JP2014196765A - Slide member and slide bearing - Google Patents

Slide member and slide bearing Download PDF

Info

Publication number
JP2014196765A
JP2014196765A JP2013072020A JP2013072020A JP2014196765A JP 2014196765 A JP2014196765 A JP 2014196765A JP 2013072020 A JP2013072020 A JP 2013072020A JP 2013072020 A JP2013072020 A JP 2013072020A JP 2014196765 A JP2014196765 A JP 2014196765A
Authority
JP
Japan
Prior art keywords
layer
coarse
dense
sliding member
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013072020A
Other languages
Japanese (ja)
Other versions
JP6091962B2 (en
Inventor
仁志 和田
Hitoshi Wada
仁志 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2013072020A priority Critical patent/JP6091962B2/en
Publication of JP2014196765A publication Critical patent/JP2014196765A/en
Application granted granted Critical
Publication of JP6091962B2 publication Critical patent/JP6091962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology capable of inexpensively achieving conformability and resistance to fatigue fracture.SOLUTION: In a slide member and a slide bearing, a coating layer having a sliding surface where an opposite material slides is formed on a base layer of the slide member. The coating layer includes a coarse layer that is formed of a crystal of a coating material and that has a thickness of 2 μm or more, and a dense layer that is formed of a crystal of a coating material having crystal grains denser than crystal grains of the coarse layer and that has a thickness of 1 μm or less.

Description

本発明は、摺動面にて相手軸が摺動する摺動部材およびすべり軸受に関する。   The present invention relates to a sliding member and a plain bearing in which a mating shaft slides on a sliding surface.

Cu合金上にBiの被覆層を形成し、当該被覆層上において相手材を摺動させる技術が知られている(特許文献1、参照。)。特許文献1において、Biの被覆層の下層にAgの中間層を形成している。これにより、Biによるなじみ性を向上させるとともに、Agによって疲労破壊を防止できる。   A technique is known in which a Bi coating layer is formed on a Cu alloy, and a mating material is slid on the coating layer (see Patent Document 1). In Patent Document 1, an Ag intermediate layer is formed under the Bi coating layer. Thereby, the conformability by Bi can be improved, and fatigue failure can be prevented by Ag.

特開2006−266445号公報JP 2006-266445 A

しかしながら、特許文献1において、BiとAgとで被覆層を形成しなければならず、製造コストが増大するという問題があった。
本発明は、前記課題にかんがみてなされたもので、低コストでなじみ性と疲労破壊の耐性とが実現できる技術を提供することを目的とする。
However, in Patent Document 1, there is a problem that a coating layer has to be formed with Bi and Ag, and the manufacturing cost increases.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of realizing conformability and fatigue fracture resistance at low cost.

前記の目的を達成するため、本発明の摺動部材およびすべり軸受において、基層上に、相手材が摺動する摺動面を有する被覆層が形成される。この被覆層は、被覆材料の結晶によって形成され、厚みが2μm以上の粗大層と、粗大層よりも結晶粒が緻密な被覆材料の結晶で形成され、厚みが1μm以下の緻密層とを備える。被覆材料の粗大な結晶で形成された粗大層は、緻密層よりも軟らかいため、粗大層によって良好ななじみ性を実現できる。被覆材料の緻密な結晶で形成された緻密層は、粗大層よりも硬いため、緻密層によって良好な疲労破壊の耐性を実現できる。緻密層と粗大層とを同一の被覆材料で形成できるため、低コストでなじみ性と疲労破壊の耐性とが実現できる。また、粗大層の厚みを2μm以上とし、緻密層の厚みを1μm以下とすることにより、被覆層が不均一に摩耗した場合に、粗大層と緻密層とを同時に相手材側に露出させることができ、粗大層による良好ななじみ性と、緻密層による良好な疲労破壊の耐性とを両立させることができる。また、粗大層と緻密層との界面において大きさの異なる結晶粒の境界を形成することができ、疲労破壊が粗大層と緻密層との界面を貫通することを防止できる。   In order to achieve the above object, in the sliding member and the sliding bearing of the present invention, a coating layer having a sliding surface on which the counterpart material slides is formed on the base layer. The coating layer is formed of a crystal of the coating material, and includes a coarse layer having a thickness of 2 μm or more and a dense layer having a crystal grain finer than the coarse layer and having a thickness of 1 μm or less. Since the coarse layer formed of coarse crystals of the coating material is softer than the dense layer, good conformability can be realized by the coarse layer. Since the dense layer formed of the dense crystal of the coating material is harder than the coarse layer, the dense layer can realize good fatigue fracture resistance. Since the dense layer and the coarse layer can be formed of the same coating material, the conformability and the resistance to fatigue fracture can be realized at a low cost. Moreover, when the thickness of the coarse layer is 2 μm or more and the thickness of the dense layer is 1 μm or less, when the coating layer is worn unevenly, the coarse layer and the dense layer can be exposed to the counterpart material side at the same time. It is possible to achieve both good conformability by the coarse layer and good fatigue fracture resistance by the dense layer. In addition, crystal grain boundaries having different sizes can be formed at the interface between the coarse layer and the dense layer, and fatigue fracture can be prevented from penetrating the interface between the coarse layer and the dense layer.

