JP2014186026A - Method for analyzing trace impurity, and plasma torch for use in the analysis - Google Patents

Method for analyzing trace impurity, and plasma torch for use in the analysis Download PDF

Info

Publication number
JP2014186026A
JP2014186026A JP2014014946A JP2014014946A JP2014186026A JP 2014186026 A JP2014186026 A JP 2014186026A JP 2014014946 A JP2014014946 A JP 2014014946A JP 2014014946 A JP2014014946 A JP 2014014946A JP 2014186026 A JP2014186026 A JP 2014186026A
Authority
JP
Japan
Prior art keywords
plasma
gas tube
carrier gas
tip
plasma torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014014946A
Other languages
Japanese (ja)
Other versions
JP6398206B2 (en
Inventor
Eiji Yamanaka
英治 山中
Chihiro Miyaji
ちひろ 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2014014946A priority Critical patent/JP6398206B2/en
Publication of JP2014186026A publication Critical patent/JP2014186026A/en
Application granted granted Critical
Publication of JP6398206B2 publication Critical patent/JP6398206B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for highly sensitively analyzing trace impurities included in a sample liquid obtained by diluting an organometallic compound with an inactive organic solvent, and a plasma torch for use in the analysis.SOLUTION: A plasma torch includes a plasma gas pipe, and a carrier gas pipe in the inside thereof, where a tip end of the carrier gas pipe is located at a lower part with respect to a tip end of the plasma gas pipe, and when the inside diameter of the plasma gas tube is defined as R (mm) and the length between the tip end of the plasma gas pipe and the tip end of the carrier gas pipe is defined as L (mm), the plasma torch satisfies (R/L)×100 is 20%-40%. The method for analyzing trace impurities includes: atomizing a sample liquid obtained by diluting an organometallic compound with an inactive organic solvent; then introducing the atomized sample into the plasma torch along with the carrier gas via the carrier gas pipe; and analyzing the trace impurities in the sample liquid by an inductively-coupled plasma emission spectrometry method.

Description

本発明は、有機金属化合物を不活性な有機溶媒で希釈した試料液体に含まれる微量不純物を分析する方法、及び当該分析に用いるプラズマトーチに関する。   The present invention relates to a method for analyzing trace impurities contained in a sample liquid obtained by diluting an organometallic compound with an inert organic solvent, and a plasma torch used for the analysis.

従来、有機金属化合物の不純物の分析方法としては、例えば、有機金属化合物を炭化水素などで希釈させた後、酸を用いて有機金属化合物を分解させた上で、誘導結合型プラズマ発光分析法により分析する方法が知られている(例えば、特許文献1〜2参照)。   Conventionally, as a method for analyzing impurities in an organometallic compound, for example, after diluting the organometallic compound with a hydrocarbon or the like, the organometallic compound is decomposed with an acid and then inductively coupled plasma emission spectrometry is used. Methods for analysis are known (see, for example, Patent Documents 1 and 2).

ところで、誘導結合型プラズマ発光分析法により、有機溶媒を含む試料を分析する場合には、キャリアガス管の先端部分に不純物(例えば、黒鉛など)が付着して目詰まりを起こしてしまうなどの不具合が生じていた。
これを解決するために、プラズマガスの流量を調節することにより、プラズマ炎によりキャリアガス管先端部の黒鉛を燃焼させる方法(例えば、特許文献3参照)、脱溶媒機能を備えたプラズマトーチを使用する方法(例えば、特許文献4参照)やプラズマ炎に接する部分又はその近傍を保護具で覆う方法(例えば、特許文献5参照)が提案されている。
By the way, when analyzing a sample containing an organic solvent by inductively coupled plasma optical emission spectrometry, impurities (for example, graphite, etc.) adhere to the tip of the carrier gas tube and cause clogging. Has occurred.
In order to solve this, a method of burning the graphite at the tip of the carrier gas pipe with a plasma flame by adjusting the flow rate of the plasma gas (see, for example, Patent Document 3), a plasma torch having a desolvation function is used. And a method of covering a portion in contact with a plasma flame or the vicinity thereof with a protective device (for example, see Patent Literature 5).

特開平5−10939号公報Japanese Patent Laid-Open No. 5-10939 特開2011−196956号公報JP 2011-196956 A 特開平11−153542号公報JP-A-11-153542 特開2010−14465号公報JP 2010-14465 A 特開2003−232738号公報Japanese Patent Laid-Open No. 2003-232738

しかしながら、特許文献3の方法では、プラズマ炎とキャリアガス管先端部とが近づくことによりキャリアガス管先端部が融解、燃焼などしてしまうという問題があった。
また、特許文献4の方法では、脱溶媒機能として透過材を使用しているものの、溶媒に含まれる有機金属化合物の分解物が目詰まりを起こす恐れがあった。
また、特許文献5の方法では、改めて保護具を装着・脱着しなければならず、煩雑な操作が生じていた。
However, the method of Patent Document 3 has a problem that the carrier gas tube tip is melted and burned when the plasma flame approaches the carrier gas tube tip.
Further, in the method of Patent Document 4, although a permeable material is used as a solvent removal function, the decomposition product of the organometallic compound contained in the solvent may cause clogging.
Moreover, in the method of Patent Document 5, the protective equipment has to be attached / removed again, and a complicated operation has occurred.

