JP2014188953A - Preforming body and production method of the same, and fiber-reinforced resin molding using the same and production method of the same - Google Patents

Preforming body and production method of the same, and fiber-reinforced resin molding using the same and production method of the same Download PDF

Info

Publication number
JP2014188953A
JP2014188953A JP2013068791A JP2013068791A JP2014188953A JP 2014188953 A JP2014188953 A JP 2014188953A JP 2013068791 A JP2013068791 A JP 2013068791A JP 2013068791 A JP2013068791 A JP 2013068791A JP 2014188953 A JP2014188953 A JP 2014188953A
Authority
JP
Japan
Prior art keywords
fiber
preform
reinforced resin
core body
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013068791A
Other languages
Japanese (ja)
Inventor
Tadashi Hosokawa
直史 細川
Shogo Matsushima
彰吾 松島
Mamoru Kanda
守 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013068791A priority Critical patent/JP2014188953A/en
Publication of JP2014188953A publication Critical patent/JP2014188953A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a preforming body and a fiber-reinforced resin molding in which an easy mold and a core material are used for producing them, and a fiber orientation is maintained while retaining Vf evenly for enlarging size, and which can be produced by smaller numbers of processes compared with conventional ones, in producing a fiber-reinforced resin molding to which load other than pulling such as flexure, twisting, compression, and shear is applied and a fiber-reinforced resin molding having a complicated shape.SOLUTION: Provided is the preforming body produced by laminating a fiber-reinforced cloth 20 on an outer peripheral face of a core body 10 which is formed into a predetermined shape. A heat shrinkable tube 30 coats an outer periphery of the fiber-reinforced cloth 20 and the fiber-reinforced cloth 20 is fixed on the outer peripheral face of the core body 10 by performing heating.

Description

本発明は、RTM(Resin Transfer Molding)成形法にて得られる繊維強化樹脂成形品に関するものであり、更に詳しくは、芯体を用いて予備成形体を成形した後、樹脂を含浸、硬化させて得られる繊維強化樹脂成形品に関するものである。   The present invention relates to a fiber reinforced resin molded article obtained by an RTM (Resin Transfer Molding) molding method, and more specifically, after molding a preform using a core body, impregnating and curing the resin. The present invention relates to a fiber-reinforced resin molded product to be obtained.

炭素繊維やガラス繊維等を強化繊維として用いたCFRP(Carbon Fiber Reinforced Plastic)やGFRP(Glass Fiber Reinforced Plastic)は、高強度・高剛性・軽量・高耐久性を有するものであることから、自動車や航空機、自転車等を構成する各種の構造材として理想的な材料である。   CFRP (Carbon Fiber Reinforced Plastic) and GFRP (Glass Fiber Reinforced Plastic) using carbon fiber and glass fiber as reinforcing fibers have high strength, high rigidity, light weight, and high durability. It is an ideal material as various structural materials for aircraft, bicycles and the like.

CFRPやGFRPを用いた構造材として、梁や柱などの桁材、フレーム構造に用いるパイプ材、外皮が応力を受け持つモノコック構造材等を経済的に製造する方法が種々検討されている。   As a structural material using CFRP or GFRP, various methods for economically producing a beam material such as a beam or a column, a pipe material used for a frame structure, a monocoque structural material whose outer skin is subjected to stress, and the like have been studied.

これらCFRPやGFRPを成形し構造材を製造する方法としては、例えば、強化繊維と高靱性のエポキシ樹脂からなる、厚さ数十から数百マイクロメーターのプリプレグを一枚一枚積み重ねた積層体をオートクレーブ(圧力釜)中で加圧、加熱して硬化させる、いわゆるオートクレーブ成形法が一般的なものである。   As a method for producing a structural material by molding these CFRP and GFRP, for example, a laminate made of reinforced fibers and high-toughness epoxy resin, in which prepregs having a thickness of several tens to several hundreds of micrometers are stacked one by one. A so-called autoclave molding method is generally used in which pressure is set by heating and curing in an autoclave.

しかしながら、一般的にプリプレグは強化繊維の周りに樹脂が含浸されていることから、強化繊維が樹脂で固定された状態にあり、プリプレグを所定の三次元構造に賦形する等のように、プリプレグを変形させることは困難であった。   However, since the prepreg is generally impregnated with a resin around the reinforcing fiber, the reinforcing fiber is fixed with the resin, and the prepreg is shaped into a predetermined three-dimensional structure. It was difficult to deform.

このため、凹凸のある三次元形状を有するFRP製の航空機部材や自動車部材、自転車部材を製造するに際しては、数ミリの凹凸に対してもプリプレグを切断し、パッチ状に継ぎ接ぎするという製造法をとらざるを得ず、このため、プリプレグからなる部材は、予測以上に高重量となるばかりではなく、継ぎ接ぎ部分の強度低下から安全率を大きくとる必要性も生じていた。   For this reason, when manufacturing FRP aircraft members, automobile members, and bicycle members having a three-dimensional shape with unevenness, a manufacturing method in which prepreg is cut even for unevenness of several millimeters and joined in a patch shape. For this reason, a member made of a prepreg is not only heavier than expected, but also requires a greater safety factor due to a decrease in strength of the joint portion.

これらの理由から、航空機部材や自動車部材へのFRPの適用は、比較的平坦な形状のものに対して推進され、複雑形状部材への適用は限られるという制約が生じていた。   For these reasons, the application of FRP to aircraft members and automobile members has been promoted with respect to those having a relatively flat shape, and there has been a restriction that application to complicated shape members is limited.

更に、プリプレグにおいては一枚一枚プリプレグを積み重ねて貼っていく際に、プリプレグの層間に空気が入ってしまうと、オートクレーブでの加圧によってもこの気泡が消えず、FRP内部にボイドが形成され、強度上重大な欠陥になる課題を抱えていた。このため、プリプレグを数枚積み重ねてはバッグフィルムで包み真空にし、あらかじめ空気を抜いておく前処理が必要となっていた。   Furthermore, when prepregs are stacked and stuck one by one in the prepreg, if air enters between the layers of the prepreg, these bubbles will not disappear even by pressurization with an autoclave, and voids will be formed inside the FRP. Had a problem that would become a serious defect in strength. For this reason, several prepregs are stacked, wrapped in a bag film, evacuated, and pre-treatment is required to release air in advance.

このようなプリプレグ成形における問題を解決するCFRPやGFRPの製造方法として、米国特許第5281388号明細書に記載されているような、RTM成形法と称される成形法が注目されており、例えば、長さが10m以上でかつその形状も複雑なFRP構造体がこの方法により実用化されつつある。   As a method for producing CFRP and GFRP that solves such problems in prepreg molding, a molding method called an RTM molding method as described in US Pat. No. 5,281,388 has attracted attention. For example, An FRP structure having a length of 10 m or more and a complicated shape is being put into practical use by this method.

このRTM成形法によれば、CFRPやGFRPを製造するプロセスは、まず、予備成形体(プリフォームとも呼ぶ)と呼ばれるあらかじめ所定の形状に賦形された、樹脂が完全に含浸していない、いわゆるドライの連続繊維織物からなる強化繊維基材を成形型上に配置し、全体をバッグフィルムや成形型で覆った後、バッグフィルム内あるいは成形型内部を真空状態にして、樹脂を注入して、前記予備成形体に樹脂を拡散、含浸させるというものである。   According to this RTM molding method, the process for producing CFRP and GFRP is a so-called preformed body (also referred to as a preform), which has been previously shaped into a predetermined shape and is not completely impregnated with a resin. After placing the reinforcing fiber base made of dry continuous fiber fabric on the mold and covering the whole with a bag film or mold, the bag film or the mold mold is evacuated, and the resin is injected, The preform is diffused and impregnated with resin.

RTM成形法においては、このように予備成形体を使用するため、プリプレグという粘着性のある材料を小さく裁断してパッチ状に貼り付けるという煩雑な工程が不要となる。しかし、繊維状や布帛状といった一次元、あるいは二次元の強化繊維基材を所定の三次元形状に賦形し予備成形体を製造する工程を、いかに正確、かつ効率よく行うかが、RTM成形法においても課題となっている。   In the RTM molding method, since the preform is used as described above, a complicated process of cutting a sticky material called a prepreg and attaching it in a patch shape becomes unnecessary. However, it is RTM molding how to accurately and efficiently perform the process of manufacturing a preform by forming a one-dimensional or two-dimensional reinforcing fiber substrate such as a fiber or fabric into a predetermined three-dimensional shape. It is also an issue in the law.

この賦形工程の従来の最も単純な方法としては、クロス等の強化繊維基材を手作業で裁断し、最終製品形状に準ずる形をした賦形型の上に一枚ずつ、スプレーのり等を吹き付けながら複数層貼り重ねていく方法がある。   The simplest conventional method of this shaping process is to manually cut a reinforcing fiber substrate such as cloth, and apply spray paste etc. one by one on the shaping mold that conforms to the shape of the final product. There is a method of applying multiple layers while spraying.

このような人手作業による方法では、まず、強化繊維基材を一枚ずつ貼り重ねる点に関し、ドライな基材を用いる分、プリプレグに比べれば型への沿い性が良く、貼り付け作業が容易であるものの、大幅な効率化は望めない。またスプレーのりによる貼り付け作業に関しては、吹き付け量のコントロールが難しく、過剰な塗布や塗布量のバラツキによりFRP自身の物性低下やバラツキが発生する懸念がある。   In such a manual method, first, regarding the point of laminating the reinforcing fiber base material one by one, the use of a dry base material is better along the mold than the prepreg, and the pasting work is easy. Although there is a significant improvement in efficiency. In addition, regarding the pasting work by spraying, it is difficult to control the spraying amount, and there is a concern that the physical properties of the FRP itself may be deteriorated or varied due to excessive coating or variation in the coating amount.

RTM成形法の賦型工程において、高嵩Vf(繊維体積含有率とも呼ぶ)予備成形体を製造する場合、内部の強化繊維の反発により、予備成形体が規程の高さより膨らみ、成形型に収まらなくなることがある。また、複雑形状予備成形体の場合、その形状に追従しきれずに内部の強化繊維が予備成形体から飛び出すことがある。このような状態が起きると、成形型の型締め工程において強化繊維が切断されたり、無理に型を締めつけて強化繊維がうねりを生じたりする。強化繊維の切断やうねりは、繊維強化樹脂成形品の物性を低下させる原因となる。   When a high bulk Vf (also referred to as fiber volume content) preform is produced in the molding process of the RTM molding method, the preform swells from the specified height due to repulsion of the internal reinforcing fibers, and does not fit in the mold. It may disappear. In the case of a complex-shaped preform, the internal reinforcing fibers may jump out of the preform without following the shape. When such a state occurs, the reinforcing fibers are cut in the mold clamping process of the molding die, or the reinforcing fibers are undulated by forcibly clamping the mold. Cutting or waviness of the reinforcing fiber causes a decrease in the physical properties of the fiber-reinforced resin molded product.

FRPにより板材や桁材を製造する場合において、このような強化繊維の切断やうなりに起因する繊維強化樹脂成形品の物性低下は、構造材にとって致命的となるため、あらかじめ予備成形体を大きめに製造しておき、物性低下が起こり得る部位を除去して製品とする。   When manufacturing plate materials and girders by FRP, the deterioration of physical properties of the fiber reinforced resin molded product due to the cutting or beat of the reinforcing fibers is fatal to the structural material. Manufacture and remove the part where physical properties may be lowered to make a product.

一方、円筒構造の予備成形体では、予備成形体内の強化繊維が一対の金型の合わせ面をまたぐように配置される場合には、金型の合わせ面に強化繊維が挟まれたりうねりが生じたりすると、上述した物性低下が起こる部位の除去工程を行うことが出来ない。成形型により強化繊維の切断が起きると、成形品の物性が著しく落ちる原因となる。   On the other hand, in the preform having a cylindrical structure, when the reinforcing fibers in the preform are arranged so as to straddle the mating surfaces of the pair of molds, the reinforcing fibers are sandwiched or swelled between the mating surfaces of the molds. In such a case, it is impossible to perform the step of removing the portion where the physical property deterioration described above occurs. If the reinforcing fiber is cut by the molding die, the physical properties of the molded product may be significantly reduced.

更には、円筒構造の予備成形体を構造材として利用する場合、予備成形体に対して、高い繊維体積含有率(Vf)の実現、繊維連続性の保証、繊維配向性の保証、等といった高性能、高精度化を同時に実現しようとすると、強化繊維基材を想定どおりに賦形できにくくなり、結果として予備成形体の形態を安定して維持できにくくなっていた。このように、複雑形状の予備賦形体の形成においてまだまだ課題が多いのが現状である。   Furthermore, when a cylindrical preform is used as a structural material, a high fiber volume content (Vf), fiber continuity guarantee, fiber orientation guarantee, etc. can be achieved. If it is going to realize performance and high precision at the same time, it becomes difficult to shape the reinforcing fiber base as expected, and as a result, it is difficult to stably maintain the form of the preform. As described above, there are still many problems in the formation of a preshaped object having a complicated shape.

強化繊維基材から円筒構造予備成形体を製造する方法として、例えば特許文献1には、芯体の外周面に、補強繊維を一定方向に引き揃えて積層させ、熱収縮性の大きい繊維糸により構成したネット状袋により全体を包み込むと共に、ネット状袋の上から同一繊維糸により所要箇所を二次仮止めし、このように構成した成形体をオーブンに入れて所定温度で加熱することにより前記熱収縮性ネット状袋を収縮させる方法が開示されている。しかしながら、特許文献1に記載された発明は、予備成形体の製造工程において、一次仮止め工程、ネット状袋の被覆工程、二次仮止め工程を行う必要があり、工程数が多く、手間と時間がかかるものである。   As a method for manufacturing a cylindrical structure preform from a reinforcing fiber base material, for example, in Patent Document 1, reinforcing fibers are aligned and laminated in a certain direction on the outer peripheral surface of a core body, and fiber yarns having high heat shrinkability are used. By wrapping the whole with the configured net-like bag, secondarily temporarily fixing the required portion with the same fiber thread from the top of the net-shaped bag, and heating the molded body thus configured at a predetermined temperature by placing it in an oven A method for shrinking a heat-shrinkable net-like bag is disclosed. However, the invention described in Patent Document 1 requires a primary temporary fixing process, a net-shaped bag covering process, and a secondary temporary fixing process in the manufacturing process of the preform. It takes time.

また、一方向強化繊維基材を用いるため、繊維が配向された方向には繊維強化樹脂成形品の引張強度・剛性が発現するものの、繊維が配向されていない方向の曲げ、ねじり、圧縮、せん断強度・剛性は、繊維の配向方向と比べて著しく低下するおそれがある。   Also, since a unidirectional reinforcing fiber base material is used, the tensile strength and rigidity of the fiber reinforced resin molded product are exhibited in the direction in which the fibers are oriented, but bending, twisting, compression, shearing in the direction in which the fibers are not oriented The strength / rigidity may be significantly reduced compared to the fiber orientation direction.

さらに、形状保持にネット状袋を用いるため、例えば自転車フレームのブレーキアッシー部のような複雑形状の芯体に適用した場合にはネットの網目より小さな芯体の形状変化に追従しきれず、型閉め時に予備成形体を挟み込むことによって強化繊維の切断が起きたり、収縮による外側からの圧力を一方向強化繊維基材に伝える面積が小さくなり、Vfを高くしたり均一化しにくいという課題を抱えている。   Furthermore, since a net-like bag is used to maintain the shape, for example, when applied to a complex-shaped core such as a brake assembly part of a bicycle frame, it cannot follow the shape change of the core smaller than the net of the net, and the mold is closed. Occasionally, the reinforcing fiber is cut by sandwiching the preform, or the area for transmitting the pressure from the outside due to shrinkage to the unidirectional reinforcing fiber base is reduced, and it has a problem that it is difficult to increase or uniformize Vf. .

またさらに、マトリックス樹脂を外周面から注入した場合、マトリックス樹脂の注入圧力と流量により、一方向強化繊維基材中の繊維配向が乱れ、強度・剛性が不均一な成形品になるおそれがある。   Furthermore, when the matrix resin is injected from the outer peripheral surface, the fiber orientation in the unidirectional reinforcing fiber base material is disturbed by the injection pressure and flow rate of the matrix resin, which may result in a molded product with non-uniform strength and rigidity.

特開平7−24920号公報JP 7-24920 A

本発明は、かかる課題に着目して案出されたもので、曲げ、ねじり、圧縮、せん断といった引っ張り以外の荷重がかかる繊維強化樹脂成形品ならびに複雑な形状を有する繊維強化樹脂成形品を生産するにあたり、従来に比べ少ない工程で、簡便な型や芯材を用いながら、繊維配向を維持したままVfを均一に保ったまま賦形できる予備成形体およびその製造方法、ならびにその予備成形体を用いた繊維強化樹脂成形品を提供することを目的とする。   The present invention has been devised by paying attention to such a problem, and produces a fiber reinforced resin molded product that is subjected to a load other than tension such as bending, twisting, compression, and shearing, and a fiber reinforced resin molded product having a complicated shape. In this case, a preform that can be shaped while keeping the fiber orientation uniform while maintaining the fiber orientation, and its manufacturing method, and its preform are used in fewer steps than in the past. An object of the present invention is to provide a fiber-reinforced resin molded product.

本発明は、以下の(1)〜(14)により達成することができる。
(1)所定の形状に成形した芯体10の外周面に強化繊維布帛20を積層してなる予備成形体において、前記強化繊維布帛20の外周に熱収縮チューブ30を被覆させ、加熱により前記芯体10の外周面に前記強化繊維布帛20を固定させてなることを特徴とする予備成形体。
(2)前記熱収縮チューブ30が前記芯体10の軸方向に間隔を設けて複数配置されることを特徴とする(1)に記載の予備成形体。
(3)前記熱収縮チューブ30の外周面に少なくとも1つの樹脂注入排出孔が設けられていることを特徴とする(1)または(2)に記載の予備成形体。
(4)前記熱収縮チューブ30の表面に意匠が施されていることを特徴とする(1)〜(3)のいずれかに記載の予備成形体。
(5)前記強化繊維布帛20は、織物、編物、不織布、一方向基材の少なくとも1つを含むことを特徴とする(1)〜(4)のいずれかに記載の予備成形体。
(6)前記強化繊維布帛20は、熱可塑性樹脂粒子が表面に付着されていることを特徴とする(1)〜(5)のいずれかに記載の予備成形体。
(7)前記芯体10は、加圧膨張可能な袋状体であることを特徴とする(1)〜(6)のいずれかに記載の予備成形体。
(8)前記芯体10は、可溶性であることを特徴とする(1)〜(7)のいずれかに記載の予備成形体。
(9)(1)〜(8)のいずれかに記載の予備成形体をRTM成形してなる繊維強化樹脂成形品。
(10)(1)〜(8)のいずれかに記載の予備成形体からRTM成形前に前記熱収縮チューブ30が除去されてなることを特徴とする繊維強化樹脂成形品。
(11)所定の形状に成形した芯体10の外周面に強化繊維布帛20を積層してなる予備成形体の製造方法において、下記(A)(B)工程を含むことを特徴とする予備成形体の製造方法。
(A)工程:所定の形状に成形した前記芯体10の外周面に前記強化繊維布帛20を1枚または複数積層し、更にその外周に前記熱収縮チューブ30を被覆する被覆工程。
(B)工程:加熱により前記熱収縮チューブ30を収縮させ、前記芯体10の外周面に前記強化繊維布帛20を固定させる固定工程。
(12)(11)に記載の予備成形体の製造方法で得られた予備成形体をRTM成形する繊維強化樹脂成形品の製造方法において、下記(C)〜(F)工程を含むことを特徴とする繊維強化樹脂成形品の製造方法。
(C)工程:予備成形体を金型上に配置し型締めする型締め工程。
(D)工程:マトリクス樹脂を注入、含浸、硬化させる硬化工程。
(E)工程:成形型から繊維強化樹脂成形品を脱型する脱型工程。
(F)工程:繊維強化樹脂成形品のバリ等を除去するトリム工程。
(13)(C)型締め工程の前に、前記熱収縮チューブ30を除去する除去工程をさらに含むことを特徴とする(12)に記載の繊維強化樹脂成形品の製造方法。
(14)(A)工程において可溶性の前記芯体10または加圧膨張可能な袋状体の前記芯体10を選択し、(D)硬化工程後に、前記芯体10を溶融または割り、前記芯体10を繊維強化樹脂成形品から除去する除去工程をさらに含むことを特徴とする(12)または(13)に記載の中空繊維強化樹脂成形品の製造方法。
The present invention can be achieved by the following (1) to (14).
(1) In a preform formed by laminating the reinforcing fiber fabric 20 on the outer peripheral surface of the core body 10 formed into a predetermined shape, the outer periphery of the reinforcing fiber cloth 20 is covered with a heat shrinkable tube 30, and the core is heated by heating. A preform formed by fixing the reinforcing fiber fabric 20 to the outer peripheral surface of the body 10.
(2) The preform according to (1), wherein a plurality of the heat-shrinkable tubes 30 are arranged at intervals in the axial direction of the core body 10.
(3) The preform according to (1) or (2), wherein at least one resin injection / discharge hole is provided on the outer peripheral surface of the heat shrinkable tube 30.
(4) The preform according to any one of (1) to (3), wherein a design is applied to the surface of the heat shrinkable tube 30.
(5) The preformed body according to any one of (1) to (4), wherein the reinforcing fiber fabric 20 includes at least one of a woven fabric, a knitted fabric, a nonwoven fabric, and a unidirectional substrate.
(6) The preform according to any one of (1) to (5), wherein the reinforcing fiber fabric 20 has thermoplastic resin particles attached to a surface thereof.
(7) The preform 10 according to any one of (1) to (6), wherein the core body 10 is a bag-like body that can be pressurized and expanded.
(8) The preform according to any one of (1) to (7), wherein the core body 10 is soluble.
(9) A fiber-reinforced resin molded product obtained by RTM molding of the preform according to any one of (1) to (8).
(10) A fiber-reinforced resin molded article, wherein the heat shrinkable tube 30 is removed from the preform according to any one of (1) to (8) before RTM molding.
(11) In the method for manufacturing a preform, in which the reinforcing fiber fabric 20 is laminated on the outer peripheral surface of the core body 10 molded into a predetermined shape, the following molding steps (A) and (B) are included. Body manufacturing method.
(A) Step: A covering step of laminating one or a plurality of the reinforcing fiber fabrics 20 on the outer peripheral surface of the core body 10 formed into a predetermined shape, and further covering the heat shrinkable tube 30 on the outer periphery.
(B) Step: A fixing step in which the heat-shrinkable tube 30 is contracted by heating and the reinforcing fiber fabric 20 is fixed to the outer peripheral surface of the core body 10.
(12) In the manufacturing method of the fiber reinforced resin molded article which performs RTM molding of the preform obtained by the manufacturing method of the preform according to (11), the following steps (C) to (F) are included. A method for producing a fiber-reinforced resin molded product.
(C) Process: A mold clamping process in which the preform is placed on a mold and clamped.
(D) Process: A curing process in which a matrix resin is injected, impregnated, and cured.
(E) Process: Demolding process of demolding the fiber reinforced resin molded product from the mold.
(F) Process: The trim process which removes the burr | flash etc. of a fiber reinforced resin molded product.
(13) The method for producing a fiber-reinforced resin molded article according to (12), further including a removing step of removing the heat shrinkable tube 30 before the (C) mold clamping step.
(14) In the step (A), the soluble core body 10 or the pressure-expandable bag-shaped core body 10 is selected, and after the curing step (D), the core body 10 is melted or broken, and the core The method for producing a hollow fiber reinforced resin molded article according to (12) or (13), further comprising a removing step of removing the body 10 from the fiber reinforced resin molded article.

本発明によれば、曲げ、ねじり、圧縮、せん断といった引っ張り以外の荷重がかかる繊維強化樹脂成形品ならびに複雑な形状を有する繊維強化樹脂成形品を生産するにあたり、従来と比較し少ない工数で、簡便な型や芯材を用いながら、繊維配向を維持したままVfを均一に保ったまま賦形できる予備成形体およびその製造方法、ならびにその予備成形体を用いた繊維強化樹脂成形品およびその製造方法を提供することができる。   According to the present invention, in producing a fiber reinforced resin molded product that is subjected to a load other than tension such as bending, twisting, compression, and shearing, and a fiber reinforced resin molded product having a complicated shape, the number of man-hours can be reduced and the number of man-hours can be reduced. Pre-molded body that can be shaped while maintaining fiber orientation while maintaining fiber orientation and a manufacturing method thereof, and a fiber-reinforced resin molded article using the preform and a manufacturing method thereof Can be provided.

本発明における芯体を用いて予備成形体を賦形する賦形工程の説明図である。It is explanatory drawing of the shaping process which shapes a preforming body using the core in this invention. 本発明における予備成形体を用いて繊維強化樹脂成形体を成形する成形工程の説明図である。It is explanatory drawing of the shaping | molding process which shape | molds a fiber reinforced resin molded object using the preforming body in this invention.

以下、本発明の予備成形体およびその製造方法、ならびに繊維強化樹脂成形品およびその製造方法の一実施形態について図を用いながら説明する。なお、本発明はこれらの図等に何ら制限されるものではない。   Hereinafter, an embodiment of the preform of the present invention and a manufacturing method thereof, and a fiber-reinforced resin molded product and a manufacturing method thereof will be described with reference to the drawings. The present invention is not limited to these drawings.

図1(a)は、本発明に係る芯体の概略図である。芯体10は、本発明で得られる繊維強化樹脂成形体、特に複雑形状を伴う筒状の繊維強化樹脂成形体を精度良く成形するための芯材として使用する。また、芯体10は、後述する熱収縮チューブ30により外側から加圧されたり、更には樹脂注入時には樹脂注入圧力がかかるため、このような外圧によって過度な変形がない硬度を備えた素材が好ましい。   Fig.1 (a) is the schematic of the core which concerns on this invention. The core body 10 is used as a core material for accurately molding the fiber-reinforced resin molded body obtained by the present invention, particularly a cylindrical fiber-reinforced resin molded body having a complicated shape. The core 10 is preferably pressed from the outside by a heat-shrinkable tube 30 to be described later. Further, since a resin injection pressure is applied at the time of resin injection, a material having hardness that does not cause excessive deformation due to such external pressure is preferable. .

芯体10の材質は特に限定される物ではないが、例えば成形品内部に埋め込む場合は、発泡材料や加圧膨張可能な袋状体等、比重の軽い材質が好ましく、例えば発泡硬質ウレタン、加圧膨張可能な袋状体、ガラスビーズを混入した樹脂、等を用いるのが好ましい。   Although the material of the core body 10 is not particularly limited, for example, when embedded in a molded product, a material having a light specific gravity such as a foam material or a pressure-expandable bag-like body is preferable. It is preferable to use a pressure-expandable bag or a resin mixed with glass beads.

一方、成形品から抜き取り可能とするには、例えば加圧膨張可能な袋状体が好適に使用できる。袋状体は、外圧の作用に伴って圧縮気体等を注入する等、内圧を追従させても良い。さらに、芯体10を溶解して成形品から取り除く場合は、素材として可溶性部材、例えば発泡硬質ウレタンを選択し、メチルエチルケトンに溶融させ取り出すこと等が好ましい。また、加圧膨張可能な袋状体は、内部の気体を抜き取ったり、切り込みを入れた後で引っ張りだすこともできる。   On the other hand, in order to be able to extract from a molded product, for example, a pressure-expandable bag-like body can be suitably used. The bag-like body may follow the internal pressure by injecting compressed gas or the like in accordance with the action of the external pressure. Further, when the core body 10 is dissolved and removed from the molded product, it is preferable to select a soluble member, for example, foamed hard urethane, as a raw material, and to melt and take it out in methyl ethyl ketone. Moreover, the bag-like body which can be pressurized and expanded can be pulled out after the internal gas is extracted or cut.

強化繊維布帛20は、特に限定される物ではないが、織物、編物、不織布、一方向基材の少なくとも1つを用いることが好ましい。使用する強化繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、ケブラー繊維等を用いるのが好ましい。また、強化繊維布帛20は、設計により規定された繊維配向と繊維量を満たす必要がある。設計に応じた強化繊維布帛20を利用することで、繊維配向に沿った強度・剛性を発現することができる。   The reinforcing fiber fabric 20 is not particularly limited, but it is preferable to use at least one of a woven fabric, a knitted fabric, a nonwoven fabric, and a unidirectional substrate. As the reinforcing fiber to be used, for example, carbon fiber, glass fiber, aramid fiber, Kevlar fiber and the like are preferably used. In addition, the reinforcing fiber fabric 20 needs to satisfy the fiber orientation and the fiber amount specified by the design. By using the reinforcing fiber fabric 20 according to the design, strength and rigidity along the fiber orientation can be expressed.

強化繊維布帛20は、芯体10の外周に、1枚または複数積層配置される。シート状の強化繊維布帛20を芯体10に巻きつけても良いし、あらかじめ筒状に形成した強化繊維布帛20を芯体10に覆うように配置してもよい。この際、後述する樹脂含浸により得られる繊維強化樹脂成形体の周方向に、強化繊維が配向されていると、周方向に対する強度・剛性を高く発現することができて好ましい。   One or more reinforcing fiber fabrics 20 are arranged on the outer periphery of the core body 10. The sheet-like reinforcing fiber fabric 20 may be wound around the core body 10, or the reinforcing fiber fabric 20 formed in a cylindrical shape in advance may be disposed so as to cover the core body 10. At this time, it is preferable that the reinforcing fibers are oriented in the circumferential direction of a fiber reinforced resin molded article obtained by resin impregnation described later, because strength and rigidity in the circumferential direction can be expressed highly.

また、予備成形体の安定性を高めるために、熱可塑性樹脂粒子を強化繊維布帛20に付着させることも好ましい。強化繊維布帛の表面に付与される熱可塑性樹脂粒子は、強化繊維布帛の片面にのみ付与されてもよいし、表裏両面に付与されてもよい。強化繊維布帛20の表面への付与量は特に制限されるものではないが、熱可塑性樹脂粒子を加熱融着のバインダーとして利用するために、片面あたり3g/mから50g/m付与させることが好ましく、載置面への十分な固着力と重量軽減のバランスを考慮して、5g/mから30g/mの範囲が好適に適用される。 It is also preferable to attach the thermoplastic resin particles to the reinforcing fiber fabric 20 in order to increase the stability of the preform. The thermoplastic resin particles applied to the surface of the reinforcing fiber fabric may be applied only to one surface of the reinforcing fiber fabric, or may be applied to both the front and back surfaces. Although enhanced application amount of the surface of the fiber fabric 20 is not particularly limited, in order to take advantage of the thermoplastic resin particles as a binder for heat fusing, thereby the per side 3g / m 2 50g / m 2 is applied It is preferable that the range of 5 g / m 2 to 30 g / m 2 is suitably applied in consideration of a sufficient adhering force to the mounting surface and a balance of weight reduction.

熱可塑性樹脂粒子の主成分である熱可塑性樹脂は、特に限定されるものではないが、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリアリーレンオキシド樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルスルホン樹脂など、いわゆるエンジニアリングプラスチックスに属する樹脂が好ましく用いられる。またこのほかに、部分的に結晶性を有していても良く、これらも好ましく用いられる。例えば、ポニフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂、ナイロン樹脂等を挙げることが出来る。また、かかる熱可塑性樹脂は、末端または側鎖に液状エポキシ樹脂組成物と反応しうる官能基(具体的にはカルボキシル基、アミノ基、フェノール性水酸基、エポキシ基など)を有することが好ましい。反応しうる官能基を有することで、液状エポキシ樹脂組成物とともに硬化し、繊維強化複合材料の耐衝撃性が向上する。また、上記した以外の任意の成分、例えば酸化防止剤、ゴム粒子、無機粒子などを適宜含ませることができる。   The thermoplastic resin that is the main component of the thermoplastic resin particles is not particularly limited, but polyimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyamide resin, polyamideimide resin, polyarylene oxide resin Resins belonging to so-called engineering plastics such as polyether ketone resins and polyether ether sulfone resins are preferably used. In addition to this, it may be partially crystalline, and these are also preferably used. For example, poniphenylene sulfide resin, polyether ether ketone resin, polyester resin, nylon resin and the like can be mentioned. Moreover, it is preferable that this thermoplastic resin has a functional group (specifically, carboxyl group, amino group, phenolic hydroxyl group, epoxy group, etc.) capable of reacting with the liquid epoxy resin composition at the terminal or side chain. By having a reactive functional group, it is cured together with the liquid epoxy resin composition, and the impact resistance of the fiber-reinforced composite material is improved. Moreover, arbitrary components other than those described above, for example, antioxidants, rubber particles, inorganic particles, and the like can be appropriately included.

また、熱可塑性樹脂粒子は、ガラス転移温度が50℃以上であることが好ましい。50℃未満では、保管中に熱可塑性樹脂粒子状の組成を保つことが困難になるおそれがある。   The thermoplastic resin particles preferably have a glass transition temperature of 50 ° C. or higher. If it is less than 50 degreeC, there exists a possibility that it may become difficult to maintain a thermoplastic resin particle-like composition during storage.

熱可塑性樹脂粒子は、平均粒径が30〜200μmであることが好ましい。平均粒径を30μm以上とすることで、強化繊維基材の製造時において、強化繊維布帛の強化繊維糸条中に粒子が入り込み過ぎず、強化繊維糸条の表面にも十分な量の粒子を残し、少量のバインダー組成物でも強化繊維基材同士を結着させる効果を効率よく発現させることができ、取扱いを容易にすることができる。一方、平均粒径を200μm以下とすることにより、予備成形体としたときにうねりが生じて繊維強化プラスチックの物性に悪影響を及ぼすのを防ぐことができる。   The thermoplastic resin particles preferably have an average particle size of 30 to 200 μm. By making the average particle diameter 30 μm or more, when manufacturing the reinforcing fiber base material, the particles do not excessively enter the reinforcing fiber yarn of the reinforcing fiber fabric, and a sufficient amount of particles are also present on the surface of the reinforcing fiber yarn. The effect of binding the reinforcing fiber bases can be efficiently expressed even with a small amount of the binder composition, and handling can be facilitated. On the other hand, by setting the average particle size to 200 μm or less, it is possible to prevent waviness when the preform is formed and adversely affect the physical properties of the fiber reinforced plastic.

熱収縮チューブ30は、特に限定される物ではないが、熱収縮性が10%以上のチューブが好ましい。例えば、40℃〜150℃程度の加熱により収縮する材料から成るものが好ましい。例えば成形品内部に埋め込む場合は、ポリオレフィン、ポリ塩化ビニル、等を用いるのが好ましい。一方、成形品から取り除く場合は、ポリフッ化ビニリデン等を用いるのが好ましい。   The heat shrinkable tube 30 is not particularly limited, but a tube having a heat shrinkage of 10% or more is preferable. For example, a material made of a material that shrinks when heated at about 40 ° C. to 150 ° C. is preferable. For example, when embedding in a molded article, it is preferable to use polyolefin, polyvinyl chloride, or the like. On the other hand, when removing from a molded article, it is preferable to use polyvinylidene fluoride or the like.

熱収縮チューブ30は樹脂含浸性を向上させるために、間を空けて軸方向に複数個存在してもよいし、または樹脂注入孔として、外周面に少なくとも1つの穴を有してもよい。軸方向に複数個の熱収縮チューブ30を配置したり、熱収縮チューブ30に樹脂注入孔を設けたりすることで、樹脂拡散媒体として作用させることができる。具体的には、熱収縮チューブ30と金型の間に隙間を樹脂が拡散すると共に、樹脂注入孔もしくは、熱収縮チューブ30同士の隙間から強化繊維布帛に樹脂を含浸させることができ、厚肉もしくは大型もしくは複雑形状の成形品に対しても、均一に樹脂を含浸させることができる。   In order to improve the resin impregnation property, a plurality of the heat-shrinkable tubes 30 may be present in the axial direction with a space therebetween, or may have at least one hole on the outer peripheral surface as a resin injection hole. By arranging a plurality of heat-shrinkable tubes 30 in the axial direction or providing resin injection holes in the heat-shrinkable tubes 30, it can act as a resin diffusion medium. Specifically, the resin diffuses through the gap between the heat shrinkable tube 30 and the mold, and the reinforcing fiber fabric can be impregnated with the resin from the resin injection hole or the gap between the heat shrinkable tubes 30. Alternatively, the resin can be uniformly impregnated even for a molded product having a large or complicated shape.

さらに、成形品内部に熱収縮チューブ30を埋め込む場合、熱収縮チューブ30の表面に意匠が施されていてもよい。樹脂内に意匠面が包埋されるため、塗装工程が省略できると共に、意匠面が強力に保護される。RTM成形はプリプレグ成形と比較して成形体の表面品位が良好であることが知られており、表面平滑工程を省略することができる。繊維配向を意匠として利用したり、繊維配向を確認すること等を目的として、透明な熱収縮チューブ30を使用してもよい。   Furthermore, when embedding the heat-shrinkable tube 30 inside the molded product, a design may be applied to the surface of the heat-shrinkable tube 30. Since the design surface is embedded in the resin, the painting process can be omitted and the design surface is strongly protected. RTM molding is known to have a better surface quality compared to prepreg molding, and the surface smoothing step can be omitted. A transparent heat-shrinkable tube 30 may be used for the purpose of utilizing fiber orientation as a design or confirming fiber orientation.

本発明における予備成形体の製造方法は、下記(A)(B)の工程を含むことを特徴とする。
(A)工程:所定の形状に成形した前記芯体10の外周面に前記強化繊維布帛20を1枚または複数積層し、更にその外周に前記熱収縮チューブ30を被覆する被覆工程。
(B)工程:加熱により前記熱収縮チューブ30を収縮させ、前記芯体10の外周面に前記強化繊維布帛20を固定させる固定工程。
The method for producing a preform according to the present invention includes the following steps (A) and (B).
(A) Step: A covering step of laminating one or a plurality of the reinforcing fiber fabrics 20 on the outer peripheral surface of the core body 10 formed into a predetermined shape, and further covering the heat shrinkable tube 30 on the outer periphery.
(B) Step: A fixing step in which the heat-shrinkable tube 30 is contracted by heating and the reinforcing fiber fabric 20 is fixed to the outer peripheral surface of the core body 10.

(A)被覆工程において「所定の形状」とは、芯体10と成形型の隙間量が、熱収縮チューブ30の厚みと、強化繊維布帛20のVf(繊維堆積含有率)が50%〜60%になる厚みを足し合わせた厚み量になるような形状が好ましい。   (A) In the covering step, “predetermined shape” means that the gap amount between the core body 10 and the mold is the thickness of the heat shrinkable tube 30 and the Vf (fiber deposition content) of the reinforcing fiber fabric 20 is 50% to 60. It is preferable to have a shape that results in a thickness amount that is a sum of thicknesses that are%.

ここで、繊維強化樹脂成形品にかかる荷重を考慮し、所望の強度剛性を発現するに十分な繊維量と繊維配向を配置することが好ましい。繊維量や繊維配向は、強度計算等の設計により得ることができる。   Here, in consideration of the load applied to the fiber-reinforced resin molded article, it is preferable to arrange the fiber amount and the fiber orientation sufficient to express the desired strength and rigidity. The fiber amount and fiber orientation can be obtained by designing such as strength calculation.

芯体10に強化繊維布帛20を1枚または複数積層させる際に、強化繊維布帛20の端部がほつれる場合は、マスキングテープやスプレーのり、紐等を用いて、端部の仮止めをしてもよい。端部止めにより繊維配向を維持することが出来る。この仮止めはそのままRTM成形を行い、製品内に包埋してもよいが、寸法精度や表面意匠性を高めるには、RTM成形前に除去することが好ましい。   When one or more reinforcing fiber fabrics 20 are laminated on the core 10 and the ends of the reinforcing fiber fabric 20 are frayed, temporarily tighten the ends using a masking tape, spray glue, string, etc. May be. The fiber orientation can be maintained by the end stop. This temporary fix may be RTM molded as it is and embedded in the product, but it is preferably removed before RTM molding in order to improve dimensional accuracy and surface design.

図1a)〜c)は、(A)被覆工程の一実施形態様例を説明するものである。図1のa)に示す芯体10の外周に、図1のb)に示すように芯体10の外周面に強化繊維布帛20を1枚または複数積層させる。この際、芯体10と強化繊維布帛20との間に空隙が設けられていても良い。その後、図1のc)に示すように、強化繊維布帛20の外周に熱収縮チューブ30を被覆させる。   FIGS. 1a) -c) illustrate an embodiment of the (A) coating process. One or more reinforcing fiber fabrics 20 are laminated on the outer peripheral surface of the core body 10 as shown in FIG. 1B on the outer periphery of the core body 10 shown in FIG. At this time, a gap may be provided between the core body 10 and the reinforcing fiber fabric 20. Thereafter, as shown in FIG. 1 c, the outer periphery of the reinforcing fiber fabric 20 is covered with a heat shrinkable tube 30.

図1のd)は(B)固定工程の一実施形態様例を説明するものである。壁面がシート状の熱収縮チューブ30を加熱すると熱収縮チューブ30が均一に収縮し始める。強化繊維布帛20の外側から加圧されると、シート状の強化繊維布帛を巻き付けた場合はシート端部が内側に入り込んだり、筒状の強化繊維布帛を巻き付けた場合は繊維束間隔を均一に狭めることで、強化繊維布帛に皺やうねりがなく、繊維配向のズレもない嵩Vfの高い予備成形体を得ることができる。   FIG. 1 d) illustrates an embodiment of the fixing step (B). When the heat-shrinkable tube 30 whose wall surface is sheet-like is heated, the heat-shrinkable tube 30 starts to shrink uniformly. When pressure is applied from the outside of the reinforcing fiber fabric 20, when the sheet-like reinforcing fiber fabric is wound, the end of the sheet enters inside, and when the cylindrical reinforcing fiber fabric is wound, the fiber bundle interval is made uniform. By narrowing, it is possible to obtain a preform with a high bulk Vf in which the reinforcing fiber fabric has no wrinkles or undulations and no fiber orientation deviation.

本発明の繊維強化樹脂成形品の製造方法は、上述した(A)(B)工程により製造された予備成形体を下記(C)〜(F)工程からなるRTM成形を行うものである。
(C)工程:(1)で製造した予備成形体を金型上に配置し型締めする型締め工程。
(D)工程:マトリクス樹脂を注入、含浸、硬化させる硬化工程。
(E)工程:成形型から繊維強化樹脂成形品を脱型する脱型工程。
(F)工程:繊維強化樹脂成形品のバリ等を除去するトリム工程。
The method for producing a fiber-reinforced resin molded article of the present invention is to perform RTM molding of the preformed product produced by the above-described steps (A) and (B), comprising the following steps (C) to (F).
(C) Process: A mold clamping process in which the preform formed in (1) is placed on a mold and clamped.
(D) Process: A curing process in which a matrix resin is injected, impregnated, and cured.
(E) Process: Demolding process of demolding the fiber reinforced resin molded product from the mold.
(F) Process: The trim process which removes the burr | flash etc. of a fiber reinforced resin molded product.

(C)型締め工程の一実施形態様例を図2のa)に示す。(B)固定工程により、芯体10と強化繊維布帛20とを一体化しているため、複雑形状部材であっても、型締め時に成形型の合わせ面(いわゆるパーティングライン)での強化繊維布帛20の挟み込みを減少することができる。成形型による強化繊維の切断による成形品の物性低下のみならず、強化繊維自身による成形型の損傷をも減少させることができる。   (C) One embodiment of the mold clamping process is shown in FIG. (B) Since the core body 10 and the reinforcing fiber cloth 20 are integrated by the fixing step, the reinforcing fiber cloth on the mating surface (so-called parting line) of the molding die at the time of mold clamping, even for a complicated shaped member. Twenty pinchings can be reduced. Not only can the physical properties of the molded product be reduced by cutting the reinforcing fibers with the mold, but also the damage to the mold due to the reinforcing fibers themselves can be reduced.

また、(D)硬化工程の一実施形態様例を図2のb)に示す。(B)固定工程により、熱収縮チューブ30によって強化繊維布帛20が芯体10に保持されているため、注入樹脂の注入圧力による強化繊維の配向乱れを減少することができ、設計に応じた物性を発現させることができる。   FIG. 2 b) shows an embodiment of the (D) curing step. (B) Since the reinforcing fiber fabric 20 is held by the core body 10 by the heat shrinkable tube 30 by the fixing step, the orientation disorder of the reinforcing fiber due to the injection pressure of the injection resin can be reduced, and the physical properties according to the design Can be expressed.

次に、(E)脱型工程の一実施形態様例を図2のc)に示す。この際、成形品にバリ等が生じた場合には、(F)トリム工程により、外観を整えることができる。本発明では、(C)硬化工程において型締め時における強化繊維の挟み込みを減少させることができるため、成形後に生じる強化繊維を含むバリを減少させることができ、トリム工程時間を減少させることができる。   Next, an embodiment of (E) demolding process is shown in FIG. At this time, when burrs or the like occur in the molded product, the appearance can be adjusted by the (F) trim process. In the present invention, since the sandwiching of the reinforcing fibers at the time of mold clamping in the (C) curing process can be reduced, burrs including the reinforcing fibers generated after molding can be reduced, and the trim process time can be reduced. .

また、かかる本発明の予備成形体およびその製造方法と繊維強化樹脂成形品およびその成形方法において、下記の工程を含むことができる。   Moreover, in the preform of this invention, its manufacturing method, a fiber reinforced resin molded product, and its molding method, the following processes can be included.

熱収縮チューブ除去工程:(B)固定工程において熱収縮チューブ30を熱収縮させた後、(C)型締め工程の前に熱収縮チューブ30を除去する除去工程。   Heat shrinkable tube removal step: (B) A removal step of removing the heat shrinkable tube 30 before the mold clamping step after the heat shrinkable tube 30 is thermally contracted in the fixing step.

繊維強化樹脂成形品に対する仕様として、薄さ、軽さ、表面の導電性などが求められる場合、熱収縮チューブ30を除去することが好ましい。熱収縮チューブ30を除去する場合、素材として離型性の良いものを選択すること、または離型材を表面に塗布することが好ましい。もしくは、熱収縮チューブ30に対して、強化繊維布帛20の最外面の繊維方向に刃を浅く入れ、切り開くことで、強化繊維を傷つけることなく、熱収縮チューブ30を除去することができる。   In the case where thinness, lightness, surface conductivity and the like are required as specifications for the fiber reinforced resin molded product, it is preferable to remove the heat shrinkable tube 30. When removing the heat-shrinkable tube 30, it is preferable to select a material having good releasability as a material or to apply a release material on the surface. Alternatively, the heat-shrinkable tube 30 can be removed without damaging the reinforcing fibers by inserting a blade shallowly in the fiber direction of the outermost surface of the reinforcing fiber fabric 20 with respect to the heat-shrinkable tube 30 and cutting it open.

ここで、熱可塑性樹脂粒子を付着させた強化繊維布帛を用いた場合、熱収縮チューブ30を熱収縮させる際の熱により熱可塑性樹脂粒子も溶解し、強化繊維布帛の重なった部分を固着することができる。これは、一般にホットコンパクションと呼ばれ、熱収縮チューブ30を除去した後も、予備成形体の形態を安定して保持することができる。   Here, when the reinforced fiber cloth to which the thermoplastic resin particles are adhered is used, the thermoplastic resin particles are also dissolved by the heat when the heat shrinkable tube 30 is thermally contracted, and the overlapping portions of the reinforced fiber cloth are fixed. Can do. This is generally called hot compaction, and the shape of the preform can be stably maintained even after the heat shrinkable tube 30 is removed.

芯体除去工程:繊維強化樹脂成形品に対する仕様として、薄さ、軽さ、などが求められる場合には、繊維強化樹脂成形品から芯体10を除去することが好ましい。芯体10として可溶性または加圧膨張可能な袋状体を選択した上で、(D)硬化工程後において、溶剤により芯体10を溶解させたり、または加圧膨張可能な袋状体を割り引っ張りだすことができる。特に(F)トリム工程後に、溶剤により芯体10を溶解させる際に袋状体の内部で溶解させ袋状体ごと引き抜くと、成形品に対して芯体10の溶融物が付着することを防ぐことが出来る。   Core body removing step: When thinness, lightness, etc. are required as specifications for the fiber reinforced resin molded product, it is preferable to remove the core body 10 from the fiber reinforced resin molded product. After selecting a soluble or pressure-expandable bag-like body as the core body 10, (D) after the curing step, the core body 10 is dissolved by a solvent, or the pressure-expandable bag-like body is split and pulled. You can start. In particular, when the core 10 is dissolved with a solvent after the trimming step, the melt of the core 10 is prevented from adhering to the molded product when it is dissolved inside the bag-like body and pulled out together with the bag-like body. I can do it.

前述した製造方法により製造された予備成形体は、従来と比較し少ない工数で、簡便な型や芯材を用いながら、繊維配向を維持したままVfを均一に保ったまま賦形できる。予備成形体の形態安定性も上がっており、なおかつ熱収縮チューブ30において強化繊維布帛20が保護されているため、予備成形体の大量生産をした後に保管をする際の耐久性も向上する。   The preformed body manufactured by the above-described manufacturing method can be shaped with fewer man-hours than before and using a simple mold or core while maintaining Vf uniform while maintaining fiber orientation. The shape stability of the preform is also increased, and the reinforcing fiber fabric 20 is protected in the heat shrinkable tube 30, so that the durability when the preform is stored after mass production is also improved.

前述した製造方法により製造された繊維強化樹脂成形品は、繊維配向が維持され、予備賦形体の形態安定性も高まるため、あらかじめ設計したとおり、曲げ、ねじり、圧縮、せん断といった引っ張り以外の荷重がかかる強度部材として使用できる。RTM成形時の型締めの際には、熱収縮チューブ30の存在、もしくは熱収縮チューブ30を除去した場合でも熱可塑性樹脂粒子による形態安定性の向上により、強化繊維が成形型で切断されることがないため、成形品の物性を設計に応じて発現することができる。   The fiber reinforced resin molded product manufactured by the above-described manufacturing method maintains the fiber orientation and increases the shape stability of the preshaped object. Therefore, as designed in advance, a load other than tension such as bending, twisting, compression, and shearing is applied. It can be used as such a strength member. At the time of mold clamping during RTM molding, the presence of the heat-shrinkable tube 30 or even when the heat-shrinkable tube 30 is removed, the reinforcing fiber is cut by the mold due to improved shape stability by the thermoplastic resin particles. Therefore, the physical properties of the molded product can be expressed according to the design.

前述した製造方法により製造された中空繊維強化樹脂成形品は、設計に応じて、曲げ、ねじり、圧縮、せん断といった引っ張り以外の荷重がかかる強度部材として使用でき、なおかつ軽量に出来る。中空形状は、中実形状と比較して、重さにくらべて断面二次モーメントが大きいという特徴を持つので、構造用途に適するだけでなく、内部の空間を利用した気液輸送、貯蔵などの用途にも利用可能である。   The hollow fiber reinforced resin molded product manufactured by the above-described manufacturing method can be used as a strength member to which a load other than tension such as bending, twisting, compression, and shearing is applied according to the design, and can be lightweight. The hollow shape has a feature that the second moment of section is larger than the solid shape, so it is not only suitable for structural applications but also for gas-liquid transport and storage using the internal space. It can also be used for applications.

本発明は、設計に準じて、曲げ、ねじり、圧縮、せん断といった引っ張り以外の荷重がかかる強度部材として使用できる。また、中空繊維強化樹脂成形品は構造用途だけでなく、内部の空間を利用した気液輸送、貯蔵などの用途にも利用可能である。炭素繊維布帛をRTM成形して作成する自転車部材において、特にブレーキアッシー部を例にする強度が必要な部材や、自動車や航空機等にも応用することもできるが、その応用範囲が、これらに限られるものではない。   The present invention can be used as a strength member to which a load other than tension such as bending, twisting, compression, and shearing is applied according to the design. Moreover, the hollow fiber reinforced resin molded product can be used not only for structural applications but also for applications such as gas-liquid transportation and storage using the internal space. Bicycle members made by RTM molding of carbon fiber fabrics can be applied to members that require strength, such as brake assemblies, automobiles, aircraft, etc., but the scope of application is limited to these. It is not something that can be done.

10: 芯体
20: 強化繊維布帛
30: 熱収縮チューブ
40:予備成形体
51:上型
52:下型
53:樹脂注入口
60:繊維強化樹脂成形品
10: Core body 20: Reinforced fiber fabric 30: Heat shrinkable tube 40: Pre-formed body 51: Upper mold 52: Lower mold 53: Resin injection port 60: Fiber reinforced resin molded product

Claims (14)

所定の形状に成形した芯体10の外周面に強化繊維布帛20を積層してなる予備成形体において、前記強化繊維布帛20の外周に熱収縮チューブ30を被覆させ、加熱により前記芯体10の外周面に前記強化繊維布帛20を固定させてなることを特徴とする予備成形体。 In the preform formed by laminating the reinforcing fiber cloth 20 on the outer peripheral surface of the core body 10 formed into a predetermined shape, the outer periphery of the reinforcing fiber cloth 20 is covered with a heat shrinkable tube 30, and the core body 10 is heated by heating. A preformed article obtained by fixing the reinforcing fiber fabric 20 to an outer peripheral surface. 前記熱収縮チューブ30が前記芯体10の軸方向に間隔を設けて複数配置されることを特徴とする請求項1に記載の予備成形体。 The preform according to claim 1, wherein a plurality of the heat-shrinkable tubes 30 are arranged at intervals in the axial direction of the core body 10. 前記熱収縮チューブ30の外周面に少なくとも1つの樹脂注入排出孔が設けられていることを特徴とする請求項1または2に記載の予備成形体。 The preform according to claim 1 or 2, wherein at least one resin injection / discharge hole is provided on an outer peripheral surface of the heat shrinkable tube (30). 前記熱収縮チューブ30の表面に意匠が施されていることを特徴とする請求項1〜3のいずれかに記載の予備成形体。 The preform according to claim 1, wherein a design is applied to a surface of the heat shrinkable tube 30. 前記強化繊維布帛20は、織物、編物、不織布、一方向基材の少なくとも1つを含むことを特徴とする請求項1〜4のいずれかに記載の予備成形体。 The preformed body according to any one of claims 1 to 4, wherein the reinforcing fiber fabric 20 includes at least one of a woven fabric, a knitted fabric, a nonwoven fabric, and a unidirectional substrate. 前記強化繊維布帛20は、熱可塑性樹脂粒子が表面に付着されていることを特徴とする請求項1〜5のいずれかに記載の予備成形体。 The preformed body according to any one of claims 1 to 5, wherein the reinforcing fiber fabric 20 has thermoplastic resin particles attached to a surface thereof. 前記芯体10は、加圧膨張可能な袋状体であることを特徴とする請求項1〜6のいずれかに記載の予備成形体。 The preform 10 according to any one of claims 1 to 6, wherein the core body 10 is a bag-like body that can be pressurized and expanded. 前記芯体10は、可溶性であることを特徴とする請求項1〜7のいずれかに記載の予備成形体。 The preform 10 according to any one of claims 1 to 7, wherein the core 10 is soluble. 請求項1〜8のいずれかに記載の予備成形体をRTM成形してなる繊維強化樹脂成形品。 A fiber-reinforced resin molded product obtained by subjecting the preform according to any one of claims 1 to 8 to RTM molding. 請求項1〜8のいずれかに記載の予備成形体からRTM成形前に前記熱収縮チューブ30が除去されてなることを特徴とする繊維強化樹脂成形品。 A fiber-reinforced resin molded product, wherein the heat shrinkable tube 30 is removed from the preform according to any one of claims 1 to 8 before RTM molding. 所定の形状に成形した芯体10の外周面に強化繊維布帛20を積層してなる予備成形体の製造方法において、下記(A)(B)工程を含むことを特徴とする予備成形体の製造方法。
(A)工程:所定の形状に成形した前記芯体10の外周面に前記強化繊維布帛20を1枚または複数積層し、更にその外周に前記熱収縮チューブ30を被覆する被覆工程。
(B)工程:加熱により前記熱収縮チューブ30を収縮させ、前記芯体10の外周面に前記強化繊維布帛20を固定させる固定工程。
In the method for manufacturing a preform formed by laminating the reinforcing fiber fabric 20 on the outer peripheral surface of the core body 10 formed into a predetermined shape, the following steps (A) and (B) are included. Method.
(A) Step: A covering step of laminating one or a plurality of the reinforcing fiber fabrics 20 on the outer peripheral surface of the core body 10 formed into a predetermined shape, and further covering the heat shrinkable tube 30 on the outer periphery.
(B) Step: A fixing step in which the heat-shrinkable tube 30 is contracted by heating and the reinforcing fiber fabric 20 is fixed to the outer peripheral surface of the core body 10.
請求項11に記載の予備成形体の製造方法で得られた予備成形体をRTM成形する繊維強化樹脂成形品の製造方法において、下記(C)〜(F)工程を含むことを特徴とする繊維強化樹脂成形品の製造方法。
(C)工程:予備成形体を金型上に配置し型締めする型締め工程。
(D)工程:マトリクス樹脂を注入、含浸、硬化させる硬化工程。
(E)工程:成形型から繊維強化樹脂成形品を脱型する脱型工程。
(F)工程:繊維強化樹脂成形品のバリ等を除去するトリム工程。
12. A method for producing a fiber-reinforced resin molded article in which the preform obtained by the method for producing a preform according to claim 11 is subjected to RTM molding, the fiber comprising the following steps (C) to (F): Manufacturing method of reinforced resin molded product.
(C) Process: A mold clamping process in which the preform is placed on a mold and clamped.
(D) Process: A curing process in which a matrix resin is injected, impregnated, and cured.
(E) Process: Demolding process of demolding the fiber reinforced resin molded product from the mold.
(F) Process: The trim process which removes the burr | flash etc. of a fiber reinforced resin molded product.
(C)型締め工程の前に、前記熱収縮チューブ30を除去する除去工程をさらに含むことを特徴とする請求項12に記載の繊維強化樹脂成形品の製造方法。 (C) The manufacturing method of the fiber reinforced resin molded product according to claim 12, further comprising a removing step of removing the heat shrinkable tube 30 before the mold clamping step. (A)工程において可溶性の前記芯体10または加圧膨張可能な袋状体の前記芯体10を選択し、(D)硬化工程後に、前記芯体10を溶融または割り、前記芯体10を繊維強化樹脂成形品から除去する除去工程をさらに含むことを特徴とする請求項12または13に記載の中空繊維強化樹脂成形品の製造方法。 (A) The soluble core body 10 or the pressure-expandable bag-shaped core body 10 is selected in the step (A), and after the (D) curing step, the core body 10 is melted or broken, and the core body 10 is The method for producing a hollow fiber reinforced resin molded article according to claim 12 or 13, further comprising a removing step of removing from the fiber reinforced resin molded article.
JP2013068791A 2013-03-28 2013-03-28 Preforming body and production method of the same, and fiber-reinforced resin molding using the same and production method of the same Pending JP2014188953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013068791A JP2014188953A (en) 2013-03-28 2013-03-28 Preforming body and production method of the same, and fiber-reinforced resin molding using the same and production method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013068791A JP2014188953A (en) 2013-03-28 2013-03-28 Preforming body and production method of the same, and fiber-reinforced resin molding using the same and production method of the same

Publications (1)

Publication Number Publication Date
JP2014188953A true JP2014188953A (en) 2014-10-06

Family

ID=51835717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013068791A Pending JP2014188953A (en) 2013-03-28 2013-03-28 Preforming body and production method of the same, and fiber-reinforced resin molding using the same and production method of the same

Country Status (1)

Country Link
JP (1) JP2014188953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114290708A (en) * 2021-12-30 2022-04-08 中国科学院长春光学精密机械与物理研究所 Integrated forming preparation process for large-size carbon fiber plate type workpiece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114290708A (en) * 2021-12-30 2022-04-08 中国科学院长春光学精密机械与物理研究所 Integrated forming preparation process for large-size carbon fiber plate type workpiece
CN114290708B (en) * 2021-12-30 2024-04-26 中国科学院长春光学精密机械与物理研究所 Integrated molding preparation process for large-size carbon fiber plate-type workpiece

Similar Documents

Publication Publication Date Title
AU2020201610B2 (en) Fabrication of composite laminates using temporarily stitched preforms
KR102085014B1 (en) Method for forming shaped preform
KR101900967B1 (en) Composite structures having integrated stiffeners with smooth runouts and method of making the same
RU2438866C2 (en) Method of producing structural component from composite material reinforced by fibres for aerospace engineering, moulding core for production of said component, and component thus produced and/or by means of said core
US8877114B2 (en) Method for removing a SMP apparatus from a cured composite part
EP2121264B1 (en) Helicopter blade mandrel, method for making the mandrel and method for molding a helicopter rotor blade
US9120246B2 (en) Pressure tunable expandable mandrel for manufacturing a composite structure
US10562243B2 (en) FRP shaping jig and method of shaping FRP structure
TWI703030B (en) Process for the continuous production of fibre-reinforced profiles comprising a foam core
US10040222B2 (en) Collapsible, coiled mandrel
US8734703B2 (en) Methods and systems for fabricating composite parts using a SMP apparatus as a rigid lay-up tool and bladder
KR101447136B1 (en) Method for Forming Fiber Reinforced Plastic Composite
JP2014188953A (en) Preforming body and production method of the same, and fiber-reinforced resin molding using the same and production method of the same
US10919239B2 (en) Method and system for fabricating a composite structure
US20130248093A1 (en) Composite structure forming on coefficient of thermal expansion mismatched tooling
JP2014195918A (en) Manufacturing method for joint structure
WO2017151603A1 (en) Methods for fabricating preforms for high performance ultra-long fiber reinforced thermoplastic tubing
JP6722047B2 (en) Molded body manufacturing method
KR102027328B1 (en) Hybrid profile having xFRPcable-type prepreg and preparing method for the same
JP2013535361A (en) Mold tool