また、粗大層は、厚み方向において2層の緻密層によって挟まれてもよい。これにより、摺動面側の緻密層が摩耗した場合でも、基層側の緻密層が存在することにより、疲労破壊の耐性を維持できる。   The coarse layer may be sandwiched between two dense layers in the thickness direction. Thereby, even when the dense layer on the sliding surface side is worn, the presence of the dense layer on the base layer side can maintain the resistance to fatigue fracture.

摺動部材の斜視図である。It is a perspective view of a sliding member. (2A),(2B)は摺動部材の断面模式図である。(2A) and (2B) are schematic cross-sectional views of the sliding member.

ここでは、下記の順序に従って本発明の実施の形態について説明する。
(1)第1実施形態:
(1−1)摺動部材の構成:
(1−2)計測方法:
(1−3)摺動部材の製造方法:
(2)他の実施形態:
Here, embodiments of the present invention will be described in the following order.
(1) First embodiment:
(1-1) Configuration of sliding member:
(1-2) Measuring method:
(1-3) Manufacturing method of sliding member:
(2) Other embodiments:

(1)第1実施形態:
(1−1)摺動部材の構成:
図1は、本発明の一実施形態にかかる摺動部材1の斜視図である。摺動部材1は、裏金10とライニング11とオーバーレイ12とを含む。摺動部材1は、中空状の円筒を直径方向に2等分した半割形状の金属部材であり、断面が半円弧状となっている。2個の摺動部材1が円筒状になるように組み合わせることにより、すべり軸受Aが形成される。すべり軸受Aは内部に形成される中空部分にて円柱状の相手軸2(エンジンのクランクシャフト)を軸受けする。相手軸2の外径はすべり軸受Aの内径よりもわずかに小さく形成されている。相手軸2の外周面と、すべり軸受Aの内周面との間に形成される隙間に潤滑油(エンジンオイル)が供給される。その際に、すべり軸受Aの内周面上を相手軸2の外周面が摺動する。
(1) First embodiment:
(1-1) Configuration of sliding member:
FIG. 1 is a perspective view of a sliding member 1 according to an embodiment of the present invention. The sliding member 1 includes a back metal 10, a lining 11, and an overlay 12. The sliding member 1 is a half-divided metal member obtained by dividing a hollow cylinder into two equal parts in the diameter direction and has a semicircular cross section. The sliding bearing A is formed by combining the two sliding members 1 into a cylindrical shape. The slide bearing A supports a cylindrical mating shaft 2 (engine crankshaft) in a hollow portion formed inside. The outer diameter of the mating shaft 2 is formed slightly smaller than the inner diameter of the slide bearing A. Lubricating oil (engine oil) is supplied to a gap formed between the outer peripheral surface of the counterpart shaft 2 and the inner peripheral surface of the slide bearing A. At that time, the outer peripheral surface of the mating shaft 2 slides on the inner peripheral surface of the slide bearing A.

摺動部材1は、曲率中心から遠い順に、裏金10とライニング11とオーバーレイ12とが順に積層された構造を有する。従って、裏金10が摺動部材1の最外層を構成し、オーバーレイ12が摺動部材1の最内層を構成する。裏金10とライニング11とオーバーレイ12とは、それぞれ円周方向において一定の厚みを有している。裏金10の厚みは1.3mmであり、ライニング11の厚みは0.2mmであり、オーバーレイ12の厚みは12μmである。オーバーレイ12の曲率中心側の表面の半径(摺動部材1の内径)40mmである。以下、内側とは摺動部材1の曲率中心側を意味し、外側とは摺動部材1の曲率中心と反対側を意味することとする。オーバーレイ12の内側の表面は、相手軸2の摺動面を構成する。   The sliding member 1 has a structure in which a back metal 10, a lining 11, and an overlay 12 are stacked in order from the center of curvature. Therefore, the back metal 10 constitutes the outermost layer of the sliding member 1, and the overlay 12 constitutes the innermost layer of the sliding member 1. The back metal 10, the lining 11 and the overlay 12 each have a constant thickness in the circumferential direction. The back metal 10 has a thickness of 1.3 mm, the lining 11 has a thickness of 0.2 mm, and the overlay 12 has a thickness of 12 μm. The radius of the surface on the curvature center side of the overlay 12 (inner diameter of the sliding member 1) is 40 mm. Hereinafter, the inside means the center of curvature of the sliding member 1, and the outside means the side opposite to the center of curvature of the sliding member 1. The inner surface of the overlay 12 constitutes the sliding surface of the counterpart shaft 2.

裏金10は、Cを0.15wt%含有し、Mnを0.06wt%含有し、残部がFeからなる鋼で形成されている。なお、裏金10は、ライニング11とオーバーレイ12とを介して相手軸2からの荷重を支持できる材料で形成されればよく、必ずしも鋼で形成されなくてもよい。   The back metal 10 is made of steel containing 0.15 wt% C, 0.06 wt% Mn, and the balance being Fe. In addition, the back metal 10 should just be formed with the material which can support the load from the other party shaft 2 via the lining 11 and the overlay 12, and does not necessarily need to be formed with steel.