以上のように、有機溶媒を含む試料を誘導結合型プラズマ発光分析法により分析する際の問題は完全には解決されておらず、より簡易な方法が求められていた。また、有機金属化合物を不活性な有機溶媒で希釈した試料液体の誘導結合型プラズマ発光分析法を用いた分析に関しては、何ら開示がなされていなかった。   As described above, the problem in analyzing a sample containing an organic solvent by inductively coupled plasma optical emission spectrometry has not been completely solved, and a simpler method has been demanded. In addition, no disclosure has been made regarding the analysis of a sample liquid obtained by diluting an organometallic compound with an inert organic solvent using an inductively coupled plasma emission spectrometry.

また、漠然とキャリアガス管の先端部がプラズマガス管の先端部に対して下部に位置するプラズマトーチが記載されている図面を有する公報が存在するものの、プラズマガス管の内径やプラズマガス管の先端部とキャリアガス管の先端部の長さに着目して、その比率を詳細に制御することは一切なされていなかった。   Further, although there is a publication having a drawing in which a plasma torch is described in which the tip of the carrier gas tube is positioned below the tip of the plasma gas tube, the inside diameter of the plasma gas tube or the tip of the plasma gas tube exists. Focusing on the length of the tip of the carrier gas pipe and the carrier gas pipe, the ratio has not been controlled in detail.

本発明の課題は、即ち、誘導結合型プラズマ発光分析法により、プラズマ炎の位置やキャリアガスの流速の微調整をすることなく、簡便な操作にて、有機金属化合物を不活性な有機溶媒で希釈した試料液体に含まれる微量不純物を感度良く分析する方法、及び当該分析に用いるプラズマトーチを提供することにある。   An object of the present invention is that an organometallic compound can be removed from an inert organic solvent by a simple operation without fine adjustment of the position of the plasma flame or the flow rate of the carrier gas by inductively coupled plasma optical emission spectrometry. It is an object to provide a method for analyzing trace impurities contained in a diluted sample liquid with high sensitivity, and a plasma torch used for the analysis.

本発明の課題は、又、本発明の分析方法によって、有機金属化合物の品質を管理することにもある。   Another object of the present invention is to control the quality of the organometallic compound by the analysis method of the present invention.

本発明の課題は、有機金属化合物を不活性な有機溶媒で希釈した試料液体を霧化させた後、
プラズマガス管、及びその内側にキャリアガス管を備え、キャリアガス管の先端部がプラズマガス管の先端部に対して下部に位置するプラズマトーチであって、
プラズマガス管の内径をR(mm)、
プラズマガス管の先端部とキャリアガス管の先端部の長さをL(mm)
とした場合において、
(R/L)×100
が20%〜40%であるプラズマトーチに、
前記霧化させた試料をキャリアガスとともにキャリアガス管を通じてプラズマトーチに導入して、誘導結合型プラズマ発光分析法により試料液体中の微量不純物を分析する方法によって解決される。
An object of the present invention is to atomize a sample liquid obtained by diluting an organometallic compound with an inert organic solvent,
A plasma torch comprising a plasma gas tube and a carrier gas tube inside thereof, the tip of the carrier gas tube being located below the tip of the plasma gas tube,
The inner diameter of the plasma gas tube is R (mm),
The length of the tip of the plasma gas tube and the tip of the carrier gas tube is L (mm)
If
(R / L) × 100
Is a plasma torch with 20% to 40%,
This is solved by introducing the atomized sample together with a carrier gas into a plasma torch through a carrier gas tube, and analyzing trace impurities in the sample liquid by inductively coupled plasma emission spectrometry.

本発明により、プラズマ炎の位置やキャリアガスの流速の微調整をすることなく、簡便な操作にて、有機金属化合物を不活性な有機溶媒で希釈した試料液体に含まれる微量不純物を感度良く分析する方法を提供することができる。   According to the present invention, a small amount of impurities contained in a sample liquid obtained by diluting an organometallic compound with an inert organic solvent can be analyzed with high sensitivity by a simple operation without fine adjustment of the position of the plasma flame or the flow rate of the carrier gas. A method can be provided.

本発明のプラズマトーチの側面・前面図である。It is a side and front view of the plasma torch of the present invention. 本発明のプラズマトーチの概略図である。It is the schematic of the plasma torch of this invention.

