JP2014187834A - Rotary electric machine and rotary electric machine driving device - Google Patents

Rotary electric machine and rotary electric machine driving device Download PDF

Info

Publication number
JP2014187834A
JP2014187834A JP2013061827A JP2013061827A JP2014187834A JP 2014187834 A JP2014187834 A JP 2014187834A JP 2013061827 A JP2013061827 A JP 2013061827A JP 2013061827 A JP2013061827 A JP 2013061827A JP 2014187834 A JP2014187834 A JP 2014187834A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
refrigerant
axial
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013061827A
Other languages
Japanese (ja)
Inventor
Yu Hirai
悠 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013061827A priority Critical patent/JP2014187834A/en
Publication of JP2014187834A publication Critical patent/JP2014187834A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To cool a large number of permanent magnets on one side in a rotating direction of each permanent magnet pair, in a rotary electric machine in which a rotor has a structure including a plurality of permanent magnet pairs.SOLUTION: A rotary electric machine includes a rotor 14 fixed to a rotation shaft 22 and rotatably disposed, a stator oppositely disposed on an outer periphery of the rotor 14, and a coolant supply mechanism for supplying a coolant to the inside of the rotation shaft 22. The rotor 14 includes a plurality of permanent magnet pairs 40n and 40s provided at plural places in a circumferential direction and forming rotor magnetic poles 52n and 52s, a plurality of axial coolant channels 46, and a plurality of inner diameter side connection coolant channels 48 connected to the axial coolant channel 46, and making the coolant supplied from the inside of the rotation shaft 22 flow toward the axial coolant channels 46. Each axial coolant channel 46 is disposed so as to deviate to permanent magnets 50n2 and 50s2 on one side in the rotating direction of each permanent magnet pair 40a and 40s.

Description

本発明は、ステータの回転磁界と磁気結合する複数の永久磁石対と永久磁石対を冷却するために周方向複数個所において軸方向に延びる複数の軸方向冷媒流路とを含むロータを備える回転電機と、この回転電機を含む回転電機駆動装置に関する。   The present invention relates to a rotating electrical machine including a rotor including a plurality of permanent magnet pairs magnetically coupled to a rotating magnetic field of a stator, and a plurality of axial refrigerant flow paths extending in the axial direction at a plurality of circumferential positions to cool the permanent magnet pairs. And a rotating electrical machine driving apparatus including the rotating electrical machine.

特許文献1には、周方向複数個所に設けられ、一対の永久磁石のV字形配置により形成される複数の磁石対と、各磁石対の周方向両端部外側に均等に配置された複数の軸方向の冷媒流路とを含むロータを備える永久磁石付回転電機が記載されている。   In Patent Document 1, a plurality of magnet pairs provided at a plurality of locations in the circumferential direction and formed by a V-shaped arrangement of a pair of permanent magnets, and a plurality of shafts that are evenly disposed on both outer sides in the circumferential direction of each magnet pair A rotating electric machine with a permanent magnet is described that includes a rotor including a directional refrigerant flow path.

特開2010−220340号公報JP 2010-220340 A

従来の永久磁石付回転電機において、ロータの回転時に、各磁石対の周方向の同じ側の永久磁石が受ける反磁界の大きさが、周方向の逆の側の永久磁石が受ける反磁界の大きさよりも大きくなる場合がある。永久磁石の反磁界が大きくなる場合、永久磁石を多く冷却して温度低下させないと、永久磁石の減磁が生じやすくなってしまう。しかしながら、各磁石対の両側の永久磁石を均等に冷却するロータでは、反磁界が大きい永久磁石の冷却が不足し、永久磁石の減磁が進行するおそれがある。   In a conventional rotating electrical machine with permanent magnets, the magnitude of the demagnetizing field received by the permanent magnet on the same circumferential side of each magnet pair when the rotor rotates is the magnitude of the demagnetizing field received by the permanent magnet on the opposite side in the circumferential direction. It may be larger than this. When the demagnetizing field of the permanent magnet becomes large, demagnetization of the permanent magnet is likely to occur unless the permanent magnet is cooled and the temperature is lowered. However, in a rotor that uniformly cools the permanent magnets on both sides of each magnet pair, cooling of the permanent magnet having a large demagnetizing field is insufficient, and demagnetization of the permanent magnet may proceed.

本発明の目的は、ロータが複数の永久磁石対を含む構成で、各永久磁石対の回転方向一方側の永久磁石を多く冷却できる回転電機及び回転電機駆動装置を提供することである。   An object of the present invention is to provide a rotating electrical machine and a rotating electrical machine driving apparatus that can cool a large number of permanent magnets on one side in the rotational direction of each permanent magnet pair, with the rotor including a plurality of permanent magnet pairs.

本発明に係る回転電機は、回転軸に固定され回転可能に配置されたロータと、前記ロータの外周に対向配置されたステータと、前記回転軸の内側に冷媒を供給する冷媒供給機構とを備える回転電機であって、前記ロータは、周方向複数個所に設けられロータ磁極を形成する複数の永久磁石対と、周方向複数個所において軸方向に延びる複数の軸方向冷媒流路と、前記各軸方向冷媒流路に接続され、前記回転軸の内側から供給される冷媒を前記各軸方向冷媒流路に向かって流す複数の内径側接続冷媒流路とを含み、前記各軸方向冷媒流路は、前記各永久磁石対の回転方向一方側の永久磁石にのみ片寄って配置されることを特徴とする。   A rotating electrical machine according to the present invention includes a rotor that is fixed to a rotating shaft and rotatably arranged, a stator that is disposed to face the outer periphery of the rotor, and a refrigerant supply mechanism that supplies a refrigerant to the inside of the rotating shaft. The rotor includes a plurality of permanent magnet pairs that are provided at a plurality of locations in the circumferential direction to form rotor magnetic poles, a plurality of axial refrigerant passages that extend in the axial direction at a plurality of locations in the circumferential direction, and the shafts. A plurality of inner diameter side connecting refrigerant channels that are connected to the directional refrigerant channel and flow the refrigerant supplied from the inside of the rotating shaft toward the axial refrigerant channel, The permanent magnets are arranged so as to be offset from the permanent magnets on one side in the rotational direction of each permanent magnet pair.

本発明に係る回転電機駆動装置は、本発明に係る回転電機と、前記ステータに設けられたステータコイルにステータ電流を供給して前記ロータを駆動するインバータと、前記インバータを制御して前記ロータを正回転方向に回転させる制御部とを備え、前記ロータの正回転方向の回転時に、前記永久磁石対のうちの回転方向一方側の永久磁石の反磁界が、回転方向他方側の永久磁石の反磁界よりも大きくなることを特徴とする。   A rotating electrical machine drive device according to the present invention includes a rotating electrical machine according to the present invention, an inverter that supplies a stator current to a stator coil provided in the stator to drive the rotor, and controls the inverter to control the rotor. A controller that rotates in the forward rotation direction, and when the rotor rotates in the forward rotation direction, the demagnetizing field of the permanent magnet on one side in the rotation direction of the pair of permanent magnets is counteracted by the permanent magnet on the other side in the rotation direction. It is characterized by being larger than the magnetic field.

本発明によれば、ロータが複数の永久磁石対を含む構成で、各永久磁石対において回転方向一方側の永久磁石を多く冷却できる。また、本発明の回転電機駆動装置によれば、反磁界が大きく減磁が生じやすい永久磁石を多く冷却でき、効率よく冷却できる。   According to the present invention, with the configuration in which the rotor includes a plurality of permanent magnet pairs, a large number of permanent magnets on one side in the rotational direction can be cooled in each permanent magnet pair. In addition, according to the rotating electrical machine drive device of the present invention, it is possible to cool many permanent magnets that have a large demagnetizing field and are likely to be demagnetized, and can be efficiently cooled.

本発明の実施形態の回転電機の断面と、回転電機駆動装置の構成要素とを示す図である。It is a figure which shows the cross section of the rotary electric machine of embodiment of this invention, and the component of a rotary electric machine drive device. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB―B断面図である。It is BB sectional drawing of FIG. 図2のC部拡大図である。It is the C section enlarged view of FIG. ロータの回転方向に応じて、永久磁石対を形成する一対の永久磁石同士の間で反磁界が異なる様子の1例を示す図である。It is a figure which shows an example of a mode that a demagnetizing field differs between a pair of permanent magnets which form a permanent magnet pair according to the rotation direction of a rotor. 本発明の実施形態の回転電機用ロータにおいて、軸方向冷媒流路及び内径側接続冷媒流路と永久磁石対との位置関係を示す図である。It is a figure which shows the positional relationship of an axial direction refrigerant flow path, an internal diameter side connection refrigerant flow path, and a permanent magnet pair in the rotor for rotary electric machines of embodiment of this invention. 比較例の回転電機用ロータにおいて、軸方向冷媒流路及び内径側接続冷媒流路と永久磁石対との位置関係を示す図である。It is a figure which shows the positional relationship of an axial direction refrigerant flow path, an internal diameter side connection refrigerant flow path, and a permanent magnet pair in the rotor for rotary electric machines of a comparative example.

以下、本発明の実施形態について、図面を用いて説明する。以下では、回転電機が電動モータである場合を説明するが、回転電機は、発電機、または電動モータ及び発電機の両方の機能を有するモータジェネレータであってもよい。電動モータまたはモータジェネレータは、ハイブリッド車両または電気自動車の車輪を駆動する駆動源として使用されてもよい。以下では、すべての図面において同様の要素には同一の符号を付して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Hereinafter, a case where the rotating electrical machine is an electric motor will be described, but the rotating electrical machine may be a generator or a motor generator having both functions of the electric motor and the generator. The electric motor or the motor generator may be used as a drive source for driving the wheels of the hybrid vehicle or the electric vehicle. Below, the same code | symbol is attached | subjected and demonstrated to the same element in all the drawings.

図1は、本実施形態の回転電機12の断面と、回転電機駆動装置10の回転電機12以外の構成要素であるバッテリ16、制御部17、及びインバータ18とを示している。回転電機12は、ロータ14と、ステータ20と、回転軸22と、冷媒供給機構36とを含む。   FIG. 1 shows a cross section of the rotating electrical machine 12 of the present embodiment, and a battery 16, a control unit 17, and an inverter 18 that are components other than the rotating electrical machine 12 of the rotating electrical machine drive device 10. The rotating electrical machine 12 includes a rotor 14, a stator 20, a rotating shaft 22, and a refrigerant supply mechanism 36.

ステータ20は、ケース24の内側に固定されたステータコア26と、ステータコア26の内径側の複数のティース28に巻回されたU相、V相、W相の3相のステータコイル30とを含む。ステータコア26は、複数の電磁鋼板の積層体によって形成される。ステータ20では、3相のステータコイル30に3相の交流電流を流すことで、ロータ14に作用する回転磁界が発生する。ステータコア26は、磁性粉末を加圧成形した圧粉磁心によって形成されてもよい。ステータ20は、ロータ14の外周に対向配置される。   Stator 20 includes a stator core 26 fixed inside case 24, and a three-phase stator coil 30 of U phase, V phase, and W phase wound around a plurality of teeth 28 on the inner diameter side of stator core 26. Stator core 26 is formed of a laminate of a plurality of electromagnetic steel plates. In the stator 20, a rotating magnetic field acting on the rotor 14 is generated by passing a three-phase alternating current through the three-phase stator coil 30. The stator core 26 may be formed of a powder magnetic core obtained by press-molding magnetic powder. The stator 20 is disposed opposite to the outer periphery of the rotor 14.

回転軸22は、両端部が軸受によってケース24に回転可能に支持される。回転軸22は、中心部に軸方向に沿って設けられた軸側冷媒流路32と、図2、図3に示すように径方向に対し傾斜する方向に設けられた複数の第2軸側冷媒流路34とを有する。各第2軸側冷媒流路34は、外径側に向かって反時計方向に傾斜する。図1に示す軸側冷媒流路32の一端である図1の左端は、回転軸22の軸方向端面に開口し、後述する冷媒供給機構36の流路に接続される。軸側冷媒流路32の他端である図1の右端は、回転軸22の他端開口部に固定された図示しない軸部材により塞がれる。軸部材の代わりに蓋部材により回転軸22の他端開口を塞いでもよい。   Both ends of the rotating shaft 22 are rotatably supported by the case 24 by bearings. The rotating shaft 22 includes a shaft-side refrigerant channel 32 provided in the central portion along the axial direction, and a plurality of second shaft sides provided in a direction inclined with respect to the radial direction as shown in FIGS. And a refrigerant flow path 34. Each second shaft side refrigerant flow path 34 is inclined counterclockwise toward the outer diameter side. The left end of FIG. 1 which is one end of the axial side refrigerant flow path 32 shown in FIG. 1 opens at the axial end surface of the rotating shaft 22 and is connected to the flow path of the refrigerant supply mechanism 36 described later. The right end of FIG. 1, which is the other end of the shaft-side refrigerant flow path 32, is blocked by a shaft member (not shown) fixed to the other end opening of the rotating shaft 22. The opening of the other end of the rotating shaft 22 may be closed with a lid member instead of the shaft member.

各第2軸側冷媒流路34は、回転軸22の同一円周上に設けられ、径方向内端が軸側冷媒流路32に接続され、径方向外端が回転軸22の外周面に開口する。後述するロータコア38は、回転軸22を中心部の貫通孔42に軸方向に貫通させて固定することで回転軸22の外径側に固定される。後述する冷媒供給機構36によって冷媒である冷却油が軸側冷媒流路32に供給されることで、その冷却油は、ロータ14の回転時に第2軸側冷媒流路34と、ロータコア38の内部の流路48,46とを介してロータコア38の軸方向両端から外側に噴出される。なお、冷却油として、ATF(Automatic Transmission Fluid)を用いてもよい。また、冷媒として冷却水を用いてもよい。   Each second shaft-side refrigerant flow path 34 is provided on the same circumference of the rotary shaft 22, the radially inner end is connected to the shaft-side refrigerant flow path 32, and the radial outer end is on the outer peripheral surface of the rotary shaft 22. Open. A rotor core 38 to be described later is fixed to the outer diameter side of the rotary shaft 22 by fixing the rotary shaft 22 through the through hole 42 in the central portion in the axial direction. Cooling oil, which is a refrigerant, is supplied to the shaft-side refrigerant flow path 32 by a refrigerant supply mechanism 36, which will be described later, so that the cooling oil flows inside the second shaft-side refrigerant flow path 34 and the rotor core 38 when the rotor 14 rotates. The rotor core 38 is ejected from both ends in the axial direction through the flow paths 48 and 46. Note that ATF (Automatic Transmission Fluid) may be used as the cooling oil. Moreover, you may use cooling water as a refrigerant | coolant.

ロータ14は、回転軸22の外径側に固定されるロータコア38と、ロータコア38に固定される複数の永久磁石対40n,40sとを含み、ケース24の内側に回転可能に配置される。   The rotor 14 includes a rotor core 38 that is fixed to the outer diameter side of the rotating shaft 22 and a plurality of permanent magnet pairs 40 n and 40 s that are fixed to the rotor core 38, and is disposed rotatably inside the case 24.

図2は、図1のA−A断面を示している。ロータコア38は、電磁鋼板の積層体により、中心部に軸方向の貫通孔42を有する円筒状に形成される。ロータコア38は、外径寄り部分の周方向複数個所に軸方向に貫通して形成された磁石孔44と、磁石孔44よりも内径側に設けられた複数の軸方向冷媒流路46及び内径側接続冷媒流路48とを含む。   FIG. 2 shows an AA cross section of FIG. The rotor core 38 is formed in a cylindrical shape having an axial through-hole 42 at the center by a laminated body of electromagnetic steel plates. The rotor core 38 includes a magnet hole 44 formed in a plurality of locations in the circumferential direction near the outer diameter in the axial direction, a plurality of axial refrigerant flow paths 46 provided on the inner diameter side of the magnet hole 44, and the inner diameter side. Connection refrigerant flow path 48.

磁石孔44は2つを1組として、ロータコア38の周方向複数個所にそれぞれ外径側に向かって広がるV字形に配置される。ロータコア38は、磁性粉末を加圧成形した圧粉磁心によって形成されてもよい。   The two magnet holes 44 are arranged in a V-shape that spreads toward the outer diameter side at a plurality of locations in the circumferential direction of the rotor core 38. The rotor core 38 may be formed of a dust core obtained by press-molding magnetic powder.

各永久磁石対40n,40sは、磁石孔44に挿入配置され、周方向両側に隣り合う同じ磁気特性を有する一対の永久磁石50n1,50n2及び50s1,50s2により形成される。このため、各永久磁石対40n,40sは、ロータ14の外径側に向かって広がるV字形に配置される。永久磁石50n1,50n2は、径方向外側がN極となる磁気特性を有するように配置され、永久磁石50s1,50s2は、径方向外側がS極となる磁気特性を有するように配置される。一対の永久磁石50n1,50n2で1つの永久磁石対40nが形成され、一対の永久磁石50s1,50s2で1つの永久磁石対40sが形成される。永久磁石50n1,50n2同士及び永久磁石50s1,50s2同士は、それぞれ周方向中央に対して対称形状に配置される。永久磁石対40nと永久磁石対40sとがロータ14の周方向に交互に配置されることで、ロータコア38の外周部にN極のロータ磁極52nとS極のロータ磁極52sとが交互に形成される。   Each pair of permanent magnets 40n and 40s is formed by a pair of permanent magnets 50n1 and 50n2 and 50s1 and 50s2 that are arranged in the magnet hole 44 and have the same magnetic characteristics adjacent to both sides in the circumferential direction. For this reason, each permanent magnet pair 40 n and 40 s is arranged in a V shape that widens toward the outer diameter side of the rotor 14. The permanent magnets 50n1 and 50n2 are arranged so as to have a magnetic characteristic in which the radially outer side is an N pole, and the permanent magnets 50s1 and 50s2 are arranged so as to have a magnetic characteristic in which the radially outer side is an S pole. A pair of permanent magnets 50n1, 50n2 forms one permanent magnet pair 40n, and a pair of permanent magnets 50s1, 50s2 forms one permanent magnet pair 40s. The permanent magnets 50n1 and 50n2 and the permanent magnets 50s1 and 50s2 are arranged symmetrically with respect to the center in the circumferential direction. The permanent magnet pair 40n and the permanent magnet pair 40s are alternately arranged in the circumferential direction of the rotor 14, whereby the N-pole rotor magnetic pole 52n and the S-pole rotor magnetic pole 52s are alternately formed on the outer peripheral portion of the rotor core 38. The

図1に示す回転電機駆動装置10では、後述するように制御部17がインバータ18を制御することにより、ロータ14は正回転方向である図2、図3の時計方向に回転する。後述するように、ロータ14の回転時に、永久磁石50n1,50n2同士及び永久磁石50s1,50s2同士のそれぞれで反磁界の大きさが異なり、回転方向前側である図2、図3の時計方向側の永久磁石50n2,50s2が受ける反磁界は、回転方向後側である図2、図3の反時計方向側の永久磁石50n1,50s1の反磁界よりも大きくなる。   In the rotating electrical machine drive device 10 shown in FIG. 1, as will be described later, the control unit 17 controls the inverter 18 so that the rotor 14 rotates in the clockwise direction of FIGS. As will be described later, when the rotor 14 rotates, the magnitudes of the demagnetizing fields differ between the permanent magnets 50n1 and 50n2 and between the permanent magnets 50s1 and 50s2, respectively, and the clockwise direction in FIGS. The demagnetizing field received by the permanent magnets 50n2 and 50s2 is larger than the demagnetizing field of the permanent magnets 50n1 and 50s1 on the counterclockwise side in FIGS.

複数の軸方向冷媒流路46は、ロータコア38の磁石孔44よりも内径側で、周方向の離れた複数個所に、軸方向に延びて貫通するように形成される。この場合、ロータコア38は、各永久磁石対40nまたは40sを1つずつ含んで中心角θが等しくなるように、設計上設定される複数の断面扇形領域Na,Saで区分される。軸方向冷媒流路46は、各断面扇形領域Na,Saに1つずつ設けられる。   The plurality of axial direction refrigerant flow paths 46 are formed so as to extend in the axial direction and penetrate through a plurality of locations spaced in the circumferential direction on the inner diameter side of the magnet hole 44 of the rotor core 38. In this case, the rotor core 38 is divided by a plurality of sectional fan-shaped regions Na and Sa set by design so that each permanent magnet pair 40n or 40s is included and the central angle θ is equal. One axial refrigerant flow path 46 is provided for each of the sectional fan-shaped areas Na and Sa.

また、各軸方向冷媒流路46は、永久磁石対40s,40nの永久磁石50s2,50n2の内径側面Fs(図4参照)の外径側端Foと内径側端Fiとの径方向の間領域である、砂地で示す略三角形の領域Us,Un内に配置される。領域Unは、図2、図3に示している。また、領域Us内で、各軸方向冷媒流路46は、永久磁石対40s,40nの中心軸Oを通る周方向中央線Lよりも矢印α側の永久磁石50s2側にのみ片寄って配置される。領域Un内の各軸方向冷媒流路46は周方向中央線Lよりも矢印α側の永久磁石50n2側にのみ片寄って配置される。このため、各永久磁石対40n,40sで周方向の同じ側の永久磁石50s2,50n2を、周方向の逆の側の永久磁石50s1,50n1よりも多く冷却できるが、これについては後述する。   Each axial refrigerant flow path 46 is a region between the outer diameter side end Fo and the inner diameter side end Fi of the inner diameter side surface Fs (see FIG. 4) of the permanent magnets 50s2 and 50n2 of the permanent magnet pairs 40s and 40n. Are arranged in substantially triangular regions Us and Un indicated by sand. The region Un is shown in FIGS. Further, in the region Us, the respective axial refrigerant flow paths 46 are arranged so as to be offset only toward the permanent magnet 50s2 side on the arrow α side from the circumferential center line L passing through the central axis O of the pair of permanent magnets 40s, 40n. . Each axial direction refrigerant flow path 46 in the region Un is arranged so as to be offset from the circumferential center line L only on the permanent magnet 50n2 side on the arrow α side. For this reason, each permanent magnet pair 40n, 40s can cool the permanent magnets 50s2, 50n2 on the same side in the circumferential direction more than the permanent magnets 50s1, 50n1 on the opposite side in the circumferential direction, which will be described later.

各軸方向冷媒流路46は、各電磁鋼板の周方向複数個所に設けられた軸方向の孔部を、隣り合う電磁鋼板同士で軸方向に連結することにより形成される。   Each axial refrigerant flow path 46 is formed by connecting axial holes provided at a plurality of locations in the circumferential direction of each electromagnetic steel sheet in the axial direction between adjacent electromagnetic steel sheets.

図1、図3に示すように、複数の内径側接続冷媒流路48は、ロータコア38の同一円周上において、径方向に対し同じ側に傾斜する方向に設けられる。複数の内径側接続冷媒流路48の径方向外端は、複数の軸方向冷媒流路46の軸方向中間部に接続される。複数の内径側接続冷媒流路48の径方向内端は、回転軸22の第2軸側冷媒流路34を介して軸側冷媒流路32に接続される。   As shown in FIGS. 1 and 3, the plurality of inner diameter side connecting refrigerant channels 48 are provided on the same circumference of the rotor core 38 in a direction inclined to the same side with respect to the radial direction. The radially outer ends of the plurality of inner diameter side connecting refrigerant channels 48 are connected to the axial intermediate portions of the plurality of axial refrigerant channels 46. The radially inner ends of the plurality of inner diameter side connecting refrigerant channels 48 are connected to the shaft side refrigerant channel 32 via the second axis side refrigerant channel 34 of the rotating shaft 22.

複数の内径側接続冷媒流路48は、ロータ14の回転時の遠心力の作用によって、軸側冷媒流路32から供給される冷却油を各軸方向冷媒流路46に向かって流す。   The plurality of inner diameter side connecting refrigerant channels 48 cause the cooling oil supplied from the axial refrigerant channel 32 to flow toward the axial refrigerant channels 46 by the action of centrifugal force when the rotor 14 rotates.

図4は、図2のC部拡大図を示している。各軸方向冷媒流路46は、ロータコア38の軸方向両端面でロータ14の外側に開口する冷媒吐出口Poを有する。各冷媒吐出口Poは、ロータ14の外径側が突となる三角形状を有する。領域Usに配置される冷媒吐出口Poの三角形の外径側端部Qは、各永久磁石対40n,40sで永久磁石50s2における外径側端部の角部周辺部に向いている。   FIG. 4 shows an enlarged view of part C of FIG. Each axial refrigerant flow path 46 has a refrigerant discharge port Po that opens to the outside of the rotor 14 at both axial end surfaces of the rotor core 38. Each refrigerant discharge port Po has a triangular shape in which the outer diameter side of the rotor 14 protrudes. The triangular outer diameter side end portion Q of the refrigerant discharge port Po arranged in the region Us faces the peripheral portion of the corner portion of the outer diameter side end portion of the permanent magnet 50s2 in each permanent magnet pair 40n, 40s.

一方、図2に示すように、領域Unに配置される冷媒吐出口Poの三角形の外径側端部は、永久磁石50n2の外径側端部に向いている。また、各軸方向冷媒流路46の冷媒吐出口Po以外の中間部の断面形状も、冷媒吐出口Poの形状と合わせて三角形としている。なお、軸方向冷媒流路46において、冷媒吐出口Po以外の断面形状を、四角形のように冷媒吐出口Poと一致しない形状としてもよい。また、各冷媒吐出口Poは、外径側が突となる五角形のように、三角形以外の形状としてもよい。   On the other hand, as shown in FIG. 2, the triangular outer diameter side end of the refrigerant discharge port Po disposed in the region Un faces the outer diameter side end of the permanent magnet 50n2. In addition, the cross-sectional shape of the intermediate portion other than the refrigerant discharge port Po of each axial refrigerant flow path 46 is also a triangle together with the shape of the refrigerant discharge port Po. In the axial direction refrigerant flow path 46, the cross-sectional shape other than the refrigerant discharge port Po may be a shape that does not coincide with the refrigerant discharge port Po, such as a square. Moreover, each refrigerant | coolant discharge port Po is good also as shapes other than a triangle like the pentagon which an outer diameter side protrudes.

図1に戻って、冷媒供給機構36は、回転軸22内側の軸側冷媒流路32に冷却油を供給する。冷媒供給機構36は、ケース24の下部に溜まった冷却油を配管54を介して吸い上げる冷却油ポンプ56を有し、冷却油ポンプ56から配管58を介して軸側冷媒流路32に冷却油を供給する。ロータ14が回転するのに応じて冷却油に遠心力が加わるので、冷却油が第2軸側冷媒流路34及び内径側接続冷媒流路48を外径側に向かって流れて、その後、軸方向冷媒流路46を軸方向両側に向けて流れロータコア38の軸方向両端から冷媒吐出口Poを通じて外側に噴出される。冷却油がロータコア38の内部を通過することでロータコア38が冷却される。冷却油はケース24の下部及び配管54,58で冷却される。   Returning to FIG. 1, the refrigerant supply mechanism 36 supplies cooling oil to the shaft-side refrigerant flow path 32 inside the rotary shaft 22. The refrigerant supply mechanism 36 has a cooling oil pump 56 that sucks up the cooling oil accumulated in the lower portion of the case 24 through the pipe 54, and supplies the cooling oil from the cooling oil pump 56 to the shaft-side refrigerant flow path 32 through the pipe 58. Supply. As centrifugal force is applied to the cooling oil as the rotor 14 rotates, the cooling oil flows through the second shaft side refrigerant flow path 34 and the inner diameter side connection refrigerant flow path 48 toward the outer diameter side, and then the shaft. The directional refrigerant passage 46 is directed toward both sides in the axial direction, and is ejected to the outside through the refrigerant discharge port Po from both axial ends of the rotor core 38. As the cooling oil passes through the interior of the rotor core 38, the rotor core 38 is cooled. The cooling oil is cooled by the lower part of the case 24 and the pipes 54 and 58.

なお、冷媒供給機構36の冷媒循環経路に冷却油を冷却するオイルクーラを設けてもよい。また、ロータコア38の軸方向両端に、回転軸22に固定された一対のエンドプレートを配置して、一対のエンドプレートによりロータコア38を挟み込んでもよい。この場合、各エンドプレートに、軸方向冷媒流路46と接続される軸方向の貫通孔が形成されてもよい。   An oil cooler that cools the cooling oil may be provided in the refrigerant circulation path of the refrigerant supply mechanism 36. Further, a pair of end plates fixed to the rotating shaft 22 may be disposed at both ends of the rotor core 38 in the axial direction, and the rotor core 38 may be sandwiched between the pair of end plates. In this case, an axial through hole connected to the axial refrigerant flow path 46 may be formed in each end plate.

次に回転電機12以外の回転電機駆動装置10の構成を説明する。インバータ18は、2つのスイッチング素子が直列に接続された図示しない3相のアームを有し、バッテリ16に接続される。スイッチング素子として、IGBTのようなトランジスタが用いられてもよい。各スイッチング素子には、逆方向電流を流すダイオードが並列接続される。インバータ18は、バッテリ16から供給された直流電流を、3相の交流電流に変換して3相のステータコイル30に供給する。直流電源としてキャパシタを用いてもよい。   Next, the configuration of the rotating electrical machine drive device 10 other than the rotating electrical machine 12 will be described. The inverter 18 has a three-phase arm (not shown) in which two switching elements are connected in series, and is connected to the battery 16. A transistor such as an IGBT may be used as the switching element. Each switching element is connected in parallel with a diode for passing a reverse current. The inverter 18 converts the direct current supplied from the battery 16 into a three-phase alternating current and supplies it to the three-phase stator coil 30. A capacitor may be used as the DC power source.

制御部17は、CPU、メモリを有するマイクロコンピュータを含み、インバータ18のスイッチング素子のスイッチングのオンオフを制御する。制御部17は、図示しない外部の制御部から入力されるトルク指令に基づいて、予め記憶部で記憶したマップのデータから駆動信号を決定し、駆動信号をインバータ18に出力することで、各スイッチング素子のスイッチングを制御する。制御部17がインバータ18を制御することで、3相のステータコイル30に3相交流のステータ電流が供給され、ステータ20に回転磁界が発生する。この結果、トルク指令に応じたトルクでロータ14が、回転磁界に同期して正回転方向に回転する。正回転方向は、例えば回転電機12を車両に設けられる車輪の駆動源として使用する場合に、高頻度で使用される車両の前進方向に対応する方向である。   The control unit 17 includes a microcomputer having a CPU and a memory, and controls on / off of switching of the switching element of the inverter 18. Based on a torque command input from an external control unit (not shown), the control unit 17 determines a drive signal from map data stored in advance in the storage unit, and outputs the drive signal to the inverter 18 so that each switching is performed. Control device switching. When the control unit 17 controls the inverter 18, a three-phase AC stator current is supplied to the three-phase stator coil 30, and a rotating magnetic field is generated in the stator 20. As a result, the rotor 14 rotates in the forward rotation direction in synchronization with the rotating magnetic field with a torque according to the torque command. The forward rotation direction is a direction corresponding to the forward direction of the vehicle that is frequently used, for example, when the rotating electrical machine 12 is used as a drive source for wheels provided in the vehicle.

上記の回転電機12では、次のようにロータ14の回転時において、各永久磁石対40n,40sで周方向両側の永久磁石同士の反磁界の大きさが異なる。図5は、ロータ14の回転方向に応じて、永久磁石対40nの永久磁石50n1,50n2同士の間で反磁界の大きさが異なる様子の1例を示している。図5では、U相、V相、W相の3相のステータコイル30u,30v,30wのうち、ステータコイル30uが巻回されたティース28がN極の特性を発揮する瞬間を示している。矢印βは、ステータ20からロータ14に作用し、ロータ14にトルクを発生させる主磁束の方向である。この場合、永久磁石対40nにおいて、回転方向前側の永久磁石50n2の回転方向前端部では、外周側のN極から内周側のS極に矢印γ方向に磁束が戻るので、この磁束は主磁束と同方向でS極に戻りやすい。このため、永久磁石50n2の回転方向前端部でδ1方向の反磁界が大きくなる。また、ロータ14の外周部において、永久磁石50n2の角部が配置される外側で面積が小さくなることで、ロータ14自身の外周部の磁界が自己強化されず小さくなる。これによっても永久磁石50n2の回転方向前端部で磁束がS極に戻りやすい。このため、永久磁石50n2の回転方向前端部で反磁界が大きくなる。   In the rotating electrical machine 12 described above, the magnitude of the demagnetizing field between the permanent magnets on both sides in the circumferential direction differs between the permanent magnet pairs 40n and 40s when the rotor 14 rotates as follows. FIG. 5 shows an example in which the magnitude of the demagnetizing field differs between the permanent magnets 50n1 and 50n2 of the permanent magnet pair 40n according to the rotation direction of the rotor 14. FIG. 5 shows the moment when the teeth 28 around which the stator coil 30u is wound out of the three-phase stator coils 30u, 30v, and 30w of the U phase, the V phase, and the W phase exhibit the characteristics of the N pole. The arrow β is the direction of the main magnetic flux that acts on the rotor 14 from the stator 20 and generates torque in the rotor 14. In this case, in the permanent magnet pair 40n, the magnetic flux returns from the N pole on the outer peripheral side to the S pole on the inner peripheral side in the arrow γ direction at the front end in the rotational direction of the permanent magnet 50n2 on the front side in the rotational direction. It is easy to return to the south pole in the same direction. For this reason, the demagnetizing field in the δ1 direction becomes large at the rotation direction front end of the permanent magnet 50n2. Further, in the outer peripheral portion of the rotor 14, the area is reduced outside the corner portion of the permanent magnet 50 n 2, so that the magnetic field of the outer peripheral portion of the rotor 14 itself is reduced without being self-strengthened. This also makes it easier for the magnetic flux to return to the S pole at the front end in the rotational direction of the permanent magnet 50n2. For this reason, a demagnetizing field becomes large at the rotation direction front end portion of the permanent magnet 50n2.

一方、永久磁石50n2の回転方向後端部では永久磁石50n2のN極からS極に戻る磁束が主磁束と逆方向になるので、反磁界は小さくなる。   On the other hand, since the magnetic flux returning from the north pole to the south pole of the permanent magnet 50n2 is opposite to the main magnetic flux at the rear end portion in the rotation direction of the permanent magnet 50n2, the demagnetizing field is reduced.

回転方向後側の永久磁石50n1では、回転方向前端部で永久磁石50n1のN極からS極に戻る磁束が主磁束と同方向になるが、ロータコア38の外周面から離れるので主磁束が小さくなってδ2方向の反磁界も小さくなる。永久磁石50n1の回転方向後端部では、永久磁石50n1のN極からS極に戻る磁束が主磁束と逆方向になるので反磁界は小さくなる。この結果、回転方向前側の永久磁石50n2の反磁界は回転方向後側の永久磁石50n1の反磁界よりも大きくなり、しかも、永久磁石50n2のうちでも回転方向前端部で反磁界がより大きくなる。また、ロータ14の回転方向が逆になる場合には、永久磁石50n1,50n2同士の間での反磁界の大小関係は逆になる。上記では永久磁石50n1、n2の場合を説明したが、永久磁石50s1、s2の場合も同様に、回転方向前側の永久磁石で回転方向後側の永久磁石よりも反磁界が大きくなる。   In the permanent magnet 50n1 on the rear side in the rotational direction, the magnetic flux returning from the north pole to the south pole of the permanent magnet 50n1 at the front end in the rotational direction is in the same direction as the main magnetic flux. Thus, the demagnetizing field in the δ2 direction is also reduced. At the rear end portion of the permanent magnet 50n1 in the rotation direction, the magnetic flux returning from the N pole to the S pole of the permanent magnet 50n1 is in the opposite direction to the main magnetic flux, so the demagnetizing field is reduced. As a result, the demagnetizing field of the permanent magnet 50n2 on the front side in the rotational direction is larger than the demagnetizing field on the permanent magnet 50n1 on the rear side in the rotational direction, and the demagnetizing field is larger at the front end portion in the rotational direction among the permanent magnets 50n2. When the rotation direction of the rotor 14 is reversed, the magnitude relationship of the demagnetizing field between the permanent magnets 50n1 and 50n2 is reversed. In the above description, the case of the permanent magnets 50n1 and n2 has been described. Similarly, in the case of the permanent magnets 50s1 and s2, the demagnetizing field is larger in the permanent magnet on the front side in the rotational direction than on the permanent magnet on the rear side in the rotational direction.

一般的に、永久磁石付ロータを有する回転電機では、使用時に永久磁石が鉄損で発熱して不可逆減磁を生じるおそれがある。不可逆減磁の生じやすさは、磁石温度と永久磁石に作用する反磁界の大きさとで決まり、反磁界が大きくなる場合、または磁石温度が高くなる場合に不可逆減磁が生じやすい。特に永久磁石の反磁界が大きく、しかも磁石温度が高い場合に不可逆減磁がより多い頻度で生じやすい。不可逆減磁が生じると、回転電機のトルクが低下するので、回転電機を駆動源とする車両の動力性能が低下する。このため、従来構造では、反磁界が大きくなる永久磁石を多く冷却して、不可逆減磁を抑制することが望まれている。本発明ではこれを改善することを目的として、上記のように永久磁石対の位置との関係で軸方向冷媒流路46の位置を規制した。   In general, in a rotating electrical machine having a rotor with a permanent magnet, the permanent magnet may generate heat due to iron loss during use, resulting in irreversible demagnetization. The likelihood of irreversible demagnetization is determined by the magnet temperature and the magnitude of the demagnetizing field acting on the permanent magnet, and irreversible demagnetization tends to occur when the demagnetizing field increases or when the magnet temperature increases. In particular, when the demagnetizing field of the permanent magnet is large and the magnet temperature is high, irreversible demagnetization tends to occur more frequently. When the irreversible demagnetization occurs, the torque of the rotating electrical machine decreases, so that the power performance of the vehicle using the rotating electrical machine as a drive source decreases. For this reason, in the conventional structure, it is desired to cool many permanent magnets with a large demagnetizing field to suppress irreversible demagnetization. In the present invention, for the purpose of improving this, the position of the axial refrigerant flow path 46 is regulated in relation to the position of the permanent magnet pair as described above.

図6は、本発明の実施形態において、軸方向冷媒流路46及び内径側接続冷媒流路48と永久磁石対40n,40sとの位置関係を示している。図6及び後述する図7では、永久磁石対として2つの永久磁石対40n,40sのみを示している。図6のようにロータ14の正回転方向が規定される場合、正回転方向の回転時に、斜格子の四角で示す回転方向前側の永久磁石50n2,50s2で、白の四角で示す回転方向後側の永久磁石50n1,50s1よりも反磁界が大きくなる。特に永久磁石50n2,50s2でも、ηの丸で囲んだ回転方向前側で反磁界がより大きくなる。また、永久磁石50s2の反磁界は永久磁石50n1の反磁界よりも大きい。   FIG. 6 shows the positional relationship between the axial direction refrigerant flow path 46 and the inner diameter side connection refrigerant flow path 48 and the permanent magnet pairs 40n and 40s in the embodiment of the present invention. In FIG. 6 and FIG. 7 to be described later, only two permanent magnet pairs 40n and 40s are shown as permanent magnet pairs. When the forward rotation direction of the rotor 14 is defined as shown in FIG. 6, when rotating in the forward rotation direction, the permanent magnets 50 n 2 and 50 s 2 on the front side in the rotation direction indicated by the squares of the oblique lattice, the rear side in the rotation direction indicated by the white squares. The demagnetizing field is larger than the permanent magnets 50n1 and 50s1. In particular, even in the permanent magnets 50n2 and 50s2, the demagnetizing field becomes larger on the front side in the rotational direction surrounded by the circle of η. The demagnetizing field of the permanent magnet 50s2 is larger than the demagnetizing field of the permanent magnet 50n1.

領域Usの軸方向冷媒流路46は、永久磁石対40sのうちの回転方向前側の永久磁石50s2側にのみ片寄って配置され、領域Unの軸方向冷媒流路46は、永久磁石対40nのうちの回転方向前側の永久磁石50n2側にのみ片寄って配置される。このため、各永久磁石対40n、40sにおいて、回転方向前側の永久磁石50n2,50s2に軸方向冷媒流路46を近づけることができる。したがって、永久磁石50n2,50s2を多く冷却できる。   The axial direction refrigerant flow path 46 in the region Us is arranged to be offset only toward the permanent magnet 50s2 side in the rotational direction of the permanent magnet pair 40s, and the axial direction refrigerant flow path 46 in the region Un is included in the permanent magnet pair 40n. Of the permanent magnet 50n2 on the front side in the rotational direction. For this reason, in each permanent magnet pair 40n, 40s, the axial direction refrigerant flow path 46 can be brought close to the permanent magnets 50n2, 50s2 on the rotation direction front side. Therefore, many permanent magnets 50n2 and 50s2 can be cooled.

また、回転電機駆動装置10によれば、正回転方向の回転時に、永久磁石対40s,40nのうちの反磁界が大きくなる回転方向前側の永久磁石50s2,50n2にのみ軸方向冷媒流路46が片寄って配置される。このため、反磁界が大きく減磁が生じやすい永久磁石50n2,50s2を多く冷却でき、減磁の抑制の面で効率よく冷却できる。この結果、減磁を抑制するために永久磁石50n2,50s2に対するDy添加量を多くする必要がないので、コスト低減を図れる。また、回転電機12の内部への冷媒供給量を多くする必要がないので、冷却油ポンプ56の回転速度を低下でき、損失低減によって燃費性能を向上できる。また、冷却油ポンプ56の小型化及び低コスト化を図れる。   Further, according to the rotating electrical machine drive device 10, the axial direction refrigerant flow path 46 is provided only in the permanent magnets 50s2 and 50n2 on the front side in the rotational direction in which the demagnetizing field of the permanent magnet pairs 40s and 40n increases during the rotation in the positive rotational direction. Arranged one side away. For this reason, many permanent magnets 50n2 and 50s2 that have a large demagnetizing field and are likely to be demagnetized can be cooled, and can be efficiently cooled in terms of suppressing demagnetization. As a result, since it is not necessary to increase the amount of Dy added to the permanent magnets 50n2 and 50s2 in order to suppress demagnetization, the cost can be reduced. Moreover, since it is not necessary to increase the amount of refrigerant supplied to the inside of the rotating electrical machine 12, the rotational speed of the cooling oil pump 56 can be reduced, and the fuel efficiency can be improved by reducing the loss. Further, the size and cost of the cooling oil pump 56 can be reduced.

図7は、比較例において、軸方向冷媒流路46及び内径側接続冷媒流路48と永久磁石対40n,40sとの位置関係を示している。比較例では、各永久磁石対40n,40sのうちの永久磁石50n1,50n2または50s1,50s2の周方向中央に軸方向冷媒流路46が形成される。軸方向冷媒流路46には、ロータ14の内径側に径方向の内径側接続冷媒流路48が接続される。この比較例では、各永久磁石対40n、40sの両側の永久磁石50n1,50n2または50s1,50s2が均等に冷却される。このため、ロータ14の正回転方向の回転時に回転方向前側の永久磁石50n2,50s2の反磁界が永久磁石50n1,50s1の反磁界よりも大きくなる場合に、反磁界が大きい永久磁石50n2,50s2の冷却が不足するおそれがある。したがって、反磁界が大きい永久磁石50n2,50s2の減磁を抑制するために回転電機12内部への冷媒供給量を多くする必要がある。この場合、冷却油ポンプ56を高回転で駆動させることにより損失が増大し、燃費性能が悪化する要因となる。本発明ではこのような不都合を解消できる。   FIG. 7 shows the positional relationship between the axial direction refrigerant flow path 46 and the inner diameter side connection refrigerant flow path 48 and the permanent magnet pairs 40n and 40s in the comparative example. In the comparative example, the axial refrigerant flow path 46 is formed at the center in the circumferential direction of the permanent magnets 50n1, 50n2 or 50s1, 50s2 of the permanent magnet pairs 40n, 40s. A radial inner diameter connecting refrigerant channel 48 is connected to the inner diameter side of the rotor 14 in the axial direction refrigerant channel 46. In this comparative example, the permanent magnets 50n1, 50n2 or 50s1, 50s2 on both sides of each permanent magnet pair 40n, 40s are evenly cooled. For this reason, when the demagnetizing field of the permanent magnets 50n2 and 50s2 on the front side in the rotation direction becomes larger than the demagnetizing field of the permanent magnets 50n1 and 50s1 when the rotor 14 rotates in the positive rotation direction, the permanent magnets 50n2 and 50s2 having a large demagnetizing field Cooling may be insufficient. Therefore, in order to suppress demagnetization of the permanent magnets 50n2 and 50s2 having a large demagnetizing field, it is necessary to increase the amount of refrigerant supplied into the rotary electric machine 12. In this case, driving the cooling oil pump 56 at a high speed increases the loss, which causes a deterioration in fuel efficiency. In the present invention, such inconvenience can be solved.

また、本実施形態では、軸方向冷媒流路46において、各冷媒吐出口Poは、各永久磁石対40n,40sの回転方向一方側の永久磁石50n2,50s2に向かって外径側が突となる形状を有する。このため、各冷媒吐出口Poから噴出された冷媒が反磁界が大きい永久磁石50n2,50s2に向かうようにできる。このため、各冷媒吐出口Poから噴出された冷媒により、ロータ14の軸方向端面付近で反磁界が大きい永久磁石50n2,50s2をより多く冷却でき、各永久磁石50n1,50n2,50s1,50s2より効率よく冷却できる。   Moreover, in this embodiment, in the axial direction refrigerant flow path 46, each refrigerant | coolant discharge port Po is the shape where an outer diameter side protrudes toward the permanent magnet 50n2, 50s2 of the rotation direction one side of each permanent magnet pair 40n, 40s. Have For this reason, the refrigerant | coolant ejected from each refrigerant | coolant discharge port Po can be made to go to permanent magnet 50n2, 50s2 with a large demagnetizing field. Therefore, the refrigerant ejected from each refrigerant discharge port Po can cool more permanent magnets 50n2, 50s2 having a large demagnetizing field near the axial end surface of the rotor 14, and is more efficient than each permanent magnet 50n1, 50n2, 50s1, 50s2. Can cool well.

なお、本実施形態では、各永久磁石対40n,40sで回転方向前側の永久磁石50n2,50s2が回転方向後側の永久磁石50n1,50s1よりも反磁界が大きくなっている。一方、ロータ14の磁石孔44の形状、大きさ、及び磁石孔44の周方向に対する傾斜度の少なくともいずれか1つの条件の違いによって、ロータの回転方向において、各永久磁石対の反磁界の大小関係が本実施形態とは逆になる場合がある。この場合でも、本発明によれば、その回転方向に応じて反磁界が大きい永久磁石に、反磁界が小さい永久磁石よりも軸方向冷媒流路46を近づけて配置でき、永久磁石を減磁が抑制されるように効率よく冷却できる。反磁界の大小関係は、実験または計算により求めることができる。   In this embodiment, the demagnetizing field of the permanent magnets 50n2 and 50s2 on the front side in the rotation direction is larger than that on the rear side in the rotation direction in the permanent magnet pairs 40n and 40s. On the other hand, the magnitude of the demagnetizing field of each permanent magnet pair in the rotation direction of the rotor depends on the difference in at least one of the shape and size of the magnet hole 44 of the rotor 14 and the inclination of the magnet hole 44 with respect to the circumferential direction. The relationship may be reversed from that in the present embodiment. Even in this case, according to the present invention, the axial direction refrigerant flow path 46 can be arranged closer to the permanent magnet having a large demagnetizing field according to the rotation direction than the permanent magnet having a small demagnetizing field, and the permanent magnet can be demagnetized. It can be cooled efficiently so as to be suppressed. The magnitude relationship of the demagnetizing field can be obtained by experiment or calculation.

また、上記では、ロータ14に設ける内径側接続冷媒流路48が径方向に対し傾斜する場合を説明したが、内径側接続冷媒流路は、ロータコア38の径方向に沿って形成してもよい。また、上記では各永久磁石対がV字形配置される場合を説明したが、これに限定するものではなく種々の形状で対となるように永久磁石を配置してもよい。   In the above description, the case where the inner diameter side connecting refrigerant flow path 48 provided in the rotor 14 is inclined with respect to the radial direction has been described. However, the inner diameter side connecting refrigerant flow path may be formed along the radial direction of the rotor core 38. . Moreover, although the case where each permanent magnet pair was arrange | positioned by V shape was demonstrated above, it is not limited to this, You may arrange | position a permanent magnet so that it may become a pair by various shapes.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

10 回転電機駆動装置、12 回転電機、14 回転電機用ロータ、16 バッテリ、17 制御部、18 インバータ、20 ステータ、22 回転軸、24 ケース、26 ステータコア、28 ティース、30 ステータコイル、32 軸側冷媒流路、34 第2軸側冷媒流路、36 冷媒供給機構、38 ロータコア、40n,40s 永久磁石対、42 貫通孔、44 磁石孔、46 軸方向冷媒流路、48 内径側接続冷媒流路、50n1,50n2,50s1,50s2 永久磁石、52n,52s ロータ磁極、54 配管、56 冷却油ポンプ、58 配管。   DESCRIPTION OF SYMBOLS 10 Rotating electrical machinery drive device, 12 Rotating electrical machinery, 14 Rotating electrical machinery rotor, 16 Battery, 17 Control part, 18 Inverter, 20 Stator, 22 Rotating shaft, 24 Case, 26 Stator core, 28 Teeth, 30 Stator coil, 32 Axis side refrigerant Channel, 34 second axis side refrigerant channel, 36 refrigerant supply mechanism, 38 rotor core, 40n, 40s permanent magnet pair, 42 through hole, 44 magnet hole, 46 axial direction refrigerant channel, 48 inner diameter side connecting refrigerant channel, 50n1, 50n2, 50s1, 50s2 Permanent magnet, 52n, 52s Rotor magnetic pole, 54 piping, 56 cooling oil pump, 58 piping.

Claims (5)

回転軸に固定され回転可能に配置されたロータと、前記ロータの外周に対向配置されたステータと、前記回転軸の内側に冷媒を供給する冷媒供給機構とを備える回転電機であって、
前記ロータは、
周方向複数個所に設けられロータ磁極を形成する複数の永久磁石対と、
周方向複数個所において軸方向に延びる複数の軸方向冷媒流路と、
前記各軸方向冷媒流路に接続され、前記回転軸の内側から供給される冷媒を前記各軸方向冷媒流路に向かって流す複数の内径側接続冷媒流路とを含み、
前記各軸方向冷媒流路は、前記各永久磁石対の回転方向一方側の永久磁石にのみ片寄って配置されることを特徴とする回転電機。
A rotating electrical machine comprising: a rotor fixed to a rotating shaft and rotatably arranged; a stator disposed opposite to the outer periphery of the rotor; and a refrigerant supply mechanism that supplies a refrigerant to the inside of the rotating shaft,
The rotor is
A plurality of pairs of permanent magnets that are provided at a plurality of locations in the circumferential direction to form rotor magnetic poles;
A plurality of axial refrigerant flow paths extending in the axial direction at a plurality of circumferential positions;
A plurality of inner diameter side connecting refrigerant flow paths that are connected to the respective axial refrigerant flow paths and flow the refrigerant supplied from the inside of the rotating shaft toward the respective axial refrigerant flow paths,
Each of the axial refrigerant flow paths is disposed so as to be offset from only one permanent magnet in the rotational direction of each permanent magnet pair.
請求項1に記載の回転電機において、
前記各内径側接続冷媒流路は、周方向複数個所において径方向または径方向に対し傾斜する方向に設けられることを特徴とする回転電機。
In the rotating electrical machine according to claim 1,
Each of the inner diameter side connecting refrigerant channels is provided in a radial direction or in a direction inclined with respect to the radial direction at a plurality of locations in the circumferential direction.
請求項1または請求項2に記載の回転電機において、
前記各永久磁石対は、前記ロータの外径側に向かって広がるV字形に配置され、
前記各軸方向冷媒流路は、隣り合う前記永久磁石対の周方向中央線よりも前記回転方向一方側の永久磁石側で、前記回転方向一方側の永久磁石の内径側面の外径側端と内径側端との径方向の間領域に配置されることを特徴とする回転電機。
In the rotating electrical machine according to claim 1 or 2,
Each of the permanent magnet pairs is arranged in a V shape that widens toward the outer diameter side of the rotor,
Each axial refrigerant flow path is on the permanent magnet side on the one side in the rotational direction with respect to the circumferential center line of the adjacent permanent magnet pair, and on the outer diameter side end of the inner diameter side surface of the permanent magnet on the one side in the rotational direction. A rotating electrical machine, wherein the rotating electrical machine is disposed in a region between a radial direction end and an inner diameter side end.
請求項1から請求項3のいずれか1に記載の回転電機において、
前記各軸方向冷媒流路は、前記ロータの軸方向両端面に開口する冷媒吐出口を有し、
前記各冷媒吐出口は、前記各永久磁石対の回転方向一方側の永久磁石に向かって外径側が突となる形状を有することを特徴とする回転電機。
The rotating electrical machine according to any one of claims 1 to 3,
Each of the axial refrigerant flow paths has a refrigerant discharge opening that opens at both axial end surfaces of the rotor,
Each of the refrigerant discharge ports has a shape in which an outer diameter side protrudes toward a permanent magnet on one side in the rotation direction of each pair of permanent magnets.
請求項1から請求項4のいずれか1に記載の回転電機と、
前記ステータに設けられたステータコイルにステータ電流を供給して前記ロータを駆動するインバータと、
前記インバータを制御して前記ロータを正回転方向に回転させる制御部とを備え、
前記ロータの正回転方向の回転時に、前記永久磁石対のうちの回転方向一方側の永久磁石の反磁界が、回転方向他方側の永久磁石の反磁界よりも大きくなることを特徴とする回転電機駆動装置。
The rotating electrical machine according to any one of claims 1 to 4,
An inverter for driving the rotor by supplying a stator current to a stator coil provided in the stator;
A control unit that controls the inverter and rotates the rotor in a normal rotation direction;
When the rotor rotates in the positive rotation direction, the demagnetizing field of the permanent magnet on one side in the rotation direction of the permanent magnet pair is larger than the demagnetizing field of the permanent magnet on the other side in the rotation direction. Drive device.
JP2013061827A 2013-03-25 2013-03-25 Rotary electric machine and rotary electric machine driving device Pending JP2014187834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013061827A JP2014187834A (en) 2013-03-25 2013-03-25 Rotary electric machine and rotary electric machine driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013061827A JP2014187834A (en) 2013-03-25 2013-03-25 Rotary electric machine and rotary electric machine driving device

Publications (1)

Publication Number Publication Date
JP2014187834A true JP2014187834A (en) 2014-10-02

Family

ID=51834844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013061827A Pending JP2014187834A (en) 2013-03-25 2013-03-25 Rotary electric machine and rotary electric machine driving device

Country Status (1)

Country Link
JP (1) JP2014187834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6195691B1 (en) * 2017-02-21 2017-09-13 三菱電機株式会社 Power converter and power module
US10658895B2 (en) 2015-05-15 2020-05-19 Mitsubishi Electric Corporation Rotary electric machine
WO2020175715A1 (en) * 2019-02-25 2020-09-03 엘지전자 주식회사 Rotor and electric motor including same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658895B2 (en) 2015-05-15 2020-05-19 Mitsubishi Electric Corporation Rotary electric machine
DE112016002202B4 (en) 2015-05-15 2021-10-28 Mitsubishi Electric Corporation Electric rotary machine
JP6195691B1 (en) * 2017-02-21 2017-09-13 三菱電機株式会社 Power converter and power module
WO2020175715A1 (en) * 2019-02-25 2020-09-03 엘지전자 주식회사 Rotor and electric motor including same

Similar Documents

Publication Publication Date Title
US8546990B2 (en) Permanent magnet synchronous rotating electric machine and rotor core
JP5734765B2 (en) Cooling structure of rotating electric machine
EP1953896B1 (en) Rotor for electric rotating machine and electric rotating machine
EP1643618B1 (en) Rotor for rotary electric machine
JP5482376B2 (en) Hermetic rotary electric machine
JP5250692B2 (en) Permanent magnet rotating electric machine
JP2014176235A (en) Rotor for rotary electric machine, and rotary electric machine
JP5088587B2 (en) Permanent magnet type synchronous rotating electric machine, vehicle equipped therewith, elevator, fluid machine and processing machine
JP2008278591A (en) Rotor of rotating electric machine and rotating electric machine
JP2019161785A (en) Heat pipe, rotor, and rotary electric machine
JP2016054608A (en) Rotor for rotary electric machine
JP2011254577A (en) Rotary electric machine
JP2013183481A (en) Cooling structure of rotor for rotary electric machine and rotary electric machine
JP2012161134A (en) Rotary electric machine
JP2014187834A (en) Rotary electric machine and rotary electric machine driving device
JP2014064433A (en) Rotor shaft of rotary electric machine
JP2020096410A (en) Rotor
JP2017517238A (en) Rotor with permanent magnets with magnetic flux concentration for rotating electrical machines
JP2021093879A (en) Rotor and rotary electric machine
JP2013258889A (en) Induction motor
JP2013051805A (en) Cooling structure of rotary electric machine
JP2011193623A (en) Rotary electric machine
JP7142072B2 (en) Rotor of rotary electric machine
JP2009296841A (en) Rotary electric machine
JP2017099173A (en) Motor compressor