ライニング11は、裏金10の内側に積層された層であり、本発明の基層を構成する。ライニング11は、Snを10wt%含有し、Biを8wt%含有し、残部がCuと不可避不純物とからなる。ライニング11の不可避不純物はMg,Ti,B,Pb,Cr等であり、精錬もしくはスクラップにおいて混入する不純物である。不可避不純物の含有量は、全体で1.0wt%以下である。   The lining 11 is a layer laminated on the inner side of the back metal 10 and constitutes the base layer of the present invention. The lining 11 contains 10 wt% of Sn, 8 wt% of Bi, and the balance consists of Cu and inevitable impurities. Inevitable impurities of the lining 11 are Mg, Ti, B, Pb, Cr and the like, and are impurities mixed in refining or scrap. The content of inevitable impurities is 1.0 wt% or less as a whole.

オーバーレイ12は、ライニング11の内側の表面上に積層された層であり、本発明の被覆層を構成する。図2Aは、オーバーレイ12の層構成を説明する断面模式図である。なお、図2Aにおいて、摺動部材1の曲率は無視することとする。本実施形態において、オーバーレイ12は、4層の緻密層12a1〜12a4と、4層の粗大層12b1〜12b4とで構成されている。ライニング11の内側の表面に緻密層12a1が形成され、摺動部材1の内側に向けて、緻密層12a1〜12a4と粗大層12b1〜12b4とが交互に積層されている。緻密層12a1〜12a4および粗大層12b1〜12b4は、それぞれBiを99wt%含有し、残部がBiと不可避不純物とからなる。本実施形態において、緻密層12a1〜12a4を構成するBiの結晶粒の平均粒径は0.5μmであり、粗大層12b1〜12b4を構成するBiの結晶粒の平均粒径は2.5μmであった。緻密層12a1〜12a4は、それぞれ平均厚みが1μmとなっている。粗大層12b1〜12b4は、それぞれ平均厚みが2μmとなっている。   The overlay 12 is a layer laminated on the inner surface of the lining 11 and constitutes the coating layer of the present invention. FIG. 2A is a schematic cross-sectional view illustrating the layer configuration of overlay 12. In FIG. 2A, the curvature of the sliding member 1 is ignored. In the present embodiment, the overlay 12 includes four dense layers 12a1 to 12a4 and four coarse layers 12b1 to 12b4. A dense layer 12 a 1 is formed on the inner surface of the lining 11, and dense layers 12 a 1 to 12 a 4 and coarse layers 12 b 1 to 12 b 4 are alternately laminated toward the inside of the sliding member 1. The dense layers 12a1 to 12a4 and the coarse layers 12b1 to 12b4 each contain 99 wt% Bi, with the balance being Bi and inevitable impurities. In this embodiment, the average grain size of Bi crystal grains constituting the dense layers 12a1 to 12a4 is 0.5 μm, and the average grain diameter of Bi crystal grains constituting the coarse layers 12b1 to 12b4 is 2.5 μm. It was. The dense layers 12a1 to 12a4 each have an average thickness of 1 μm. Each of the coarse layers 12b1 to 12b4 has an average thickness of 2 μm.

図2Bは、オーバーレイ12が摩耗する様子を説明する断面模式図である。同図に示すように、相手軸2がオーバーレイ12の内側の表面上にて摺動することにより、内側の層から順にオーバーレイ12が摩耗していく。例えば、最も内側の粗大層12b4が摩耗して消失した場合でも、2番目に内側の粗大層12b3が存在するため、なじみ性を維持することができる。同様に、最も内側の緻密層12a4が摩耗して消失した場合でも、2番目に内側の緻密層12a3が存在するため、疲労破壊の耐性を維持することができる。   FIG. 2B is a schematic cross-sectional view illustrating how the overlay 12 is worn. As shown in the figure, the overlay 12 wears in order from the inner layer as the counterpart shaft 2 slides on the inner surface of the overlay 12. For example, even when the innermost coarse layer 12b4 is worn away and lost, the second inner coarse layer 12b3 is present, so that the conformability can be maintained. Similarly, even when the innermost dense layer 12a4 is worn away and lost, the second inner dense layer 12a3 is present, so that the resistance to fatigue fracture can be maintained.

なお、相手軸2の形状や相手軸2からの荷重は、オーバーレイ12の面方向において均一であることが理想であるが、現実には製造工程のばらつき等によって、相手軸2の形状や相手軸2からの荷重がオーバーレイ12の面方向において不均一となる。従って、図2Bに示すように、オーバーレイ12における摩耗の進行度合いに不均一さが生じる。オーバーレイ12における摩耗の進行度合いが不均一であるため、緻密層12a1〜12a4のいずれかと粗大層12b1〜12b4のいずれかとを同時に相手軸2側に露出させることができる。従って、オーバーレイ12は、緻密層12a1〜12a4による良好な疲労破壊の耐性と、粗大層12b1〜12b4による良好ななじみ性とを発揮できる。さらに、緻密層12a1〜12a4と粗大層12b1〜12b4とはそれぞれ4層ずつ形成されているため、緻密層12a1〜12a4のいずれかと粗大層12b1〜12b4のいずれかとが同時に相手軸2側に露出する状態を確保できるオーバーレイ12の総厚を厚くすることができる。従って、長期間にわたって、オーバーレイ12の良好な摺動特性を維持できる。さらに、緻密層12a1〜12a4と粗大層12b1〜12b4との界面を複数形成することができるため、当該複数の界面を貫通するような破壊を抑制できる。   It should be noted that the shape of the mating shaft 2 and the load from the mating shaft 2 are ideally uniform in the surface direction of the overlay 12, but in reality, the shape of the mating shaft 2 and the mating shaft are due to variations in the manufacturing process. 2 is non-uniform in the surface direction of the overlay 12. Therefore, as shown in FIG. 2B, non-uniformity occurs in the progress of wear in the overlay 12. Since the progress of wear in the overlay 12 is non-uniform, any one of the dense layers 12a1 to 12a4 and any one of the coarse layers 12b1 to 12b4 can be exposed to the counterpart shaft 2 side at the same time. Therefore, the overlay 12 can exhibit good fatigue fracture resistance due to the dense layers 12a1 to 12a4 and good conformability due to the coarse layers 12b1 to 12b4. Furthermore, since each of the dense layers 12a1 to 12a4 and the coarse layers 12b1 to 12b4 is formed in four layers, either the dense layers 12a1 to 12a4 and any of the coarse layers 12b1 to 12b4 are exposed to the opposite shaft 2 side at the same time. The total thickness of the overlay 12 that can ensure the state can be increased. Therefore, good sliding characteristics of the overlay 12 can be maintained over a long period of time. Furthermore, since a plurality of interfaces between the dense layers 12a1 to 12a4 and the coarse layers 12b1 to 12b4 can be formed, it is possible to suppress breakage that penetrates the plurality of interfaces.

(1−2)計測方法:
上述した実施形態において示した各数値を以下の手法によって計測した。 摺動部材1の各層を構成する元素の質量は、ICP発光分光分析装置(島津社製ICPS−8100)によって計測した。
(1-2) Measuring method:
Each numerical value shown in the embodiment described above was measured by the following method. The mass of the elements constituting each layer of the sliding member 1 was measured with an ICP emission spectroscopic analyzer (ICPS-8100 manufactured by Shimadzu Corporation).

ライニング11におけるBi粒子11bの平均円相当径を以下の手順によって計測した。まず、ライニング11の任意の断面(相手軸2の回転軸方向に垂直な方向に限らない)を粒子径2μmのアルミナ粒子で研磨した。ライニング11の断面のうち面積が0.02mm2となる任意の観察視野範囲(縦0.1mm×横0.2mmの矩形範囲)を電子顕微鏡(日本電子製 JSM−6610A)によって500倍で撮影することにより、観察画像(反射電子像)の画像データを得た。そして、観察画像を画像解析装置(ニレコ社製 ルーゼックスII)に入力し、観察画像に存在するBi粒子11bの像を抽出した。Bi粒子11bの像の外縁にはエッジ(明度や彩度や色相角が所定値以上異なる境界)が存在する。そこで、画像解析装置によって、エッジによって閉じられた領域をBi粒子11bの像として観察画像から抽出した。 The average equivalent circle diameter of the Bi particles 11b in the lining 11 was measured by the following procedure. First, an arbitrary cross section of the lining 11 (not limited to a direction perpendicular to the rotation axis direction of the counterpart shaft 2) was polished with alumina particles having a particle diameter of 2 μm. An arbitrary observation visual field range (rectangular range of 0.1 mm length × 0.2 mm width) having an area of 0.02 mm 2 in the cross section of the lining 11 is photographed at 500 times with an electron microscope (JSM-6610A manufactured by JEOL Ltd.). As a result, image data of an observation image (reflection electron image) was obtained. Then, the observation image was input to an image analysis device (Lusex II manufactured by Nireco Corporation), and an image of Bi particles 11b present in the observation image was extracted. Edges (boundaries that differ in brightness, saturation, and hue angle by a predetermined value or more) exist at the outer edge of the image of the Bi particles 11b. Therefore, the region closed by the edge is extracted from the observation image as an image of the Bi particles 11b by the image analysis device.

そして、Bi粒子11bの像を観察画像から抽出し、画像解析装置によって、観察視野範囲に存在するすべてのBi粒子11bの像について投影面積円相当径(計測パラメータ:HEYWOOD)を計測した。投影面積円相当径とは、Bi粒子11bの断面積と等しい面積を有する円の直径であり、Bi粒子11bの像の面積と等しい面積を有する円の直径を倍率に基づいて現実の長さに換算した直径である。さらに、すべてのBi粒子11bの投影面積円相当径の算術平均値(合計値/粒子数)を平均円相当径として計測した。さらに、Bi粒子11bの平均円相当径と等しい直径を有する円の面積に、観察視野範囲に存在するBi粒子11bの個数を乗算することにより、ライニング11の断面上に存在するBi粒子11bの総面積を算出した。そして、Bi粒子11bの総面積を観察視野範囲の面積で除算することにより、Bi粒子11bの面積割合を計測した。なお、投影面積円相当径が1.0μm未満の場合、投影面積円相当径の信頼度や物質の特定の信頼度が低くなるため、Bi粒子11bの平均円相当径等を算出する際に考慮しないこととした。   Then, an image of the Bi particle 11b was extracted from the observation image, and the projected area circle equivalent diameter (measurement parameter: HEYWOOD) was measured for all the Bi particle 11b images existing in the observation visual field range by the image analysis apparatus. The projected area equivalent circle diameter is a diameter of a circle having an area equal to the cross-sectional area of the Bi particle 11b, and the diameter of a circle having an area equal to the area of the image of the Bi particle 11b is set to an actual length based on the magnification. The converted diameter. Furthermore, the arithmetic average value (total value / number of particles) of the projected area equivalent circle diameter of all the Bi particles 11b was measured as the average equivalent circle diameter. Further, by multiplying the area of a circle having a diameter equal to the average equivalent circle diameter of the Bi particles 11b by the number of Bi particles 11b existing in the observation visual field range, the total number of Bi particles 11b existing on the cross section of the lining 11 is obtained. The area was calculated. Then, the area ratio of the Bi particles 11b was measured by dividing the total area of the Bi particles 11b by the area of the observation visual field range. Note that when the projected area equivalent circle diameter is less than 1.0 μm, the reliability of the projected area equivalent circle diameter and the specific reliability of the substance are low, so it is considered when calculating the average equivalent circle diameter of the Bi particles 11b. I decided not to.

各層の厚みは、以下の手順で計測した。まず、摺動部材1の直径方向の断面をクロスセクションポリッシャ(日本電子製 IB−09010CP)で研磨した。そして、摺動部材1の断面を電子顕微鏡(日本電子製 JSM−6610A)によって7000倍の倍率で撮影することにより、観察画像(反射電子像)の画像データを得た。そして、観察画像を画像解析装置(ニレコ社製 ルーゼックスII)に入力し、各層の膜面積を測定長さ(横)で微分(除)して膜厚を計測した。   The thickness of each layer was measured by the following procedure. First, the cross section in the diameter direction of the sliding member 1 was polished with a cross section polisher (IB-09010CP manufactured by JEOL). And the image data of the observation image (reflected electron image) was obtained by image | photographing the cross section of the sliding member 1 with a magnification of 7000 times with an electron microscope (JEOL JSM-6610A). Then, the observation image was input to an image analysis apparatus (Lusex II manufactured by Nireco), and the film area of each layer was differentiated (divided) by the measurement length (lateral) to measure the film thickness.

緻密層12a1〜12a4と粗大層12b1〜12b4におけるBiの結晶粒の平均粒径を以下の手順によって計測した。まず、オーバーレイ12の任意の断面をクロスセクションポリッシャ(日本電子製 IB−09010CP)で研磨した。緻密層12a1〜12a4または粗大層12b1〜12b4の断面のうち面積が0.02mm2となる任意の観察視野範囲(縦0.1mm×横0.2mmの矩形範囲)を電子顕微鏡(日本電子製 JSM−6610A)によって7000倍の倍率で撮影することにより、観察画像(反射電子像)の画像データを得た。そして、観察画像において切片法を行うことにより、Biの結晶粒の粒径を計測した。さらに、すべてのBiの結晶粒の粒径の算術平均値(合計値/粒子数)を平均粒径として計測した。なお、粒径が0.15μm未満の場合、粒径の信頼度が低くなるため、結晶粒の平均粒径を算出する際に考慮しないこととした。 The average grain size of Bi crystal grains in the dense layers 12a1 to 12a4 and the coarse layers 12b1 to 12b4 was measured by the following procedure. First, an arbitrary cross section of the overlay 12 was polished with a cross section polisher (IB-09010CP manufactured by JEOL). An arbitrary observation visual field range (rectangular range of 0.1 mm length × 0.2 mm width) having an area of 0.02 mm 2 in the cross section of the dense layers 12a1 to 12a4 or the coarse layers 12b1 to 12b4 is obtained with an electron microscope (JSM JSM The image data of the observation image (reflected electron image) was obtained by photographing at a magnification of 7000 times by −6610A). And the particle size of the crystal grain of Bi was measured by performing the section method in an observation image. Furthermore, the arithmetic average value (total value / number of particles) of the particle diameters of all Bi crystal grains was measured as the average particle diameter. In addition, since the reliability of a particle size will become low when a particle size is less than 0.15 micrometer, it was decided not to consider when calculating the average particle size of a crystal grain.

(1−3)摺動部材の製造方法:
まず、裏金10と同じ厚みを有する低炭素鋼の平面板を用意した。
次に、低炭素鋼で形成された平面板上に、ライニング11を構成する材料の粉末を散布した。具体的に、上述したライニング11における各成分の質量比となるように、Cuの粉末とBiの粉末とSnの粉末とを低炭素鋼の平面板上に散布した。ライニング11における各成分の質量比が満足できればよく、Cu−Bi,Cu−Sn等の合金粉末を低炭素鋼の平面板上に散布してもよい。粉末の粒径は、試験用ふるい(JIS Z8801)によって150μm以下に調整した。
(1-3) Manufacturing method of sliding member:
First, a flat plate of low carbon steel having the same thickness as the back metal 10 was prepared.
Next, the powder of the material which comprises the lining 11 was sprayed on the plane board formed with the low carbon steel. Specifically, Cu powder, Bi powder, and Sn powder were dispersed on a flat plate of low-carbon steel so that the mass ratio of each component in the lining 11 described above was obtained. As long as the mass ratio of each component in the lining 11 can be satisfied, alloy powders such as Cu-Bi and Cu-Sn may be dispersed on a flat plate of low carbon steel. The particle size of the powder was adjusted to 150 μm or less using a test sieve (JIS Z8801).

次に、低炭素鋼の平面板と、当該平面板上に散布した粉末とを焼結した。焼結温度を700〜1000℃に制御し、不活性雰囲気中で焼結した。焼結後、冷却した。   Next, the flat plate of low carbon steel and the powder spread on the flat plate were sintered. Sintering temperature was controlled at 700-1000 degreeC, and it sintered in inert atmosphere. After sintering, it was cooled.

冷却が完了すると、低炭素鋼の平面板上にCu合金層が形成される。このCu合金層には、冷却中に析出した軟質のBi粒子11bが含まれることとなる。
次に、中空状の円筒を直径方向に2等分した形状となるように、Cu合金層が形成された低炭素鋼をプレス加工した。このとき、低炭素鋼の外径が摺動部材1の外径と一致するようにプレス加工した。
When cooling is completed, a Cu alloy layer is formed on the flat plate of low carbon steel. This Cu alloy layer contains soft Bi particles 11b that have precipitated during cooling.
Next, the low carbon steel on which the Cu alloy layer was formed was pressed so that the hollow cylinder was divided into two equal parts in the diameter direction. At this time, press working was performed so that the outer diameter of the low carbon steel coincided with the outer diameter of the sliding member 1.

次に、裏金10上に形成されたCu合金層の表面を切削加工した。このとき、裏金10上に形成されたCu合金層の厚みがライニング11と同一となるように、切削量を制御した。これにより、切削加工後のCu合金層によってライニング11が形成できる。切削加工は、例えば焼結ダイヤモンドで形成された切削工具材をセットした旋盤によって行った。   Next, the surface of the Cu alloy layer formed on the back metal 10 was cut. At this time, the cutting amount was controlled so that the thickness of the Cu alloy layer formed on the back metal 10 was the same as that of the lining 11. Thereby, the lining 11 can be formed with the Cu alloy layer after cutting. For example, the cutting was performed by a lathe on which a cutting tool material formed of sintered diamond was set.

次に、ライニング11の表面上に被覆材料としてのBiを電気めっきによって1μmの厚みだけ積層することにより、オーバーレイ12のうち最もライニング11側の緻密層12a1を形成した。Biの電気めっきの手順は以下のとおりとした。まず、電解液中にてライニング11の表面に電流を流すことにより、ライニング11の表面を脱脂した。次に、ライニング11の表面を水洗した。さらに、ライニング11の表面を酸洗することにより、不要な酸化物を除去した。その後、ライニング11の表面を、再度、水洗した。以上の前処理が完了すると、めっき浴に浸漬させたライニング11に電流を供給することによりBiの電気めっきを行った。緻密層12a1におけるBiの電気めっきの条件を以下のとおりとした。Bi濃度:10〜50g/L、有機スルホン酸:25〜100g/L、添加剤:0.5〜50g/Lを含むめっき浴の浴組成とした。めっき浴の浴温度は、25℃とした。さらに、ライニング11に供給する電流はデューティー比が50%の矩形パルス電流とし、その平均電流密度は0.2A/dm2とした。 Next, Bi as a coating material was laminated on the surface of the lining 11 to a thickness of 1 μm by electroplating to form the dense layer 12a1 closest to the lining 11 in the overlay 12. The procedure for electroplating Bi was as follows. First, the surface of the lining 11 was degreased by passing an electric current through the surface of the lining 11 in the electrolytic solution. Next, the surface of the lining 11 was washed with water. Furthermore, unnecessary oxides were removed by pickling the surface of the lining 11. Thereafter, the surface of the lining 11 was washed again with water. When the above pretreatment was completed, Bi was electroplated by supplying current to the lining 11 immersed in the plating bath. The conditions for Bi electroplating in the dense layer 12a1 were as follows. The bath composition was a plating bath containing Bi concentration: 10 to 50 g / L, organic sulfonic acid: 25 to 100 g / L, and additive: 0.5 to 50 g / L. The bath temperature of the plating bath was 25 ° C. Furthermore, the current supplied to the lining 11 was a rectangular pulse current with a duty ratio of 50%, and the average current density was 0.2 A / dm 2 .

次に、緻密層12a1の表面上に被覆材料としてのBiを電気めっきによって2μmの厚みだけ積層することにより、オーバーレイ12のうち最もライニング11側の粗大層12b1を形成した。ここでは、緻密層12a1の電気めっきに使用しためっき浴に引き続き浸漬させ、緻密層12a1に平均電流密度が2.0A/dm2であり、デューティー比が50%の矩形パルス電流を供給することにより、粗大層12b1を形成した。すなわち、摺動部材1に供給する矩形パルス電流の振幅を切り替えることにより、緻密層12a1と粗大層12b1とを連続的に形成した。 Next, Bi as a coating material was laminated on the surface of the dense layer 12a1 by a thickness of 2 μm by electroplating to form the coarse layer 12b1 closest to the lining 11 in the overlay 12. Here, the dense layer 12a1 is continuously immersed in the plating bath used to supply a rectangular pulse current having an average current density of 2.0 A / dm 2 and a duty ratio of 50% to the dense layer 12a1. The coarse layer 12b1 was formed. That is, the dense layer 12a1 and the coarse layer 12b1 were continuously formed by switching the amplitude of the rectangular pulse current supplied to the sliding member 1.

さらに、引き続き摺動部材1に供給する矩形パルス電流の振幅を切り替えることにより、残りの緻密層12a2〜12a4(平均電流密度:0.2A/dm2)と粗大層12b2〜12b4(平均電流密度:2.0A/dm2)とを交互に積層した。以上により、緻密層12a1〜12a4と粗大層12b1〜12b4とが交互に積層されたオーバーレイ12が形成できる。オーバーレイ12を積層した後に、水洗と乾燥を行って摺動部材1を完成させた。さらに2個の摺動部材1を円筒状に組み合わせることにより、すべり軸受Aを形成した。 Further, by switching the amplitude of the rectangular pulse current continuously supplied to the sliding member 1, the remaining dense layers 12a2 to 12a4 (average current density: 0.2 A / dm 2 ) and coarse layers 12b2 to 12b4 (average current density: 2.0 A / dm 2 ). As described above, the overlay 12 in which the dense layers 12a1 to 12a4 and the coarse layers 12b1 to 12b4 are alternately stacked can be formed. After laminating the overlay 12, washing and drying were performed to complete the sliding member 1. Furthermore, the sliding bearing A was formed by combining two sliding members 1 in a cylindrical shape.

(2)他の実施形態:
前記実施形態においては、エンジンのクランクシャフトを軸受けするすべり軸受Aを構成する摺動部材1を例示したが、本発明の摺動部材1によって他の用途のすべり軸受Aを形成してもよい。例えば、本発明の摺動部材1によってトランスミッション用のギヤブシュやピストンピンブシュ・ボスブシュ等を形成してもよい。また、ライニング11のマトリクスはCu合金に限られず、相手軸2の硬さに応じてマトリクスの材料が選択されればよい。また、被覆材料はライニング11よりも軟らかい材料であればよく、例えばPb,Sn,Inであってもよい。また、緻密層12a1〜12a4と粗大層12b1〜12b4の厚みは、緻密層12a1〜12a4が1μm以下であり、粗大層12b1〜12b4を2μm以上であればよい。さらに、緻密層12a1〜12a4と粗大層12b1〜12b4の層数もそれぞれ4層でなくてもよく、ライニング11上に最初に粗大層12b1が積層されてもよい。なじみ性と疲労破壊の耐性とを両立させるために、緻密層12a1〜12a4を構成するBiの結晶粒の平均粒径が0.7μm以下となり、粗大層12b1〜12b4を構成するBiの結晶粒の平均粒径が2μm以上となるようにすればよく、緻密層12a1〜12a4と粗大層12b1〜12b4は電気めっき以外の手法によって形成されてもよい。
(2) Other embodiments:
In the above-described embodiment, the sliding member 1 constituting the sliding bearing A for bearing the crankshaft of the engine has been illustrated. However, the sliding bearing 1 for other applications may be formed by the sliding member 1 of the present invention. For example, a transmission gear bush, a piston pin bush, a boss bush, or the like may be formed by the sliding member 1 of the present invention. Further, the matrix of the lining 11 is not limited to the Cu alloy, and a matrix material may be selected according to the hardness of the counterpart shaft 2. Moreover, the coating material should just be a material softer than the lining 11, for example, may be Pb, Sn, In. The dense layers 12a1 to 12a4 and the coarse layers 12b1 to 12b4 may have thicknesses of 1 μm or less for the dense layers 12a1 to 12a4 and 2 μm or more for the coarse layers 12b1 to 12b4. Furthermore, the number of layers of the dense layers 12a1 to 12a4 and the coarse layers 12b1 to 12b4 may not be four, and the coarse layer 12b1 may be first laminated on the lining 11. In order to achieve both conformability and fatigue fracture resistance, the average grain size of Bi grains constituting the dense layers 12a1 to 12a4 is 0.7 μm or less, and the Bi grain grains constituting the coarse layers 12b1 to 12b4 The average particle size may be 2 μm or more, and the dense layers 12a1 to 12a4 and the coarse layers 12b1 to 12b4 may be formed by a method other than electroplating.

1…摺動部材、2…相手軸、10…裏金、11…ライニング、11b…Bi粒子、12…オーバーレイ、12a1〜12a4…緻密層、12b1〜12b4…粗大層。   DESCRIPTION OF SYMBOLS 1 ... Sliding member, 2 ... Counter shaft, 10 ... Back metal, 11 ... Lining, 11b ... Bi particle, 12 ... Overlay, 12a1-12a4 ... Dense layer, 12b1-12b4 ... Coarse layer.

Claims (4)

基層上に、相手材が摺動する摺動面を有する被覆層が形成された摺動部材であって、
前記被覆層は、
被覆材料の結晶によって形成され、厚みが2μm以上の粗大層と、
前記粗大層よりも結晶粒が緻密な前記被覆材料の結晶で形成され、厚みが1μm以下の緻密層と、
を備える摺動部材。
A sliding member in which a coating layer having a sliding surface on which a counterpart material slides is formed on a base layer,
The coating layer is
A coarse layer formed of crystals of the coating material and having a thickness of 2 μm or more;
A dense layer having a crystal grain that is denser than the coarse layer and having a thickness of 1 μm or less;
A sliding member comprising:
前記粗大層は厚み方向において2層の前記緻密層によって挟まれる、
請求項1に記載の摺動部材。
The coarse layer is sandwiched between two dense layers in the thickness direction.
The sliding member according to claim 1.
基層上に、相手材が摺動する摺動面を有する被覆層が形成された摺動部材であって、
前記被覆層は、
被覆材料の結晶によって形成され、厚みが2μm以上の粗大層と、
前記粗大層よりも結晶粒が緻密な前記被覆材料の結晶で形成され、厚みが1μm以下の緻密層と、
を備えるすべり軸受。
A sliding member in which a coating layer having a sliding surface on which a counterpart material slides is formed on a base layer,
The coating layer is
A coarse layer formed of crystals of the coating material and having a thickness of 2 μm or more;
A dense layer having a crystal grain that is denser than the coarse layer and having a thickness of 1 μm or less;
A plain bearing with.
前記粗大層は厚み方向において2層の前記緻密層によって挟まれる、
請求項3に記載のすべり軸受。
The coarse layer is sandwiched between two dense layers in the thickness direction.
The plain bearing according to claim 3.
JP2013072020A 2013-03-29 2013-03-29 Sliding member and plain bearing Expired - Fee Related JP6091962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072020A JP6091962B2 (en) 2013-03-29 2013-03-29 Sliding member and plain bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072020A JP6091962B2 (en) 2013-03-29 2013-03-29 Sliding member and plain bearing

Publications (2)

Publication Number Publication Date
JP2014196765A true JP2014196765A (en) 2014-10-16
JP6091962B2 JP6091962B2 (en) 2017-03-08

Family

ID=52357691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072020A Expired - Fee Related JP6091962B2 (en) 2013-03-29 2013-03-29 Sliding member and plain bearing

Country Status (1)

Country Link
JP (1) JP6091962B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186621A1 (en) * 2014-06-02 2015-12-10 大豊工業株式会社 Sliding member and slide bearing
WO2017094094A1 (en) * 2015-12-01 2017-06-08 大豊工業株式会社 Sliding member and sliding bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300062A (en) * 1996-05-10 1997-11-25 Daido Metal Co Ltd Manufacture of bearing
JP2006266445A (en) * 2005-03-25 2006-10-05 Daido Metal Co Ltd Sliding member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300062A (en) * 1996-05-10 1997-11-25 Daido Metal Co Ltd Manufacture of bearing
JP2006266445A (en) * 2005-03-25 2006-10-05 Daido Metal Co Ltd Sliding member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186621A1 (en) * 2014-06-02 2015-12-10 大豊工業株式会社 Sliding member and slide bearing
WO2017094094A1 (en) * 2015-12-01 2017-06-08 大豊工業株式会社 Sliding member and sliding bearing
JP6234637B2 (en) * 2015-12-01 2017-11-22 大豊工業株式会社 Sliding member and plain bearing
JPWO2017094094A1 (en) * 2015-12-01 2017-11-30 大豊工業株式会社 Sliding member and plain bearing
EP3244081A4 (en) * 2015-12-01 2018-06-13 TAIHO KOGYO Co., Ltd. Sliding member and sliding bearing
US10100874B2 (en) 2015-12-01 2018-10-16 Taiho Kogyo Co., Ltd. Sliding member and slide bearing

Also Published As

Publication number Publication date
JP6091962B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6091961B2 (en) Sliding member and plain bearing
JP5981868B2 (en) Sliding member and plain bearing
JP6091962B2 (en) Sliding member and plain bearing
JP6234637B2 (en) Sliding member and plain bearing
JP6636090B2 (en) Sliding member
WO2019198285A1 (en) Sliding member
CN109429498B (en) Sliding member and sliding bearing
WO2019198369A1 (en) Sliding member
JP2014196764A (en) Slide member and slide bearing
JP6321436B2 (en) Sliding member and plain bearing
WO2015186621A1 (en) Sliding member and slide bearing
JP6242965B2 (en) Sliding member and plain bearing
JP6242957B2 (en) Sliding member and plain bearing
JP6924315B2 (en) Sliding members and plain bearings
JP6247989B2 (en) Sliding member and plain bearing
JP2014196761A (en) Sliding member and slide bearing
JP2019019956A (en) Sliding member and sliding bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R150 Certificate of patent or registration of utility model

Ref document number: 6091962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees