JP2014191983A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014191983A
JP2014191983A JP2013066233A JP2013066233A JP2014191983A JP 2014191983 A JP2014191983 A JP 2014191983A JP 2013066233 A JP2013066233 A JP 2013066233A JP 2013066233 A JP2013066233 A JP 2013066233A JP 2014191983 A JP2014191983 A JP 2014191983A
Authority
JP
Japan
Prior art keywords
lithium
transition metal
positive electrode
metal oxide
containing transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013066233A
Other languages
Japanese (ja)
Inventor
Fumiharu Niina
史治 新名
Atsushi Mizawa
篤 見澤
Daisuke Nishide
太祐 西出
Hiroyuki Fujimoto
洋行 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013066233A priority Critical patent/JP2014191983A/en
Publication of JP2014191983A publication Critical patent/JP2014191983A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery improved in thermal stability.SOLUTION: A nonaqueous electrolyte secondary battery according to one aspect of the present invention comprises: a positive electrode; a negative electrode; and a nonaqueous electrolyte. The positive electrode includes a lithium-containing transition metal oxide, a metal fluoride, and a tungsten compound. The nonaqueous electrolyte includes a fluorine-containing lithium salt.

Description

本発明は非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery.

非水電解質二次電池の分野では、高容量化、長寿命化、高安全化等、様々な特性においてさらなる改善が求められている。特許文献1では、リチウム含有遷移金属酸化物粒子の表面をリチウム化合物により被覆することで、一次粒子同士の解離を防ぎ、電池内部の抵抗上昇や容量の低下を抑制することが提案されている。   In the field of non-aqueous electrolyte secondary batteries, further improvements are required in various characteristics such as higher capacity, longer life, and higher safety. Patent Document 1 proposes that the surface of lithium-containing transition metal oxide particles is covered with a lithium compound to prevent dissociation between primary particles and suppress an increase in resistance and a decrease in capacity inside the battery.

特開2006―318815号JP 2006-318815 A

しかしながら、上記提案では電池の熱安定性という観点では改善が不十分であった。熱安定性が十分でない場合、電池温度が上昇する事態に備えるために多くの安全機構を設ける必要が生じ、電池や電池を使用する機器のコストアップの要因となる。   However, the above proposal has been insufficiently improved from the viewpoint of the thermal stability of the battery. When the thermal stability is not sufficient, it is necessary to provide many safety mechanisms to prepare for a situation in which the battery temperature rises, which causes an increase in the cost of the battery or a device using the battery.

本発明は、非水電解質二次電池の熱安定性を改善することを主な目的とする。   The main object of the present invention is to improve the thermal stability of a nonaqueous electrolyte secondary battery.

本発明に係る非水電解質二次電池の一の局面は、正極と、負極と、非水電解質とを備え、正極はリチウム含有遷移金属酸化物と金属フッ化物とタングステン化合物とを含み、非水電解質がフッ素含有リチウム塩を含む。 One aspect of the non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode includes a lithium-containing transition metal oxide, a metal fluoride, and a tungsten compound. The electrolyte includes a fluorine-containing lithium salt.

本発明に係る非水電解質二次電池の一の局面によれば、電池の熱安定性を向上させることができる。   According to one aspect of the nonaqueous electrolyte secondary battery according to the present invention, the thermal stability of the battery can be improved.

金属フッ化物の例として、リチウム(Li)、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、アルミニウム(Al)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、錫(Sn)、タングステン(W)、カリウム(K)、バリウム(Ba)、又はストロンチウム(Sr)のフッ化物が挙げられる。中でもリチウム(Li)、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)又はジルコニウム(Zr)のフッ化物であることが好ましく、LiF、NaF、MgF、CaF、ZrFがさらに好ましい。 Examples of metal fluorides include lithium (Li), sodium (Na), magnesium (Mg), calcium (Ca), aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn ), Iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), zirconium (Zr), niobium (Nb), molybdenum (Mo), tantalum (Ta), tin (Sn) ), Tungsten (W), potassium (K), barium (Ba), or strontium (Sr) fluoride. Among these, a fluoride of lithium (Li), sodium (Na), magnesium (Mg), calcium (Ca) or zirconium (Zr) is preferable, and LiF, NaF, MgF 2 , CaF 2 and ZrF 4 are more preferable.

リチウム含有遷移金属酸化物の総質量に対する金属フッ化物の割合は、0.1質量%以上5.0質量%以下が好ましく、0.5質量%以上4.0質量%以下がより好ましく、1.1質量%以上3.4質量%以下がさらに好ましい。上記割合が0.1質量%未満では熱安定性の向上効果が小さくなることがある。また、上記割合が5.0質量%を超えるとその分だけ正極活物質の相対量が減るため、正極容量密度が低下する。   The ratio of the metal fluoride to the total mass of the lithium-containing transition metal oxide is preferably from 0.1% by mass to 5.0% by mass, more preferably from 0.5% by mass to 4.0% by mass. 1 mass% or more and 3.4 mass% or less are more preferable. If the ratio is less than 0.1% by mass, the effect of improving thermal stability may be reduced. Moreover, since the relative amount of a positive electrode active material will reduce by that much when the said ratio exceeds 5.0 mass%, positive electrode capacity density falls.

タングステン化合物は、特に限定されるものではなく、例えば、酸化物やリチウム含有遷移金属酸化物、ナトリウム含有遷移金属酸化物、カリウム含有遷移金属酸化物、バリウム含有遷移金属酸化物、カルシウム含有遷移金属酸化物、マグネシウム含有遷移金属酸化物、コバルト含有遷移金属酸化物、フッ化物、塩化物、臭化物、ヨウ化物、ホウ化物、窒化物、炭化物、ケイ化物、アルミ化物などであっても良く、また、これらが2種以上混合されたものを用いても良い。なお、正極活物質にリチウムやタングステン以外の不純物が含まれるのを防止する点から、WO、LiWOなどの酸化物やリチウム含有遷移金属酸化物などを用いることがより好ましい。 The tungsten compound is not particularly limited, and examples thereof include oxides, lithium-containing transition metal oxides, sodium-containing transition metal oxides, potassium-containing transition metal oxides, barium-containing transition metal oxides, and calcium-containing transition metal oxides. Products, magnesium-containing transition metal oxides, cobalt-containing transition metal oxides, fluorides, chlorides, bromides, iodides, borides, nitrides, carbides, silicides, aluminides, etc. A mixture of two or more of them may be used. From the viewpoint of preventing impurities other than lithium and tungsten from being contained in the positive electrode active material, it is more preferable to use oxides such as WO 3 and Li 2 WO 4 , lithium-containing transition metal oxides, and the like.

リチウム含有遷移金属酸化物中の遷移金属の総モル量に対し、リチウム含有遷移金属酸化物と混合しているタングステン化合物の割合は、0.05モル%以上10モル%以下が好ましく、0.1モル%以上5.0モル%以下がより好ましく、0.2モル%以上3.0モル%以下がさらに好ましい。上記割合が0.05モル%未満になると、熱安定性の向上効果が小さくなることがある。一方、上記割合が10モル%を超えると、その分だけ正極活物質の相対量が減るため、正極容量密度が低下する。   The proportion of the tungsten compound mixed with the lithium-containing transition metal oxide is preferably 0.05 mol% or more and 10 mol% or less with respect to the total molar amount of the transition metal in the lithium-containing transition metal oxide, More preferably, it is more than mol% and less than 5.0 mol%, and more preferably 0.2 mol% or more and 3.0 mol% or less. When the ratio is less than 0.05 mol%, the effect of improving thermal stability may be reduced. On the other hand, when the ratio exceeds 10 mol%, the relative amount of the positive electrode active material is reduced by that amount, and the positive electrode capacity density is lowered.

リチウム含有遷移金属酸化物中の遷移金属元素はニッケル及びマンガンを含むことが好ましい。リチウム含有遷移金属酸化物がニッケル及びマンガンを含む場合、LiNiOに比べて酸化物自体の熱安定性が高くなる。このため、高温時におけるリチウム含有遷移金属酸化物からの酸素脱離による非水電解質の酸化の影響よりも、リチウム含有遷移金属酸化物中の遷移金属の触媒作用に起因する非水電解質の酸化の影響の方が大きくなる。本発明は、遷移金属の触媒作用に起因する非水電解質の酸化を抑制するのに適しており、ニッケル及びマンガンを含むリチウム含有遷移金属酸化物を用いた場合に本発明効果がより得られることになる。 The transition metal element in the lithium-containing transition metal oxide preferably contains nickel and manganese. When the lithium-containing transition metal oxide contains nickel and manganese, the thermal stability of the oxide itself is higher than that of LiNiO 2 . For this reason, the oxidation of the non-aqueous electrolyte caused by the catalytic action of the transition metal in the lithium-containing transition metal oxide is more than the influence of the oxidation of the non-aqueous electrolyte due to oxygen desorption from the lithium-containing transition metal oxide at high temperatures. The effect is greater. The present invention is suitable for suppressing oxidation of a non-aqueous electrolyte due to the catalytic action of a transition metal, and the effect of the present invention can be obtained more when a lithium-containing transition metal oxide containing nickel and manganese is used. become.

また、リチウム含有遷移金属酸化物がニッケル及びマンガンを含む場合、LiCoOに比べて遷移金属の触媒作用に起因する非水電解質の酸化の影響が大きい。したがって、ニッケル及びマンガンを含むリチウム含有遷移金属酸化物を用いた場合に本発明効果がより得られることになる。 In addition, when the lithium-containing transition metal oxide contains nickel and manganese, the influence of the oxidation of the nonaqueous electrolyte due to the catalytic action of the transition metal is greater than that of LiCoO 2 . Therefore, when the lithium-containing transition metal oxide containing nickel and manganese is used, the effect of the present invention is further obtained.

リチウム含有遷移金属酸化物は、一般式Li1+xNiMnCo2+d(式中、x、a、b、c、dは、x+a+b+c=1.0、0≦x≦0.3、0<a、0<b、0≦c、−0.1≦d≦0.1)で表されることがより好ましく、一般式Li1+xNiMnCo2+d(式中、x、a、b、c、dはx+a+b+c=1.0、0≦x≦0.3、0≦c/(a+b)<0.85、0.7≦a/b≦4.0、−0.1≦d≦0.1)で表されることがさらに好ましい。 The lithium-containing transition metal oxide has a general formula Li 1 + x Ni a Mn b Co c O 2 + d (where x, a, b, c, d are x + a + b + c = 1.0, 0 ≦ x ≦ 0.3, 0 <A, 0 <b, 0 ≦ c, −0.1 ≦ d ≦ 0.1), and more preferably represented by the general formula Li 1 + x Ni a Mn b Co c O 2 + d (where, x, a , B, c, d are x + a + b + c = 1.0, 0 ≦ x ≦ 0.3, 0 ≦ c / (a + b) <0.85, 0.7 ≦ a / b ≦ 4.0, −0.1 ≦ More preferably, d ≦ 0.1).

材料コストが低くなるため、0≦c/(a+b)<0.85の条件を満たす場合がより好ましく、0≦c/(a+b)<0.65の条件を満たす場合がさらに好ましい。また、リチウム含有遷移金属酸化物自体の熱安定性が高くなるため、0.7≦a/b≦4.0の条件を満たす場合がより好ましく、0.7≦a/b≦3.0の条件を満たす場合がさらに好ましい。また、上記リチウム含有遷移金属酸化物は層状構造を有することがより好ましい。   Since the material cost is reduced, it is more preferable that the condition of 0 ≦ c / (a + b) <0.85 is satisfied, and further preferable that the condition of 0 ≦ c / (a + b) <0.65 is satisfied. Further, since the thermal stability of the lithium-containing transition metal oxide itself is increased, it is more preferable that the condition of 0.7 ≦ a / b ≦ 4.0 is satisfied, and 0.7 ≦ a / b ≦ 3.0. More preferably, the condition is satisfied. The lithium-containing transition metal oxide more preferably has a layered structure.

なお、上記リチウム含有遷移金属酸化物は、熱安定性の向上効果が妨げられない程度で他の添加元素を含んでいても良い。添加元素の例としては、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、バナジウム(V)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、ジルコニウム(Zr)、錫(Sn)、タングステン(W)、ナトリウム(Na)、カリウム(K)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)
が挙げられる。
The lithium-containing transition metal oxide may contain other additive elements to the extent that the effect of improving thermal stability is not hindered. Examples of additive elements include boron (B), magnesium (Mg), aluminum (Al), titanium (Ti), chromium (Cr), vanadium (V), iron (Fe), copper (Cu), zinc (Zn ), Niobium (Nb), molybdenum (Mo), tantalum (Ta), zirconium (Zr), tin (Sn), tungsten (W), sodium (Na), potassium (K), barium (Ba), strontium (Sr) ), Calcium (Ca)
Is mentioned.

本発明における負極に用いる負極活物質としては、リチウムを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば、炭素材料や、リチウムと合金化する金属或いは合金材料や、金属酸化物等を用いることができる。   The negative electrode active material used for the negative electrode in the present invention is not particularly limited as long as it can reversibly occlude and release lithium. For example, a carbon material, a metal or alloy material alloyed with lithium, a metal oxide, etc. Etc. can be used.

本発明の非水電解質二次電池に用いる非水電解液は、従来から使用されている、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、低粘度、低融点でリチウムイオン伝導度の高い非水系溶媒として、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。また、この混合溶媒における環状カーボネートと鎖状カーボネートとの体積比は、2:8〜5:5の範囲に規制することが好ましい。   Nonaqueous electrolytes used in the nonaqueous electrolyte secondary battery of the present invention are conventionally used cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate. Such a chain carbonate can be used. In particular, it is preferable to use a mixed solvent of a cyclic carbonate and a chain carbonate as a non-aqueous solvent having a low viscosity, a low melting point, and a high lithium ion conductivity. Moreover, it is preferable to regulate the volume ratio of the cyclic carbonate and the chain carbonate in the mixed solvent in the range of 2: 8 to 5: 5.

本発明の非水電解質二次電池に用いるリチウム塩は、従来から使用されているフッ素含有リチウム塩、例えばLiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CSO、及びLiAsFなどを用いることができる。更にフッ素含有リチウム塩に、フッ素含有リチウム塩以外のリチウム塩〔P、B、O、S、N、Clの中の一種類以上の元素を含むリチウム塩(例えば、LiClO等)〕を加えたものを用いても良い。特に、高温環境下においても負極の表面に安定な被膜を形成する点から、フッ素含有リチウム塩とオキサラト錯体をアニオンとするリチウム塩とを含むことが好ましい。 The lithium salt used in the non-aqueous electrolyte secondary battery of the present invention is a fluorine-containing lithium salt conventionally used, such as LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (C 2 F 5 SO 2) 3, and LiAsF 6 be used as the it can. Further, lithium salt other than fluorine-containing lithium salt [lithium salt containing one or more elements among P, B, O, S, N, Cl (for example, LiClO 4 etc.)] was added to fluorine-containing lithium salt. A thing may be used. In particular, it is preferable to include a fluorine-containing lithium salt and a lithium salt having an oxalato complex as an anion from the viewpoint of forming a stable film on the surface of the negative electrode even in a high temperature environment.

上記のオキサラト錯体をアニオンとするリチウム塩の例として、LiBOB〔リチウム−ビスオキサレートボレート〕、Li[B(C)F]、Li[P(C)F]、Li[P(C]が挙げられる。中でも安定な被膜を形成させるLiBOBを用いることが好ましい。 Examples of lithium salts having the oxalato complex as an anion include LiBOB [lithium-bisoxalate borate], Li [B (C 2 O 4 ) F 2 ], Li [P (C 2 O 4 ) F 4 ], li [P (C 2 O 4 ) 2 F 2] and the like. Among them, it is preferable to use LiBOB that forms a stable film.

本発明の非水電解質二次電池に用いるセパレータとしては、従来から使用されている、ポリプロピレン製やポリエチレン製のセパレータ、ポリプロピレン−ポリエチレンの多層セパレータ等を用いることができる。
<実験例>
As a separator used for the nonaqueous electrolyte secondary battery of the present invention, a conventionally used separator made of polypropylene or polyethylene, a multilayer separator of polypropylene-polyethylene, or the like can be used.
<Experimental example>

以下、本発明を実験例に基づいてさらに詳細に説明するが、本発明は以下の実験例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on experimental examples. However, the present invention is not limited to the following experimental examples, and can be appropriately modified and implemented without departing from the scope of the present invention. Is.

(実験例1)
[正極活物質の作製]
共沈法により作製した[Ni0.35Mn0.30Co0.35](OH)とLiCOとを混合した後、空気中にて900℃で10時間焼成することで、正極活物質としてLi1.06[Ni0.33Mn0.28Co0.33]Oで表されるリチウム含有遷移金属酸化物を作製した。上記リチウム含有遷移金属酸化物の平均粒子径は約12μmであった。
(Experiment 1)
[Preparation of positive electrode active material]
After mixing [Ni 0.35 Mn 0.30 Co 0.35 ] (OH) 2 and Li 2 CO 3 produced by the coprecipitation method, the positive electrode was fired at 900 ° C. in air for 10 hours. A lithium-containing transition metal oxide represented by Li 1.06 [Ni 0.33 Mn 0.28 Co 0.33 ] O 2 was produced as an active material. The lithium-containing transition metal oxide had an average particle size of about 12 μm.

上記のLi1.06[Ni0.33Mn0.28Co0.33]Oからなるリチウム含有遷移金属酸化物粒子と、平均粒径が150nmの三酸化タングステン(WO)とを混合して、リチウム含有遷移金属酸化物粒子にWOが混合した正極活物質を作製した。尚、リチウム含有遷移金属酸化物中の遷移金属の総モル量に対し、タングステンの存在割
合は、1.0モル%であった。
A lithium-containing transition metal oxide particle composed of Li 1.06 [Ni 0.33 Mn 0.28 Co 0.33 ] O 2 and tungsten trioxide (WO 3 ) having an average particle diameter of 150 nm are mixed. Thus, a positive electrode active material in which WO 3 was mixed with lithium-containing transition metal oxide particles was produced. In addition, the presence ratio of tungsten was 1.0 mol% with respect to the total molar amount of the transition metal in the lithium-containing transition metal oxide.

[正極の作製]
上記正極活物質と、フッ化リチウムと、導電剤としてのカーボンブラックと、結着剤としてのポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、正極活物質とフッ化リチウムと導電剤と結着剤との質量比が91:1:5:3となるように秤量し、これらを混練して正極合剤スラリーを調製した。このように、正極活物質に対するフッ化リチウムの割合は、1.1質量%となっている。次いで、上記正極合剤スラリーを、アルミニウム箔からなる正極集電体の両面に塗布し、これを乾燥させた後、圧延ローラーにより圧延し、更にアルミニウム製の集電タブを取り付けることにより正極を作製した。
[Production of positive electrode]
The positive electrode active material, lithium fluoride, carbon black as a conductive agent, and an N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder is dissolved. Weighed so that the mass ratio of the conductive agent to the binder was 91: 1: 5: 3, and kneaded them to prepare a positive electrode mixture slurry. Thus, the ratio of lithium fluoride to the positive electrode active material is 1.1% by mass. Next, the positive electrode mixture slurry is applied to both surfaces of a positive electrode current collector made of aluminum foil, dried, and then rolled with a rolling roller, and a positive electrode is prepared by attaching an aluminum current collecting tab. did.

作用極として上記の正極を、対極及び参照極としてそれぞれ金属リチウムを用いて三電極式試験用セルを作製した。なお、非水電解質として、エチレンカーボネートとメチルエチルカーボネートとジメチルカーボネートとを3:3:4の体積比で混合させた混合溶媒にLiPFを1mol/lの濃度になるように溶解させ、さらにLiBOBを0.1mol/Lとなるように溶解させ、ビニレンカーボネートを上記混合溶媒に対して1質量%溶解させた非水電解液を用いた。このようにして作製した三電極式試験用セルを、以下、電池A1と称する。 A three-electrode test cell was prepared using the positive electrode as a working electrode and metallic lithium as a counter electrode and a reference electrode. As a non-aqueous electrolyte, LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate, methyl ethyl carbonate, and dimethyl carbonate were mixed at a volume ratio of 3: 3: 4 to a concentration of 1 mol / l, and LiBOB was further dissolved. Was dissolved to 0.1 mol / L, and a nonaqueous electrolytic solution in which 1% by mass of vinylene carbonate was dissolved in the above mixed solvent was used. The three-electrode test cell thus produced is hereinafter referred to as battery A1.

(実験例2)
正極を作製する際に、正極活物質とフッ化リチウムと導電剤と結着剤との質量比が89:3:5:3となるように秤量し、これらを混練して正極活物質に対するフッ化リチウムの割合が3.4質量%となっている正極合剤スラリーを調製したこと以外は、上記実験例1と同様にして三電極式試験用セルを作製した。このようにして作製した三電極式試験用セルを、以下、電池A2と称する。
(Experimental example 2)
When the positive electrode is manufactured, the positive electrode active material, lithium fluoride, the conductive agent, and the binder are weighed so that the mass ratio is 89: 3: 5: 3, and these are kneaded to obtain a fluorine to the positive electrode active material. A three-electrode test cell was prepared in the same manner as in Experimental Example 1 except that a positive electrode mixture slurry in which the proportion of lithium bromide was 3.4% by mass was prepared. The three-electrode test cell thus produced is hereinafter referred to as battery A2.

(実験例3)
正極を作製する際に、リチウム含有遷移金属酸化物中の遷移金属の総モル量に対し、タングステンの存在割合が3.0モル%となるように三酸化タングステンを混合したこと以外は、上記実験例1と同様にして三電極式試験用セルを作製した。このようにして作製した三電極式試験用セルを、以下、電池A3と称する。
(Experimental example 3)
The above experiment was performed except that tungsten trioxide was mixed so that the presence ratio of tungsten was 3.0 mol% with respect to the total molar amount of the transition metal in the lithium-containing transition metal oxide when producing the positive electrode. A three-electrode test cell was prepared in the same manner as in Example 1. The three-electrode test cell thus produced is hereinafter referred to as battery A3.

(実験例4)
正極活物質を作製する際に、三酸化タングステンを混合させず、正極を作製する際に、フッ化リチウムを添加しなかったこと以外は、上記実験例1と同様にして三電極式試験用セルを作製した。このようにして作製した三電極式試験用セルを、以下、電池Z1と称する。
(Experimental example 4)
A three-electrode test cell in the same manner as in Experimental Example 1 except that tungsten trioxide was not mixed when the positive electrode active material was produced, and lithium fluoride was not added when the positive electrode was produced. Was made. The three-electrode test cell thus produced is hereinafter referred to as battery Z1.

(実験例5)
正極活物質を作製する際に、三酸化タングステンを混合させなかったこと以外は、上記実験例1と同様にして三電極式試験用セルを作製した。このようにして作製した三電極式試験用セルを、以下、電池Z2と称する。
(Experimental example 5)
A three-electrode test cell was prepared in the same manner as in Experimental Example 1 except that tungsten trioxide was not mixed when preparing the positive electrode active material. The three-electrode test cell thus produced is hereinafter referred to as battery Z2.

(実験例6)
正極を作製する際に、フッ化リチウムを添加しなかったこと以外は、上記実験例1と同様にして三電極式試験用セルを作製した。このようにして作製した三電極式試験用セルを、以下、電池Z3と称する。
(Experimental example 6)
A three-electrode test cell was produced in the same manner as in Experimental Example 1 except that lithium fluoride was not added when producing the positive electrode. The three-electrode test cell thus produced is hereinafter referred to as battery Z3.

(熱安定性試験)
上記電池A1〜A3、Z1〜Z3を下記条件で充電した後、各電池を解体し正極を取り
出した。取り出した正極をそれぞれ非水電解液と一緒にSUS製のセル内に入れて密閉し、5℃/分の昇温速度で350℃まで昇温させた。この際、160〜240℃の発熱量を、示差走査熱量計(DSC)を用いて調べた。その結果を表1に示す。尚、各電池の発熱量は、電池Z1の発熱量を100としたときの指数で表している。
(Thermal stability test)
After the batteries A1 to A3 and Z1 to Z3 were charged under the following conditions, each battery was disassembled and the positive electrode was taken out. The taken-out positive electrode was put in a cell made of SUS together with the non-aqueous electrolyte, sealed, and heated to 350 ° C. at a temperature rising rate of 5 ° C./min. Under the present circumstances, the emitted-heat amount of 160-240 degreeC was investigated using the differential scanning calorimeter (DSC). The results are shown in Table 1. The calorific value of each battery is represented by an index when the calorific value of the battery Z1 is 100.

・充電条件
25℃の温度条件下において、0.2mA/cmの電流密度で4.3V(vs.Li/Li)まで定電流充電を行い、4.3V(vs.Li/Li)の定電圧で電流密度が0.04mA/cmになるまで定電圧充電を行った。
-Charging conditions Under a temperature condition of 25 ° C., constant current charging was performed up to 4.3 V (vs. Li / Li + ) at a current density of 0.2 mA / cm 2 , and 4.3 V (vs. Li / Li + ). The constant voltage charge was performed until the current density became 0.04 mA / cm 2 at a constant voltage of.

Figure 2014191983
Figure 2014191983

表1から分かるように、リチウム含有遷移金属酸化物粒子に三酸化タングステンを混合させ、正極にフッ化リチウムが添加した電池A1〜A3は、電池Z1〜Z3と比較して大幅に発熱量が減少しており、熱安定性が大きく向上していることが認められた。この理由は定かではないが、以下のように考えられる。正極と電解液が共存する系が高温になると、リチウム含有遷移金属酸化物中の遷移金属の触媒作用によりリチウム含有遷移金属酸化物粒子の表面において非水電解質が酸化分解され、これにより正極と電解液の温度がさらに上昇する。ここで、正極がリチウム含有遷移金属酸化物粒子と金属フッ化物とを含み、リチウム含有遷移金属酸化物粒子にタングステン化合物とが混合し、非水電解質がフッ素含有リチウム塩を含む場合、高温になった非水電解質中のフッ素含有リチウム塩が熱分解して、リチウム含有遷移金属酸化物粒子の表面がその分解物であるフッ化リチウムで被覆される。この結果、リチウム含有遷移金属酸化物中の遷移金属と非水電解質との接触面積が減少し、非水電解質の酸化が抑制されるため、発熱量が減少する。   As can be seen from Table 1, batteries A1 to A3, in which tungsten trioxide is mixed with lithium-containing transition metal oxide particles and lithium fluoride is added to the positive electrode, the calorific value is significantly reduced compared to batteries Z1 to Z3. It was confirmed that the thermal stability was greatly improved. The reason for this is not clear, but can be considered as follows. When the system in which the positive electrode and the electrolyte solution coexist is heated, the nonaqueous electrolyte is oxidized and decomposed on the surface of the lithium-containing transition metal oxide particles by the catalytic action of the transition metal in the lithium-containing transition metal oxide, thereby The temperature of the liquid rises further. Here, when the positive electrode contains lithium-containing transition metal oxide particles and metal fluoride, the lithium-containing transition metal oxide particles are mixed with a tungsten compound, and the nonaqueous electrolyte contains a fluorine-containing lithium salt, the temperature becomes high. In addition, the fluorine-containing lithium salt in the non-aqueous electrolyte is thermally decomposed, and the surfaces of the lithium-containing transition metal oxide particles are coated with lithium fluoride, which is a decomposition product thereof. As a result, the contact area between the transition metal in the lithium-containing transition metal oxide and the non-aqueous electrolyte is reduced, and oxidation of the non-aqueous electrolyte is suppressed, so that the heat generation amount is reduced.

なお、正極が金属フッ化物を含むことで、フッ化リチウムがリチウム含有遷移金属酸化物粒子の表面で析出することを容易にし、さらに、混合したタングステン化合物の少なくとも一部がリチウム含有遷移金属酸化物の表面近傍に存在するため、高次のタングステンと親和性の高いフッ素原子を有するフッ化リチウムをリチウム含有遷移金属酸化物の粒子表面に引き付け易くなる。その結果、フッ化リチウムの析出を加速させることができる。
正極にフッ化リチウムが添加された電池Z2は、フッ化リチウムが添加されていない電池Z1と比較して発熱量が減少しており、熱安定性が向上していることが認められた。一方、リチウム含有遷移金属酸化物粒子に三酸化タングステンを混合させている電池Z3は、三酸化タングステンを混合させていないZ1と比較して、発熱量が減少しておらず、三酸化タングステンは熱安定性に寄与していないことが認められた。ところが、リチウム含有遷移金属酸化物粒子に三酸化タングステンが混合し、正極にフッ化リチウムが添加された電池A1では、リチウム含有遷移金属酸化物粒子に三酸化タングステンが混合していないが、正極にフッ化リチウムが添加された電池Z2より、さらに熱安定性が向上していることが認められた。このことから、単にリチウム含有遷移金属酸化物粒子に三酸化タングステンを混合させただけでは熱安定性は向上しないが、正極に含まれる金属フッ化物との相互作用によって、三酸化タングステンは電池の熱安定性を向上させることが分かる。
The positive electrode contains a metal fluoride to facilitate the precipitation of lithium fluoride on the surface of the lithium-containing transition metal oxide particles, and at least a part of the mixed tungsten compound is a lithium-containing transition metal oxide. Therefore, it becomes easy to attract lithium fluoride having fluorine atoms having a high affinity with higher-order tungsten to the particle surface of the lithium-containing transition metal oxide. As a result, precipitation of lithium fluoride can be accelerated.
It was confirmed that the battery Z2 in which lithium fluoride was added to the positive electrode had a lower calorific value than the battery Z1 to which lithium fluoride was not added, and the thermal stability was improved. On the other hand, the battery Z3 in which the lithium-containing transition metal oxide particles are mixed with tungsten trioxide does not decrease the calorific value as compared with Z1 in which tungsten trioxide is not mixed. It was observed that it did not contribute to stability. However, in the battery A1 in which tungsten trioxide is mixed with lithium-containing transition metal oxide particles and lithium fluoride is added to the positive electrode, tungsten trioxide is not mixed with lithium-containing transition metal oxide particles. It was confirmed that the thermal stability was further improved from the battery Z2 to which lithium fluoride was added. For this reason, the thermal stability is not improved by simply mixing tungsten trioxide with lithium-containing transition metal oxide particles, but tungsten trioxide is not heated by the interaction with the metal fluoride contained in the positive electrode. It can be seen that the stability is improved.

Claims (7)

正極と、負極と、非水電解質とを備え、
前記正極はリチウム含有遷移金属酸化物と金属フッ化物とタングステン化合物とを含み、
前記非水電解質がフッ素含有リチウム塩を含む、
非水電解質二次電池。
A positive electrode, a negative electrode, and a non-aqueous electrolyte;
The positive electrode includes a lithium-containing transition metal oxide, a metal fluoride, and a tungsten compound,
The non-aqueous electrolyte includes a fluorine-containing lithium salt;
Non-aqueous electrolyte secondary battery.
前記金属フッ化物がLiFである、請求項1に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the metal fluoride is LiF. 前記正極が前記リチウム含有遷移金属酸化物の総質量に対して0.1質量%以上5.0質量%以下の割合で前記金属フッ化物を含む、請求項1又は2に記載の非水電解質二次電池。 3. The non-aqueous electrolyte 2 according to claim 1, wherein the positive electrode contains the metal fluoride in a proportion of 0.1% by mass or more and 5.0% by mass or less with respect to the total mass of the lithium-containing transition metal oxide. Next battery. 前記タングステン化合物が、タングステンを含む酸化物である、請求項1〜3のいずれか1項に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the tungsten compound is an oxide containing tungsten. 前記正極が前記リチウム含有遷移金属酸化物中の遷移金属の総モル量に対し、0.05モル%以上10モル%以下の割合で前記タングステン化合物を含む、請求項1〜4のいずれか1項に記載の非水電解質二次電池。 The said positive electrode contains the said tungsten compound in the ratio of 0.05 mol% or more and 10 mol% or less with respect to the total molar amount of the transition metal in the said lithium containing transition metal oxide. The non-aqueous electrolyte secondary battery described in 1. 前記リチウム含有遷移金属酸化物粒子中の遷移金属元素がニッケル及びマンガンを含む、請求項1〜5のいずれか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the transition metal element in the lithium-containing transition metal oxide particles contains nickel and manganese. 前記リチウム含有遷移金属酸化物粒子が、一般式Li1+xNiMnCo2+d(式中、x、a、b、c、dは、x+a+b+c=1.0、0≦x≦0.3、0<a、0<b、0≦c、−0.1≦d≦0.1の条件を満たす)で表され、層状構造を有する、請求項1〜6のいずれか1項に記載の非水電解質二次電池。
The lithium-containing transition metal oxide particles have the general formula Li 1 + x Ni a Mn b Co c O 2 + d (where x, a, b, c, d are x + a + b + c = 1.0, 0 ≦ x ≦ 0.3). , 0 <a, 0 <b, 0 ≦ c, −0.1 ≦ d ≦ 0.1), and has a layered structure. Non-aqueous electrolyte secondary battery.
JP2013066233A 2013-03-27 2013-03-27 Nonaqueous electrolyte secondary battery Pending JP2014191983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013066233A JP2014191983A (en) 2013-03-27 2013-03-27 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013066233A JP2014191983A (en) 2013-03-27 2013-03-27 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014191983A true JP2014191983A (en) 2014-10-06

Family

ID=51838059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013066233A Pending JP2014191983A (en) 2013-03-27 2013-03-27 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2014191983A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126909A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2017030994A (en) * 2015-07-29 2017-02-09 公立大学法人首都大学東京 Inorganic monodisperse spherical fine particle, electrode for cell, and cell
JP2018185929A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Composite particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126909A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2017030994A (en) * 2015-07-29 2017-02-09 公立大学法人首都大学東京 Inorganic monodisperse spherical fine particle, electrode for cell, and cell
JP2018185929A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Composite particle

Similar Documents

Publication Publication Date Title
JP6724784B2 (en) Non-aqueous electrolyte secondary battery
JP6072688B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP4785482B2 (en) Nonaqueous electrolyte secondary battery
JP5968883B2 (en) Non-aqueous electrolyte battery
CN104577197B (en) Rechargeable nonaqueous electrolytic battery
JP6237765B2 (en) Nonaqueous electrolyte secondary battery
JP5485065B2 (en) Nonaqueous electrolyte secondary battery
JP6952251B2 (en) Positive electrode active material for batteries and batteries
JP2006196250A (en) Lithium secondary battery
JP5996547B2 (en) Nonaqueous electrolyte secondary battery
JP2007287661A (en) Nonaqueous electrolyte secondary battery
JP5991718B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material and non-aqueous electrolyte secondary battery
US9716268B2 (en) Nonaqueous electrolyte secondary battery
JP2014060029A (en) Nonaqueous electrolytic secondary battery
JP6820517B2 (en) Non-aqueous electrolyte secondary battery
JP6861401B2 (en) Positive electrode active material and battery
JP2014011023A (en) Nonaqueous electrolyte secondary battery
JP6572882B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2014191983A (en) Nonaqueous electrolyte secondary battery
JP2009266791A (en) Nonaqueous electrolyte secondary battery
JP2013051210A (en) Lithium secondary battery
JP5089097B2 (en) Non-aqueous electrolyte secondary battery and charging / discharging method thereof
WO2014156069A1 (en) Nonaqueous electrolyte secondary battery
JP2014063594A (en) Nonaqueous electrolyte secondary battery
JP2014192069A (en) Lithium ion battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141113