JP2014192963A - Uninterruptible power supply - Google Patents

Uninterruptible power supply Download PDF

Info

Publication number
JP2014192963A
JP2014192963A JP2013064519A JP2013064519A JP2014192963A JP 2014192963 A JP2014192963 A JP 2014192963A JP 2013064519 A JP2013064519 A JP 2013064519A JP 2013064519 A JP2013064519 A JP 2013064519A JP 2014192963 A JP2014192963 A JP 2014192963A
Authority
JP
Japan
Prior art keywords
power
circuit
voltage
power supply
chopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013064519A
Other languages
Japanese (ja)
Other versions
JP6040071B2 (en
Inventor
Shintaro Tachibana
慎太郎 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2013064519A priority Critical patent/JP6040071B2/en
Publication of JP2014192963A publication Critical patent/JP2014192963A/en
Application granted granted Critical
Publication of JP6040071B2 publication Critical patent/JP6040071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an uninterruptible power supply in which the voltage of the capacitors 28, 29 in a power factor improvement circuit 11 can be controlled to a constant level for a DC power supply 7 and an AC power supply 1.SOLUTION: An uninterruptible power supply has a chopper 13 including a transformer 36, switch elements 34, 35, a rectifier 37, and a capacitor 38, rectifying a voltage obtained from the voltage of a DC power supply 7 by operating the switch elements 34, 35, and supplying the voltage thus rectified to a load 2, a filter reactor 22 to be connected in series between an AC power supply 1 and the midpoint of a half-wave rectifier 23, a power factor improvement circuit 11 including backflow prevention diodes 26, 27 connected, respectively, between 28, 29, 24 and 28 and between 25 and 29 connected in parallel with filter capacitors 21, 23 to be connected in parallel with the AC power supply 1 and connected, respectively, in parallel with the switch elements 24, 25 in series connection, an inverter 12 for giving the DC power of 11 to the load 2 while inverting to AC power, and a control circuit 06 for prolonging the on time of 24, 25 as the voltage waveform of 1 becomes a peak.

Description

本実施形態は、交流電源、直流電源の電圧変化に対応し、昇圧トランスを含む昇圧回路を有する無停電電源装置に関する。   The present embodiment relates to an uninterruptible power supply apparatus that has a booster circuit including a booster transformer, corresponding to voltage changes of an AC power supply and a DC power supply.

無停電電源装置としては従来から様々な回路が提案されており、このうち直流電源が接続されるチョッパ回路に有する昇圧用トランスに、漏れインダクタンス成分が含まれるものがある。   Various circuits have been proposed as uninterruptible power supply devices. Among them, a step-up transformer included in a chopper circuit to which a DC power supply is connected includes a leakage inductance component.

特開2010−252574号公報JP 2010-252574 A

前述の漏れインダクタンス成分があると、漏れインダクタンス成分とチョッパ回路に有するサージ抑制コンデンサとの共振現象により、昇圧トランスの1次側電流及び2次側共振電流が発生する。この共振によりスイッチング素子には、大電流が流れている期間が発生し、この期間でスイッチング素子をオフした場合、オフした際に発生するスイッチング損失は、電圧、電流、オフに要する時間の積になるため、素子の発熱が増大し、スイッチング素子が過熱破損に至る可能性があった。   When the above-described leakage inductance component is present, a primary side current and a secondary side resonance current of the step-up transformer are generated due to a resonance phenomenon between the leakage inductance component and the surge suppression capacitor included in the chopper circuit. Due to this resonance, a period during which a large current flows occurs in the switching element. When the switching element is turned off during this period, the switching loss that occurs when the switching element is turned off is the product of the voltage, current, and time required for turning off. Therefore, the heat generation of the element increases, and the switching element may be overheated.

そのため、スイッチング素子の導通時間を共振電流の下限値となるタイミングに固定する必要があり、導通時間を制御するPWM制御による直流電圧の可変制御を実施することが困難であった。   Therefore, it is necessary to fix the conduction time of the switching element at a timing that becomes the lower limit value of the resonance current, and it is difficult to perform variable control of the DC voltage by PWM control that controls the conduction time.

本実施形態は、直流電圧の可変制御を行った場合にチョッパ回路に有するトランスの漏れインダクタンス成分の影響を受けて、スイッチング素子が過熱破損に至る可能性が無い無停電電源装置を提供することを目的とする。   The present embodiment provides an uninterruptible power supply in which there is no possibility that the switching element is overheated due to the influence of the leakage inductance component of the transformer included in the chopper circuit when variable control of the DC voltage is performed. Objective.

本実施形態の代表例は、漏れインダクタンス成分を有するトランスと、2個のスイッチング素子と、全波整流器と、フィルタコンデンサを含むフィルタ回路とにより構成され、直流電源からの直流電圧を、前記2個のスイッチング素子を交互に動作させてチョッピングし、チョッピングした電圧を前記トランスにより変圧し、この変圧した交流電圧を前記全波整流器で整流し、前記フィルタ回路を介して負荷に電力を供給するチョッパ回路と、
入力フィルタコンデンサ及び入力フィルタリアクトルからなるフィルタ回路と、前記入力フィルタリアクトルを直列に中点に接続し交流を整流する半波整流器と、前記半波整流器に並列に接続し交互にオンオフする第1及び第2のスイッチング素子と、前記第1及び第2のスイッチング素子に並列でかつ前記第1及び第2のスイッチング素子の接続点と接続点が接続された第1及び第2のコンデンサと前記コンデンサエネルギーの逆流を防止するための2つのダイオードを備え、交流電源の交流電力を直流電力に変換すると共に電圧を昇圧チョッパしかつ回路の力率を改善する昇圧チョッパ兼力率改善回路と、前記昇圧チョッパ兼力率改善回路で変換された直流電力を交流電力に変換して前記負荷に供給するインバータ回路と、前記第1及び第2のスイッチング素子を前記交流電源の前記昇圧チョッパ兼力率改善回路に印加される電圧に同期し、前記第1及び第2のスイッチング素子を交互にオンオフ動作させる制御回路とを具備し、前記直流電源と前記交流電源に対して前記第1及び第2のコンデンサの直流電力の電圧を一定に制御可能にした無停電電源装置である。
A typical example of the present embodiment is constituted by a transformer having a leakage inductance component, two switching elements, a full-wave rectifier, and a filter circuit including a filter capacitor. The switching elements are alternately operated to perform chopping, the chopped voltage is transformed by the transformer, the transformed AC voltage is rectified by the full-wave rectifier, and power is supplied to the load via the filter circuit. When,
A filter circuit comprising an input filter capacitor and an input filter reactor; a half-wave rectifier that rectifies alternating current by connecting the input filter reactor in series to a middle point; and a first and a second that are connected in parallel to the half-wave rectifier and alternately turned on and off A second switching element, a first capacitor and a second capacitor connected in parallel to the first and second switching elements and connected to a connection point of the first and second switching elements; and the capacitor energy Boosting chopper and power factor improvement circuit which includes two diodes for preventing reverse current flow, converts AC power of an AC power source into DC power, boosts the voltage and improves the power factor of the circuit, and the boosting chopper An inverter circuit that converts the DC power converted by the power factor correction circuit into AC power and supplies the AC power to the load; and And a control circuit that alternately turns on and off the first and second switching elements in synchronization with a voltage applied to the step-up chopper / power factor correction circuit of the AC power source. An uninterruptible power supply device in which the voltage of the DC power of the first and second capacitors can be controlled to be constant with respect to the power supply and the AC power supply.

本実施形態の無停電電源装置を説明するための概略回路図。The schematic circuit diagram for demonstrating the uninterruptible power supply of this embodiment. 図1の昇圧チョッパ兼力率改善回路11を説明するための概略回路図。FIG. 2 is a schematic circuit diagram for explaining a step-up chopper and power factor correction circuit 11 in FIG. 1. 図2の動作を説明するための波形図。FIG. 3 is a waveform diagram for explaining the operation of FIG. 2. 図1の昇圧チョッパ兼力率改善回路11を説明するための概略回路図。FIG. 2 is a schematic circuit diagram for explaining a step-up chopper and power factor correction circuit 11 in FIG. 1. 図4の動作を説明するための波形図。The wave form diagram for demonstrating the operation | movement of FIG. 従来の無停電電源装置の一例を説明するための概略回路図。The schematic circuit diagram for demonstrating an example of the conventional uninterruptible power supply. 図6の昇圧回路13を説明するための概略回路図。FIG. 7 is a schematic circuit diagram for explaining the booster circuit 13 of FIG. 6. 図7の動作を説明するための波形図。FIG. 8 is a waveform diagram for explaining the operation of FIG. 7.

本実施形態の概略構成は、図1に示すように漏れインダクタンス成分36aを有する例えば昇圧トランス36と、2個のスイッチング素子34、35と、全波整流器37と、フィルタコンデンサ38とフィルタリアクトル39、40を有するフィルタ回路とにより構成され、直流電源7により印加される直流電圧を、2個のスイッチング素子34、35を交互に動作させてチョッピングし、チョッピングした電圧を昇圧トランス36により昇圧し、この昇圧した交流電圧を全波整流器37で整流し、前記フィルタ回路を介して負荷2に電力を供給するチョッパ回路13を備えている。   The schematic configuration of the present embodiment is, for example, a step-up transformer 36 having a leakage inductance component 36a, two switching elements 34 and 35, a full-wave rectifier 37, a filter capacitor 38, a filter reactor 39, as shown in FIG. 40, the DC voltage applied by the DC power supply 7 is chopped by alternately operating the two switching elements 34, 35, and the chopped voltage is boosted by the step-up transformer 36. A chopper circuit 13 that rectifies the boosted AC voltage by a full-wave rectifier 37 and supplies power to the load 2 through the filter circuit is provided.

また、入力フィルタコンデンサ21及び入力フィルタリアクトル22からなるフィルタ回路と、入力フィルタリアクトル22を直列に中点に接続し交流を整流する半波整流器23と、半波整流器23に並列に接続し交互にオンオフする第1及び第2のスイッチング素子24、25と、第1及び第2のスイッチング素子24、25に並列でかつ第1及び第2のスイッチング素子24、25の接続点と接続点が接続された第1及び第2のコンデンサ28、29とコンデンサエネルギーの逆流を防止するための2つのダイオード26、27を備え、交流電源1の交流電力を直流電力に変換すると共に電圧を昇圧し、かつチョッパしかつ回路の力率を改善する昇圧チョッパ兼力率改善回路11を備えている。   In addition, a filter circuit including an input filter capacitor 21 and an input filter reactor 22, a half-wave rectifier 23 that connects the input filter reactor 22 in series to rectify an alternating current, and a parallel connection to the half-wave rectifier 23 are alternately connected. The first and second switching elements 24, 25 that are turned on / off are connected in parallel to the first and second switching elements 24, 25, and the connection points and connection points of the first and second switching elements 24, 25 are connected. The first and second capacitors 28 and 29 and the two diodes 26 and 27 for preventing the reverse flow of the capacitor energy, converting the AC power of the AC power source 1 into DC power, boosting the voltage, and chopper And a step-up chopper / power factor correction circuit 11 for improving the power factor of the circuit.

更に、昇圧チョッパ兼力率改善回路11で変換された直流電力を交流電力に変換して負荷2に供給するインバータ回路12を備えている。   Further, an inverter circuit 12 is provided that converts the DC power converted by the boost chopper / power factor correction circuit 11 into AC power and supplies the AC power to the load 2.

そして、第1及び第2のスイッチング素子24、25を交流電源1の昇圧チョッパ兼力率改善回路11に印加される電圧に同期し、第1及び第2のスイッチング素子24、25を交互にオンオフ動作させる制御回路06を備えている。このような構成により、直流電源7と交流電源1に対して第1及び第2のコンデンサ28、29の直流電力の電圧を一定に制御できる無停電電源装置となる。   Then, the first and second switching elements 24 and 25 are synchronized with the voltage applied to the step-up chopper / power factor correction circuit 11 of the AC power supply 1, and the first and second switching elements 24 and 25 are alternately turned on and off. A control circuit 06 to be operated is provided. With such a configuration, an uninterruptible power supply apparatus that can control the voltage of the DC power of the first and second capacitors 28 and 29 with respect to the DC power supply 7 and the AC power supply 1 to be constant.

昇圧チョッパ兼力率改善回路11は、図2に示すように、交流電源1が接続される無停電電源装置の交流入力端子3、4に、フィルタ回路(入力フィルタコンデンサ21と入力フィルタリアクトル22とによって構成される)のコンデンサ21を並列に接続すると共に、交流入力端子3にフィルタ回路のリアクトル22の一端を直列に接続し、リアクトル22の他端を、半波整流器23の中点であるダイオードの接続点を接続し、整流器23に並列に例えばMOSFETからなるスイッチング素子24、25の直列回路を接続し、スイッチング素子24、25の直列回路に並列にコンデンサ28、29の直列回路を接続し、コンデンサ28、29の接続点とスイッチング素子24、25の接続点同士を接続し、スイッチング素子24とコンデンサ28の間に逆流防止素子例えば逆流防止ダイオード26を図に示す極性で接続し、スイッチング素子25とコンデンサ29の間に逆流防止素子例えば逆流防止ダイオード27を図に示す極性で接続してある。   As shown in FIG. 2, the step-up chopper / power factor correction circuit 11 has a filter circuit (an input filter capacitor 21 and an input filter reactor 22 connected to the AC input terminals 3 and 4 of the uninterruptible power supply to which the AC power supply 1 is connected. Are connected in parallel, one end of the reactor 22 of the filter circuit is connected in series to the AC input terminal 3, and the other end of the reactor 22 is connected to the diode that is the midpoint of the half-wave rectifier 23 A series circuit of switching elements 24 and 25 made of, for example, MOSFETs is connected in parallel to the rectifier 23, and a series circuit of capacitors 28 and 29 is connected in parallel to the series circuit of the switching elements 24 and 25, The connection points of the capacitors 28 and 29 and the connection points of the switching elements 24 and 25 are connected to each other. The backflow prevention device for example blocking diode 26 between the support 28 is connected with the polarity shown in the figure, it is connected with the polarity shown in FIG backflow prevention device for example blocking diode 27 between the switching element 25 and a capacitor 29.

交流電源1の昇圧チョッパ兼力率改善回路11に印加される電圧(交流入力端子3、4の電圧)は、電圧検出器01により検出され、この検出電圧は制御回路06に入力される。   The voltage applied to the step-up chopper / power factor correction circuit 11 of the AC power supply 1 (the voltage at the AC input terminals 3 and 4) is detected by the voltage detector 01, and this detected voltage is input to the control circuit 06.

そして、整流器23とリアクトル22の接続点に電流検出回路02を設け、コンデンサ28に並列に電圧検出回路03aを接続し、コンデンサ29に並列に電圧検出回路03bを接続し、各検出回路02、03a、03bの検出出力は制御回路06に入力されるようになっている。   A current detection circuit 02 is provided at a connection point between the rectifier 23 and the reactor 22, a voltage detection circuit 03a is connected in parallel to the capacitor 28, a voltage detection circuit 03b is connected in parallel to the capacitor 29, and each detection circuit 02, 03a is connected. , 03b are input to the control circuit 06.

このように本実施形態の昇圧チョッパ兼力率改善回路11と、図6及び図7の従来の昇圧チョッパ兼力率改善回路11aの違い半波ィルタ回路に並列に接続していたフルブリッジ整流器23a及びこの整流器23aに並列に接続したスイッチング素子24を設けず、上記のように構成したものである。図6及び図7で使用されているチョッパ回路13の動作時の動作波形を図8に示す。   Thus, the difference between the step-up chopper / power factor improving circuit 11 of this embodiment and the conventional step-up chopper / power factor improving circuit 11a of FIGS. 6 and 7 is a full-bridge rectifier 23a connected in parallel to the half-wave filter circuit. In addition, the switching element 24 connected in parallel to the rectifier 23a is not provided, and is configured as described above. FIG. 8 shows operation waveforms when the chopper circuit 13 used in FIGS. 6 and 7 is operated.

導通をスイッチング素子34及び35によってスイッチングを実施することにより、昇圧トランス36の1次側に図8の方形波電圧51、52を印加することで、昇圧トランス36の2次側に図8に示す昇圧された方形波電圧54を得ることができる。この電圧をフルブリッジ整流回路37を用いて整流することで、図8に示す昇圧された直流電圧56を得ることができる。   8 is applied to the secondary side of the step-up transformer 36 by applying the square wave voltages 51 and 52 of FIG. 8 to the primary side of the step-up transformer 36 by switching the conduction by the switching elements 34 and 35. A boosted square wave voltage 54 can be obtained. By rectifying this voltage using the full bridge rectifier circuit 37, the boosted DC voltage 56 shown in FIG. 8 can be obtained.

以下、このように構成された実施形態の動作及び作用効果について説明する。交流入力端子3、4から入力された交流電源1の交流電力が、昇圧チョッパ兼力率改善回路11によって、交流電圧を昇圧すると共に交流電力の力率を改善し、コンデンサ28、29に直流電力として充電される。   Hereinafter, the operation and effects of the embodiment configured as described above will be described. The AC power of the AC power source 1 input from the AC input terminals 3 and 4 boosts the AC voltage and improves the power factor of the AC power by the step-up chopper / power factor improving circuit 11, and the DC power is supplied to the capacitors 28 and 29. As charged.

何らかの原因で交流電源1に異常が発生した場合は、直流端子8、9から入力された直流電源7の直流電力が、昇圧チョッパ回路13によって昇圧され、昇圧チョッパ兼力率改善回路11によってさらに昇圧され、コンデンサ28、29に直流電力として充電される。   When an abnormality occurs in the AC power source 1 for some reason, the DC power of the DC power source 7 input from the DC terminals 8 and 9 is boosted by the boost chopper circuit 13 and further boosted by the boost chopper / power factor correction circuit 11. The capacitors 28 and 29 are charged as DC power.

コンデンサ28、29の直流電圧をインバータ回路12にて交流電力に変換して交流出力端子5、6に接続された負荷2に供給する。制御回路06は、2つのスイッチング素子24、25をスイッチングすることで、交流電源1、直流電源7に対してコンデンサ28、29の直流電力の電圧を一定に制御可能となっている。   The DC voltage of the capacitors 28 and 29 is converted into AC power by the inverter circuit 12 and supplied to the load 2 connected to the AC output terminals 5 and 6. The control circuit 06 can control the DC power voltage of the capacitors 28 and 29 to be constant with respect to the AC power source 1 and the DC power source 7 by switching the two switching elements 24 and 25.

なお、入力フィルタコンデンサ21と入力リアクトル22の接続点と、出力リアクトル33と出力コンデンサ33の接続点の間に双方向スイッチング素子41が接続されると共に、スイッチング素子41のゲートには制御回路06からのゲート信号が供給されるようになっている。   A bidirectional switching element 41 is connected between the connection point of the input filter capacitor 21 and the input reactor 22 and the connection point of the output reactor 33 and the output capacitor 33, and the gate of the switching element 41 is connected to the control circuit 06. The gate signal is supplied.

次に、図2及び図3を参照して交流電源1を使用時の昇圧チョッパ兼力率改善回路11の動作及び作用効果を説明する。図2は交流電源1を使用したときの昇圧チョッパ兼力率改善回路11の動作を説明するための図であり、図3は図2の各部における電圧波形と電流波形を示す図である。図2及び図3において、交流電源1が正の出力の場合、つまり交流入力電圧波形61の正側の場合、スイッチング素子24をオンすると、スイッチング素子24の電圧波形62の様になり、スイッチング素子24をオンすることで、交流電源1−リアクトル22−整流器23のダイオード−スイッチング素子24−交流電源1の経路で、リアクトル22へのエネルギー蓄積のモードとなる。逆にスイッチング素子24をオフすると、交流電源1−リアクトル22−整流器23のダイオード−逆流防止ダイオード26−コンデンサ28−交流電源1の経路でリアクトル22の誘導電圧による昇圧モードとなり、図2の逆流防止ダイオード26を通して昇圧された直流電力によりコンデンサ28が充電される。   Next, operations and effects of the step-up chopper / power factor correction circuit 11 when the AC power supply 1 is used will be described with reference to FIGS. FIG. 2 is a diagram for explaining the operation of the step-up chopper / power factor correction circuit 11 when the AC power source 1 is used, and FIG. 3 is a diagram showing voltage waveforms and current waveforms in each part of FIG. 2 and 3, when the AC power supply 1 has a positive output, that is, on the positive side of the AC input voltage waveform 61, when the switching element 24 is turned on, a voltage waveform 62 of the switching element 24 is obtained. By turning on 24, the energy storage mode in the reactor 22 is set in the path of AC power source 1-reactor 22-diode-switching element 24 of rectifier 23-AC power source 1. On the other hand, when the switching element 24 is turned off, the boost mode is established by the induced voltage of the reactor 22 in the path of the AC power source 1-the reactor 22-the diode of the rectifier 23-the reverse current prevention diode 26-the capacitor 28-the AC power source 1, and the reverse current prevention shown in FIG. The capacitor 28 is charged by the DC power boosted through the diode 26.

図2及び図3において、交流電源1が負の出力の場合、つまり図3の交流入力電圧波形61の負側の場合、スイッチング素子25をオンすると、スイッチング素子25の電圧波形62の様になり、スイッチング素子25をオンすることで、交流電源1−スイッチング素子25−整流器23のダイオード−リアクトル22−交流電源1の経路で、リアクトル22へのエネルギー蓄積のモードとなる。逆にスイッチング素子25をオフすると、交流電源1−コンデンサ29−逆流防止ダイオード27−整流器23のダイオード−リアクトル22−交流電源1の経路でリアクトル22の誘導電圧による昇圧モードとなり、図2の逆流防止ダイオード27を通して昇圧された直流電力によりコンデンサ28が充電される。   2 and 3, when the AC power supply 1 has a negative output, that is, on the negative side of the AC input voltage waveform 61 in FIG. 3, when the switching element 25 is turned on, a voltage waveform 62 of the switching element 25 is obtained. When the switching element 25 is turned on, the energy storage mode in the reactor 22 is set in the path of the AC power source 1-the switching element 25-the diode-reactor 22 of the rectifier 23-the AC power source 1. On the other hand, when the switching element 25 is turned off, the boost mode is set by the induced voltage of the reactor 22 in the path of the AC power source 1 -capacitor 29 -backflow prevention diode 27 -diode of the rectifier 23 -reactor 22 -AC power source 1 and the backflow prevention shown in FIG. Capacitor 28 is charged by the DC power boosted through diode 27.

交流入力に対してはリアクトル22の誘導電圧による昇圧モードとなり、逆流防止ダイオード26の電流波形64の様にダイオード26を通して昇圧された直流電力がコンデンサ28へ充電される。また、ダイオード27の電流波形は65の様に、ダイオード27を通して昇圧された直流電圧がコンデンサ29へ充電される。この場合の昇圧チョッパ兼力率改善回路11の出力電圧波形は66のようになる。   With respect to the AC input, the boost mode is caused by the induced voltage of the reactor 22, and the DC power boosted through the diode 26 is charged to the capacitor 28 like the current waveform 64 of the backflow prevention diode 26. In addition, the current waveform of the diode 27 is 65, and the DC voltage boosted through the diode 27 is charged to the capacitor 29, as indicated by 65. In this case, the output voltage waveform of the step-up chopper / power factor correction circuit 11 is 66.

以上述べたように、スイッチング素子24、25を、制御回路06により交流電源1の昇圧チョッパ兼力率改善回路11に印加される電圧に同期し、スイッチング素子24、25を交互にオンオフ動作させることで、交流電源1に対してコンデンサ28の直流電力の電圧を一定に制御できる。   As described above, the switching elements 24 and 25 are alternately turned on and off in synchronization with the voltage applied to the step-up chopper / power factor correction circuit 11 of the AC power supply 1 by the control circuit 06. Thus, the voltage of the DC power of the capacitor 28 can be controlled to be constant with respect to the AC power source 1.

次に、図4及び図5を参照して直流電源7を使用時の昇圧チョッパ兼力率改善回路11の動作及び作用効果を説明する。図4は直流電源7を使用したときの昇圧チョッパ兼力率改善回路11の動作を説明するための図であり、図5は図4の各部における電圧波形と電流波形を示す図である。図4における昇圧回路13の出力電圧71がコンデンサ28、29の直流電圧の合計より小さい場合、スイッチング素子24がオン、スイッチング素子25がオフの場合は、図4の75の様に昇圧回路13の出力がコンデンサ29へ充電される。逆にスイッチング素子25がオン、スイッチング素子24がオフの場合は、図4の74の様に昇圧回路13の出力がコンデンサ28へ充電される。   Next, operations and effects of the step-up chopper / power factor correction circuit 11 when the DC power supply 7 is used will be described with reference to FIGS. FIG. 4 is a diagram for explaining the operation of the step-up chopper / power factor correction circuit 11 when the DC power source 7 is used, and FIG. 5 is a diagram showing voltage waveforms and current waveforms in each part of FIG. When the output voltage 71 of the booster circuit 13 in FIG. 4 is smaller than the sum of the DC voltages of the capacitors 28 and 29, when the switching element 24 is on and the switching element 25 is off, the booster circuit 13 of FIG. The output is charged into the capacitor 29. Conversely, when the switching element 25 is on and the switching element 24 is off, the output of the booster circuit 13 is charged to the capacitor 28 as indicated by 74 in FIG.

スイッチング素子24、25をオフすると、図4における昇圧回路13の出力電圧71がコンデンサ28、29の直流電圧の合計より小さい場合、ダイオード26、27には電流が流れずコンデンサ28、29は充電されない。   When the switching elements 24 and 25 are turned off, when the output voltage 71 of the booster circuit 13 in FIG. 4 is smaller than the sum of the DC voltages of the capacitors 28 and 29, no current flows through the diodes 26 and 27 and the capacitors 28 and 29 are not charged. .

図4における昇圧回路13の出力電圧71がコンデンサ28、29の直流電圧の合計より大きい場合、ダイオード26、27には電流が流れコンデンサ28、29は充電される。   When the output voltage 71 of the booster circuit 13 in FIG. 4 is greater than the sum of the DC voltages of the capacitors 28 and 29, current flows through the diodes 26 and 27, and the capacitors 28 and 29 are charged.

前述のスイッチング素子24、25のスイッチングをコンデンサ28、29が一定になるように制御することで、直流電力に対する昇圧回路として機能する。   By controlling the switching of the switching elements 24 and 25 so that the capacitors 28 and 29 are constant, the switching elements 24 and 25 function as a booster circuit for DC power.

本実施形態では、チョッパ回路13に加えて昇圧チョッパ兼力率改善回路11を用いて2段階で昇圧することによって、直流入力電圧の可変によってチョッパ回路13の出力電圧が変化しても、昇圧チョッパ回路として動作する昇圧チョッパ兼力率改善回路11を用いて制御することで、直流入力電圧の可変に対応することが可能となる。また、昇圧チョッパ兼力率改善回路11は交流電力入力時の昇圧チョッパ兼力率改善回路として動作することが可能であり、交流電力及び直流入力電力の2つの入力に対応した回路を構築でき、回路を簡素化につながる。これによって、従来問題であった、直流電圧の可変制御を行った場合に昇圧トランス36に漏れインダクタンス成分36aがあって、漏れインダクタンス成分36aとサージ抑制コンデンサ38との共振現象により、昇圧トランス34の1次側及び2次側電流53、55に示す共振電流が発生しても、常に共振電流の下限値となるタイミングで制御可能となるため、スイッチング素子34及び35が過熱破損に至ることを防止できる。このように本実施形態は、チョッパ回路13の制御は変更せずに、昇圧チョッパ兼力率改善回路11で直流電圧を制御することによって、直流電圧の可変制御を実施することが容易となる。   In the present embodiment, the step-up chopper circuit 13 is boosted in two stages using the step-up chopper / power factor correction circuit 11 in addition to the chopper circuit 13, so that even if the output voltage of the chopper circuit 13 changes due to a change in the DC input voltage, the step-up chopper By controlling using the step-up chopper / power factor correction circuit 11 that operates as a circuit, it becomes possible to cope with the variable DC input voltage. The step-up chopper / power factor improvement circuit 11 can operate as a step-up chopper / power factor improvement circuit when AC power is input, and a circuit corresponding to two inputs of AC power and DC input power can be constructed. It leads to simplification of the circuit. As a result, there is a leakage inductance component 36a in the step-up transformer 36 when the DC voltage variable control, which has been a problem in the past, is performed, and due to the resonance phenomenon between the leakage inductance component 36a and the surge suppression capacitor 38, the step-up transformer 34 Even if the resonance current shown in the primary side and secondary side currents 53 and 55 is generated, the control can always be performed at the timing when the resonance current becomes the lower limit value, so that the switching elements 34 and 35 are prevented from being overheated. it can. As described above, according to the present embodiment, it is easy to perform variable control of the DC voltage by controlling the DC voltage by the boost chopper / power factor correction circuit 11 without changing the control of the chopper circuit 13.

1…交流電源、2…負荷、3、4…交流入力端子、5、6…交流出力端子、7…直流電源、8、9…直流入力端子、11…昇圧チョッパ兼力率改善回路、12…インバータ回路、13…チョッパ回路、21…入力フィルタコンデンサ、22…入力リアクトル、23…半波整流器、24、25…スイッチング素子、26、27…逆流防止ダイオード、28、29…コンデンサ、30、31…スイッチング素子、32…出力リアクトル、33…出力コンデンサ、34、35…スイッチング素子、36…昇圧トランス、36a…漏れインダクタンス成分、37…全波整流器、38…フィルタコンデンサ、39、40…フィルタリアクトル、41…双方向スイッチング素子、51、52…トランス1次側電圧波形、53…トランス1次側電圧電流、54…トランス2次側電圧波形、55…トランス2次側電流波形、56…昇圧回路出力電圧、61…交流入力電圧波形、62…スイッチング素子24の電圧波形、63…スイッチング素子25の電圧波形、64…ダイオード26の電流波形、65…ダイオード27の電流波形、66…出力電圧、71…直流入力電圧波形、72…スイッチング素子24の電圧波形、73…スイッチング素子25の電圧波形、74…ダイオード26の電流波形、75…ダイオード27の電流波形、76…出力電圧。   DESCRIPTION OF SYMBOLS 1 ... AC power supply, 2 ... Load, 3, 4 ... AC input terminal 5, 6 ... AC output terminal, 7 ... DC power supply, 8, 9 ... DC input terminal, 11 ... Boost chopper / power factor improvement circuit, 12 ... Inverter circuit, 13 ... chopper circuit, 21 ... input filter capacitor, 22 ... input reactor, 23 ... half-wave rectifier, 24, 25 ... switching element, 26, 27 ... backflow prevention diode, 28, 29 ... capacitor, 30, 31 ... Switching element, 32 ... Output reactor, 33 ... Output capacitor, 34, 35 ... Switching element, 36 ... Step-up transformer, 36a ... Leakage inductance component, 37 ... Full wave rectifier, 38 ... Filter capacitor, 39, 40 ... Filter reactor, 41 ... Bidirectional switching element, 51, 52 ... Transformer primary side voltage waveform, 53 ... Transformer primary side voltage current, 5 Transformer secondary side voltage waveform, 55 Transformer secondary side current waveform, 56 ... Booster circuit output voltage, 61 ... AC input voltage waveform, 62 ... Voltage waveform of switching element 24, 63 ... Voltage waveform of switching element 25, 64 ... current waveform of diode 26, 65 ... current waveform of diode 27, 66 ... output voltage, 71 ... DC input voltage waveform, 72 ... voltage waveform of switching element 24, 73 ... voltage waveform of switching element 25, 74 ... of diode 26 Current waveform, 75 ... Current waveform of the diode 27, 76 ... Output voltage.

Claims (2)

漏れインダクタンス成分を有するトランスと、2個のスイッチング素子と、全波整流器と、フィルタコンデンサを含むフィルタ回路とにより構成され、直流電源からの直流電圧を、前記2個のスイッチング素子を交互に動作させてチョッピングし、チョッピングした電圧を前記トランスにより変圧し、この変圧した交流電圧を前記全波整流器で整流し、前記フィルタ回路を介して負荷に電力を供給するチョッパ回路と、
入力フィルタコンデンサ及び入力フィルタリアクトルからなるフィルタ回路と、前記入力フィルタリアクトルを直列に中点に接続し交流を整流する半波整流器と、前記半波整流器に並列に接続し交互にオンオフする第1及び第2のスイッチング素子と、前記第1及び第2のスイッチング素子に並列でかつ前記第1及び第2のスイッチング素子の接続点と接続点が接続された第1及び第2のコンデンサと前記コンデンサエネルギーの逆流を防止するための2つのダイオードを備え、交流電源の交流電力を直流電力に変換すると共に電圧を昇圧チョッパしかつ回路の力率を改善する昇圧チョッパ兼力率改善回路と、前記昇圧チョッパ兼力率改善回路で変換された直流電力を交流電力に変換して前記負荷に供給するインバータ回路と、前記第1及び第2のスイッチング素子を前記交流電源の前記昇圧チョッパ兼力率改善回路に印加される電圧に同期し、前記第1及び第2のスイッチング素子を交互にオンオフ動作させる制御回路とを具備し、前記直流電源と前記交流電源に対して前記第1及び第2のコンデンサの直流電力の電圧を一定に制御可能にした無停電電源装置。
A transformer having a leakage inductance component, two switching elements, a full-wave rectifier, and a filter circuit including a filter capacitor are configured to operate a DC voltage from a DC power supply alternately on the two switching elements. A chopper circuit that transforms the chopped voltage with the transformer, rectifies the transformed AC voltage with the full-wave rectifier, and supplies power to the load via the filter circuit;
A filter circuit comprising an input filter capacitor and an input filter reactor; a half-wave rectifier that rectifies alternating current by connecting the input filter reactor in series to a middle point; and a first and a second that are connected in parallel to the half-wave rectifier and alternately turned on and off A second switching element, a first capacitor and a second capacitor connected in parallel to the first and second switching elements and connected to a connection point of the first and second switching elements; and the capacitor energy Boosting chopper and power factor improvement circuit which includes two diodes for preventing reverse current flow, converts AC power of an AC power source into DC power, boosts the voltage and improves the power factor of the circuit, and the boosting chopper An inverter circuit that converts the DC power converted by the power factor correction circuit into AC power and supplies the AC power to the load; and And a control circuit that alternately turns on and off the first and second switching elements in synchronization with a voltage applied to the step-up chopper / power factor correction circuit of the AC power source. An uninterruptible power supply apparatus in which the DC power voltage of the first and second capacitors can be controlled to be constant with respect to the power supply and the AC power supply.
漏れインダクタンス成分を有するトランスと、2個のスイッチング素子と、全波整流器と、フィルタコンデンサを含むフィルタ回路とにより構成され、直流電源からの直流電圧を、前記2個のスイッチング素子を交互に動作させてチョッピングし、チョッピングした電圧を前記トランスにより変圧し、この変圧した交流電圧を前記全波整流器で整流し、前記フィルタ回路を介して負荷に電力を供給するチョッパ回路と、
入力フィルタコンデンサ及び入力フィルタリアクトルからなるフィルタ回路と、前記入力フィルタリアクトルを直列に中点に接続し交流を整流する半波整流器と、前記半波整流器に並列に接続し交互にオンオフする第1及び第2のスイッチング素子と、前記第1及び第2のスイッチング素子に並列でかつ前記第1及び第2のスイッチング素子の接続点と接続点が接続された第1及び第2のコンデンサと前記コンデンサエネルギーの逆流を防止するための2つのダイオードを備え、交流電源の交流電力を直流電力に変換すると共に電圧を昇圧チョッパしかつ回路の力率を改善する昇圧チョッパ兼力率改善回路と、
前記昇圧チョッパ兼力率改善回路で変換された直流電力を交流電力に変換して前記負荷に供給するインバータ回路と、
前記交流電源の前記昇圧チョッパ兼力率改善回路に印加される電圧の大きさがピークになるに従って、前記第1及び第2のスイッチング素子のオン時間が長くなるように前記第1及び第2のスイッチング素子を制御する制御回路と、
を具備し、前記直流電源と前記交流電源に対して前記第1及び第2のコンデンサの直流電力の電圧を一定に制御可能にしたことを特徴する無停電電源装置。
A transformer having a leakage inductance component, two switching elements, a full-wave rectifier, and a filter circuit including a filter capacitor are configured to operate a DC voltage from a DC power supply alternately on the two switching elements. A chopper circuit that transforms the chopped voltage with the transformer, rectifies the transformed AC voltage with the full-wave rectifier, and supplies power to the load via the filter circuit;
A filter circuit comprising an input filter capacitor and an input filter reactor; a half-wave rectifier that rectifies alternating current by connecting the input filter reactor in series to a middle point; and a first and a second that are connected in parallel to the half-wave rectifier and alternately turned on and off A second switching element, a first capacitor and a second capacitor connected in parallel to the first and second switching elements and connected to a connection point of the first and second switching elements; and the capacitor energy A step-up chopper and power factor improvement circuit that includes two diodes for preventing reverse current flow, converts AC power of an AC power source into DC power, boosts the voltage, and improves the power factor of the circuit;
An inverter circuit that converts the DC power converted by the boost chopper and power factor correction circuit into AC power and supplies the AC power to the load;
As the magnitude of the voltage applied to the step-up chopper / power factor correction circuit of the AC power supply reaches a peak, the on-time of the first and second switching elements becomes longer. A control circuit for controlling the switching element;
An uninterruptible power supply apparatus, characterized in that the DC power voltage of the first and second capacitors can be controlled to be constant with respect to the DC power supply and the AC power supply.
JP2013064519A 2013-03-26 2013-03-26 Uninterruptible power system Active JP6040071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064519A JP6040071B2 (en) 2013-03-26 2013-03-26 Uninterruptible power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064519A JP6040071B2 (en) 2013-03-26 2013-03-26 Uninterruptible power system

Publications (2)

Publication Number Publication Date
JP2014192963A true JP2014192963A (en) 2014-10-06
JP6040071B2 JP6040071B2 (en) 2016-12-07

Family

ID=51838798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064519A Active JP6040071B2 (en) 2013-03-26 2013-03-26 Uninterruptible power system

Country Status (1)

Country Link
JP (1) JP6040071B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305849A (en) * 2015-11-13 2016-02-03 苏州扬佛自动化设备有限公司 Closed-loop control method of switching power supply
CN112217405A (en) * 2020-10-29 2021-01-12 安邦电气股份有限公司 Three-phase rectification-based voltage transformation heating power supply system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278954A (en) * 1999-03-23 2000-10-06 Mitsubishi Electric Corp Power converter
JP2009131122A (en) * 2007-11-27 2009-06-11 Hitachi Ltd Uninterruptible power supply device
JP2010252574A (en) * 2009-04-17 2010-11-04 Yutaka Denki Seisakusho:Kk Uninterruptible power supply device, program for uninterruptible power supply device, and method of controlling uninterruptible power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278954A (en) * 1999-03-23 2000-10-06 Mitsubishi Electric Corp Power converter
JP2009131122A (en) * 2007-11-27 2009-06-11 Hitachi Ltd Uninterruptible power supply device
JP2010252574A (en) * 2009-04-17 2010-11-04 Yutaka Denki Seisakusho:Kk Uninterruptible power supply device, program for uninterruptible power supply device, and method of controlling uninterruptible power supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305849A (en) * 2015-11-13 2016-02-03 苏州扬佛自动化设备有限公司 Closed-loop control method of switching power supply
CN112217405A (en) * 2020-10-29 2021-01-12 安邦电气股份有限公司 Three-phase rectification-based voltage transformation heating power supply system

Also Published As

Publication number Publication date
JP6040071B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
US9748865B2 (en) Power conversion device and three-phase alternating current power supply device
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
JP6255577B2 (en) DC power supply circuit
US8773869B2 (en) System and method for conversion of high voltage AC to low voltage DC using input voltage gating
JP2013192440A (en) Switching power supply
JP2014075875A (en) Dc power supply device
JP2013005589A (en) Power converter and control method thereof
JP2010068688A (en) Switching power supply unit
EP2677651A1 (en) Synchronized isolated AC-AC converter with variable regulated output voltage
JP2011147325A (en) Three-phase power factor improving circuit
JP6040071B2 (en) Uninterruptible power system
TWI551024B (en) Ac-dc power conversion device and control method thereof
JP2006340590A (en) Ac-dc converter
JP2020108246A (en) Control circuit, and dc/dc converter device
JP2015126638A (en) Switching power supply device
JP2017017845A (en) High voltage generator
JP6364307B2 (en) Power supply device and uninterruptible power supply system using the same
JP2012044758A (en) Switching power supply device
JP4130444B2 (en) Switching power supply
KR20200078110A (en) Bipolar pulse power supply circuit
JP6096133B2 (en) Load drive device
JP2011172346A (en) Direct current power supply device, and voltage generation method
KR101384839B1 (en) Dc-dc converter
JP2012100529A (en) Power conversion device
JP2011041387A (en) Dc-dc conversion circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6040071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250