまた、表面をエッチングにより粗面化したアルミニウム箔で構成されている。陽極1、陰極2にはそれぞれ、図1に示すリード端子11、12が接続されている。リード端子11、12は封口材13を貫通して外部に引き出されている。   As shown in FIG. 2, the capacitor element 10 includes an anode 1 and a cathode 2, a separator 4 and a solid electrolyte layer 5 interposed therebetween. The anode 1 is produced by roughening the surface of an aluminum foil by etching and forming a dielectric oxide film layer 3 on this surface by chemical conversion treatment. The cathode 2 is also made of an aluminum foil whose surface is roughened by etching. Lead terminals 11 and 12 shown in FIG. 1 are connected to the anode 1 and the cathode 2, respectively. The lead terminals 11 and 12 penetrate the sealing material 13 and are drawn to the outside.

陽極1と陰極2は、その間にセパレータ4を介して巻回されてコンデンサ素子10を形成している。そしてコンデンサ素子10に後述する導電性高分子微粒子分散体を含浸し、溶媒成分を乾燥により除去して、陽極1と陰極2との間に導電性高分子の固体電解質層5が形成されている。   The anode 1 and the cathode 2 are wound through a separator 4 between them to form a capacitor element 10. The capacitor element 10 is impregnated with a conductive polymer fine particle dispersion, which will be described later, and the solvent component is removed by drying, whereby a conductive polymer solid electrolyte layer 5 is formed between the anode 1 and the cathode 2. .

次に、固体電解質層5を形成するための導電性高分子微粒子分散体(以下、分散体と略す)の製造方法について簡単に説明する。まず、チオフェン類およびその誘導体から選ばれた少なくとも一つのモノマーと、ドーパントとしてのポリアニオンとを、水を主成分とする溶媒中に分散させて分散液を調製する。この分散液と、酸化剤とを混合してモノマーを酸化重合させる。このようにして、ポリアニオンがドープされた導電性のポリチオフェン分散体を調製する。   Next, a method for producing a conductive polymer fine particle dispersion (hereinafter abbreviated as a dispersion) for forming the solid electrolyte layer 5 will be briefly described. First, a dispersion is prepared by dispersing at least one monomer selected from thiophenes and derivatives thereof and a polyanion as a dopant in a solvent containing water as a main component. The dispersion is mixed with an oxidizing agent to oxidize and polymerize the monomer. In this way, a conductive polythiophene dispersion doped with a polyanion is prepared.

ポリアニオンは、10以上、1000以下のハーゼン色数を示すポリスチレンスルホン酸および/またはポリスチレンスルホン酸塩である。ハーゼン色数は、濃度が2%となるように水に溶解した水溶液の色相を、APHA法で測定することで決められる。   The polyanion is polystyrene sulfonic acid and / or polystyrene sulfonate having a Hazen color number of 10 or more and 1000 or less. The Hazen color number is determined by measuring the hue of an aqueous solution dissolved in water so that the concentration is 2% by the APHA method.

ここで、APHA法について簡単に説明する。APHA法では基本的に人の目視により標準液と色を比較することによりハーゼン色数を判定する。
まず、既知のハーゼン色数の標準原液を用意し、これを希釈して数種類の標準液を調製する。本実施の形態では、黄色の標準原液APHA500(ハーゼン色数500)を希釈して、ハーゼン色数100、50、10の標準液を調製している。なおハーゼン色数500
の標準原液を5倍に希釈した標準液のハーゼン色数は100になる。
Here, the APHA method will be briefly described. In the APHA method, the Hazen color number is basically determined by comparing the color with a standard solution by human eyes.
First, a standard stock solution having a known Hazen color number is prepared and diluted to prepare several types of standard solutions. In this embodiment, a yellow standard stock solution APHA500 (Hazen color number 500) is diluted to prepare standard solutions having Hazen color numbers 100, 50, and 10. Hazen color number 500
The Hazen color number of a standard solution obtained by diluting 5 times the standard stock solution is 100.

次に被検体の一定量(Xml)を秤量し、この被検体の色よりも薄く、最も近いと思われる標準液(ハーゼン色数:A)と同じ色になるまで目視で比色しながら秤量した被検体を純水で希釈する。希釈に用いた純水の量をYmlとする。そして、被検体の希釈倍率(X+Y)/Xを、比色の対象とした標準液のハーゼン色数Aに乗じる(A×(X+Y)/X)。このようにして被検体のハーゼン色数を求めることができる。   Next, a certain amount (Xml) of the sample is weighed and weighed while visually colorimetrically until it becomes the same color as the standard solution (Hazen color number: A) which is lighter and closest to the color of the sample. The obtained specimen is diluted with pure water. The amount of pure water used for dilution is Yml. Then, the specimen dilution factor (X + Y) / X is multiplied by the Hazen color number A of the standard solution to be subjected to colorimetry (A × (X + Y) / X). In this way, the Hazen color number of the subject can be obtained.

モノマーのチオフェン類およびその誘導体は、π共役構造を有する。このようなモノマーとして、チオフェン、3−メチルチオフェン、3−エチルチオフェン、3−プロピルチオフェン、3−ブチルチオフェン、3−ヘキシルチオフェン、3−ヘプチルチオフェン、3−オクチルチオフェン、3−ノニルチオフェン、3−デシルチオフェン、3−メトキシチオフェン、3−エトキシチオフェン、3−ブトキシチオフェン、3−メチル−4−メトキシチオフェン、3,4−エチレンジオキシチオフェン、ベンゾチオフェン、ベンゾジチオフェン等が挙げられる。その中でも3,4−エチレンジオキシチオフェンが適度な重合速度と、ポリマーの耐熱性が優れることから特に好ましい。   Monomeric thiophenes and derivatives thereof have a π-conjugated structure. Examples of such monomers include thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3-butylthiophene, 3-hexylthiophene, 3-heptylthiophene, 3-octylthiophene, 3-nonylthiophene, 3- Examples include decylthiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-methyl-4-methoxythiophene, 3,4-ethylenedioxythiophene, benzothiophene, and benzodithiophene. Among them, 3,4-ethylenedioxythiophene is particularly preferable because of an appropriate polymerization rate and excellent heat resistance of the polymer.

ドーパントとして用いるポリアニオンは、ポリスチレンスルホン酸またはその塩であり、単独で用いても複数を併用してもよい。これらのポリアニオンは良好な分散性と、耐熱性に優れている。   The polyanion used as the dopant is polystyrene sulfonic acid or a salt thereof, which may be used alone or in combination. These polyanions are excellent in dispersibility and heat resistance.

ポリアニオンの重量平均分子量は10000以上、400000以下が好ましく、30000以上、200000以下がより好ましく、50000以上、100000以下が特に好ましい。また、ポリアニオンの数平均分子量は1000以上、300000以下が好ましく10000以上、150000以下がより好ましく、20000以上、100000以下が特に好ましい。   The weight average molecular weight of the polyanion is preferably 10,000 or more and 400,000 or less, more preferably 30000 or more and 200000 or less, and particularly preferably 50000 or more and 100,000 or less. The number average molecular weight of the polyanion is preferably 1,000 or more and 300,000 or less, more preferably 10,000 or more and 150,000 or less, and particularly preferably 20,000 or more and 100,000 or less.

酸化剤として、溶媒中で鉄イオンを生じる第1酸化剤を用いることができる。第1酸化剤としては、塩化鉄(III)、硫酸鉄(III)、硝酸鉄(III)等の無機酸の鉄塩、メトキシベンゼンスルホン酸鉄、トルエンスルホン酸鉄等の有機酸の鉄塩等が挙げられる。その中でも硫酸鉄(III)が、適度な重合速度が得られること、耐熱性に優れたポリマーが得られることとから特に好ましい。以下、硫酸鉄(III)を硫酸第二鉄と称する。   As the oxidizing agent, a first oxidizing agent that generates iron ions in a solvent can be used. Examples of the first oxidizing agent include iron salts of inorganic acids such as iron (III) chloride, iron (III) sulfate, and iron (III) nitrate, iron salts of organic acids such as iron methoxybenzene sulfonate and iron toluene sulfonate, and the like. Is mentioned. Among them, iron (III) sulfate is particularly preferable because an appropriate polymerization rate can be obtained and a polymer having excellent heat resistance can be obtained. Hereinafter, iron (III) sulfate is referred to as ferric sulfate.

また、第1酸化剤と併用する、溶媒中で鉄イオンを生じない第2酸化剤として、過酸化水素、過硫酸塩、過マンガン酸塩、過酸化ベンゾイル、オゾン等を用いることができる。その中でも過硫酸アンモニウムが、適度な重合速度が得られること、耐熱性に優れたポリマーが得られること、保存性に優れ、取り扱いが容易であることとから特に好ましい。なお、酸化剤は上記第1酸化剤、第2酸化剤に限定されない。   Further, hydrogen peroxide, persulfate, permanganate, benzoyl peroxide, ozone, or the like can be used as the second oxidant that is used in combination with the first oxidant and does not generate iron ions in the solvent. Among them, ammonium persulfate is particularly preferable because an appropriate polymerization rate can be obtained, a polymer excellent in heat resistance can be obtained, storage stability is excellent, and handling is easy. The oxidizing agent is not limited to the first oxidizing agent and the second oxidizing agent.

溶媒として用いる水は、不純物の含有量が少ないイオン交換水や蒸留水が好ましい。なお溶媒は水を主成分としている。主成分とはトレース程度の不純物や添加剤等を含んでいる程度で、例えば95%以上が水であることを意味する。   The water used as the solvent is preferably ion-exchanged water or distilled water having a low impurity content. The solvent is mainly composed of water. The main component means that it contains impurities such as traces, additives, etc., for example, 95% or more is water.

次に、分散液の調製方法について説明する。容器に投入した水に、分散機を用いてシェアをかけながらモノマーとポリアニオンとを同時に投入して分散液を調製する。または、容器に投入した水に、分散機を用いてシェアをかけながらモノマーと、ポリアニオンとを順次投入して分散液を調製する。あるいは、容器に投入した水にモノマーとポリアニオンとを投入した後に分散機を用いてシェアをかけて分散液を調製する。分散機としては、ホモミキサー、高圧ホモジナイザー等が使用できる。   Next, a method for preparing the dispersion will be described. A monomer and a polyanion are simultaneously added to water charged in a container while applying a share using a disperser to prepare a dispersion. Alternatively, the monomer and the polyanion are sequentially added to the water charged in the container while applying a share using a disperser to prepare a dispersion. Alternatively, a monomer and a polyanion are charged into water charged in a container, and then a dispersion is prepared by sharing using a disperser. As the disperser, a homomixer, a high-pressure homogenizer, or the like can be used.

水にモノマーとポリアニオンとを同時に投入すれば、モノマーと、ポリアニオンとを順次投入するよりも分散時間を短縮することができる。またモノマーを投入した後に、ポリアニオンを投入する以外に、ポリアニオンを投入した後に、モノマーを投入してもかまわない。さらに、水は、モノマーやポリアニオンを投入する前にその一部を容器に投入し、その後、分散中に適宜複数回に分割して投入してもよい。   If the monomer and the polyanion are simultaneously added to water, the dispersion time can be shortened compared to the case where the monomer and the polyanion are sequentially added. In addition to the addition of the polyanion after the introduction of the monomer, the monomer may be introduced after the introduction of the polyanion. Furthermore, water may be partially added to the container before the monomer or polyanion is added, and then divided into a plurality of times as appropriate during dispersion.

この操作では、水になじみ難いπ共役構造を有するモノマーを、微粒子状にして水に分散させることを目的としており、その方法はこれらに限られるものではない。なお、ポリアニオンが固形の場合や粘度が高い場合には水に溶解、或いは希釈し、水溶液として投入する。   The purpose of this operation is to disperse the monomer having a π-conjugated structure, which is difficult to adjust to water, into fine particles and dispersed in water, and the method is not limited thereto. When the polyanion is solid or has a high viscosity, it is dissolved or diluted in water and added as an aqueous solution.

モノマーと水との割合は、モノマー1重量部に対して水9重量部以上が好ましい。これより水の割合が少なくなると、重合の途中で分散液の粘度が高くなり過ぎ、均質な分散体が得られなくなる虞がある。   The ratio of the monomer and water is preferably 9 parts by weight or more with respect to 1 part by weight of the monomer. If the ratio of water is less than this, the viscosity of the dispersion becomes too high during the polymerization, and a homogeneous dispersion may not be obtained.

モノマーに対するポリアニオンの割合は、モノマー1重量部に対して1重量部以上、5重量部以下が好ましい。モノマー1重量部に対してポリアニオンが1重量部より少ないと、得られた導電性高分子の導電率が低くなる。またモノマー1重量部に対してポリアニオンの割合が5重量部を超えても、得られる導電性高分子の導電率は殆ど向上しない。したがって材料コストを考慮すれば5重量部以下が好ましい。   The ratio of the polyanion to the monomer is preferably 1 part by weight or more and 5 parts by weight or less based on 1 part by weight of the monomer. If the polyanion is less than 1 part by weight relative to 1 part by weight of the monomer, the conductivity of the resulting conductive polymer will be low. Moreover, even if the ratio of the polyanion exceeds 5 parts by weight with respect to 1 part by weight of the monomer, the conductivity of the obtained conductive polymer is hardly improved. Therefore, if considering the material cost, 5 parts by weight or less is preferable.

次に、モノマーを酸化重合する方法について説明する。上述のようにして調製した分散液に引き続き分散機でシェアをかけながら、この分散液に酸化剤を投入する。酸化剤が固形の場合や粘度が高い場合には水に溶解、或いは希釈し水溶液として投入する。このようにして、分散状態のモノマーを酸化重合させてポリマー(以下ポリチオフェンと記載する)の微粒子を形成する。酸化剤の投入後も重合が終了するまで分散機によるシェアを続けることにより、ポリアニオンをドーパントとするポリチオフェンの分散体を調製することができる。なお、分散液と酸化剤とを別の装置に投入してモノマーを酸化重合してもよい。すなわち、分散液と酸化剤とを混合して酸化重合させれば、その方法は特に限定されない。   Next, a method for oxidative polymerization of monomers will be described. An oxidant is added to this dispersion while applying a share to the dispersion prepared as described above using a disperser. When the oxidizing agent is solid or has a high viscosity, it is dissolved or diluted in water and added as an aqueous solution. In this manner, the dispersed monomer is oxidatively polymerized to form fine particles of a polymer (hereinafter referred to as polythiophene). A dispersion of polythiophene having a polyanion as a dopant can be prepared by continuing the share by the disperser until the polymerization is completed even after the addition of the oxidizing agent. Note that the monomer may be oxidatively polymerized by introducing the dispersion and the oxidizing agent into separate apparatuses. That is, the method is not particularly limited as long as the dispersion and the oxidizing agent are mixed and subjected to oxidative polymerization.

前述のように、ポリアニオンは、10以上、1000以下のハーゼン色数を示すポリスチレンスルホン酸および/またはポリスチレンスルホン酸塩である。ハーゼン色数は、濃度が2%となるように水に溶解した水溶液の色相を、APHA法で測定することで決められる。   As described above, the polyanion is polystyrene sulfonic acid and / or polystyrene sulfonate having a Hazen color number of 10 or more and 1000 or less. The Hazen color number is determined by measuring the hue of an aqueous solution dissolved in water so that the concentration is 2% by the APHA method.

ポリスチレンスルホン酸やその塩の分子の三次元構造の疎密の度合いは水溶液の色相の濃淡に現れ、三次元構造が密になるほど黄色〜赤褐色の色相が濃くなる傾向にある。そして、分子の三次元構造が密になるほど、上記ポリアニオンをドーパントとする、π共役構造を有する導電性高分子の導電性は向上する。しかしながら三次元構造が密過ぎた場合には、逆に導電性が低くなる傾向が現れる。そのため、濃度が2%となるようにポリアニオンを水に溶解した水溶液の色相を、APHA法で測定したハーゼン色数で10以上、1000以下に限定することで、電解コンデンサのESRを低減することができる。   The degree of density of the three-dimensional structure of polystyrene sulfonic acid and its salt molecules appears in the hue of the hue of the aqueous solution, and the yellow-reddish brown hue tends to become darker as the three-dimensional structure becomes denser. And as the three-dimensional structure of the molecule becomes denser, the conductivity of the conductive polymer having a π-conjugated structure using the polyanion as a dopant improves. However, when the three-dimensional structure is too dense, the conductivity tends to decrease. Therefore, the ESR of the electrolytic capacitor can be reduced by limiting the hue of the aqueous solution in which the polyanion is dissolved in water so that the concentration is 2% to 10 or more and 1000 or less in terms of the Hazen color number measured by the APHA method. it can.

次に具体的な例を用いて本実施の形態における効果を説明する。   Next, the effect in this Embodiment is demonstrated using a specific example.

(実施例1〜5)
まず、容器に投入した蒸留水に、π共役構造を有するモノマーとして、3,4−エチレンジオキシチオフェンを投入し、次いでポリアニオンとしてポリスチレンスルホン酸の2
9.5%水溶液を投入する。その後、ホモミキサーで10分間シェアをかけて、3,4−エチレンジオキシチオフェンの分散液を調製する。
(Examples 1-5)
First, 3,4-ethylenedioxythiophene is added as a monomer having a π-conjugated structure to distilled water charged in a container, and then polystyrene sulfonic acid 2 is added as a polyanion.
Add 9.5% aqueous solution. Then, a dispersion of 3,4-ethylenedioxythiophene is prepared by applying a shear for 10 minutes with a homomixer.

このとき投入したポリアニオンとして、濃度が2%となるように水に溶解した水溶液のAPHA法で測定したハーゼン色数が10であるポリスチレンスルホン酸を用いている。   As the polyanion charged at this time, polystyrene sulfonic acid having a Hazen color number of 10 measured by the APHA method of an aqueous solution dissolved in water so as to have a concentration of 2% is used.

この分散液をホモミキサーでシェアをかけながら、第1酸化剤として硫酸第二鉄の2.25%水溶液を投入し、次いで第2酸化剤として過硫酸アンモニウムの28.8%水溶液を投入する。酸化剤の投入後、ホモミキサーによるシェアを24時間継続した後に重合を終了する。このようにして導電性高分子微粒子分散体を調製する。   While this dispersion is being shared with a homomixer, a 2.25% aqueous solution of ferric sulfate is added as the first oxidizing agent, and then an 28.8% aqueous solution of ammonium persulfate is added as the second oxidizing agent. After the introduction of the oxidizing agent, the share by the homomixer is continued for 24 hours, and then the polymerization is terminated. In this way, a conductive polymer fine particle dispersion is prepared.

実施例1で使用した各材料の割合は、3,4−エチレンジオキシチオフェン14.2重量部、ポリスチレンスルホン酸30.5重量部、硫酸第二鉄13.0重量部、過硫酸アンモニウム29.8重量部、蒸留水1337重量部である。   The ratio of each material used in Example 1 was as follows: 3,4-ethylenedioxythiophene 14.2 parts by weight, polystyrene sulfonate 30.5 parts by weight, ferric sulfate 13.0 parts by weight, ammonium persulfate 29.8 Parts by weight and 1337 parts by weight of distilled water.

実施例2、実施例3、実施例4、実施例5では、上記実施例1において、濃度が2%となるように水に溶解した水溶液のAPHA法で測定したハーゼン色数がそれぞれ、55、110、489、1000であるポリスチレンスルホン酸を用いている。それ以外は実施例1と同様にして導電性高分子微粒子分散体を調製する。   In Example 2, Example 3, Example 4, and Example 5, the Hazen color number measured by the APHA method of the aqueous solution dissolved in water so as to have a concentration of 2% in Example 1 was 55, The polystyrene sulfonic acid which is 110,489,1000 is used. Otherwise, a conductive polymer fine particle dispersion is prepared in the same manner as in Example 1.

(実施例6〜9)
実施例6、実施例7、実施例8、実施例9では、上記実施例1において、濃度が2%となるように水に溶解した水溶液のAPHA法で測定したハーゼン色数がそれぞれ、10、318、800、1000であるポリスチレンスルホン酸アンモニウムをポリアニオンとして用いている。それ以外は実施例1と同様にして導電性高分子微粒子分散体を調製する。
(Examples 6 to 9)
In Example 6, Example 7, Example 8, and Example 9, the Hazen color number measured by the APHA method of the aqueous solution dissolved in water so that the concentration in Example 1 was 2% was 10, Polystyrene anions of 318, 800 and 1000 are used as polyanions. Otherwise, a conductive polymer fine particle dispersion is prepared in the same manner as in Example 1.

(実施例10〜12)
実施例10、実施例11、実施例12では、上記実施例1において、濃度が2%となるように水に溶解した水溶液のAPHA法で測定したハーゼン色数がそれぞれ、10、700、1000であるポリスチレンスルホン酸ナトリウムをポリアニオンとして用いている。それ以外は実施例1と同様にして導電性高分子微粒子分散体を調製する。
(Examples 10 to 12)
In Example 10, Example 11, and Example 12, the Hazen color numbers measured by the APHA method of the aqueous solution dissolved in water so as to have a concentration of 2% in Example 1 were 10, 700, and 1000, respectively. Some sodium polystyrene sulfonate is used as the polyanion. Otherwise, a conductive polymer fine particle dispersion is prepared in the same manner as in Example 1.

(実施例13)
上記実施例1において、濃度が2%となるように水に溶解した水溶液のAPHA法で測定したハーゼン色数が700であるポリスチレンスルホン酸リチウムをポリアニオンとして用いている。それ以外は実施例1と同様にして導電性高分子微粒子分散体を調製する。
(Example 13)
In Example 1 above, lithium polystyrene sulfonate having a Hazen color number of 700 measured by the APHA method of an aqueous solution dissolved in water so as to have a concentration of 2% is used as the polyanion. Otherwise, a conductive polymer fine particle dispersion is prepared in the same manner as in Example 1.

(比較例1、2)
比較例1、比較2では、上記実施例1において、濃度が2%となるように水に溶解した水溶液のAPHA法で測定したハーゼン色数がそれぞれ、8、1030であるポリスチレンスルホン酸を用いている。それ以外は実施例1と同様にして導電性高分子微粒子分散体を調製する。
(Comparative Examples 1 and 2)
In Comparative Example 1 and Comparative Example 2, polystyrene sulfonic acids whose Hazen color numbers measured by the APHA method of an aqueous solution dissolved in water so as to have a concentration of 2% in Example 1 were 8, 1030, respectively. Yes. Otherwise, a conductive polymer fine particle dispersion is prepared in the same manner as in Example 1.

(比較例3、4)
比較例3、比較4では、上記実施例1において、濃度が2%となるように水に溶解した水溶液のAPHA法で測定したハーゼン色数がそれぞれ、5、1240であるポリスチレンスルホン酸アンモニウムを用いている。それ以外は実施例1と同様にして導電性高分子微粒子分散体を調製する。
(Comparative Examples 3 and 4)
In Comparative Example 3 and Comparative Example 4, polystyrene sulfonate ammonium whose Hazen color numbers measured by the APHA method of an aqueous solution dissolved in water so as to have a concentration of 2% are 5, 1240, respectively, in Example 1 above. ing. Otherwise, a conductive polymer fine particle dispersion is prepared in the same manner as in Example 1.

(比較例5)
上記実施例1において、濃度が2%となるように水に溶解した水溶液のAPHA法で測定したハーゼン色数が1050であるポリスチレンスルホン酸ナトリウムをポリアニオンとして用いている。それ以外は実施例1と同様にして導電性高分子微粒子分散体を調製する。
(Comparative Example 5)
In Example 1 described above, sodium polystyrene sulfonate having a Hazen color number of 1050 measured by the APHA method of an aqueous solution dissolved in water so as to have a concentration of 2% is used as the polyanion. Otherwise, a conductive polymer fine particle dispersion is prepared in the same manner as in Example 1.

(比較例6)
上記実施例1において、濃度が2%となるように水に溶解した水溶液のAPHA法で測定したハーゼン色数が8であるポリスチレンスルホン酸リチウムをポリアニオンとして用いている。それ以外は実施例1と同様にして導電性高分子微粒子分散体を調製する。
(Comparative Example 6)
In Example 1 above, lithium polystyrene sulfonate having an Hazen color number of 8 measured by the APHA method of an aqueous solution dissolved in water so as to have a concentration of 2% is used as the polyanion. Otherwise, a conductive polymer fine particle dispersion is prepared in the same manner as in Example 1.

上記手順で得られた導電性高分子微粒子分散体は、ポリスチレンスルホン酸をドーパントとするポリ3,4−エチレンジオキシチオフェンを含んでいる。そこで、得られた導電性高分子微粒子分散体を蒸留水で洗浄ろ過した後、ポリ3,4−エチレンジオキシチオフェンの濃度を2.5%に調整する。この分散体をコンデンサ素子10に含浸させて固体電解質層5を形成し、定格電圧35V、静電容量47μFの巻回形電解コンデンサを作製する。   The conductive polymer fine particle dispersion obtained by the above procedure contains poly 3,4-ethylenedioxythiophene having polystyrene sulfonic acid as a dopant. Therefore, after washing and filtering the obtained conductive polymer fine particle dispersion with distilled water, the concentration of poly3,4-ethylenedioxythiophene is adjusted to 2.5%. Capacitor element 10 is impregnated with this dispersion to form solid electrolyte layer 5 to produce a wound electrolytic capacitor with a rated voltage of 35 V and a capacitance of 47 μF.

(表1)は、各実施例および各比較例による導電性高分子微粒子分散体を用いて作製された電解コンデンサのESRの値を示している。   (Table 1) shows the ESR value of the electrolytic capacitor produced using the conductive polymer fine particle dispersion according to each example and each comparative example.

Figure 2014198827
Figure 2014198827

実施例1〜5では濃度が2%となるように水に溶解した水溶液の、APHA法で測定したハーゼン色数が10以上、1000以下のポリスチレンスルホン酸をポリアニオンとして用いている。(表1)に示すように、実施例1〜5では、電解コンデンサのESRが28.5〜32.0mΩとなっている。   In Examples 1 to 5, polystyrene sulfonic acid having a Hazen color number of 10 or more and 1000 or less as measured by the APHA method in an aqueous solution dissolved in water so as to have a concentration of 2% is used as the polyanion. As shown in (Table 1), in Examples 1 to 5, the ESR of the electrolytic capacitor is 28.5 to 32.0 mΩ.

一方、比較例1、比較例2では、ハーゼン色数がそれぞれ8、1030であるポリスチレンスルホン酸を用いている。(表1)に示すように、比較例1、比較例2では、電解コンデンサのESRはそれぞれ、45.8mΩ、40.0mΩとなっており、実施例1〜5に比較してESRが顕著に高くなっている。   On the other hand, in Comparative Examples 1 and 2, polystyrene sulfonic acids having Hazen color numbers of 8 and 1030 are used. As shown in (Table 1), in Comparative Example 1 and Comparative Example 2, the ESR of the electrolytic capacitors is 45.8 mΩ and 40.0 mΩ, respectively, and the ESR is remarkable compared to Examples 1-5. It is high.

実施例6〜9では濃度が2%となるように水に溶解した水溶液の、APHA法で測定したハーゼン色数が10以上、1000以下のポリスチレンスルホン酸アンモニウムをポリアニオンとして用いている。(表1)に示すように、実施例6〜9では、電解コンデンサのESRが28.8〜32.2mΩとなっている。   In Examples 6 to 9, polystyrene sulfonate ammonium having a Hazen color number of 10 or more and 1000 or less as measured by the APHA method in an aqueous solution dissolved in water so as to have a concentration of 2% is used as the polyanion. As shown in (Table 1), in Examples 6 to 9, the ESR of the electrolytic capacitor is 28.8 to 32.2 mΩ.

一方、比較例3、比較例4では、ハーゼン色数がそれぞれ5、1240であるポリスチレンスルホン酸アンモニウムを用いている。(表1)に示すように、比較例3、比較例4では、電解コンデンサのESRがそれぞれ、47.0mΩ、43.4mΩとなっており、実施例6〜9に比較してESRが顕著に高くなっている。   On the other hand, Comparative Example 3 and Comparative Example 4 use polystyrene sulfonate ammonium having Hazen color numbers of 5 and 1240, respectively. As shown in (Table 1), in Comparative Example 3 and Comparative Example 4, the ESR of the electrolytic capacitor is 47.0 mΩ and 43.4 mΩ, respectively, and the ESR is remarkable compared to Examples 6-9. It is high.

実施例10〜12では濃度が2%となるように水に溶解した水溶液の、APHA法で測定したハーゼン色数が10以上、1000以下のポリスチレンスルホン酸ナトリウムをポリアニオンとして用いている。(表1)に示すように、実施例10〜12では、電解コンデンサのESRが29.5〜32.3mΩとなっている。   In Examples 10 to 12, sodium polystyrene sulfonate having a Hazen color number of 10 or more and 1000 or less as measured by the APHA method in an aqueous solution dissolved in water so as to have a concentration of 2% is used as the polyanion. As shown in Table 1, in Examples 10 to 12, the ESR of the electrolytic capacitor is 29.5 to 32.3 mΩ.

一方、比較例5では、ハーゼン色数が1050であるポリスチレンスルホン酸ナトリウムを用いている。(表1)に示すように、比較例5では、電解コンデンサのESRが、40.6mΩとなっており、実施例10〜12に比較してESRが顕著に高くなっている。   On the other hand, Comparative Example 5 uses sodium polystyrene sulfonate having a Hazen color number of 1050. As shown in (Table 1), in Comparative Example 5, the ESR of the electrolytic capacitor is 40.6 mΩ, and the ESR is significantly higher than that of Examples 10-12.

実施例13では濃度が2%となるように水に溶解した水溶液の、APHA法で測定したハーゼン色数が700のポリスチレンスルホン酸リチウムをポリアニオンとして用いている。(表1)に示すように、実施例13では、電解コンデンサのESRが29.7mΩとなっている。   In Example 13, lithium polystyrene sulfonate having a Hazen color number of 700 measured by the APHA method in an aqueous solution dissolved in water so as to have a concentration of 2% is used as the polyanion. As shown in (Table 1), in Example 13, the ESR of the electrolytic capacitor is 29.7 mΩ.

一方、比較例6では、ハーゼン色数が8であるポリスチレンスルホン酸リチウムを用いている。(表1)に示すように、比較例6では、電解コンデンサのESRが47.7mΩとなっており、実施例13に比較してESRが顕著に高くなっている。   On the other hand, Comparative Example 6 uses lithium polystyrene sulfonate having a Hazen color number of 8. As shown in Table 1, in Comparative Example 6, the ESR of the electrolytic capacitor is 47.7 mΩ, and the ESR is significantly higher than that of Example 13.

以上のように、ポリアニオンとして、濃度が2%となるように水に溶解した水溶液の、APHA法で測定したハーゼン色数が10以上、1000以下であるポリスチレンスルホン酸またはその塩を用いることで、電解コンデンサのESRを低減できることがわかる。また塩をポリアニオンとして用いる場合、カチオンは特に限定されないことがわかる。   As described above, by using polystyrene sulfonic acid or a salt thereof having a Hazen color number of 10 or more and 1000 or less as measured by the APHA method of an aqueous solution dissolved in water so as to have a concentration of 2% as a polyanion, It can be seen that the ESR of the electrolytic capacitor can be reduced. Moreover, when using a salt as a polyanion, it turns out that a cation is not specifically limited.

なお、本実施の形態では、アルミニウム箔を電極とする巻回型の固体電解コンデンサを例に説明したが、本発明はこれに限定されない。本実施の形態の製造方法によって得られた導電性高分子微粒子分散体は、アルミニウム以外の弁金属箔を電極とする巻回型の固体電解コンデンサ、積層型の電解コンデンサ、陽極体に弁金属の焼結体を用いた電解コンデンサ、或いは固体電解質とともに電解液を用いたハイブリッドタイプの電解コンデンサなどにも適用できる。   In this embodiment, the winding type solid electrolytic capacitor using an aluminum foil as an electrode has been described as an example. However, the present invention is not limited to this. The conductive polymer fine particle dispersion obtained by the manufacturing method of the present embodiment includes a wound solid electrolytic capacitor having a valve metal foil other than aluminum as an electrode, a laminated electrolytic capacitor, and an anode body made of a valve metal. The present invention can also be applied to an electrolytic capacitor using a sintered body, or a hybrid type electrolytic capacitor using an electrolyte together with a solid electrolyte.

また、実施例1〜13に記載した材料、製造方法、評価手段は発明を説明するための一例であり、これらに限られるものではない。   Moreover, the material, the manufacturing method, and evaluation means which were described in Examples 1-13 are examples for demonstrating invention, and are not restricted to these.

本発明は、導電性高分子微粒子分散体を使用する電解コンデンサ等に有用である。   The present invention is useful for an electrolytic capacitor using a conductive polymer fine particle dispersion.

1 陽極
2 陰極
3 誘電体酸化皮膜層
4 セパレータ
5 固体電解質層
10 コンデンサ素子
11,12 リード端子
13 封口材
14 ケース
DESCRIPTION OF SYMBOLS 1 Anode 2 Cathode 3 Dielectric oxide film layer 4 Separator 5 Solid electrolyte layer 10 Capacitor element 11, 12 Lead terminal 13 Sealing material 14 Case

Claims (2)

π共役構造を有するモノマーとポリアニオンと溶媒と含む分散液を調整し、その後、前記モノマーを酸化重合させることにより導電性高分子微粒子分散体を調製する導電性高分子微粒子分散体の製造方法であって、
前記ポリアニオンは、濃度が2%となるように前記ポリアニオンを水に溶解した水溶液の色相がAPHA法で測定したハーゼン色数で10以上1000以下である、ポリスチレンスルホン酸及びその塩の少なくとも一方を含むことを特徴とする、
導電性高分子微粒子分散体の製造方法。
A method for producing a conductive polymer fine particle dispersion, comprising preparing a dispersion containing a monomer having a π-conjugated structure, a polyanion, and a solvent, and then preparing a conductive polymer fine particle dispersion by oxidative polymerization of the monomer. And
The polyanion includes at least one of polystyrene sulfonic acid and a salt thereof, wherein the hue of an aqueous solution in which the polyanion is dissolved in water so as to have a concentration of 2% is 10 to 1000 in terms of Hazen color number measured by the APHA method. It is characterized by
A method for producing a conductive polymer fine particle dispersion.
誘電体層を有する陽極体と
導電性高分子の固体電解質層とを含む電解コンデンサの製造方法であって、
前記固体電解質層は、請求項1に記載の製造方法により得られる導電性高分子微粒子分散体により形成することを特徴とする、
電解コンデンサの製造方法。
A method for producing an electrolytic capacitor comprising an anode body having a dielectric layer and a solid electrolyte layer of a conductive polymer,
The solid electrolyte layer is formed of a conductive polymer fine particle dispersion obtained by the production method according to claim 1,
Manufacturing method of electrolytic capacitor.
JP2014016551A 2014-01-31 2014-01-31 Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion Active JP5948592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014016551A JP5948592B2 (en) 2014-01-31 2014-01-31 Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014016551A JP5948592B2 (en) 2014-01-31 2014-01-31 Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013549629A Division JP5476618B1 (en) 2013-03-29 2013-03-29 Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion

Publications (2)

Publication Number Publication Date
JP2014198827A true JP2014198827A (en) 2014-10-23
JP5948592B2 JP5948592B2 (en) 2016-07-06

Family

ID=52355935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014016551A Active JP5948592B2 (en) 2014-01-31 2014-01-31 Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion

Country Status (1)

Country Link
JP (1) JP5948592B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296838A (en) * 1992-04-16 1993-11-12 Nippon Steel Chem Co Ltd Measuring method of hazen color number
JP2010541260A (en) * 2007-10-08 2010-12-24 エイチ・シー・スタルク・クレビオス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for manufacturing electrolytic capacitor having polymer intermediate layer
JP2011109024A (en) * 2009-11-20 2011-06-02 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
WO2011068026A1 (en) * 2009-12-04 2011-06-09 テイカ株式会社 Conductive polymer and solid-electrolyte capacitor including same as solid electrolyte
JP2011124544A (en) * 2009-09-30 2011-06-23 Hc Starck Clevios Gmbh Monomer of selected color number and capacitor prepared therefrom
WO2013035548A1 (en) * 2011-09-06 2013-03-14 テイカ株式会社 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
JP2013249442A (en) * 2012-06-04 2013-12-12 Jfe Chemical Corp Electroconductive polymer dispersion and method for producing the same
JP5476618B1 (en) * 2013-03-29 2014-04-23 パナソニック株式会社 Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296838A (en) * 1992-04-16 1993-11-12 Nippon Steel Chem Co Ltd Measuring method of hazen color number
JP2010541260A (en) * 2007-10-08 2010-12-24 エイチ・シー・スタルク・クレビオス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for manufacturing electrolytic capacitor having polymer intermediate layer
JP2011124544A (en) * 2009-09-30 2011-06-23 Hc Starck Clevios Gmbh Monomer of selected color number and capacitor prepared therefrom
JP2011109024A (en) * 2009-11-20 2011-06-02 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
WO2011068026A1 (en) * 2009-12-04 2011-06-09 テイカ株式会社 Conductive polymer and solid-electrolyte capacitor including same as solid electrolyte
WO2013035548A1 (en) * 2011-09-06 2013-03-14 テイカ株式会社 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
JP2013249442A (en) * 2012-06-04 2013-12-12 Jfe Chemical Corp Electroconductive polymer dispersion and method for producing the same
JP5476618B1 (en) * 2013-03-29 2014-04-23 パナソニック株式会社 Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11756746B2 (en) 2018-08-10 2023-09-12 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11791106B2 (en) 2018-08-10 2023-10-17 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing polyaniline
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier

Also Published As

Publication number Publication date
JP5948592B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5476618B1 (en) Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion
JP5948592B2 (en) Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion
JP5978468B2 (en) Conductive polymer fine particle dispersion, electrolytic capacitor using the same, and production method thereof
JP5978469B2 (en) Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion
JP5978467B2 (en) Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion
JP4454042B2 (en) Dispersion liquid of conductive composition, conductive composition, and solid electrolytic capacitor
US9466432B2 (en) Process for producing solution having electrically conductive polymer dispersed therein, and electrolytic capacitor
KR102459578B1 (en) Solid Electrolytic Capacitors and Methods for Manufacturing Solid Electrolytic Capacitors
JP6589142B2 (en) Electrolytic capacitor manufacturing method
JP6183835B2 (en) Method for producing conductive polymer dispersion
JP2017045868A (en) Electrolytic capacitor
JP2012246427A (en) Conductive polymer, conductive polymer aqueous solution, conductive polymer film, solid electrolytic capacitor and method for producing the same
CN107533920A (en) Electrolytic capacitor and its manufacture method
US10304634B2 (en) Electrolytic capacitor
JP2023032653A (en) Capacitor and manufacturing method for the same
JP2021190654A (en) Manufacturing method of positive electrode for capacitor, and manufacturing method of capacitor
JP2020047755A (en) Method for manufacturing solid electrolytic capacitor
JP2018166145A (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R151 Written notification of patent or utility model registration

Ref document number: 5948592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151