(プラズマトーチ)
本発明において使用するプラズマトーチは、プラズマガス管、及びその内側にキャリアガス管を備え、キャリアガス管の先端部がプラズマガス管の先端部に対して下部に位置するプラズマトーチであって、
プラズマガス管の内径をR(mm)、
プラズマガス管の先端部とキャリアガス管の先端部の長さをL(mm)
とした場合において、
(R/L)×100
が20%〜40%であるプラズマトーチである(図1)。
即ち、プラズマガス管の内径に対して20〜40%の長さ分だけキャリアガス管の先端部がプラズマガス管の先端部に対して下部に位置するプラズマトーチである。
(Plasma torch)
The plasma torch used in the present invention is a plasma torch comprising a plasma gas tube and a carrier gas tube inside thereof, the tip of the carrier gas tube being located below the tip of the plasma gas tube,
The inner diameter of the plasma gas tube is R (mm),
The length of the tip of the plasma gas tube and the tip of the carrier gas tube is L (mm)
If
(R / L) × 100
Is a plasma torch with 20% to 40% (FIG. 1).
That is, this is a plasma torch in which the tip of the carrier gas tube is positioned below the tip of the plasma gas tube by a length of 20 to 40% with respect to the inner diameter of the plasma gas tube.

なお、本発明においては、前記プラズマトーチを備えた誘導結合型プラズマ発光分析装置を用いて試料液体中の微量不純物の分析を行う。   In the present invention, trace impurities in the sample liquid are analyzed using an inductively coupled plasma emission analyzer equipped with the plasma torch.

(微量不純物の分析)
本発明の分析方法は、有機金属化合物を不活性な有機溶媒で希釈した試料液体を霧化させた後、前記のプラズマトーチを備えた誘導結合型プラズマ発光分析装置を用いて、霧化させた試料をキャリアガスとともにキャリアガス管を通じてプラズマトーチに導入することによって、試料液体中の微量不純物を感度良く分析することができる。このとき、プラズマ炎の位置やキャリアガスの流速の微調整は特段必要としない。
(Analysis of trace impurities)
According to the analysis method of the present invention, a sample liquid obtained by diluting an organometallic compound with an inert organic solvent is atomized, and then atomized using the inductively coupled plasma emission spectrometer equipped with the plasma torch. By introducing the sample together with the carrier gas into the plasma torch through the carrier gas tube, it is possible to analyze trace impurities in the sample liquid with high sensitivity. At this time, fine adjustment of the position of the plasma flame and the flow rate of the carrier gas is not particularly required.

本発明における有機金属化合物とは、金属と炭素とが直接化学結合している化合物(例えば、アルキル金属等)のみならず、酸素やリン等のヘテロ原子を介してできる広義の有機金属化合物(例えば、金属−アセチルアセトナト錯体、金属−アミド錯体、金属−アルコキシ錯体等)を含み、純度が99.9%以上である、例えば、トリメチルガリウム、トリエチルガリウム等の有機ガリウム化合物;トリメチルアルミニウム、トリエチルアルミニウム等の有機アルミニウム化合物;トリメチルインジウム等の有機インジウム化合物;ジメチル亜鉛、ジエチル亜鉛等の有機亜鉛化合物;ジエチルマグネシウム、ビス(シクロペンタジエニル)マグネシウム、ビス(メチルシクロペンタジエニル)マグネシウム等の有機マグネシウム化合物が好適に適用される。   The organometallic compound in the present invention is not only a compound in which a metal and carbon are directly chemically bonded (for example, an alkyl metal), but also a broadly defined organometallic compound (for example, an oxygen or phosphorus hetero atom) (for example, A metal-acetylacetonato complex, metal-amide complex, metal-alkoxy complex, etc.) and having a purity of 99.9% or more, for example, organic gallium compounds such as trimethylgallium and triethylgallium; trimethylaluminum, triethylaluminum Organo aluminum compounds such as trimethylindium; Organo zinc compounds such as dimethyl zinc and diethyl zinc; Organo magnesium such as diethyl magnesium, bis (cyclopentadienyl) magnesium and bis (methylcyclopentadienyl) magnesium Preferred compound It is applied.

本発明における不活性な有機溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロヘプタン、シクロオクタン等の飽和脂肪族炭化水素類(各種異性体を含む);ペンテン、ヘキセン、ヘプテン、オクテン、シクロヘキセン、シクロヘプテン、シクロオクテン等の不飽和脂肪族炭化水素類(各種異性体を含む);ベンゼン、トルエン、キシレン等の芳香族炭化水素類(各種異性体を含む)が使用されるが、好ましくは芳香族炭化水素類、更に好ましくはトルエン、キシレンが使用される。なお、これらの有機溶媒は単独又は二種以上を混合して使用しても良い。   Examples of the inert organic solvent in the present invention include saturated aliphatic hydrocarbons (including various isomers) such as pentane, hexane, heptane, octane, cyclohexane, cycloheptane, and cyclooctane; pentene, hexene, heptene, Unsaturated aliphatic hydrocarbons (including various isomers) such as octene, cyclohexene, cycloheptene, and cyclooctene; aromatic hydrocarbons (including various isomers) such as benzene, toluene, and xylene are used. Preferably aromatic hydrocarbons are used, more preferably toluene and xylene. In addition, you may use these organic solvents individually or in mixture of 2 or more types.

前記有機溶媒の使用量は、高純度有機金属化合物を実質的に溶解させる量ならば特に制限されず、有機溶媒の種類により適宜決定する。   The amount of the organic solvent used is not particularly limited as long as it is an amount capable of substantially dissolving the high-purity organometallic compound, and is appropriately determined depending on the type of the organic solvent.

本発明の有機金属化合物を不活性な有機溶媒で希釈した試料液体とは、前記有機金属化合物と、有機金属化合物と不活性な有機溶媒とを混合した試料液体を示すが、有機金属化合物を不活性な有機溶媒で希釈したものに、酸に加えた後に有機金属化合物を分解させたものや、酸で分解した後に分液操作により水層を除いたものをも含むものとする。   The sample liquid obtained by diluting the organometallic compound of the present invention with an inert organic solvent refers to a sample liquid obtained by mixing the organometallic compound, the organometallic compound, and the inert organic solvent. Those diluted with an active organic solvent include those obtained by decomposing an organometallic compound after being added to an acid, and those obtained by decomposing with an acid and removing the aqueous layer by a liquid separation operation.

前記試料液体を霧化させる方法としては、誘導結合型プラズマ発光分析装置に付属している霧化・噴霧手段をそのまま適用できる。また、霧化させた試料はキャリアガスとともにキャリアガス管を通じてプラズマトーチに導入される。この際のキャリアガスの流速は適宜調節するが、好ましくは0.4〜0.7L/min.である。   As a method for atomizing the sample liquid, the atomization / spraying means attached to the inductively coupled plasma emission spectrometer can be applied as it is. The atomized sample is introduced into the plasma torch through the carrier gas tube together with the carrier gas. The flow rate of the carrier gas at this time is adjusted as appropriate, but is preferably 0.4 to 0.7 L / min. It is.

更に、誘導結合型プラズマ発光分析法に導入された試料液体はプラズマ炎により発光することにより、試料液体中の微量不純物を分析することができる。   Furthermore, the sample liquid introduced into the inductively coupled plasma optical emission analysis method emits light with a plasma flame, so that trace impurities in the sample liquid can be analyzed.

この方法で分析された有機金属化合物の微量不純物量は、感度良く分析されたものであるため、その分析値をもって有機金属化合物の品質管理が可能である。   Since the trace amount of impurities of the organometallic compound analyzed by this method is analyzed with high sensitivity, the quality control of the organometallic compound can be performed with the analysis value.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to a following example.

実施例1(プラズマトーチの作成、及びトリメチルアルミニウムの分析)
誘導結合型プラズマ発光分析装置からプラズマトーチを取り外すことなく、プラズマガス管の内径を測定したところ14mm(L)であった。次いで、キャリアガス管の先端部が、プラズマガス管の先端部より3mm(R)下部となるように、キャリアガス管を設置した((R/L)×100=21%)。
トリメチルアルミニウム5g及びキシレン30mlを混合した後、窒素雰囲気にて、塩酸60ml中にゆるやかに滴下して、トリメチルアルミニウムを分解した。その後、分液してトリメチルアルミニウム中の微量不純物を分析するための試料液体(キシレン層)を調製した。
次いで、この試料液体を前記誘導結合型プラズマ分析装置で分析したところ、キャリアガス管の先端部には何ら付着は観られなかった。
Example 1 (Preparation of plasma torch and analysis of trimethylaluminum)
When the inner diameter of the plasma gas tube was measured without removing the plasma torch from the inductively coupled plasma optical emission spectrometer, it was 14 mm (L). Next, the carrier gas pipe was installed so that the tip of the carrier gas pipe was 3 mm (R) below the tip of the plasma gas pipe ((R / L) × 100 = 21%).
After mixing 5 g of trimethylaluminum and 30 ml of xylene, it was slowly dropped into 60 ml of hydrochloric acid in a nitrogen atmosphere to decompose trimethylaluminum. Thereafter, liquid separation was performed to prepare a sample liquid (xylene layer) for analyzing trace impurities in trimethylaluminum.
Next, when this sample liquid was analyzed by the inductively coupled plasma analyzer, no adhesion was observed at the tip of the carrier gas tube.

比較例1(トリメチルアルミニウムの分析)
実施例1において、プラズマトーチにおけるキャリアガス管の位置を変更せず、キャリアガス管の先端部とプラズマガス管の先端部の位置が同じ高さのプラズマトーチを用いて、実施例1と同様にトリメチルアルミニウムの分析を行った((R/L)×100=0%)。その結果、キャリアガス管先端部には黒色の不純物の付着が観られた。
当該不純物を分析した結果を以下に示す。
Comparative Example 1 (analysis of trimethylaluminum)
In the first embodiment, the position of the carrier gas tube in the plasma torch is not changed, and a plasma torch having the same height at the tip of the carrier gas tube and the tip of the plasma gas tube is used as in the first embodiment. Analysis of trimethylaluminum was performed ((R / L) × 100 = 0%). As a result, adhesion of black impurities was observed at the tip of the carrier gas pipe.
The results of analyzing the impurities are shown below.

(分析結果)
炭素;99.8%
ケイ素;0.2%
以上の結果より、不純物はキシレン由来の黒鉛を主成分とするものであった。また、ケイ素成分が検出されたことから、キシレン中のケイ素成分(分析対象)が分析されずに、黒鉛の発生とともに付着したと考えられる。
(result of analysis)
Carbon; 99.8%
Silicon; 0.2%
From the above results, the impurities were mainly composed of xylene-derived graphite. Moreover, since the silicon component was detected, it is thought that the silicon component (analysis object) in xylene was not analyzed but adhered with the generation of graphite.

比較例2(プラズマトーチの作成、及びトリメチルアルミニウムの分析)
実施例1において、プラズマトーチにおけるプラズマガス管の内径に対するキャリアガス管の先端部の位置を2mmに変えたこと以外、実施例1と同様に分析を行った((R/L)×100=14%)。その結果、キャリアガス管の先端部には黒色の不純物の付着が僅かに観られた。
Comparative Example 2 (Preparation of plasma torch and analysis of trimethylaluminum)
In Example 1, analysis was performed in the same manner as in Example 1 except that the position of the tip of the carrier gas tube with respect to the inner diameter of the plasma gas tube in the plasma torch was changed to 2 mm ((R / L) × 100 = 14). %). As a result, slight adhesion of black impurities was observed at the tip of the carrier gas pipe.

実施例3(プラズマトーチの作成、及びトリメチルアルミニウムの分析)
実施例1において、プラズマトーチにおけるプラズマガス管の内径に対するキャリアガス管の先端部の位置を4mmに変えたこと以外、実施例1と同様に分析を行った((R/L)×100=28%)。その結果、キャリアガス管の先端部には何ら付着は観られなかった。
Example 3 (Preparation of plasma torch and analysis of trimethylaluminum)
In Example 1, analysis was performed in the same manner as in Example 1 except that the position of the tip of the carrier gas tube with respect to the inner diameter of the plasma gas tube in the plasma torch was changed to 4 mm ((R / L) × 100 = 28). %). As a result, no adhesion was observed at the tip of the carrier gas pipe.

実施例4(プラズマトーチの作成、及びトリメチルアルミニウムの分析)
実施例1において、プラズマトーチにおけるプラズマガス管の内径に対するキャリアガス管の先端部の位置を5mmに変えたこと以外、実施例1と同様に分析を行った((R/L)×100=36%)。その結果、キャリアガス管の先端部には何ら付着は観られなかった。
Example 4 (Preparation of plasma torch and analysis of trimethylaluminum)
In Example 1, analysis was performed in the same manner as in Example 1 except that the position of the tip of the carrier gas tube with respect to the inner diameter of the plasma gas tube in the plasma torch was changed to 5 mm ((R / L) × 100 = 36). %). As a result, no adhesion was observed at the tip of the carrier gas pipe.

比較例3(プラズマトーチの作成、及びトリメチルアルミニウムの分析)
実施例1において、プラズマトーチにおけるプラズマガス管の内径に対するキャリアガス管の先端部の位置を6mmに変えたこと以外、実施例1と同様に分析を行った((R/L)×100=43%)。
その結果、キャリアガス管の先端部には不純物の付着はなかったものの、キャリアガス管の先端部に黒鉛が生じていた。また、霧化した試料がプラズマ炎まで十分に届かなかったため、試料液体中の微量不純物を分析が十分にできなかった(分析感度が低下した)。
Comparative Example 3 (Preparation of plasma torch and analysis of trimethylaluminum)
In Example 1, analysis was performed in the same manner as in Example 1 except that the position of the tip of the carrier gas tube with respect to the inner diameter of the plasma gas tube in the plasma torch was changed to 6 mm ((R / L) × 100 = 43). %).
As a result, although no impurities adhered to the tip of the carrier gas tube, graphite was generated at the tip of the carrier gas tube. Moreover, since the atomized sample did not reach the plasma flame sufficiently, analysis of trace impurities in the sample liquid could not be sufficiently performed (analysis sensitivity was lowered).

以上の結果より、[(R/L)×100]が21%、29%、36%に位置する場合(おおよそプラズマガス管の内径に対して20〜40%)には、不純物の付着は観察されなかった。これに対して、0%、14%(20%未満)とした場合には、不純物の付着が観察され、43%(40%超)とした場合には、分析が十分にできなかった。   From the above results, when [(R / L) × 100] is located at 21%, 29%, and 36% (approximately 20 to 40% with respect to the inner diameter of the plasma gas tube), the adhesion of impurities is observed. Was not. On the other hand, when 0% and 14% (less than 20%), adhesion of impurities was observed, and when 43% (over 40%), analysis could not be performed sufficiently.

実施例及び比較例(プラズマトーチの作成、及び有機金属化合物の分析)
実施例1において、プラズマトーチにおけるプラズマガス管の内径に対するキャリアガス管の先端部の位置と、分析対象物である有機金属化合物に変えたこと以外、実施例1と同様に分析を行った。
なお、記号、略語の意味は以下の通りである。
(記号)
○;不純物の付着なし、分析感度良好
△;不純物の僅かな付着及び/又は分析感度不良
×:不純物の付着及び分析感度不良
(略語)
TMA:トリメチルアルミニウム
TEA;トリエチルアルミニウム
TMG;トリメチルガリウム
TEG;トリエチルガリウム
TMI;トリメチルインジウム
DMZ;ジメチル亜鉛
DEZ;ジエチル亜鉛
CpMg;ビス(シクロペンタジエニル)マグネシウム
Al錯体;トリス(t−ブチルメチルアミド)アルミニウム
Examples and Comparative Examples (Plasma Torch Creation and Analysis of Organometallic Compounds)
In Example 1, the analysis was performed in the same manner as in Example 1 except that the position of the tip of the carrier gas tube relative to the inner diameter of the plasma gas tube in the plasma torch was changed to the organometallic compound as the analysis object.
The meanings of symbols and abbreviations are as follows.
(symbol)
○: No impurity adhesion, good analysis sensitivity Δ: Slight impurity adhesion and / or poor analysis sensitivity ×: Impurity adhesion and poor analysis sensitivity (abbreviation)
TMA: trimethylaluminum TEA; triethylaluminum TMG; trimethylgallium TEG; triethylgallium TMI; trimethylindium DMZ; dimethylzinc DEZ; diethylzinc Cp 2 Mg; bis (cyclopentadienyl) magnesium Al complex; )aluminum

Figure 2014186026
Figure 2014186026

以上の結果より、本発明のプラズマトーチを用いた分析方法により、不純物の付着を生じさせず、精度良く有機金属化合物の分析ができることが確認された。
また、本発明の分析により、有機金属化合物の品質管理能力が向上し、有機金属化合物を製品として出荷するのに適した態様となった。
From the above results, it was confirmed that the organometallic compound can be analyzed with high accuracy without causing adhesion of impurities by the analysis method using the plasma torch of the present invention.
Further, the analysis of the present invention has improved the quality control ability of the organometallic compound, and has become a mode suitable for shipping the organometallic compound as a product.

本発明は、プラズマ炎の位置やキャリアガスの流速の微調整をすることなく、簡便な操作にて、有機金属化合物を不活性な有機溶媒で希釈した試料液体に含まれる微量不純物を感度良く分析する方法、及び当該分析に用いるプラズマトーチに関する。   The present invention is capable of sensitively analyzing trace impurities contained in a sample liquid obtained by diluting an organometallic compound with an inert organic solvent by a simple operation without fine adjustment of the position of the plasma flame and the flow rate of the carrier gas. And a plasma torch used for the analysis.

1 プラズマガス管
2 キャリアガス管
1 Plasma gas pipe 2 Carrier gas pipe

Claims (7)

有機金属化合物を不活性な有機溶媒で希釈した試料液体を霧化させた後、
プラズマガス管、及びその内側にキャリアガス管を備え、キャリアガス管の先端部がプラズマガス管の先端部に対して下部に位置するプラズマトーチであって、
プラズマガス管の内径をR(mm)、
プラズマガス管の先端部とキャリアガス管の先端部の長さをL(mm)
とした場合において、
(R/L)×100
が20%〜40%であるプラズマトーチに、
前記霧化させた試料をキャリアガスとともにキャリアガス管を通じてプラズマトーチに導入して、誘導結合型プラズマ発光分析法により試料液体中の微量不純物を分析する方法。
After atomizing a sample liquid in which an organometallic compound is diluted with an inert organic solvent,
A plasma torch comprising a plasma gas tube and a carrier gas tube inside thereof, the tip of the carrier gas tube being located below the tip of the plasma gas tube,
The inner diameter of the plasma gas tube is R (mm),
The length of the tip of the plasma gas tube and the tip of the carrier gas tube is L (mm)
If
(R / L) × 100
Is a plasma torch with 20% to 40%,
A method in which the atomized sample is introduced into a plasma torch together with a carrier gas through a carrier gas tube, and trace impurities in the sample liquid are analyzed by inductively coupled plasma emission spectrometry.
有機金属化合物が、有機ガリウム化合物、有機アルミニウム化合物、有機インジウム化合物、有機亜鉛化合物、有機マグネシウム化合物である、請求項1記載の微量不純物を分析する方法。   The method for analyzing trace impurities according to claim 1, wherein the organometallic compound is an organogallium compound, an organoaluminum compound, an organoindium compound, an organozinc compound, or an organomagnesium compound. 有機溶媒が飽和脂肪族炭化水素類、不飽和脂肪族炭化水素類、芳香族炭化水素類又はそれらの混合溶媒である請求項1〜2記載の微量不純物を分析する方法。   3. The method for analyzing trace impurities according to claim 1, wherein the organic solvent is a saturated aliphatic hydrocarbon, an unsaturated aliphatic hydrocarbon, an aromatic hydrocarbon, or a mixed solvent thereof. キャリアガスの流速が0.4〜0.7L/min.である請求項1〜3のいずれか1項に記載の微量不純物を分析する方法。   The flow rate of the carrier gas is 0.4 to 0.7 L / min. The method for analyzing trace impurities according to any one of claims 1 to 3. 請求項1記載の分析方法に用いる
プラズマガス管、及びその内側にキャリアガス管を備え、キャリアガス管の先端部がプラズマガス管の先端部に対して下部に位置するプラズマトーチであって、
プラズマガス管の内径をR(mm)、
プラズマガス管の先端部とキャリアガス管の先端部の長さをL(mm)
とした場合において、
(R/L)×100
が20%〜40%であるプラズマトーチ。
A plasma torch used in the analysis method according to claim 1, comprising a plasma gas tube and a carrier gas tube inside thereof, the tip of the carrier gas tube being located below the tip of the plasma gas tube,
The inner diameter of the plasma gas tube is R (mm),
The length of the tip of the plasma gas tube and the tip of the carrier gas tube is L (mm)
If
(R / L) × 100
Is a plasma torch with 20% to 40%.
有機金属化合物を不活性な有機溶媒で希釈した試料液体中の微量不純物分析のための請求項5記載のプラズマトーチの使用。   6. Use of the plasma torch according to claim 5 for analyzing trace impurities in a sample liquid obtained by diluting an organometallic compound with an inert organic solvent. 請求項1記載の分析方法によって、有機金属化合物の品質を管理する方法。   A method for controlling the quality of an organometallic compound by the analysis method according to claim 1.
JP2014014946A 2013-02-21 2014-01-29 Method for analyzing trace impurities and plasma torch used for the analysis Expired - Fee Related JP6398206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014014946A JP6398206B2 (en) 2013-02-21 2014-01-29 Method for analyzing trace impurities and plasma torch used for the analysis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013032174 2013-02-21
JP2013032174 2013-02-21
JP2014014946A JP6398206B2 (en) 2013-02-21 2014-01-29 Method for analyzing trace impurities and plasma torch used for the analysis

Publications (2)

Publication Number Publication Date
JP2014186026A true JP2014186026A (en) 2014-10-02
JP6398206B2 JP6398206B2 (en) 2018-10-03

Family

ID=51833712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014014946A Expired - Fee Related JP6398206B2 (en) 2013-02-21 2014-01-29 Method for analyzing trace impurities and plasma torch used for the analysis

Country Status (1)

Country Link
JP (1) JP6398206B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145549U (en) * 1982-03-25 1983-09-30 日本ジヤ−レル・アツシユ株式会社 Torch for plasma emission analysis
JPS6020136A (en) * 1983-06-24 1985-02-01 チオコ−ル・コ−ポレ−シヨン Plasma spectroscopic analysis for organic metallic compound
US4833322A (en) * 1986-05-02 1989-05-23 Shell Oil Company Method and apparatus for analysis of material
JPH04216440A (en) * 1990-02-27 1992-08-06 American Cyanamid Co Apparatus and method for jetting compound into plasma for induction coupling type argon-plasma light-emitting spectrochemical analysis
JPH085555A (en) * 1994-06-17 1996-01-12 Hitachi Ltd Plasma torch and element analysis method using this torch
JPH11153542A (en) * 1997-11-21 1999-06-08 Shimadzu Corp Cleaning method for plasma torch in icp emission spectral analysis
US6207924B1 (en) * 1997-05-30 2001-03-27 Centre National De La Recherche Scientifique Inductive plasma torch with a reagent injector
JP2001272349A (en) * 2000-03-24 2001-10-05 Shimadzu Corp Plasma torch for icp emission spectrochemical analysis
JP2003222593A (en) * 2002-01-31 2003-08-08 Tdk Corp Element-analyzing plasma torch, and analysis device and analysis method using it
JP2004108981A (en) * 2002-09-19 2004-04-08 Shin Etsu Chem Co Ltd Organometallic compound vaporizing/supplying arrangement
JP2005526258A (en) * 2002-05-21 2005-09-02 ヴァリアン オーストラリア ピーティーワイ.エルティーディー. Plasma torch for microwave induction plasma
JP2012255675A (en) * 2011-06-08 2012-12-27 Sumitomo Metal Mining Co Ltd Method for measuring total organic carbons

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145549U (en) * 1982-03-25 1983-09-30 日本ジヤ−レル・アツシユ株式会社 Torch for plasma emission analysis
JPS6020136A (en) * 1983-06-24 1985-02-01 チオコ−ル・コ−ポレ−シヨン Plasma spectroscopic analysis for organic metallic compound
US4688935A (en) * 1983-06-24 1987-08-25 Morton Thiokol, Inc. Plasma spectroscopic analysis of organometallic compounds
US4833322A (en) * 1986-05-02 1989-05-23 Shell Oil Company Method and apparatus for analysis of material
JPH04216440A (en) * 1990-02-27 1992-08-06 American Cyanamid Co Apparatus and method for jetting compound into plasma for induction coupling type argon-plasma light-emitting spectrochemical analysis
JPH085555A (en) * 1994-06-17 1996-01-12 Hitachi Ltd Plasma torch and element analysis method using this torch
JP2002501661A (en) * 1997-05-30 2002-01-15 サントル ナスィオナル デ ラ ルシェルシェ スィアンティフィーク Induction plasma torch with reactive injector
US6207924B1 (en) * 1997-05-30 2001-03-27 Centre National De La Recherche Scientifique Inductive plasma torch with a reagent injector
JPH11153542A (en) * 1997-11-21 1999-06-08 Shimadzu Corp Cleaning method for plasma torch in icp emission spectral analysis
JP2001272349A (en) * 2000-03-24 2001-10-05 Shimadzu Corp Plasma torch for icp emission spectrochemical analysis
JP2003222593A (en) * 2002-01-31 2003-08-08 Tdk Corp Element-analyzing plasma torch, and analysis device and analysis method using it
JP2005526258A (en) * 2002-05-21 2005-09-02 ヴァリアン オーストラリア ピーティーワイ.エルティーディー. Plasma torch for microwave induction plasma
US20050242070A1 (en) * 2002-05-21 2005-11-03 Hammer Michael R Plasma torch for microwave induced plasmas
JP2004108981A (en) * 2002-09-19 2004-04-08 Shin Etsu Chem Co Ltd Organometallic compound vaporizing/supplying arrangement
JP2012255675A (en) * 2011-06-08 2012-12-27 Sumitomo Metal Mining Co Ltd Method for measuring total organic carbons

Also Published As

Publication number Publication date
JP6398206B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
US7335783B2 (en) Thin film-forming material and method for producing thin film
US9881796B2 (en) Method for manufacturing molybdenum oxide-containing thin film
US9988411B2 (en) Thin-film-forming material including a molybdenum imide compound
TWI363059B (en) A method for producing trimethylgallium
AU2010213360B2 (en) Plasma deposition
ATE504496T1 (en) IN-FLIGHT REFUELING SYSTEM, ALIGNMENT SYSTEM AND METHOD FOR AUTOMATIC ALIGNMENT AND ENGAGEMENT OF A BOOM FOR IN-FLIGHT REFUELING
US20140370293A1 (en) Fine Particles
JP6398206B2 (en) Method for analyzing trace impurities and plasma torch used for the analysis
KR102362602B1 (en) Bis(diazadiene)cobalt compounds, method of making and method of use thereof
US20130061870A1 (en) Method of cleaning film forming apparatus
JP2011054935A (en) Doping method
RU2018122239A (en) METHOD FOR DEPOSITION FROM THE GAS PHASE BY DECOMPOSITION OF ORGANOMETALLIC COMPOUNDS WITH USE AS THEIR ALKYLINDIC COMPOUNDS IN THE FORM OF THEIR SOLUTIONS IN HYDROCARBON
KR20100075597A (en) Parasitic particle suppression in the growth of iii-v nitride films using mocvd and hvpe
TW201631202A (en) Method and device for manufacturing solid organic metal compound
US11578266B2 (en) Silyl phosphine compound, process for producing silyl phosphine compound and process for producing InP quantum dots
WO2019188679A1 (en) METHOD FOR PRODUCING InP QUANTUM DOTS
DE102014115708A1 (en) Method for separating a carbon structure from a seed structure
JP2011196956A (en) Analysis method
JP5281371B2 (en) Zinc oxide-based semiconductor growth method and semiconductor device manufacturing method
Shenai et al. Correlation of film properties and reduced impurity concentrations in sources for III/V-MOVPE using high-purity trimethylindium and tertiarybutylphosphine
JPH07321039A (en) Chemical vapor deposition method, and solvent therefor
CN1171894C (en) Preparation method of oxygen free trialkyl gallium
JP3287921B2 (en) Magnesium raw material for vapor phase growth and vapor phase growth method using the same
TWI470680B (en) Method for making a metal oxide film, and metal oxide film
JPH07240373A (en) Vapor growing method of iii-v group compound semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6398206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees