JP2014196558A - Method of producing grain-oriented electrical steel sheet - Google Patents

Method of producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP2014196558A
JP2014196558A JP2014044299A JP2014044299A JP2014196558A JP 2014196558 A JP2014196558 A JP 2014196558A JP 2014044299 A JP2014044299 A JP 2014044299A JP 2014044299 A JP2014044299 A JP 2014044299A JP 2014196558 A JP2014196558 A JP 2014196558A
Authority
JP
Japan
Prior art keywords
annealing
secondary recrystallization
less
grain
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014044299A
Other languages
Japanese (ja)
Other versions
JP5949813B2 (en
Inventor
早川 康之
Yasuyuki Hayakawa
康之 早川
智幸 大久保
Tomoyuki Okubo
智幸 大久保
之啓 新垣
Yukihiro Aragaki
之啓 新垣
渡辺 誠
Makoto Watanabe
渡辺  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014044299A priority Critical patent/JP5949813B2/en
Publication of JP2014196558A publication Critical patent/JP2014196558A/en
Application granted granted Critical
Publication of JP5949813B2 publication Critical patent/JP5949813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain-oriented electrical steel sheet which is excellent in both magnetic characteristics and film characteristics by combining decarburization conditions appropriately with sulfurization conditions in a process of producing the grain-oriented electrical steel sheet.SOLUTION: In producing a grain-oriented electrical steel sheet, the atmosphere oxidizability [P(HO)/P(H)] is controlled to be 0.10-0.30 in at least 60 s in the temperature region beyond 800°C in the front stage of decarburization annealing, and the oxygen weight after the decarburization annealing is limited to 0.70-1.10 g/m. Magnesium sulfate is contained in an annealing separator based on MgO by 5 mass% to adjust the ratio (O/O) of the oxygen weight (O) after secondary recrystallization annealing to the oxygen weight (O) after decarburization annealing to 2.8-4.1, and the S content of the substrate film after the secondary recrystallization annealing is 15 ppm or higher.

Description

本発明は、優れた磁気特性を有する方向性電磁鋼板を安価に得ることができる磁気特性と被膜特性に優れた方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic characteristics and coating properties, which can obtain a grain-oriented electrical steel sheet having excellent magnetic characteristics at low cost.

方向性電磁鋼板は、変圧器や発電機の鉄心材料として用いられる軟磁性材料で、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有するものである。このような結晶組織は、方向性電磁鋼板の製造工程中、二次再結晶焼鈍の際にいわゆるゴス(Goss)方位と称される(110)〔001〕方位の結晶粒を優先的に巨大成長させる、二次再結晶を通じて形成される。   A grain-oriented electrical steel sheet is a soft magnetic material used as a core material for transformers and generators, and has a crystal structure in which the <001> orientation, which is the easy axis of iron, is highly aligned in the rolling direction of the steel sheet. . Such a crystal structure preferentially grows a crystal grain having a (110) [001] orientation, so-called Goss orientation, during secondary recrystallization annealing during the production process of grain-oriented electrical steel sheet. Formed through secondary recrystallization.

従来、このような方向性電磁鋼板は、4.5mass%以下程度のSiと、MnS,MnSe,AlNなどのインヒビター成分を含有するスラブを、1300℃以上に加熱してインヒビター成分を一旦固溶させたのち、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚とし、ついで湿潤水素雰囲気中で一次再結晶焼鈍を施して、一次再結晶および脱炭を行い、ついでマグネシア(MgO)を主剤とする焼鈍分離剤を塗布してから、二次再結晶およびインヒビター成分の純化のために、1200℃で5h程度の最終仕上焼鈍を行うことによって製造されてきた(例えば、特許文献1、特許文献2、特許文献3)。   Conventionally, such grain-oriented electrical steel sheets were heated to 1300 ° C. or higher by heating a slab containing about 4.5 mass% or less of Si and an inhibitor component such as MnS, MnSe, or AlN once to dissolve the inhibitor component once. After that, after hot rolling and performing hot-rolled sheet annealing as necessary, the final sheet thickness is obtained by one or more cold rollings sandwiching intermediate annealing, followed by primary recrystallization annealing in a wet hydrogen atmosphere After performing primary recrystallization and decarburization, and then applying an annealing separator mainly composed of magnesia (MgO), the secondary recrystallization and the inhibitor component are purified at 1200 ° C. for about 5 hours. It has been manufactured by performing final finish annealing (for example, Patent Document 1, Patent Document 2, and Patent Document 3).

米国特許第1965559号明細書U.S. Patent No. 1965559 特公昭40−15644号公報Japanese Patent Publication No. 40-15644 特公昭51−13469号公報Japanese Patent Publication No.51-13469 特許第4321120号公報Japanese Patent No. 4321120

上述したとおり、従来の方向性電磁鋼板の製造に際しては、MnS,MnSe,AlNなどの析出物(インヒビター成分)をスラブ段階で含有させ、1300℃を超える高温のスラブ加熱により、これらのインヒビター成分を一旦固溶させ、後工程で微細に析出させることにより二次再結晶を発現させるという工程が採用されてきた。このように、従来の方向性電磁鋼板の製造工程では、1300℃を超える高温でのスラブ加熱が必要であったため、その製造コストは極めて高いものにつき、近年の製造コスト低減の要求に応えることができないというところに問題を残していた。   As described above, when manufacturing conventional grain-oriented electrical steel sheets, precipitates (inhibitor components) such as MnS, MnSe, and AlN are included in the slab stage, and these inhibitor components are added by high-temperature slab heating exceeding 1300 ° C. A process has been adopted in which secondary recrystallization is manifested by solid solution once and fine precipitation in a subsequent process. In this way, the conventional manufacturing process for grain-oriented electrical steel sheets required slab heating at a high temperature exceeding 1300 ° C, so that the manufacturing cost is extremely high, and it can meet the recent demand for reduction in manufacturing cost. I left a problem where I couldn't.

この問題を解決するために、発明者らは、スラブにインヒビター成分を含有させずに二次再結晶を発現させる技術について、鋭意研究を進め、その結果、スラブにインヒビター成分を含有させない場合であっても、一次再結晶焼鈍後、二次再結晶完了前に、地鉄中のS量を増加させることによって、安定して二次再結晶を発現させることができる技術(「増硫法」)を開発し、特許文献4において提案した。   In order to solve this problem, the inventors proceeded earnestly with respect to a technique for developing secondary recrystallization without containing an inhibitor component in the slab, and as a result, the slab did not contain an inhibitor component. Even after the primary recrystallization annealing, but before the completion of the secondary recrystallization, by increasing the amount of S in the base iron, the technology that can stably develop the secondary recrystallization ("sulfurization method") And was proposed in Patent Document 4.

上記した増硫法により地鉄中のS量を増加させ、粒界に偏析するS量を増すことによって、ゴス方位以外の方位を囲む粒界の移動がさらに抑制され、二次再結晶を安定化させると共に、二次粒のゴス方位への先鋭性が増し、磁気特性を向上させることができた。
しかしながら、増硫薬剤の多量添加に伴い二次再結晶焼鈍中の酸化反応が過度に生じることに起因して、「キラキラ」あるいは「霜降り」と呼ばれる下地被膜欠損部が発生するという問題が生じた。
By increasing the amount of S in the steel and increasing the amount of S segregated at the grain boundary by the above-described sulfur increasing method, the movement of the grain boundary surrounding the orientation other than the Goth orientation is further suppressed, and secondary recrystallization is stabilized. As a result, the sharpness of the secondary grains toward the Goss direction increased, and the magnetic properties could be improved.
However, due to the excessive oxidation reaction during secondary recrystallization annealing due to the addition of a large amount of the vulcanizing agent, there arises a problem that an undercoat defect called “glitter” or “frosting” occurs. .

本発明は、上記の問題を有利に解決するもので、方向性電磁鋼板の製造工程において高温のスラブ加熱を施すことなしに低コストで、また脱炭焼鈍条件と浸硫処理条件の双方の適切な組み合わせによって磁気特性と下地被膜特性を両立させた、方向性電磁鋼板の有利な製造方法を提案することを目的とする。   The present invention advantageously solves the above-mentioned problems, is low-cost without performing high-temperature slab heating in the production process of grain-oriented electrical steel sheets, and is suitable for both decarburization annealing conditions and sulfurization treatment conditions. It is an object of the present invention to propose an advantageous method for producing grain-oriented electrical steel sheets that achieves both magnetic properties and undercoating properties by various combinations.

さて、発明者らは、上記の問題を解決するために、スラブにインヒビター成分を含有させずに二次再結晶を発現させ、増硫処理により磁気特性を向上させる技術について、鋭意研究を進めた。
その結果、増硫処理を行った場合でも、脱炭焼鈍処理の際の雰囲気酸化性と温度、および増硫処理の方法を適正化することにより、安定して良好な下地被膜を形成できる技術を開発した。
Now, in order to solve the above-mentioned problems, the inventors have advanced earnestly researched on a technique for developing secondary recrystallization without containing an inhibitor component in a slab and improving magnetic properties by a vulcanization process. .
As a result, even when a vulcanization treatment is performed, a technology that can stably form a good base film by optimizing the atmosphere oxidation and temperature during the decarburization annealing treatment and the method of the vulcanization treatment. developed.

以下、本発明を由来するに至った実験結果について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
実験1
C:0.03%、Si:3.5%、Mn:0.05%、sol.Al:45ppm、N:35ppm、S:20ppm、Se:1ppmおよびO:10ppmを含有し、残部はFeおよび不可避的不純物の組成からなる連鋳スラブを、1200℃に加熱後、熱間圧延により板厚:2.7mmの熱延板としたのち、1050℃で30秒の熱延板焼鈍を施した。ついで、冷間圧延により板厚:0.30mmとしたのち、840℃で120秒間均熱する脱炭焼鈍を水素分圧:50%、窒素分圧:50%、露点:60℃の条件で行った。
ついで、MgOを主剤とし、種々の硫化物、すなわち硫酸マグネシウム(MgSO4)、硫化マグネシウム(MgS)、チオ硫酸ナトリウム(Na2S2O3)、硫酸第1鉄(FeSO4)、硫酸マンガン(MnSO4)、硫酸カルシウム(CaSO4)、硫酸ランタン(La2(SO4)3)、硫酸カリウム(K2SO4)および硫酸アルミニウム(Al2(SO4)3)をそれぞれ10mass%含有する焼鈍分離剤を、一次再結晶焼鈍板の表面に12.5g/m2塗布し、乾燥した。ついで、昇温速度:15℃/h、雰囲気ガス:900℃までN2ガス、900℃以上はH2ガス、均熱処理:1160℃,5hの条件で二次再結晶焼鈍を施した。
Hereinafter, the experimental results that led to the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
Experiment 1
Contains C: 0.03%, Si: 3.5%, Mn: 0.05%, sol.Al: 45ppm, N: 35ppm, S: 20ppm, Se: 1ppm and O: 10ppm, the balance from the composition of Fe and inevitable impurities The resulting continuous cast slab was heated to 1200 ° C., and hot rolled into a hot rolled sheet having a thickness of 2.7 mm, and then subjected to hot rolled sheet annealing at 1050 ° C. for 30 seconds. Next, after the sheet thickness was set to 0.30 mm by cold rolling, decarburization annealing was performed at 840 ° C. for 120 seconds under conditions of hydrogen partial pressure: 50%, nitrogen partial pressure: 50%, dew point: 60 ° C. .
Subsequently, MgO is the main ingredient, and various sulfides, namely magnesium sulfate (MgSO 4 ), magnesium sulfide (MgS), sodium thiosulfate (Na 2 S 2 O 3 ), ferrous sulfate (FeSO 4 ), manganese sulfate ( Annealing containing 10 mass% each of MnSO 4 ), calcium sulfate (CaSO 4 ), lanthanum sulfate (La 2 (SO 4 ) 3 ), potassium sulfate (K 2 SO 4 ) and aluminum sulfate (Al 2 (SO 4 ) 3 ) The separating agent was applied to the surface of the primary recrystallization annealed plate at 12.5 g / m 2 and dried. Subsequently, secondary recrystallization annealing was performed under conditions of a temperature rising rate: 15 ° C./h, an atmospheric gas: N 2 gas up to 900 ° C., H 2 gas up to 900 ° C., soaking treatment: 1160 ° C., 5 h.

二次再結晶焼鈍後の磁束密度について調べた結果を図1に示す。
図1に示したとおり、硫化物として硫酸マグネシウムを添加した場合が最も磁気特性向上効果が大きいことが判明した。ただし、二次再結晶焼鈍後の下地被膜表面には「キラキラ」あるいは「霜降り」と呼ばれる下地被膜欠損部が発生していた。
The result of examining the magnetic flux density after secondary recrystallization annealing is shown in FIG.
As shown in FIG. 1, it has been found that the effect of improving the magnetic properties is greatest when magnesium sulfate is added as a sulfide. However, undercoat surface defects called “glitter” or “frosting” occurred on the surface of the undercoat after the secondary recrystallization annealing.

実験1で、硫酸マグネシウムを添加することで大きな磁気特性向上効果が得られることが分かったので、次に被膜特性を改善すべく硫酸マグネシウムを添加した際の脱炭焼鈍条件について検討した。   In Experiment 1, since it was found that a large effect of improving magnetic properties can be obtained by adding magnesium sulfate, the decarburization annealing conditions when magnesium sulfate was added in order to improve the coating properties were examined next.

実験2
C:0.03%、Si:3.5%、Mn:0.05%、sol.Al:45ppm、N:35ppm、S:20ppm、Se:1ppmおよびO:10 ppmを含有し、残部はFeおよび不可避的不純物の組成からなる連鋳スラブを、1200℃に加熱後、熱間圧延により板厚:2.7mmの熱延板としたのち、1050℃で30秒の熱延板焼鈍を施した。ついで、冷間圧延により板厚:0.30mmとしたのち、840℃で120秒間均熱する脱炭焼鈍を、水素分圧:50%、窒素分圧:50%に固定した雰囲気で露点(DP)を25℃から65℃の範囲で種々変更する実験を行った。
ついで、MgOを主剤とし、硫酸マグネシウム(MgSO4)を10mass%含有する焼鈍分離剤を、一次再結晶焼鈍板の表面に12.5g/m2塗布し、乾燥した。ついで、脱炭焼鈍後の酸素目付量を測定したのち、昇温速度:15℃/h、雰囲気ガス:900℃までN2ガス、900℃以上はH2ガス、均熱処理:1160℃,5hの条件で二次再結晶焼鈍を施した。
Experiment 2
Contains C: 0.03%, Si: 3.5%, Mn: 0.05%, sol.Al: 45 ppm, N: 35 ppm, S: 20 ppm, Se: 1 ppm and O: 10 ppm, the balance being Fe and inevitable impurities The continuous cast slab made of was heated to 1200 ° C. and then hot-rolled to obtain a hot-rolled sheet having a thickness of 2.7 mm, and then subjected to hot-rolled sheet annealing at 1050 ° C. for 30 seconds. Next, the sheet thickness is set to 0.30 mm by cold rolling, and decarburization annealing is performed at 120 ° C. for 120 seconds. The dew point (DP) is maintained in a hydrogen partial pressure of 50% and nitrogen partial pressure of 50%. Experiments were carried out in which various changes were made in the range of 25 to 65 ° C.
Subsequently, 12.5 g / m 2 of an annealing separator containing MgO as a main ingredient and containing 10 mass% of magnesium sulfate (MgSO 4 ) was applied to the surface of the primary recrystallization annealed plate and dried. Next, after measuring the oxygen basis weight after decarburization annealing, the heating rate was 15 ° C./h, the atmospheric gas was N 2 gas up to 900 ° C., H 2 gas at 900 ° C. or higher, soaking treatment: 1160 ° C., 5 h. Secondary recrystallization annealing was performed under the conditions.

二次再結晶焼鈍後に、酸素目付量と被膜付きでのS量、100mm×100mm角の試料内での下地被膜欠損部の面積率を測定した。また、下地被膜密着性の評価として、圧延方向に300mm、圧延直角方向に30mmの長さを有する試験片を採取し、種々の径を有する丸棒に試験片を押し付けながら180°折り曲げ、折り曲げ部分が剥離しない最小径を調査した。曲げ剥離最小径が小さいほど下地被膜の密着性が良好ということであり、通常の用途では50mm以下が求められている。   After the secondary recrystallization annealing, the amount of oxygen per unit area, the amount of S with a coating, and the area ratio of the underlying coating defect in a 100 mm × 100 mm square sample were measured. In addition, as an evaluation of the undercoat adhesion, a test piece having a length of 300 mm in the rolling direction and a length of 30 mm in the direction perpendicular to the rolling was taken, and the bent part was bent by 180 ° while pressing the test piece against a round bar having various diameters. The minimum diameter that did not peel was investigated. The smaller the minimum bending peel-off diameter is, the better the adhesion of the undercoat is, and 50 mm or less is required for normal use.

図2に、P(H2O)/P(H2)で定義される脱炭焼鈍時の雰囲気酸化性と脱炭焼鈍後の酸素目付量との関係を示す。
図2によると、雰囲気酸化性が高くなるほど酸素目付量が増加するという通常の関係にあることが分かる。
FIG. 2 shows the relationship between the atmospheric oxidation property at the time of decarburization annealing defined by P (H 2 O) / P (H 2 ) and the oxygen basis weight after the decarburization annealing.
According to FIG. 2, it can be seen that there is a normal relationship that the oxygen basis weight increases as the atmospheric oxidizability increases.

図3に、脱炭焼鈍時の雰囲気酸化性と二次再結晶焼鈍後の下地被膜欠損部面積率との関係を示す。
同図に示したとおり、雰囲気酸化性が0.35よりも高くなると被膜欠損部が発生することが分かる。
In FIG. 3, the relationship between the atmospheric oxidation property at the time of decarburization annealing and the area ratio of a base-film defect | deletion part after secondary recrystallization annealing is shown.
As shown in the figure, it can be seen that a film defect occurs when the atmospheric oxidation is higher than 0.35.

図4に、脱炭焼鈍時の雰囲気酸化性と二次再結晶焼鈍後の曲げ剥離最小径との関係を示す。
同図によれば、下地被膜密着性は雰囲気酸化性が0.10を下回ると急激に低下することが分かる。
すなわち、被膜欠損部の発生と被膜密着性は相反する関係にあり、両者を満足させるためには雰囲気酸化性を0.10〜0.35の範囲に制御する必要があることが判明した。
In FIG. 4, the relationship between the atmospheric oxidation property at the time of decarburization annealing and the bending peeling minimum diameter after secondary recrystallization annealing is shown.
According to the figure, it can be seen that the undercoat adhesion decreases rapidly when the atmospheric oxidation is less than 0.10.
That is, it was found that the occurrence of a film defect portion and the film adhesion are in a contradictory relationship, and it is necessary to control the atmospheric oxidation within a range of 0.10 to 0.35 in order to satisfy both.

そこで、次に、脱炭焼鈍時の雰囲気酸化性の影響を二次再結晶焼鈍後の下地被膜の状態と関連づけるために、下地被膜付きのS量と酸素目付量を測定した。
図5に、下地被膜付きS量と被膜欠損率との関係を示す。
図5によると、下地被膜付きでのS量が15ppm以上確保されると被膜欠損が発生しないことが分かる。
Then, next, in order to relate the influence of the atmospheric oxidation property at the time of decarburization annealing with the state of the undercoat after the secondary recrystallization annealing, the S amount and the oxygen basis weight with the undercoat were measured.
FIG. 5 shows the relationship between the amount of S with a base film and the film defect rate.
According to FIG. 5, it can be seen that when the S content with the base coating is secured to 15 ppm or more, no coating loss occurs.

次に、図6に、脱炭焼鈍時の雰囲気酸化性と二次再結晶焼鈍後の下地被膜付きでのS量との関係について調べた結果を示す。
同図によれば、脱炭焼鈍時の雰囲気酸化性を低下させることで下地被膜付きS量が増加していることが新規に知見された。また同時に、下地被膜を除去してS量を分析したところ、いずれの試料でも分析限界値(4ppm)未満の値であり、Sは下地被膜中に固定されていることも明らかになった。
Next, FIG. 6 shows the results of examining the relationship between the atmospheric oxidation during decarburization annealing and the amount of S with the base coating after secondary recrystallization annealing.
According to the figure, it was newly found out that the amount of S with the base coating was increased by lowering the atmospheric oxidizability during decarburization annealing. At the same time, when the undercoat was removed and the amount of S was analyzed, all samples had values less than the analysis limit (4 ppm), and it became clear that S was fixed in the undercoat.

また、図7に、脱炭焼鈍後の酸素目付量(O2H)に対する二次再結晶焼鈍後の酸素目付量(OFA)の比(OFA/O2H)と二次再結晶焼鈍後の被膜密着性の指標である曲げ剥離最小径との関係を示す。
図7によると、脱炭焼鈍後の酸素目付量(O2H)に対する二次再結晶焼鈍後の酸素目付量(OFA)の比(OFA/O2H)が大きくなるほど下地被膜の密着性が低下することが分かった。
In addition, FIG. 7 shows the ratio (O FA / O 2H ) of the oxygen basis weight (O FA ) after the secondary recrystallization annealing to the oxygen basis weight (O 2H ) after the decarburization annealing and after the secondary recrystallization annealing. The relationship with the bending peeling minimum diameter which is a parameter | index of film adhesiveness is shown.
According to FIG. 7, as the ratio (O FA / O 2H ) of the oxygen basis weight (O FA ) after the secondary recrystallization annealing to the oxygen basis weight (O 2H ) after the decarburization annealing increases, the adhesion of the undercoat becomes greater. It turns out that it falls.

これらの実験からの結論として、硫酸マグネシウムを多量添加して増硫処理を施す場合には、通常よりも低めの酸化性雰囲気下で脱炭焼鈍を行い、脱炭焼鈍後での酸素目付量を低めにコントロールし、二次再結晶焼鈍中での硫酸マグネシウムの分解に伴う追加酸化により下地被膜を形成し、同時にSを膜中に多く固定することで、被膜密着性の確保と共に、被膜欠損部の発生を抑えて良好な被膜を形成できることが判明した。
本発明は、上記の知見に立脚するものである。
As a conclusion from these experiments, when adding a large amount of magnesium sulfate and performing a vulcanization treatment, decarburization annealing is performed in an oxidizing atmosphere lower than usual, and the amount of oxygen per unit area after decarburization annealing is reduced. Controlled to a low level and formed an undercoat by additional oxidation accompanying the decomposition of magnesium sulfate during secondary recrystallization annealing, and at the same time securing a large amount of S in the film, as well as ensuring film adhesion and a film defect It has been found that a good film can be formed while suppressing the occurrence of.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
(1)質量%で、C:0.08%以下、Si:4.5%以下およびMn:0.5%以下を含有し、S,SeおよびOをそれぞれ50ppm未満ならびにNを60ppm未満、sol.Alを100ppm未満に抑制し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、再加熱することなくあるいは再加熱後、熱間圧延を施して熱延板としたのち、焼鈍および圧延により最終板厚の冷延板とし、ついで脱炭焼鈍を兼ねる一次再結晶焼鈍後、焼鈍分離剤を塗布してから二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
脱炭焼鈍前段の800℃を超える温度域で少なくとも60秒間にわたり、雰囲気酸化性〔P(H2O)/P(H2)〕を0.10以上、0.35以下に制御する、
脱炭焼鈍後の酸素目付量を0.70〜1.10g/m2に制限する、
MgOを主体とする焼鈍分離剤中に硫酸マグネシウムを2.0mass%以上含有させて、二次再結晶焼鈍後の酸素目付量(OFA)と脱炭焼鈍後の酸素目付量(O2H)の比(OFA/O2H)を2.8〜4.1にすると共に、二次再結晶焼鈍後の下地被膜付きS量を15ppm以上とする
ことを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) By mass%, C: 0.08% or less, Si: 4.5% or less, and Mn: 0.5% or less, S, Se and O each less than 50ppm, N less than 60ppm, sol.Al less than 100ppm The steel slab, which consists of Fe and inevitable impurities in the balance, is subjected to hot rolling without reheating or after reheating to form a hot rolled sheet, and then the final sheet thickness is cooled by annealing and rolling. In the manufacturing method of the grain-oriented electrical steel sheet comprising a series of steps of applying the secondary recrystallization annealing after applying the annealing separation agent after the primary recrystallization annealing that also serves as a rolled sheet and then also decarburizing annealing,
At least 60 seconds in the temperature range exceeding 800 ° C. in the first stage of decarburization annealing, the atmospheric oxidation [P (H 2 O) / P (H 2 )] is controlled to 0.10 or more and 0.35 or less.
Limit the oxygen basis weight after decarburization annealing to 0.70 to 1.10 g / m 2 ,
Ratio of oxygen basis weight (O FA ) after secondary recrystallization annealing and oxygen basis weight (O 2H ) after decarburization annealing by containing 2.0 mass% or more of magnesium sulfate in annealing separator mainly composed of MgO A method for producing a grain-oriented electrical steel sheet, wherein (O FA / O 2H ) is set to 2.8 to 4.1, and the amount of S with a base coating after secondary recrystallization annealing is set to 15 ppm or more.

(2)前記鋼スラブが、さらに質量%で、Cr:0.02〜0.5%、Ni:0.05〜0.5%、Cu:0.05〜0.5%、P:0.01〜0.2%、Sb:0.01〜0.2%、Sn:0.01〜0.4%、Nb:0.002〜0.01%およびMo:0.01〜0.2%のうちから選んだ一種または二種以上を含有する組成からなることを特徴とする前記(1)に記載の方向性電磁鋼板の製造方法。 (2) The steel slab is further in mass%, Cr: 0.02-0.5%, Ni: 0.05-0.5%, Cu: 0.05-0.5%, P: 0.01-0.2%, Sb: 0.01-0.2%, Sn: The grain-oriented electrical steel sheet according to (1) above, comprising a composition containing one or more selected from 0.01 to 0.4%, Nb: 0.002 to 0.01%, and Mo: 0.01 to 0.2%. Manufacturing method.

(3)脱炭焼鈍後段での最高到達温度を860℃以上とし、かつ雰囲気酸化性〔P(H2O)/P(H2)〕を 0.10以下とすることを特徴とする前記(1)または(2)に記載の方向性電磁鋼板の製造方法。 (3) The maximum temperature reached after decarburization annealing is set to 860 ° C. or more, and the atmospheric oxidation property [P (H 2 O) / P (H 2 )] is set to 0.10 or less. Or the manufacturing method of the grain-oriented electrical steel sheet as described in (2).

(4)脱炭焼鈍の昇温中、500〜700℃の温度域における昇温速度を50℃/s以上とすることを特徴とする前記(1)〜(3)のいずれかに記載の方向性電磁鋼板の製造方法。 (4) The direction as described in any one of (1) to (3) above, wherein the rate of temperature increase in the temperature range of 500 to 700 ° C. is 50 ° C./s or more during the temperature increase of decarburization annealing. Method for producing an electrical steel sheet.

本発明によれば、磁気特性に優れた方向性電磁鋼板を、工業的に安定してかつ安価に製造することが可能となり、その工業的価値は極めて高い。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to manufacture the grain-oriented electrical steel plate excellent in the magnetic characteristic industrially stably and cheaply, and the industrial value is very high.

焼鈍分離剤中に添加した硫化物の種類と磁束密度との関係を示す図である。It is a figure which shows the relationship between the kind of sulfide added in the annealing separation agent, and magnetic flux density. 脱炭焼鈍時の雰囲気酸化性〔P(H2O)/P(H2)〕と脱炭焼鈍後の酸素目付量との関係を示す図である。It is a diagram showing the relationship between the decarburization atmosphere oxidizing during annealing [P (H 2 O) / P (H 2) ] and decarburization oxygen basis weight after annealing. 脱炭焼鈍時の雰囲気酸化性と二次再結晶焼鈍後の下地被膜欠損部面積率との関係を示す図である。It is a figure which shows the relationship between the atmospheric oxidation property at the time of decarburization annealing, and the base film defect | deletion part area ratio after secondary recrystallization annealing. 脱炭焼鈍時の雰囲気酸化性と二次再結晶焼鈍後の曲げ剥離最小径との関係を示す図である。It is a figure which shows the relationship between the atmospheric oxidation property at the time of decarburization annealing, and the bending peeling minimum diameter after secondary recrystallization annealing. 下地被膜付きS量と被膜欠損率との関係を示す図である。It is a figure which shows the relationship between S amount with a base film, and a film | membrane defect | deletion rate. 脱炭焼鈍時の雰囲気酸化性と二次再結晶焼鈍後の下地被膜付きS量との関係を示す図である。It is a figure which shows the relationship between the atmospheric oxidation property at the time of decarburization annealing, and the amount of S with a base film after secondary recrystallization annealing. 脱炭焼鈍後の酸素目付量(O2H)に対する二次再結晶焼鈍後の酸素目付量(OFA)の比(OFA/O2H)と二次再結晶焼鈍後の曲げ剥離最小径との関係を示す図である。The ratio of the oxygen basis weight (O FA ) after secondary recrystallization annealing to the oxygen basis weight (O 2H ) after decarburization annealing (O FA / O 2H ) and the minimum bending delamination diameter after secondary recrystallization annealing It is a figure which shows a relationship.

以下、本発明を具体的に説明する。
まず、本発明において鋼スラブの成分組成を前記の範囲に限定した理由について説明する。
C:0.08%以下
Cは、一次再結晶集合組織を改善する上で有用な元素であるが、含有量が0.08%を超えるとかえって一次再結晶集合組織の劣化を招くので、本発明では0.08%以下に限定した。磁気特性の観点から望ましい添加量は0.01〜0.06%の範囲である。なお、要求される磁気特性のレベルがさほど高くない場合には、一次再結晶焼鈍における脱炭を省略あるいは簡略化するために、Cを0.01%以下としてもよい。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the steel slab is limited to the above range in the present invention will be described.
C: 0.08% or less C is an element useful for improving the primary recrystallized texture. However, if the content exceeds 0.08%, the primary recrystallized texture is deteriorated. Therefore, in the present invention, 0.08% Limited to: A desirable addition amount from the viewpoint of magnetic properties is in the range of 0.01 to 0.06%. If the required magnetic property level is not so high, C may be set to 0.01% or less in order to omit or simplify the decarburization in the primary recrystallization annealing.

Si:4.5%以下
Siは、電気抵抗を高めることによって鉄損を改善する有用元素であるが、含有量が4.5%を超えると冷間圧延性が著しく劣化するので、Siは4.5%以下に限定した。鉄損の観点から望ましい添加量は、2.0〜4.0%の範囲である。なお、要求される鉄損レベルによっては、Siを添加しなくてもよい。
Si: 4.5% or less
Si is a useful element that improves iron loss by increasing electrical resistance. However, if the content exceeds 4.5%, the cold rolling property deteriorates significantly, so Si is limited to 4.5% or less. A desirable addition amount from the viewpoint of iron loss is in the range of 2.0 to 4.0%. Depending on the required iron loss level, Si may not be added.

Mn:0.5%以下
Mnは、製造時における熱間加工性を向上させる効果があるが、含有量が0.5%を超えた場合には、一次再結晶集合組織が悪化して磁気特性の劣化を招くので、Mnは0.5%以下に限定した。
Mn: 0.5% or less
Mn has the effect of improving hot workability during production, but if the content exceeds 0.5%, the primary recrystallized texture deteriorates and causes deterioration of magnetic properties, so Mn is 0.5 % Or less.

S,SeおよびO:それぞれ50ppm未満
S,SeおよびO量がそれぞれ50ppm以上になると、二次再結晶が困難となる。この理由は、粗大な酸化物や、スラブ加熱によって粗大化したMnS,MnSeが一次再結晶組織を不均一にするためである。従って、S,SeおよびOはいずれも50ppm未満に抑制するものとした。
S, Se, and O: each less than 50 ppm When the amounts of S, Se, and O are each 50 ppm or more, secondary recrystallization becomes difficult. This is because coarse oxides and MnS and MnSe coarsened by slab heating make the primary recrystallized structure non-uniform. Accordingly, S, Se, and O are all suppressed to less than 50 ppm.

N:60ppm未満
Nもまた、SやSe,Oと同様、過剰に存在すると二次再結晶を困難にする。特にN量が60ppm以上になると、二次再結晶が生じ難くなり、磁気特性が劣化するので、Nは60ppm未満に抑制するものとした。
N: Less than 60 ppm N, like S, Se, and O, also makes secondary recrystallization difficult if present in excess. In particular, when the N content is 60 ppm or more, secondary recrystallization hardly occurs and the magnetic properties are deteriorated. Therefore, N is suppressed to less than 60 ppm.

sol.Al:100ppm未満
Alもまた、過剰に存在すると二次再結晶を困難とする。特に、sol.Al量が100ppm以上になると、低温スラブ加熱の条件では二次再結晶し難くなり、磁気特性が劣化するので、Alはsol.Al量で100ppm未満に抑制するものとした。
sol.Al: less than 100ppm
Al also makes secondary recrystallization difficult if present in excess. In particular, when the amount of sol.Al is 100 ppm or more, secondary recrystallization becomes difficult under the conditions of low-temperature slab heating, and the magnetic properties deteriorate, so Al is suppressed to less than 100 ppm in terms of the amount of sol.Al.

以上、必須成分について説明したが、本発明では、工業的により安定して磁気特性を改善する成分として、以下の元素を適宜含有させることができる。
Cr:0.02〜0.5%
Crは、フォルステライト下地被膜の形成を安定化させる働きがあり、そのためには0.02%以上含有させることが好ましいが、一方で含有量が0.5%を超えると二次再結晶が困難となり磁気特性が劣化するので、Crは0.02〜0.5%の範囲で含有させることが望ましい。
The essential components have been described above. In the present invention, the following elements can be appropriately contained as components that improve the magnetic properties more stably industrially.
Cr: 0.02-0.5%
Cr has the function of stabilizing the formation of the forsterite undercoat, and for that purpose, it is preferable to contain 0.02% or more. On the other hand, if the content exceeds 0.5%, secondary recrystallization becomes difficult and the magnetic properties are reduced. Since it deteriorates, it is desirable to contain Cr in the range of 0.02 to 0.5%.

Ni:0.05〜0.5%
Niは、熱延板組織の均一性を高めることにより、磁気特性を改善する働きがあり、そのためには0.05%以上含有させることが好ましいが、含有量が0.5%を超えると二次再結晶が困難となり磁気特性が劣化するので、Niは0.05〜0.5%の範囲で含有させることが望ましい。
Ni: 0.05-0.5%
Ni works to improve the magnetic properties by increasing the uniformity of the hot-rolled sheet structure, and for that purpose, it is preferable to contain 0.05% or more, but if the content exceeds 0.5%, secondary recrystallization will occur. Since it becomes difficult and the magnetic properties deteriorate, it is desirable to contain Ni in the range of 0.05 to 0.5%.

Cu:0.05〜0.5%
Cuは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる働きがあり、そのためには0.05%以上含有させることが好ましいが、0.5%を超えて含有されると熱間圧延性の劣化を招くので、Cuは0.05〜0.5%の範囲で含有させることが望ましい。
Cu: 0.05-0.5%
Cu suppresses nitriding and oxidation of steel sheets during secondary recrystallization annealing, and promotes secondary recrystallization of grains with good crystal orientation, effectively improving magnetic properties. Although it is preferable to contain 0.05% or more, if it exceeds 0.5%, hot rollability is deteriorated, so it is desirable to contain Cu in the range of 0.05 to 0.5%.

P:0.01〜0.2%
Pは、フォルステライト下地被膜の形成を安定化させる働きがあり、そのためには0.01%以上含有させることが好ましいが、含有量が0.2%を超えると冷間圧延性が劣化するので、Pは0.01〜0.2%の範囲で含有させることが望ましい。
P: 0.01-0.2%
P has a function of stabilizing the formation of the forsterite undercoat, and for that purpose, it is preferably contained in an amount of 0.01% or more. However, if the content exceeds 0.2%, the cold rollability deteriorates, so P is 0.01%. It is desirable to make it contain in the range of -0.2%.

Sb:0.01〜0.2%
Sbは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる有用元素であり、その目的のためには0.01%以上含有させることが好ましいが、0.2%を超えて含有されると冷間圧延性が劣化するので、Sbは0.01〜0.2%の範囲で含有させることが望ましい。
Sb: 0.01-0.2%
Sb is a useful element that effectively suppresses nitridation and oxidation of steel sheets during secondary recrystallization annealing, promotes secondary recrystallization of grains with good crystal orientation, and effectively improves magnetic properties. For the purpose, it is preferable to contain 0.01% or more, but if it exceeds 0.2%, the cold rolling property deteriorates, so Sb is preferably contained in the range of 0.01 to 0.2%.

Sn:0.01〜0.4%
Snは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる有用元素であり、そのためには0.01%以上含有させることが好ましいが、0.4%を超えて含有されると冷間圧延性が劣化するので、Snは0.01〜0.4%の範囲で含有させることが望ましい。
Sn: 0.01-0.4%
Sn is a useful element that suppresses nitriding and oxidation of steel sheets during secondary recrystallization annealing and promotes secondary recrystallization of grains having good crystal orientation to improve magnetic properties. However, if it exceeds 0.4%, the cold rolling property deteriorates, so it is desirable to contain Sn in the range of 0.01 to 0.4%.

Nb:0.002〜0.01%
Nbは、一次再結晶粒の成長を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる有用元素であり、そのためには0.002%以上含有することが望ましいが、0.01%を超えて含有されると地鉄中に残留して鉄損を劣化させるので0.002〜0.01%の範囲で含有させることが望ましい。
Nb: 0.002 to 0.01%
Nb is a useful element that suppresses the growth of primary recrystallized grains and promotes secondary recrystallization of crystal grains having a good crystal orientation to improve magnetic properties. For that purpose, Nb must be contained in an amount of 0.002% or more. Although it is desirable, if it exceeds 0.01%, it remains in the ground iron and deteriorates the iron loss, so it is desirable to make it contain in the range of 0.002 to 0.01%.

Mo:0.01〜0.2%
Moは、粒界に偏析することで一次再結晶粒の成長を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる有用元素であり、そのためには0.01%以上含有することが望ましいが、0.2%を超えて含有されると冷間圧延性が劣化するので、Moは0.01〜0.2%の範囲で含有させることが望ましい。
Mo: 0.01-0.2%
Mo is a useful element that suppresses the growth of primary recrystallized grains by segregating at grain boundaries and promotes secondary recrystallization of crystal grains with good crystal orientation to improve magnetic properties. It is desirable to contain 0.01% or more, but if it exceeds 0.2%, the cold rolling property deteriorates, so it is desirable to contain Mo in the range of 0.01 to 0.2%.

次に、本発明の製造方法について説明する。
上記の好適成分組成範囲に調整した鋼スラブを、再加熱することなくあるいは再加熱したのち、熱間圧延に供する。なお、スラブを再加熱する場合には、再加熱温度は1000℃以上、1300℃以下とすることが望ましい。というのは、1300℃を超えるスラブ加熱は、スラブ中にインヒビターを含まない本発明では無意味で、コストアップとなるだけでなく、結晶粒の巨大化により磁気特性の劣化を招き、一方1000℃未満では、圧延荷重が高くなり、圧延が困難となるからである。
Next, the manufacturing method of this invention is demonstrated.
The steel slab adjusted to the above preferable component composition range is subjected to hot rolling without being reheated or after being reheated. When the slab is reheated, the reheating temperature is desirably 1000 ° C. or higher and 1300 ° C. or lower. This is because heating the slab above 1300 ° C is meaningless in the present invention which does not contain an inhibitor in the slab, which not only increases the cost, but also causes deterioration of the magnetic properties due to the enlargement of crystal grains, while 1000 ° C. If it is less than the range, the rolling load becomes high and rolling becomes difficult.

ついで、熱延板に、必要に応じて熱延板焼鈍を施したのち、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して、最終冷延板とする。この冷間圧延は、常温で行ってもよいし、常温より高い温度たとえば250℃程度に鋼板温度を上げて圧延する温間圧延としてもよい。   Next, the hot-rolled sheet is subjected to hot-rolled sheet annealing as necessary, and then subjected to one cold rolling or two or more cold rollings sandwiching the intermediate annealing to obtain a final cold-rolled sheet. This cold rolling may be performed at normal temperature, or may be warm rolling in which the steel sheet temperature is raised to a temperature higher than normal temperature, for example, about 250 ° C.

ついで、最終冷間圧延板に脱炭を兼ねた一次再結晶焼鈍を施す。
この一次再結晶焼鈍の第一の目的は、圧延組織を有する冷間圧延板を一次再結晶させて、二次再結晶に最適な一次再結晶集合組織に調整することである。
そのためには、一次再結晶焼鈍の焼鈍温度は800℃以上、950℃未満とすることが望ましい。
Next, primary recrystallization annealing that also serves as decarburization is performed on the final cold rolled sheet.
The primary purpose of this primary recrystallization annealing is to adjust a cold rolled sheet having a rolled structure to a primary recrystallized texture that is optimal for secondary recrystallization by primary recrystallization.
For this purpose, it is desirable that the annealing temperature of the primary recrystallization annealing is 800 ° C. or higher and lower than 950 ° C.

また、第二の目的は、脱炭である。
製品板中に炭素が50ppm以上含まれると鉄損が劣化するので、この一次再結晶焼鈍で炭素を50ppm未満まで低減する。なお、この時の焼鈍雰囲気は、湿水素窒素または湿水素アルゴン雰囲気とすることが望ましい。
The second purpose is decarburization.
If the product plate contains more than 50ppm of carbon, the iron loss will deteriorate, so this primary recrystallization annealing will reduce the carbon to less than 50ppm. Note that the annealing atmosphere at this time is preferably a wet hydrogen nitrogen or wet hydrogen argon atmosphere.

さらに、第三の目的は、フォルステラライトを主体とする下地被膜の原料となるSiO2の内部酸化層からなるサブスケールを形成することである。
二次再結晶焼鈍後に被膜欠損部がなく、かつ被膜密着性に優れた下地被膜を形成するためには、脱炭焼鈍前段の800℃を超える温度域で、少なくとも60秒間にわたって、雰囲気酸化性〔P(H2O)/P(H2)〕を0.10以上、0.35以下に制限し、かつ脱炭焼鈍後の酸素目付量を0.70〜1.10g/m2に制限することが重要である。
Furthermore, a third object is to form a subscale composed of an internal oxide layer of SiO 2 which is a raw material for an undercoat mainly composed of forsterite.
In order to form a base film having no film defects after secondary recrystallization annealing and having excellent film adhesion, the atmosphere is oxidized in the temperature range exceeding 800 ° C. before decarburization annealing for at least 60 seconds [ It is important to limit P (H 2 O) / P (H 2 )] to 0.10 or more and 0.35 or less, and limit the oxygen basis weight after decarburization annealing to 0.70 to 1.10 g / m 2 .

脱炭焼鈍の前段温度が800℃以下の場合は、酸化反応、脱炭反応が十分進まず必要な酸化と脱炭を完了させることができない。従って、800℃を超える温度に加熱して酸化反応、脱炭反応を進行させるわけであるが、脱炭焼鈍前段の800℃を超える温度域で、少なくとも60秒間にわたって雰囲気酸化性が0.10未満であると層状のサブスケール構造となり、脱炭焼鈍後に必要量の酸化物を確保することが困難となり、二次再結晶焼鈍時に良好な下地被膜形成ができない。一方、上記の雰囲気酸化性が0.35を超えると、球状のサブスケール構造となり二次再結晶焼鈍時に異常酸化が進行して被膜欠損部を生じる。
従って、脱炭焼鈍前段の800℃を超える温度域で、少なくとも60秒間にわたり、雰囲気酸化性を0.10以上、0.35以下に制限する必要がある。
なお、雰囲気酸化度を制御すべき時間を少なくとも60秒間としたのは、サブスケールの厚みを十分確保するためである。
When the temperature before the decarburization annealing is 800 ° C. or lower, the oxidation reaction and the decarburization reaction do not proceed sufficiently and the necessary oxidation and decarburization cannot be completed. Therefore, the oxidation reaction and the decarburization reaction are caused to proceed by heating to a temperature exceeding 800 ° C., but the atmospheric oxidizability is less than 0.10 for at least 60 seconds in the temperature range exceeding 800 ° C. before decarburization annealing. Thus, it becomes difficult to secure a necessary amount of oxide after decarburization annealing, and a good base film cannot be formed during secondary recrystallization annealing. On the other hand, if the above atmospheric oxidizability exceeds 0.35, a spherical subscale structure is formed, and abnormal oxidation proceeds during secondary recrystallization annealing, resulting in a film defect portion.
Therefore, it is necessary to limit the atmospheric oxidation to 0.10 or more and 0.35 or less for at least 60 seconds in the temperature range exceeding 800 ° C. in the first stage of decarburization annealing.
The reason for controlling the degree of atmospheric oxidation is at least 60 seconds in order to ensure a sufficient thickness of the subscale.

また、脱炭焼鈍後の酸素目付量が0.70g/m2未満であると、二次再結晶焼鈍で形成される下地被膜量が不足して、被膜密着性が劣化し、一方1.10g/m2を超えると二次再結晶焼鈍時に異常酸化が進行して被膜欠損部を生じるので、脱炭焼鈍後の酸素目付量は0.70〜1.10g/m2とする。 Further, the oxygen basis weight after decarburization annealing is less than 0.70 g / m 2, the lack of underlying coating amount formed by secondary recrystallization annealing, coating adhesion deteriorates, while 1.10 g / m If it exceeds 2 , abnormal oxidation proceeds at the time of secondary recrystallization annealing and a film defect portion is generated, so the oxygen basis weight after decarburization annealing is 0.70 to 1.10 g / m 2 .

サブスケールを上述の適正な範囲に制御したのち、一次再結晶粒径を二次再結晶発現のために好適な粒径に調整して磁気特性を向上させるために、脱炭焼鈍後段で最高到達温度に到達させる。後段の温度を高める場合、酸素目付量を過剰にしないために、雰囲気酸化性は極力低下させることが好ましい。脱炭焼鈍後段における最高到達温度は860℃以上、雰囲気酸化性は0.10以下とすることが好ましい。
また、脱炭焼鈍の昇温中、500〜700℃の温度域における昇温速度を50℃/s以上とすることは、鉄損低減の点で有効である。なお、この昇温速度の上限については特に制限はなく、実施可能なレベルであれば良い。
ここに、脱炭焼鈍前段とは、前半の均熱時間終了までを、また脱炭焼鈍後段とは、前半の均熱時間終了後異なる温度に設定し、その温度で均熱する時間が終了するまでを意味する。
After controlling the subscale within the above-mentioned appropriate range, reach the highest level after the decarburization annealing in order to improve the magnetic properties by adjusting the primary recrystallization grain size to a suitable grain size for secondary recrystallization. Let the temperature reach. When raising the temperature of the latter stage, it is preferable to reduce the atmospheric oxidizability as much as possible in order not to make the amount of oxygen per unit area excessive. It is preferable that the maximum temperature reached after decarburization annealing is 860 ° C. or higher and the atmospheric oxidation is 0.10 or lower.
Moreover, it is effective at the point of iron loss reduction to make the temperature increase rate in the temperature range of 500-700 degreeC into 50 degrees C / s or more during temperature increase of decarburization annealing. In addition, there is no restriction | limiting in particular about the upper limit of this temperature increase rate, What is necessary is just the level which can be implemented.
Here, the pre-decarburization annealing stage is set to the end of the first half of the soaking time, and the decarburization annealing post-stage is set to a different temperature after the first half of the soaking time, and the time of soaking at that temperature is over. Means up to.

上記の一次再結晶焼鈍後、鋼板の表面にマグネシア(MgO)を主剤とする焼鈍分離剤を塗布する。そして、一次再結晶焼鈍後から二次再結晶完了までの間に、地鉄中のS量を増加させる増硫処理による磁気特性向上を図るために、焼鈍分離剤中に硫酸マグネシウムを2.0mass%以上含有させることが肝要である。硫酸マグネシウムの添加量が2.0mass%未満では十分な磁気特性向上効果が得られない。なお、硫酸マグネシウムの添加上限値は2mass%程度とするのが好ましい。
本発明において「主剤」とは、マグネシアを80mass%以上含有させることを意味する。さらに、このマグネシア中には、上記した硫酸マグネシウムの他、TiO2など通常用いられる成分を添加することもできる。
また、焼鈍分離剤の塗布量としては、5.0〜20.0g/m2が好適である。塗布量が、下限に満たないと被膜形成量が不十分であり、一方上限を超えると被膜密着性が不十分となる不利を招く。
After the primary recrystallization annealing, an annealing separator containing magnesia (MgO) as a main component is applied to the surface of the steel sheet. In order to improve the magnetic properties by increasing the sulfur content of the iron from the time of primary recrystallization annealing to the completion of secondary recrystallization, 2.0 mass% magnesium sulfate is added to the annealing separator. It is important to make it contain above. If the amount of magnesium sulfate added is less than 2.0 mass%, a sufficient effect of improving magnetic properties cannot be obtained. In addition, it is preferable that the addition upper limit of magnesium sulfate shall be about 2 mass%.
In the present invention, the “main agent” means containing 80 mass% or more of magnesia. Furthermore, in addition to the above magnesium sulfate, commonly used components such as TiO 2 can be added to the magnesia.
Moreover, as an application quantity of an annealing separation agent, 5.0-20.0 g / m < 2 > is suitable. If the coating amount is less than the lower limit, the film formation amount is insufficient. On the other hand, if the coating amount exceeds the upper limit, there is a disadvantage that the film adhesion is insufficient.

その後、二次再結晶焼鈍を行う。この二次再結晶焼鈍中に硫酸マグネシウムが分解し、増硫効果を発揮して、ゴス方位に高度に集積した結晶組織が生成する結果、良好な磁気特性が得られる。
ここに、二次再結晶焼鈍条件は特に限定されることはなく、常法に従って行えば良い。好ましくは800〜950℃、10〜50hである。
Thereafter, secondary recrystallization annealing is performed. During the secondary recrystallization annealing, magnesium sulfate is decomposed to exhibit a vulcanization effect, and as a result, a crystal structure highly accumulated in the Goss orientation is generated, and as a result, good magnetic properties are obtained.
Here, the secondary recrystallization annealing conditions are not particularly limited, and may be performed according to a conventional method. Preferably they are 800-950 degreeC and 10-50h.

上記の増硫効果により磁気特性が向上する現象は、スラブ中にインヒビター成分を含有しない鋼の場合に特有な現象である。すなわち、鋼中にAlNやMnSなどのインヒビター成分(析出物)が存在しない場合、一次再結晶組織中のゴス方位粒を囲む粒界は、他の方位の粒を囲む粒界に比べて易動度が大きくなり、その結果ゴス方位が優先成長(二次再結晶)するのである。   The phenomenon in which the magnetic properties are improved by the above vulcanization effect is a phenomenon peculiar to the case of steel that does not contain an inhibitor component in the slab. In other words, when there are no inhibitor components (precipitates) such as AlN or MnS in the steel, the grain boundaries surrounding the goth-oriented grains in the primary recrystallized structure are more mobile than the grain boundaries surrounding the grains of other orientations. As a result, the Goss orientation preferentially grows (secondary recrystallization).

なお、一次再結晶後に地鉄中のS量を増加させることによって磁気特性が向上する理由は、まだ明確に解明されたわけではないが、粒界へ偏析するS量が増すと、ゴス方位以外の方位を囲む粒界の移動がさらに抑制され、二次再結晶が安定化すると共に、二次粒のゴス方位への先鋭性が増すことによるものと考えられる。特に硫酸マグネシウムの磁気特性向上効果が大きい理由については、必ずしも明らかでないが、分解による増硫効果が二次再結晶開始前に完了するためだと考えられる。   The reason why the magnetic properties are improved by increasing the amount of S in the base iron after primary recrystallization has not yet been clearly clarified, but if the amount of S segregated at the grain boundaries increases, It is considered that the movement of the grain boundary surrounding the orientation is further suppressed, the secondary recrystallization is stabilized, and the sharpness of the secondary grain to the Goth orientation is increased. The reason why magnesium sulfate is particularly effective in improving the magnetic properties is not necessarily clear, but it is considered that the sulfur increasing effect by decomposition is completed before the start of secondary recrystallization.

なお、二次再結晶焼鈍は、前掲特許文献4に開示されているように、昇温速度を30℃/h以下としてSを地鉄中に拡散させることが有効である。また焼鈍雰囲気は、N2,Arあるいはこれらの混合ガスのいずれもが適合する。ただし、二次再結晶完了までは、H2を雰囲気ガスとして使用しない。というのは、焼鈍分離剤中のSがH2S(ガス)として系外に出て行き、特にコイルのエッジにおいて増硫の効果が小さくなるからである。 In the secondary recrystallization annealing, as disclosed in the above-mentioned Patent Document 4, it is effective to diffuse S into the ground iron at a heating rate of 30 ° C./h or less. As the annealing atmosphere, N 2 , Ar, or a mixed gas thereof is suitable. However, H 2 is not used as the atmospheric gas until the completion of secondary recrystallization. This is because S in the annealing separator goes out of the system as H 2 S (gas), and the effect of vulcanization is reduced particularly at the edge of the coil.

さらに、増硫による磁気特性向上効果を享受し、かつ二次再結晶後の下地被膜の密着性と被膜欠損部のない良好な下地被膜の形成を実現するためには、二次再結晶焼鈍後の酸素目付量(OFA)と脱炭焼鈍後の酸素目付量(O2H)の比(OFA/O2H)を2.8〜4.1とすること、かつ二次再結晶焼鈍後の下地被膜付きでのS量を15ppm以上とすることが重要である。なお、下地被膜付きでのS量が100ppmを超えると鉄損劣化の弊害が生じるので、下地被膜付きS量の上限は100ppmとすることが好ましい。
これらの条件を達成するためには、脱炭焼鈍雰囲気の酸化性および均熱時間を調整して酸素目付量を適正量に調整した上で、マグネシア(MgO)を主剤とする焼鈍分離剤中に適正量の硫酸マグネシウムを添加することが重要である。二次再結晶焼鈍後の酸素目付量と脱炭焼鈍後の酸素目付量の比および下地被膜付きS量がこの範囲外では、被膜密着性の確保と被膜欠損部の抑制を両立させることができない。
Furthermore, in order to enjoy the effect of improving the magnetic properties by vulcanization and to realize the formation of a good undercoating without the lack of coating defects and the adhesion of the undercoating after the secondary recrystallization, The ratio of the oxygen basis weight (O FA ) to the oxygen basis weight (O 2H ) after decarburization annealing (O FA / O 2H ) should be 2.8 to 4.1, and with a base film after secondary recrystallization annealing It is important that the amount of S is 15 ppm or more. Note that if the amount of S with the base coating exceeds 100 ppm, an adverse effect of iron loss deterioration occurs, so the upper limit of the amount of S with the base coating is preferably 100 ppm.
In order to achieve these conditions, after adjusting the oxidizing amount and soaking time of the decarburization annealing atmosphere to adjust the oxygen basis weight to an appropriate amount, in the annealing separator containing magnesia (MgO) as the main component It is important to add the proper amount of magnesium sulfate. If the ratio of the oxygen basis weight after the secondary recrystallization annealing and the oxygen basis weight after the decarburization annealing and the S amount with the base coating are out of this range, it is impossible to achieve both the adhesion of the coating and the suppression of the coating defect. .

上記の二次再結晶焼鈍後、鋼板表面に、さらに絶縁被膜を塗布、焼き付けることもできる。かかる絶縁被膜の種類については、特に限定されず、従来公知のあらゆる絶縁被膜が適合する。たとえば、特開昭50−79442号公報や特開昭48−39338号公報に記載されているリン酸塩−クロム酸塩−コロイダルシリカを含有する塗布液を鋼板に塗布し、800℃程度で焼き付ける方法などが好適である。
また、平坦化焼鈍により、鋼板の形状を整えることも可能であり、さらにこの平坦化焼鈍を絶縁被膜の焼付け処理と兼備させることもできる。
After the secondary recrystallization annealing, an insulating film can be further applied and baked on the steel sheet surface. The type of the insulating coating is not particularly limited, and any conventionally known insulating coating is suitable. For example, a coating solution containing phosphate-chromate-colloidal silica described in JP-A-50-79442 and JP-A-48-39338 is applied to a steel plate and baked at about 800 ° C. A method or the like is preferable.
Further, the shape of the steel sheet can be adjusted by flattening annealing, and this flattening annealing can be combined with the baking treatment of the insulating coating.

実施例1
C:0.05%、Si:3.35%、Mn:0.05%、sol.Al:55ppm、N:35ppm、S:15ppm、Se:1ppm、O:10ppm、Sb:0.03%、Cr:0.05%およびSn:0.05%を含有し、残部はFeおよび不可避的不純物の組成からなる連鋳スラブを、1200℃に再加熱後、熱間圧延により板厚:2.2mmの熱延板としたのち、1050℃で30秒の熱延板焼鈍を施した。ついで、冷間圧延により板厚:0.30mmの冷延板としたのち、表1に示す条件で脱炭・一次再結晶焼鈍を施した。脱炭焼鈍前段におけるその他の処理条件は850℃,100s、H2:55%、N2:45%であり、一方後段は最高到達温度:880℃、P(H2O)/P(H2)=0.01とした。
ついで、MgOを主剤とし、硫酸マグネシウムを表1に示す種々の範囲で添加した焼鈍分離剤を、一次再結晶焼鈍板の表面に12.5g/m2塗布し、乾燥したのち、昇温速度:15℃/h、雰囲気ガス:900℃までN2ガス、900℃以上はH2、均熱処理:1160℃,5hの条件で二次再結晶焼鈍を施した。
Example 1
C: 0.05%, Si: 3.35%, Mn: 0.05%, sol.Al: 55ppm, N: 35ppm, S: 15ppm, Se: 1ppm, O: 10ppm, Sb: 0.03%, Cr: 0.05% and Sn: 0.05 %, With the balance being Fe and unavoidable impurities, re-heated to 1200 ° C, hot rolled into a hot-rolled sheet with a thickness of 2.2mm, then 1050 ° C for 30 seconds The hot rolled sheet was annealed. Then, after cold rolling to form a cold rolled sheet having a thickness of 0.30 mm, decarburization and primary recrystallization annealing were performed under the conditions shown in Table 1. The other treatment conditions in the first stage of decarburization annealing are 850 ° C., 100 s, H 2 : 55%, N 2 : 45%, while the latter stage has the highest temperature: 880 ° C., P (H 2 O) / P (H 2 ) = 0.01.
Next, an annealing separator containing MgO as the main ingredient and magnesium sulfate in various ranges shown in Table 1 is applied to the surface of the primary recrystallization annealed plate at 12.5 g / m 2 , dried, and then the rate of temperature rise: 15 Secondary recrystallization annealing was performed under the conditions of ℃ / h, atmospheric gas: N 2 gas up to 900 ° C., H 2 above 900 ° C., soaking treatment: 1160 ° C., 5 h.

上記の条件で得られた二次再結晶焼鈍板の表面に、リン酸塩−クロム酸塩−コロイダルシリカを、質量比で3:1:3の割合で含有する処理液を塗布し、800℃で焼き付けた。
その後、コイル幅中央部の磁気特性について調査した。磁気特性は、800℃で3時間の歪取り焼鈍を行ったのち、800A/mで励磁したときの磁束密度B8および50Hzで1.7Tまで励磁したときの鉄損W17/50で評価した。
また、二次再結晶焼鈍板において、酸素目付量と被膜付きでのS量、100mm×100mm角の試料内での下地被膜欠損部の面積率を測定した。
さらに、被膜密着性は、圧延方向に300mm、圧延直角方向に30mmの長さを有する試験片を採取し、種々の径を有する丸棒に試験片を押し付けながら180°折り曲げ、折り曲げ部分が剥離しない最小径で評価した。
得られた結果を表1に併記する。
A treatment liquid containing phosphate-chromate-colloidal silica in a mass ratio of 3: 1: 3 is applied to the surface of the secondary recrystallization annealed plate obtained under the above conditions, and 800 ° C. I baked in.
Thereafter, the magnetic characteristics at the center of the coil width were investigated. The magnetic characteristics were evaluated based on the magnetic flux density B 8 when excited at 800 A / m and the iron loss W 17/50 when excited up to 1.7 T at 50 Hz after performing stress relief annealing at 800 ° C. for 3 hours.
Further, in the secondary recrystallization annealed plate, the amount of oxygen per unit area, the amount of S with a coating, and the area ratio of the underlying coating defect in a 100 mm × 100 mm square sample were measured.
Furthermore, for film adhesion, specimens having a length of 300 mm in the rolling direction and 30 mm in the direction perpendicular to the rolling are collected, bent 180 ° while pressing the specimen against a round bar having various diameters, and the bent portion does not peel off. The minimum diameter was evaluated.
The obtained results are also shown in Table 1.

Figure 2014196558
Figure 2014196558

同表から明らかなように、本発明に従い、脱炭焼鈍の雰囲気酸化性を制御して、酸素目付量を適正な範囲に調整した上で、MgOを主剤とし、硫酸マグネシウムを2.0mass%以上含有する焼鈍分離剤を塗布して二次再結晶焼鈍を施し、二次再結晶焼鈍後に適正な酸素目付量と被膜付きS量を確保した場合には、良好な磁気特性と被膜特性を両立できることが分かる。   As is clear from the table, according to the present invention, the atmosphere oxidation property of decarburization annealing is controlled, the oxygen basis weight is adjusted to an appropriate range, MgO is the main agent, and magnesium sulfate is contained in an amount of 2.0 mass% or more. Applying an annealing separator to perform secondary recrystallization annealing, and ensuring adequate oxygen basis weight and coating S amount after secondary recrystallization annealing, it is possible to achieve both good magnetic properties and coating properties I understand.

実施例2
C:0.025%、Si:3.4%、Mn:0.10%、sol.Al:80ppm、N:45ppm、S:20ppm、Se:2ppm、O:30ppm、Sb:0.03%、Cr:0.05%およびSn:0.05%を含有し、残部はFeおよび不可避的不純物の組成からなる連鋳スラブを、1180℃に再加熱後、熱間圧延により板厚:2.5mmの熱延板とし、ついで冷間圧延により板厚:0.27mmとしたのち、前段をH2:55%、N2:45%、露点(DP):45℃、P(H2O)/P(H2)=0.19の雰囲気中で、820℃,100s間均熱し、後段を表2に示す温度、露点および雰囲気酸化性の下で脱炭・一次再結晶焼鈍を施した。
ついで、MgOを主剤とし、硫酸マグネシウムを表2に示す割合で添加した焼鈍分離剤を、一次再結晶焼鈍板の表面に12.5g/m2塗布し、乾燥したのち、昇温速度:15℃/h、雰囲気ガス:900℃までN2ガス、900℃以上はH2、均熱処理:1160℃,5hの条件で二次再結晶焼鈍を施した。
Example 2
C: 0.025%, Si: 3.4%, Mn: 0.10%, sol.Al: 80ppm, N: 45ppm, S: 20ppm, Se: 2ppm, O: 30ppm, Sb: 0.03%, Cr: 0.05% and Sn: 0.05 %, With the balance being Fe and the inevitable impurities composition, the continuous cast slab is reheated to 1180 ° C and hot rolled to a hot rolled sheet with a thickness of 2.5 mm, then cold rolled to obtain the thickness : After 0.27 mm, the previous stage is H 2 : 55%, N 2 : 45%, dew point (DP): 45 ° C, P (H 2 O) / P (H 2 ) = 0.19, 820 ° C , For 100 s, followed by decarburization and primary recrystallization annealing under the temperature, dew point, and atmospheric oxidation properties shown in Table 2.
Next, 12.5 g / m 2 of an annealing separator containing MgO as a main ingredient and magnesium sulfate added in the ratio shown in Table 2 was applied to the surface of the primary recrystallization annealed plate, dried, and then the heating rate: 15 ° C / h, Atmospheric gas: N 2 gas up to 900 ° C., 900 ° C. or higher was H 2 , soaking treatment: 1160 ° C., 5 h.

上記の条件で得られた二次再結晶焼鈍板の表面に、リン酸塩−クロム酸塩−コロイダルシリカを、質量比で3:1:3の割合で含有する処理液を塗布し、800℃で焼き付けた。
その後、コイル幅中央部の磁気特性について調査した。磁気特性は、800℃で3時間の歪取り焼鈍を行ったのち、800A/mで励磁したときの磁束密度B8および50Hzで1.7Tまで交流で励磁したときの鉄損W17/50で評価した。
また、二次再結晶焼鈍板において、酸素目付量と被膜付きでのS量、100mm×100mm角の試料内での下地被膜欠損部の面積率を測定した。
さらに、被膜密着性は、圧延方向に300mm、圧延直角方向に30mmの長さを有する試験片を採取し、種々の径を有する丸棒に試験片を押し付けながら180°折り曲げ、折り曲げ部分が剥離しない最小径で評価した。
得られた結果を表2に併記する。
A treatment liquid containing phosphate-chromate-colloidal silica in a mass ratio of 3: 1: 3 is applied to the surface of the secondary recrystallization annealed plate obtained under the above conditions, and 800 ° C. I baked in.
Thereafter, the magnetic characteristics at the center of the coil width were investigated. Magnetic characteristics were evaluated by magnetic flux density B 8 when excited at 800 A / m after 800 ° C / hour of stress relief annealing and iron loss W 17/50 when excited at 1.7 Hz at 50 Hz. did.
Further, in the secondary recrystallization annealed plate, the amount of oxygen per unit area, the amount of S with a coating, and the area ratio of the underlying coating defect in a 100 mm × 100 mm square sample were measured.
Furthermore, for film adhesion, specimens having a length of 300 mm in the rolling direction and 30 mm in the direction perpendicular to the rolling are collected, bent 180 ° while pressing the specimen against a round bar having various diameters, and the bent portion does not peel off. The minimum diameter was evaluated.
The obtained results are also shown in Table 2.

Figure 2014196558
Figure 2014196558

同表に示したとおり、本発明に従い、脱炭焼鈍条件および二次再結晶焼鈍条件を適切に制御した場合は、良好な磁気特性と被膜特性の両者を併せて得ることができた。   As shown in the table, when the decarburization annealing condition and the secondary recrystallization annealing condition were appropriately controlled according to the present invention, both good magnetic properties and film properties could be obtained together.

実施例3
C:0.03%、Si:3.4%、Mn:0.10%、sol.Al:80ppm、N:55ppm、S:20ppm、Se:2ppm、O:30ppm、Sb:0.03%、Cr:0.05%、Sn:0.05%およびP:0.03%を含有し、残部はFeおよび不可避的不純物の組成からなる連鋳スラブを、1210℃に再加熱後、熱間圧延により板厚:2.5mmの熱延板とし、ついで冷間圧延により板厚:0.27mmとしたのち、500℃から700℃の温度域を表3に示す速度で昇温し、表3に示す条件で脱炭・一次再結晶焼鈍を施した。脱炭焼鈍前段におけるその他の処理条件は850℃,100s、H2:55%、N2:45%であり、一方後段は最高到達温度:900℃、P(H2O)/P(H2)=0.002、H2:55%、N2:45%とした。
ついで、MgOを主剤とし、硫酸マグネシウムを表3に示す割合で添加した焼鈍分離剤を、一次再結晶焼鈍板の表面に12.5g/m2塗布し、乾燥したのち、昇温速度:15℃/h、雰囲気ガス:900℃までN2ガス、900℃以上はH2、均熱処理:1160℃,5hの条件で二次再結晶焼鈍を施した。
Example 3
C: 0.03%, Si: 3.4%, Mn: 0.10%, sol.Al: 80ppm, N: 55ppm, S: 20ppm, Se: 2ppm, O: 30ppm, Sb: 0.03%, Cr: 0.05%, Sn: 0.05 % And P: 0.03% Containing the balance of Fe and inevitable impurities, the continuous cast slab is reheated to 1210 ° C, hot rolled into a hot rolled sheet with a thickness of 2.5 mm, and then cooled. After the sheet thickness was 0.27 mm by hot rolling, the temperature range from 500 ° C. to 700 ° C. was increased at the speed shown in Table 3, and decarburization and primary recrystallization annealing were performed under the conditions shown in Table 3. The other treatment conditions in the first stage before decarburization annealing are 850 ° C., 100 s, H 2 : 55%, N 2 : 45%, while the latter stage has the highest temperature: 900 ° C., P (H 2 O) / P (H 2 ) = 0.002, H 2 : 55%, N 2 : 45%.
Next, 12.5 g / m 2 of an annealing separator containing MgO as a main component and magnesium sulfate added in the ratio shown in Table 3 was applied to the surface of the primary recrystallization annealed plate, dried, and then the rate of temperature increase: 15 ° C / h, Atmospheric gas: N 2 gas up to 900 ° C., 900 ° C. or higher was H 2 , soaking treatment: 1160 ° C., 5 h.

上記の条件で得られた二次再結晶焼鈍板の表面に、リン酸塩−クロム酸塩−コロイダル
シリカを、質量比で3:1:3の割合で含有する処理液を塗布し、800℃で焼き付けた。
その後、コイル幅中央部の磁気特性について調査した。磁気特性は、800℃で3時間の歪取り焼鈍を行ったのち、800A/mで励磁したときの磁束密度B8および50Hzで1.7Tまで交流で励磁したときの鉄損W17/50で評価した。
また、二次再結晶焼鈍板において、酸素目付量と被膜付きでのS量、100mm×100mm角の試料内での下地被膜欠損部の面積率を測定した。
さらに、被膜密着性は、圧延方向に300mm、圧延直角方向に30mmの長さを有する試験片を採取し、種々の径を有する丸棒に試験片を押し付けながら180°折り曲げ、折り曲げ部分が剥離しない最小径で評価した。
得られた結果を表3に併記する。
A treatment liquid containing phosphate-chromate-colloidal silica in a mass ratio of 3: 1: 3 is applied to the surface of the secondary recrystallization annealed plate obtained under the above conditions, and 800 ° C. I baked in.
Thereafter, the magnetic characteristics at the center of the coil width were investigated. Magnetic characteristics were evaluated by magnetic flux density B 8 when excited at 800 A / m after 800 ° C / hour of stress relief annealing and iron loss W 17/50 when excited at 1.7 Hz at 50 Hz. did.
Further, in the secondary recrystallization annealed plate, the amount of oxygen per unit area, the amount of S with a coating, and the area ratio of the underlying coating defect in a 100 mm × 100 mm square sample were measured.
Furthermore, for film adhesion, specimens having a length of 300 mm in the rolling direction and 30 mm in the direction perpendicular to the rolling are collected, bent 180 ° while pressing the specimen against a round bar having various diameters, and the bent portion does not peel off. The minimum diameter was evaluated.
The results obtained are also shown in Table 3.

Figure 2014196558
Figure 2014196558

同表から明らかなように、本発明に従い、脱炭焼鈍条件および二次再結晶焼鈍条件を適切に制御した場合は、磁気特性と被膜特性が共に優れた方向性電磁鋼板を得ることができた。   As is clear from the table, according to the present invention, when the decarburization annealing condition and the secondary recrystallization annealing condition were appropriately controlled, a grain-oriented electrical steel sheet having both excellent magnetic properties and coating properties could be obtained. .

実施例4
表4に示す種々の成分からなる連鋳スラブを、1230℃に再加熱後、熱間圧延により板厚:2.2mmの熱延板とし、ついで冷間圧延により板厚:0.23mmとしたのち、前段をH2:50%、N2:50%、露点(DP):50℃、P(H2O)/P(H2)=0.28の雰囲気中で、830℃,80s均熱し、後段はH2:50%、N2:50%、露点(DP):0℃、P(H2O)/P(H2)=0.01の雰囲気中で、最高到達温度:880℃の条件で脱炭・一次再結晶焼鈍を施した。
ついで、MgO:87%、MgSO4:10%、TiO2:3%を含有する焼鈍分離剤を、一次再結晶焼鈍板の表面に12.5g/m2塗布し、乾燥したのち、昇温速度:10℃/h、雰囲気ガス:950℃以下はArガス、950℃以上はH2ガス、均熱処理:1100℃,10hの条件で二次再結晶焼鈍を施した。
Example 4
After re-heating the continuous slab composed of various components shown in Table 4 to 1230 ° C., hot rolled into a sheet thickness of 2.2 mm, and then cold rolled to a sheet thickness of 0.23 mm. The front stage was soaked at 830 ° C for 80s in an atmosphere of H 2 : 50%, N 2 : 50%, dew point (DP): 50 ° C, P (H 2 O) / P (H 2 ) = 0.28. Decarburization under the conditions of H 2 : 50%, N 2 : 50%, dew point (DP): 0 ° C, P (H 2 O) / P (H 2 ) = 0.01, maximum temperature reached: 880 ° C -Primary recrystallization annealing was performed.
Next, an annealing separator containing MgO: 87%, MgSO 4 : 10%, TiO 2 : 3% was applied to the surface of the primary recrystallization annealed plate at 12.5 g / m 2 , dried, and the rate of temperature rise: Secondary recrystallization annealing was performed under the conditions of 10 ° C / h, atmospheric gas: Ar gas at 950 ° C or lower, H 2 gas at 950 ° C or higher, soaking heat treatment: 1100 ° C, 10h.

上記の条件で得られた二次再結晶焼鈍板の表面に、リン酸塩−クロム酸塩−コロイダルシリカを、質量比で3:1:3の割合で含有する処理液を塗布し、800℃で焼き付けた。
その後、コイル幅中央部の磁気特性について調査した。磁気特性は、800℃で3時間の歪取り焼鈍を行ったのち、800A/mで励磁したときの磁束密度B8および50Hzで1.7Tまで交流で励磁したときの鉄損W17/50で評価した。
また、二次再結晶焼鈍板において、酸素目付量と被膜付きでのS量、100mm×100mm角の試料内での下地被膜欠損部の面積率を測定した。
さらに、被膜密着性は、圧延方向に300mm、圧延直角方向に30mmの長さを有する試験片を採取し、種々の径を有する丸棒に試験片を押し付けながら180°折り曲げ、折り曲げ部分が剥離しない最小径で評価した。
得られた結果を表4に併記する。
A treatment liquid containing phosphate-chromate-colloidal silica in a mass ratio of 3: 1: 3 is applied to the surface of the secondary recrystallization annealed plate obtained under the above conditions, and 800 ° C. I baked in.
Thereafter, the magnetic characteristics at the center of the coil width were investigated. Magnetic characteristics were evaluated by magnetic flux density B 8 when excited at 800 A / m after 800 ° C / hour of stress relief annealing and iron loss W 17/50 when excited at 1.7 Hz at 50 Hz. did.
Further, in the secondary recrystallization annealed plate, the amount of oxygen per unit area, the amount of S with a coating, and the area ratio of the underlying coating defect in a 100 mm × 100 mm square sample were measured.
Furthermore, for film adhesion, specimens having a length of 300 mm in the rolling direction and 30 mm in the direction perpendicular to the rolling are collected, bent 180 ° while pressing the specimen against a round bar having various diameters, and the bent portion does not peel off. The minimum diameter was evaluated.
The obtained results are also shown in Table 4.

Figure 2014196558
Figure 2014196558

同表から明らかなように、鋼板成分として、基本成分の他に任意成分を含有させた場合であっても、本発明に従い製造した場合には、磁気特性と被膜特性が共に優れた方向性電磁鋼板が得られることが確認された。
As is apparent from the table, even when the steel plate component contains an optional component in addition to the basic component, when manufactured according to the present invention, both directional electromagnetics with excellent magnetic properties and coating properties are obtained. It was confirmed that a steel plate was obtained.

Claims (4)

質量%で、C:0.08%以下、Si:4.5%以下およびMn:0.5%以下を含有し、S,SeおよびOをそれぞれ50ppm未満ならびにNを60ppm未満、sol.Alを100ppm未満に抑制し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、再加熱することなくあるいは再加熱後、熱間圧延を施して熱延板としたのち、焼鈍および圧延により最終板厚の冷延板とし、ついで脱炭焼鈍を兼ねる一次再結晶焼鈍後、焼鈍分離剤を塗布してから二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
脱炭焼鈍前段の800℃を超える温度域で少なくとも60秒間にわたり、雰囲気酸化性〔P(H2O)/P(H2)〕を0.10以上、0.35以下に制御する、
脱炭焼鈍後の酸素目付量を0.70〜1.10g/m2に制限する、
MgOを主体とする焼鈍分離剤中に硫酸マグネシウムを2.0mass%以上含有させて、二次再結晶焼鈍後の酸素目付量(OFA)と脱炭焼鈍後の酸素目付量(O2H)の比(OFA/O2H)を2.8〜4.1にすると共に、二次再結晶焼鈍後の下地被膜付きS量を15ppm以上とする
ことを特徴とする方向性電磁鋼板の製造方法。
Containing, by mass%, C: 0.08% or less, Si: 4.5% or less, and Mn: 0.5% or less, suppressing S, Se and O to less than 50 ppm, N to less than 60 ppm, and sol.Al to less than 100 ppm, The remainder is a steel slab composed of Fe and inevitable impurities, either without reheating or after reheating, and then hot rolling to form a hot rolled sheet, followed by annealing and rolling to obtain a cold rolled sheet with the final thickness. Then, after primary recrystallization annealing that also serves as decarburization annealing, in the manufacturing method of grain-oriented electrical steel sheet consisting of a series of steps to apply secondary recrystallization annealing after applying an annealing separator,
At least 60 seconds in the temperature range exceeding 800 ° C. in the first stage of decarburization annealing, the atmospheric oxidation [P (H 2 O) / P (H 2 )] is controlled to 0.10 or more and 0.35 or less.
Limit the oxygen basis weight after decarburization annealing to 0.70 to 1.10 g / m 2 ,
Ratio of oxygen basis weight (O FA ) after secondary recrystallization annealing and oxygen basis weight (O 2H ) after decarburization annealing by containing 2.0 mass% or more of magnesium sulfate in annealing separator mainly composed of MgO A method for producing a grain-oriented electrical steel sheet, wherein (O FA / O 2H ) is set to 2.8 to 4.1, and the amount of S with a base coating after secondary recrystallization annealing is set to 15 ppm or more.
前記鋼スラブが、さらに質量%で、Cr:0.02〜0.5%、Ni:0.05〜0.5%、Cu:0.05〜0.5%、P:0.01〜0.2%、Sb:0.01〜0.2%、Sn:0.01〜0.4%、Nb:0.002〜0.01%およびMo:0.01〜0.2%のうちから選んだ一種または二種以上を含有する組成からなることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。   The steel slab is further in mass%, Cr: 0.02 to 0.5%, Ni: 0.05 to 0.5%, Cu: 0.05 to 0.5%, P: 0.01 to 0.2%, Sb: 0.01 to 0.2%, Sn: 0.01 to 0.4 %, Nb: 0.002 to 0.01% and Mo: 0.01 to 0.2%. The method for producing a grain-oriented electrical steel sheet according to claim 1, comprising one or more kinds selected from the group. 脱炭焼鈍後段での最高到達温度を860℃以上とし、かつ雰囲気酸化性〔P(H2O)/P(H2)〕 を0.10以下とすることを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 3. The maximum attainable temperature after decarburization annealing is set to 860 ° C. or more, and the atmospheric oxidation property [P (H 2 O) / P (H 2 )] is set to 0.10 or less. Method for producing a grain-oriented electrical steel sheet. 脱炭焼鈍の昇温中、500〜700℃の温度域における昇温速度を50℃/s以上とすることを特徴とする請求項1〜3のいずれかに記載の方向性電磁鋼板の製造方法。
The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 3, wherein a temperature increase rate in a temperature range of 500 to 700 ° C is set to 50 ° C / s or more during temperature increase in decarburization annealing. .
JP2014044299A 2013-03-07 2014-03-06 Method for producing grain-oriented electrical steel sheet Active JP5949813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014044299A JP5949813B2 (en) 2013-03-07 2014-03-06 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013045492 2013-03-07
JP2013045492 2013-03-07
JP2014044299A JP5949813B2 (en) 2013-03-07 2014-03-06 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2014196558A true JP2014196558A (en) 2014-10-16
JP5949813B2 JP5949813B2 (en) 2016-07-13

Family

ID=52357547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014044299A Active JP5949813B2 (en) 2013-03-07 2014-03-06 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5949813B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067636A1 (en) * 2014-10-30 2016-05-06 Jfeスチール株式会社 Production method for oriented electromagnetic steel sheet
EP3257960A4 (en) * 2015-02-13 2018-01-03 JFE Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
JP2019099839A (en) * 2017-11-29 2019-06-24 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP2019137881A (en) * 2018-02-07 2019-08-22 Jfeスチール株式会社 Manufacturing method of grain-oriented electromagnetic steel sheet
EP3257958B1 (en) * 2015-02-13 2020-04-15 JFE Steel Corporation Grain-oriented electrical steel sheet and method for producing same
CN112522609A (en) * 2020-11-18 2021-03-19 武汉钢铁有限公司 High magnetic induction oriented silicon steel containing composite inhibitor and production method thereof
EP3889297A4 (en) * 2018-11-30 2022-03-30 Posco Grain-oriented electric steel sheet and manufacturing method therefor
CN115491477A (en) * 2021-06-18 2022-12-20 协和化学工业株式会社 Method for producing annealing separator, and grain-oriented electromagnetic steel sheet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421911A (en) * 1993-11-22 1995-06-06 Armco Inc. Regular grain oriented electrical steel production process
JPH08283854A (en) * 1995-04-17 1996-10-29 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet extremely high in magnetic flux density
JP2000256810A (en) * 1999-03-11 2000-09-19 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in magnetic property in low magnetic field and high-frequency and punching workability and its production
JP2001107145A (en) * 1999-10-05 2001-04-17 Kawasaki Steel Corp Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2003041320A (en) * 2001-05-22 2003-02-13 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet with mirror surface superior in core loss
JP2007169755A (en) * 2005-12-26 2007-07-05 Jfe Steel Kk Grain-oriented electromagnetic steel sheet in coiled form and manufacturing method therefor
JP4321120B2 (en) * 2003-05-29 2009-08-26 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
JP2012184497A (en) * 2011-02-17 2012-09-27 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421911A (en) * 1993-11-22 1995-06-06 Armco Inc. Regular grain oriented electrical steel production process
JPH08283854A (en) * 1995-04-17 1996-10-29 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet extremely high in magnetic flux density
JP2000256810A (en) * 1999-03-11 2000-09-19 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in magnetic property in low magnetic field and high-frequency and punching workability and its production
JP2001107145A (en) * 1999-10-05 2001-04-17 Kawasaki Steel Corp Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2003041320A (en) * 2001-05-22 2003-02-13 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet with mirror surface superior in core loss
JP4321120B2 (en) * 2003-05-29 2009-08-26 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
JP2007169755A (en) * 2005-12-26 2007-07-05 Jfe Steel Kk Grain-oriented electromagnetic steel sheet in coiled form and manufacturing method therefor
JP2012184497A (en) * 2011-02-17 2012-09-27 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089194A (en) * 2014-10-30 2016-05-23 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
KR20170070240A (en) * 2014-10-30 2017-06-21 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheet
CN107075603A (en) * 2014-10-30 2017-08-18 杰富意钢铁株式会社 The manufacture method of orientation electromagnetic steel plate
KR101980172B1 (en) * 2014-10-30 2019-05-20 제이에프이 스틸 가부시키가이샤 Method of manufacturing grain-oriented electrical steel sheet
CN107075603B (en) * 2014-10-30 2019-06-18 杰富意钢铁株式会社 The manufacturing method of orientation electromagnetic steel plate
WO2016067636A1 (en) * 2014-10-30 2016-05-06 Jfeスチール株式会社 Production method for oriented electromagnetic steel sheet
US10988822B2 (en) 2015-02-13 2021-04-27 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
EP3257960A4 (en) * 2015-02-13 2018-01-03 JFE Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
EP3257958B1 (en) * 2015-02-13 2020-04-15 JFE Steel Corporation Grain-oriented electrical steel sheet and method for producing same
JP2019099839A (en) * 2017-11-29 2019-06-24 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP2019137881A (en) * 2018-02-07 2019-08-22 Jfeスチール株式会社 Manufacturing method of grain-oriented electromagnetic steel sheet
EP3889297A4 (en) * 2018-11-30 2022-03-30 Posco Grain-oriented electric steel sheet and manufacturing method therefor
CN112522609A (en) * 2020-11-18 2021-03-19 武汉钢铁有限公司 High magnetic induction oriented silicon steel containing composite inhibitor and production method thereof
CN112522609B (en) * 2020-11-18 2021-12-14 武汉钢铁有限公司 High magnetic induction oriented silicon steel containing composite inhibitor and production method thereof
CN115491477A (en) * 2021-06-18 2022-12-20 协和化学工业株式会社 Method for producing annealing separator, and grain-oriented electromagnetic steel sheet
CN115491477B (en) * 2021-06-18 2024-01-12 协和化学工业株式会社 Method for producing annealing separator, and grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP5949813B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP5949813B2 (en) Method for producing grain-oriented electrical steel sheet
JP5983777B2 (en) Method for producing grain-oriented electrical steel sheet
JP6098772B2 (en) Method for producing grain-oriented electrical steel sheet
JP5954347B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR102057126B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
JP6020768B1 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6439665B2 (en) Method for producing grain-oriented electrical steel sheet
JP4321120B2 (en) Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
WO2018021332A1 (en) Hot-rolled steel sheet for grain-oriented magnetic steel sheet and production method therefor, and production method for grain-oriented magnetic steel sheet
KR102130428B1 (en) Method of producing grain-oriented electrical steel sheet
JP6191529B2 (en) Primary recrystallization annealing plate for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP5428188B2 (en) Method for producing grain-oriented electrical steel sheet
JP6171887B2 (en) Method for producing grain-oriented electrical steel sheet
JP6504372B2 (en) Method of manufacturing directional magnetic steel sheet excellent in magnetic properties
JP5907202B2 (en) Method for producing grain-oriented electrical steel sheet
JP6079580B2 (en) Method for producing grain-oriented electrical steel sheet
JP5928362B2 (en) Method for producing grain-oriented electrical steel sheet and primary recrystallized steel sheet for producing grain-oriented electrical steel sheet
JP5939156B2 (en) Method for producing grain-oriented electrical steel sheet
JP5904151B2 (en) Method for producing grain-oriented electrical steel sheet
JP6011586B2 (en) Method for producing grain-oriented electrical steel sheet
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6209998B2 (en) Method for producing grain-oriented electrical steel sheet
JP6036587B2 (en) Method for producing grain-oriented electrical steel sheet and primary recrystallized steel sheet for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250