JP2014173178A - Production method of metal coating member, and vehicular lamp including metal coating member - Google Patents

Production method of metal coating member, and vehicular lamp including metal coating member Download PDF

Info

Publication number
JP2014173178A
JP2014173178A JP2013049470A JP2013049470A JP2014173178A JP 2014173178 A JP2014173178 A JP 2014173178A JP 2013049470 A JP2013049470 A JP 2013049470A JP 2013049470 A JP2013049470 A JP 2013049470A JP 2014173178 A JP2014173178 A JP 2014173178A
Authority
JP
Japan
Prior art keywords
metal
film
vacuum
plasma
processing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013049470A
Other languages
Japanese (ja)
Other versions
JP6161149B2 (en
Inventor
Yoshio Suzuki
義雄 鈴木
Kohei Doi
浩平 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013049470A priority Critical patent/JP6161149B2/en
Publication of JP2014173178A publication Critical patent/JP2014173178A/en
Application granted granted Critical
Publication of JP6161149B2 publication Critical patent/JP6161149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a reflector including a reflection film excellent in adhesion, which has high production efficiency, and a production apparatus therefor, and to provide a production method of a lighting system using the same.SOLUTION: A plasma treatment using nitroethane gas is performed onto a resin substrate 21 having a three-dimensional shape, and then an aluminum film 22 is formed as a reflection film. A protection film 23 is formed on the surface of the aluminum film 22. A sample to which the plasma treatment using nitroethane gas is applied can provide a reflection film excellent in adhesion without providing a ground layer.

Description

本発明は、リフレクタやエクステンションリフレクタを備えた照明装置に関し、特に車両用灯具に適した金属被覆部材の製造方法および金属被覆部材を備えた照明装置に関する。   The present invention relates to an illuminating device including a reflector and an extension reflector, and more particularly to a method for manufacturing a metal covering member suitable for a vehicular lamp and an illuminating device including a metal covering member.

車両用灯具は、例えば特許文献1に開示されているように、レンズとハウジングによって形成された灯室内に、光源およびリフレクタを配置した構成である。光源からリフレクタ方向に向かって出射された光をリフレクタで反射し、レンズを通して灯具の前方に照射する。   The vehicular lamp has a configuration in which a light source and a reflector are arranged in a lamp chamber formed by a lens and a housing, as disclosed in Patent Document 1, for example. The light emitted from the light source toward the reflector is reflected by the reflector and irradiated to the front of the lamp through the lens.

図1は車両用灯具の一種であるヘッドランプの構成例を示す図である。一般的にヘッドランプは、レンズカバー40とハウジング50によって形成された灯室60内に、光源(光源バルブ)30と、該光源30の周囲に配置したリフレクタ20とを備え、光源30からリフレクタ20の方向に向かって出射された光Lをリフレクタ20で反射させてレンズカバー40を介して灯具の前方に照射するものである。符合10は、リフレクタ20とハウジング50の間の装飾を目的に配置されたエクステンションリフレクタである。   FIG. 1 is a diagram illustrating a configuration example of a headlamp which is a kind of vehicle lamp. In general, a headlamp includes a light source (light source bulb) 30 and a reflector 20 disposed around the light source 30 in a lamp chamber 60 formed by a lens cover 40 and a housing 50. The light L emitted toward the direction is reflected by the reflector 20 and irradiated to the front of the lamp through the lens cover 40. Reference numeral 10 is an extension reflector arranged for the purpose of decoration between the reflector 20 and the housing 50.

リフレクタ20は、従来では図2(A)に示す様に、合成樹脂基材101の表面にアンダーコート層102が形成され、反射面として機能するアルミ膜103が蒸着またはスパッタ法で成膜される。その後、プラズマCVD法で酸化シリコン膜の保護膜または塗装法でアクリル系の保護膜104が成膜されているものが一般に知られている。   In the conventional reflector 20, as shown in FIG. 2A, an undercoat layer 102 is formed on the surface of a synthetic resin substrate 101, and an aluminum film 103 that functions as a reflective surface is formed by vapor deposition or sputtering. . Thereafter, it is generally known that a protective film of a silicon oxide film is formed by a plasma CVD method or an acrylic protective film 104 is formed by a coating method.

アルミ膜103は、可視光全域で約85%以上の反射率が得られることから、自動車や自動二輪車などの車両用灯具の反射膜として広く利用されている。
アンダーコート層102としては、樹脂塗料を塗布した樹脂層(特許文献1)や、HMDS(ヘキサメチルジシロキサン)を原料ガスとしてプラズマCVD法で形成した酸化シリコン膜(特許文献2)が用いられる。保護膜104は、塗装膜(特許文献1)や、HMDSを原料ガスとしてプラズマCVD法で形成したはっ水性重合体膜(酸化シリコン膜)(特許文献2)が用いられる。また、特許文献2の技術では、アンダーコート層102の表面をアルゴンガスを用いたボンバード処理して活性化処理層を形成し、保護膜(はっ水性重合体膜)の表面をボンバード処理して親水処理層を形成している。
The aluminum film 103 is widely used as a reflection film for a vehicular lamp such as an automobile or a motorcycle because a reflectance of about 85% or more is obtained over the entire visible light range.
As the undercoat layer 102, a resin layer (Patent Document 1) coated with a resin paint or a silicon oxide film (Patent Document 2) formed by plasma CVD using HMDS (hexamethyldisiloxane) as a source gas is used. As the protective film 104, a paint film (Patent Document 1) or a water-repellent polymer film (silicon oxide film) (Patent Document 2) formed by plasma CVD using HMDS as a source gas is used. In the technique of Patent Document 2, the surface of the undercoat layer 102 is bombarded with argon gas to form an activation treatment layer, and the surface of the protective film (water-repellent polymer film) is bombarded. A hydrophilic treatment layer is formed.

特開平10−31909号公報JP-A-10-31909 特開2010−1542号公報JP 2010-1542 A

特許文献1のように保護膜を塗装法で成膜する場合、塗布面にゴミが付着しやすく、製造歩留まりが低下する。また、有機溶剤を含む樹脂材料を用いるため環境負荷が大きい。   When the protective film is formed by a coating method as in Patent Document 1, dust easily adheres to the coated surface, and the manufacturing yield decreases. Moreover, since the resin material containing an organic solvent is used, an environmental load is large.

特許文献2の構造のリフレクタは、アンダーコート層形成工程、アンダーコート層のボンバード処理工程、アルミ反射膜形成工程、ボンバード処理工程の順に行うため、製造工程が複雑である。また、ボンバード処理工程は、アルミ反射膜との密着性を向上させるために行うアンダーコート層に対する処理と、保護層に対して行う処理の2回実施する工程が必要になる。そのため、ボンバード処理を実施する工程と、それに付随する工程のため全体の処理時間が長い。   Since the reflector having the structure of Patent Document 2 is performed in the order of the undercoat layer forming step, the undercoat layer bombarding step, the aluminum reflecting film forming step, and the bombarding step, the manufacturing process is complicated. In addition, the bombarding process requires two processes, that is, a process for the undercoat layer performed to improve the adhesion to the aluminum reflective film and a process performed for the protective layer. Therefore, the entire processing time is long because of the step of performing the bombarding process and the process accompanying it.

本発明の目的は、樹脂上に金属薄膜を形成した金属被覆部材の製造時間を短くすることにある。また、製造効率を高め、金属薄膜を設けた金属被覆部材を安価に製造可能な製造方法を提供することにある。   An object of the present invention is to shorten the manufacturing time of a metal-coated member in which a metal thin film is formed on a resin. Another object of the present invention is to provide a manufacturing method capable of increasing the manufacturing efficiency and manufacturing a metal-coated member provided with a metal thin film at a low cost.

また、他の目的は樹脂上に直接に形成する金属薄膜の密着性を向上させる製造方法を提供することにある。   Another object is to provide a manufacturing method for improving the adhesion of a metal thin film formed directly on a resin.

さらに他の目的は、樹脂上に金属薄膜を直接に密着性を向上させて形成し、その金属薄膜の上に保護膜を形成した金属被覆部材を、連続して短時間で製造できる製造装置を提供することにある。   Still another object is to provide a manufacturing apparatus capable of continuously and quickly manufacturing a metal-coated member in which a metal thin film is directly formed on a resin with improved adhesion and a protective film is formed on the metal thin film. It is to provide.

上記目的を達成するために、本発明によれば、透光性の樹脂カバーと、前記樹脂カバーと接合するハウジングと、
前記樹脂カバーとハウジングとで区画された空間内に配置した光源および樹脂基材上に金属反射膜を形成した金属被覆部材とを備えた照明装置に用いる前記金属被覆部材の製造方法であって、
3次元形状に形成した樹脂基材を用意する工程と、
前記樹脂基材を真空装置内に設置して、真空に排気する工程と、
真空に排気した真空装置内にニトロ化合物を導入し、減圧化で前記ニトロ化合物のプラズマ放電に前記樹脂基材を曝す金属反射膜形成前プラズマ処理工程と、
前記樹脂基材の上に、真空雰囲気で金属膜を成膜する金属膜形成工程と、
前記金属膜の上に、真空雰囲気で保護膜を形成する保護膜形成工程とを、
順に行うことを特徴とする。
To achieve the above object, according to the present invention, a translucent resin cover, a housing joined to the resin cover,
A method for producing the metal-coated member used in a lighting device comprising a light source disposed in a space defined by the resin cover and a housing and a metal-coated member having a metal reflective film formed on a resin substrate,
Preparing a resin substrate formed into a three-dimensional shape;
Installing the resin substrate in a vacuum device and exhausting it to a vacuum;
Introducing a nitro compound into a vacuum apparatus evacuated to vacuum, and plasma treatment step before forming a metal reflection film to expose the resin substrate to plasma discharge of the nitro compound by reducing the pressure,
A metal film forming step of forming a metal film in a vacuum atmosphere on the resin substrate;
A protective film forming step of forming a protective film in a vacuum atmosphere on the metal film;
It carries out in order.

請求項1の発明により、樹脂上に金属薄膜を形成した金属被覆部材の製造時間を短くする。製造効率を高め、金属薄膜を設けた金属被覆部材を安価に製造可能な製造方法を提供する、という目的が達成され得る。   According to the invention of claim 1, the manufacturing time of the metal-coated member in which the metal thin film is formed on the resin is shortened. The object of increasing the production efficiency and providing a production method capable of producing a metal-coated member provided with a metal thin film at low cost can be achieved.

請求項2に記載の発明は、
前記金属反射膜形成前プラズマ処理工程が高周波プラズマを用いたプラズマ放電を使用し、
前記金属膜形成工程が、前記ニトロエタンのプラズマを停止させた後に、真空状態を保ったまま蒸着法またはスパッタ法を用いて金属膜を成膜する工程であり、
前記保護膜形成工程が、前記金属膜の成膜を停止させた後に、真空状態を保ったまま高周波プラズマによる重合法を用いて重合膜を形成する工程である
ことを特徴とする請求項1に記載の金属被覆部材の製造方法、である。
The invention described in claim 2
The plasma treatment process before forming the metal reflection film uses plasma discharge using high-frequency plasma,
The metal film forming step is a step of forming a metal film using a vapor deposition method or a sputtering method while maintaining a vacuum state after stopping the nitroethane plasma.
The protective film forming step is a step of forming a polymer film using a polymerization method using high frequency plasma while maintaining a vacuum state after stopping the formation of the metal film. It is a manufacturing method of the metal-coated member of description.

請求項3に記載の発明は、
前記保護膜形成工程の後に、さらに同じ真空装置内において真空雰囲気を保ったまま前記保護膜をプラズマ放電にさらして親水化する処理を行う親水化処理工程を、行うことを特徴とする請求項1に記載の金属被覆部材の製造方法、である。
The invention according to claim 3
2. The hydrophilic treatment step of performing a treatment of hydrophilizing the protective film by exposing it to plasma discharge while maintaining a vacuum atmosphere in the same vacuum apparatus after the protective film forming step. It is a manufacturing method of the metal-coated member of description.

請求項4に記載の発明は、
前記請求項1乃至請求項3の何れかに記載された金属被覆部材の製造方法を実施する製造装置であって、
前記樹脂基材を真空装置内に設置して、真空に排気する工程を行う第1の処理室と、
前記第1の処理室とゲートバルブを介して接続され、ニトロエタンの導入口とプラズマ放電用電極を備えた前記金属反射膜形成前プラズマ処理工程を行う第2の処理室と、
前記第2の処理室とゲートバルブを介して接続され、前記樹脂基材の上にスパッタ法または真空蒸着法にて金属膜を成膜する工程を行う第3の処理室と、
前記第3の処理室とゲートバルブを介して接続され、保護膜材料ガスの導入口とプラズマ放電用電極を備え、前記金属膜の上に当該プラズマ放電用電極により形成したプラズマ雰囲気下で前記保護膜形成工程を行う第4の処理室とを、有し、
前記樹脂基材を第1の処理室、第2の処理室、第3の処理室および第4の処理室の順に順次移動させる運搬機構と、
前記第2の処理室、第3の処理室および第4の処理室において、それぞれの工程を同時に実施可能に制御する制御機構を備えることを特徴とする真空製造装置。
また、請求項5に記載の発明は、
前記請求項1乃至請求項3の何れかに記載された金属被覆部材の製造方法を実施する製造装置であって、
真空に排気する排気装置が接続された真空装置と、
前記真空装置内に設けられた樹脂基材を設置する基材支持部と、
前記真空装置内に、ニトロエタンの導入口とプラズマ放電用電極を備えた前記金属反射膜形成前プラズマ処理工程を行う処理部と、
スパッタ法または真空蒸着法にて金属膜を成膜する工程を行う処理部と、
保護膜材料ガスの導入口とプラズマ放電用電極を備え、当該プラズマ放電用電極により形成したプラズマ雰囲気下で前記保護膜形成工程を行う処理部とを、有し、
前記金属反射膜形成前プラズマ処理工程を行う処理部、前記金属膜を成膜する工程を行う処理部および前記保護膜形成工程を行う処理部の順に前記樹脂基材を相対的に移動させる移動機構とを備えることを特徴とする真空製造装置、である。
The invention according to claim 4
A manufacturing apparatus for performing the method for manufacturing a metal-coated member according to any one of claims 1 to 3,
A first processing chamber in which the resin base material is placed in a vacuum apparatus and evacuated to a vacuum;
A second treatment chamber connected to the first treatment chamber via a gate valve, and performing the plasma treatment step before forming the metal reflection film, comprising a nitroethane inlet and a plasma discharge electrode;
A third processing chamber connected to the second processing chamber via a gate valve and performing a step of forming a metal film on the resin base material by sputtering or vacuum deposition;
The protection chamber is connected to the third processing chamber via a gate valve, and includes a protective film material gas inlet and a plasma discharge electrode, and the protection is performed in a plasma atmosphere formed on the metal film by the plasma discharge electrode. A fourth processing chamber for performing a film forming step,
A transport mechanism for sequentially moving the resin base material in the order of the first processing chamber, the second processing chamber, the third processing chamber, and the fourth processing chamber;
A vacuum manufacturing apparatus comprising a control mechanism for controlling the respective processes so as to be simultaneously executable in the second processing chamber, the third processing chamber, and the fourth processing chamber.
The invention according to claim 5
A manufacturing apparatus for performing the method for manufacturing a metal-coated member according to any one of claims 1 to 3,
A vacuum device connected to an exhaust device for exhausting to a vacuum;
A base material support portion for installing a resin base material provided in the vacuum device;
In the vacuum apparatus, a processing unit for performing the plasma treatment step before forming the metal reflection film, which is provided with an inlet for nitroethane and an electrode for plasma discharge,
A processing unit for performing a step of forming a metal film by sputtering or vacuum deposition;
A protective film material gas inlet and a plasma discharge electrode, and a processing section for performing the protective film formation step in a plasma atmosphere formed by the plasma discharge electrode,
A moving mechanism that relatively moves the resin base material in the order of a processing unit that performs the plasma treatment step before forming the metal reflective film, a processing unit that performs the step of forming the metal film, and a processing unit that performs the protective film forming step. And a vacuum manufacturing apparatus.

請求項4または請求項5の発明により、樹脂基材上に金属薄膜を直接に密着性を向上させて形成し、その金属薄膜の上に保護膜を形成した金属被覆部材を、連続して短時間で製造できる製造装置を提供する、という目的が達成され得る。   According to the invention of claim 4 or claim 5, a metal covering member in which a metal thin film is directly formed on a resin substrate with improved adhesion and a protective film is formed on the metal thin film is continuously shortened. The objective of providing a manufacturing device that can be manufactured in time can be achieved.

請求項6に記載の発明は、
前記請求項1乃至請求項3の何れかに記載された金属被覆部材の製造方法により製造された金属被覆部材を準備する工程と、
前記金属被覆部材を、透光性の樹脂カバーと、前記樹脂カバーと接合するハウジングとで区画された空間内に配置する工程とを特徴とする照明装置の製造方法、である。
The invention described in claim 6
Preparing a metal-coated member produced by the method for producing a metal-coated member according to any one of claims 1 to 3;
A method for manufacturing a lighting device, comprising: arranging the metal covering member in a space defined by a translucent resin cover and a housing joined to the resin cover.

請求項6の発明により、樹脂基材との密着性にすぐれた金属被覆部材を用いた、照明装置を得ることができ得る。   According to the sixth aspect of the present invention, it is possible to obtain a lighting device using a metal coating member having excellent adhesion to a resin base material.

本発明によれば、本発明の製造方法によれば、反射鏡などの金属被覆部材を安価かつ短時間に製造することができる。また、樹脂基材と金属薄膜の密着性を向上させた金属被覆部材を得ることができる。   According to this invention, according to the manufacturing method of this invention, metal coating | coated members, such as a reflecting mirror, can be manufactured cheaply and in a short time. Moreover, the metal coating | coated member which improved the adhesiveness of the resin base material and a metal thin film can be obtained.

本発明の実施形態のヘッドランプの断面構成を示すブロック図。The block diagram which shows the cross-sectional structure of the headlamp of embodiment of this invention. 図1のリフレクタの層構成を示す断面図で、(A)が従来技術のリフレクタの層構成を示す断面図、(B)が本実施形態のリフレクタの層構成を示す断面図。2A and 2B are cross-sectional views illustrating the layer configuration of the reflector of FIG. 1, in which FIG. 1A is a cross-sectional view illustrating the layer configuration of a conventional reflector, and FIG. 本発明の実施形態の製造装置を模式的に示す断面図Sectional drawing which shows the manufacturing apparatus of embodiment of this invention typically 本発明の実施形態の製造工程を示す流れ図The flowchart which shows the manufacturing process of embodiment of this invention 従来技術の製造工程を示す流れ図Flow chart showing the manufacturing process of the prior art

以下、本発明を実施するための最良の形態を図面に基づいて説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

本実施形態の車両用照明装置をヘッドランプを例に説明する。図1に示すように、本実施形態のヘッドランプは、光出射方向側に配置されたレンズカバー40と、背面側に配置されたハウジング50とを備え、レンズカバー40とハウジング50により形成された灯室60内には、光源30とリフレクタ20とが配置されている。リフレクタ20の周囲には、リフレクタ20とハウジング50との間の空間を装飾するためにエクステンションリフレクタ10が配置されている。   The vehicle lighting device of this embodiment will be described by taking a headlamp as an example. As shown in FIG. 1, the headlamp of the present embodiment includes a lens cover 40 disposed on the light emitting direction side and a housing 50 disposed on the back side, and is formed by the lens cover 40 and the housing 50. In the lamp chamber 60, the light source 30 and the reflector 20 are arranged. An extension reflector 10 is disposed around the reflector 20 to decorate the space between the reflector 20 and the housing 50.

光源30から出射された光は、直接、または、リフレクタ20によって反射されて、レンズカバー40を通過し、前方に照射される。   The light emitted from the light source 30 is reflected directly or by the reflector 20, passes through the lens cover 40, and is irradiated forward.

リフレクタ20の断面構成について図2(B)を用いて説明する。図2(B)は本発明の実施の形態に係るリフレクタの膜構成例について説明する断面図である。なお、図2(A)は前述した従来のリフレクタの膜構成について説明する断面図であり、本発明との相違点がわかり易いように並べて示している。   A cross-sectional configuration of the reflector 20 will be described with reference to FIG. FIG. 2B is a cross-sectional view illustrating a film configuration example of the reflector according to the embodiment of the present invention. FIG. 2A is a cross-sectional view for explaining the film configuration of the above-described conventional reflector, and shows the differences from the present invention side by side for easy understanding.

リフレクタ20は、図2(B)に示すように樹脂製の基材21の上に、アンダーコート層を介することなく反射膜としてアルミ膜またはアルミ合金膜22が直接に形成され、アルミ膜またはアルミ合金膜22上に保護膜として重合膜23が形成されている。   In the reflector 20, as shown in FIG. 2B, an aluminum film or an aluminum alloy film 22 is directly formed as a reflective film on a resin base material 21 without an undercoat layer. A polymer film 23 is formed on the alloy film 22 as a protective film.

本発明では、リフレクタ(反射鏡)の反射膜として、アルミニウム(Al)を主成分とするアルミ金属反射膜を用いているが、銀膜、銀合金膜や、アルミ膜の上面にジルコニウム膜を積層した積層膜でも良い。なお、アルミ膜22の膜厚は50nm以上であることが好ましく、150nm以上250nm以下であればより好ましい。ジルコニウム膜をアルミ膜上に積層した反射膜とする場合には、ジルコニウム膜の膜厚を耐アルカリ性の観点から1.5nm以上であることが好ましく、特に2.5nm以上であることが好ましい。また、反射率の観点から10nm以下であることが好ましく、特に5nm以下であることが好ましい。   In the present invention, an aluminum metal reflecting film mainly composed of aluminum (Al) is used as a reflecting film of the reflector (reflecting mirror), but a silver film, a silver alloy film, or a zirconium film is laminated on the upper surface of the aluminum film. A laminated film may be used. The film thickness of the aluminum film 22 is preferably 50 nm or more, and more preferably 150 nm or more and 250 nm or less. When a reflective film is formed by laminating a zirconium film on an aluminum film, the thickness of the zirconium film is preferably 1.5 nm or more, particularly preferably 2.5 nm or more from the viewpoint of alkali resistance. Moreover, it is preferable that it is 10 nm or less from a viewpoint of a reflectance, and it is especially preferable that it is 5 nm or less.

以下、リフレクタ(反射鏡)の製造方法について具体的に説明する。   Hereinafter, the manufacturing method of a reflector (reflecting mirror) is demonstrated concretely.

図3は本発明の実施の形態の成膜装置を模式的に示す断面図である。図4は本発明の実施の形態の製造方法の一例を示す流れ図である。   FIG. 3 is a cross-sectional view schematically showing a film forming apparatus according to an embodiment of the present invention. FIG. 4 is a flowchart showing an example of the manufacturing method according to the embodiment of the present invention.

(ステップS1)
最初に図4に示すステップS1において、基材21となる樹脂材料を用いてリフレクタ形状を射出成形にて形成したリフレクタ基材を用意する。リフレクタの形状は、所望の配光特性に合わせた凹面鏡とする。例えば光源30の位置に焦点を有する回転放物面形状に射出成形を行うと、3次元形状に形成され、光源30から出射した光を平行光線として照射方向前方に向けて反射することができる。基材21の材質としては、PPS(Polyphenylenesulfide)、BMC(Bulk Molding Compound)、PET/PBT(Polyethylene Terephthalate / Polybutylene Terephthalate)、PC(polycarbonate)などを好適に用いることができる。
(Step S1)
First, in step S <b> 1 shown in FIG. 4, a reflector base material in which a reflector shape is formed by injection molding using a resin material to be the base material 21 is prepared. The shape of the reflector is a concave mirror that matches the desired light distribution characteristics. For example, when injection molding is performed in the shape of a rotating paraboloid having a focal point at the position of the light source 30, it is formed into a three-dimensional shape, and the light emitted from the light source 30 can be reflected toward the front in the irradiation direction as parallel rays. As the material of the base material 21, PPS (Polyphenylenesulfide), BMC (Bulk Molding Compound), PET / PBT (Polyethylene Terephthalate / Polybutylene Terephthalate), PC (polycarbonate) and the like can be suitably used.

(ステップS2)
次にステップS1で成形したリフレクタ基材21を図示しない射出成型機から取り出した後、ステップS2からステップS8のステップを行う成膜装置70に設置する。成膜装置70としては枚葉式の成膜装置でも、インライン式の成膜装置でも良い。インライン式の成膜装置の場合には連続処理を行うことができ生産性を高めることができる。
(Step S2)
Next, after the reflector substrate 21 molded in step S1 is taken out from an injection molding machine (not shown), it is installed in the film forming apparatus 70 that performs steps S2 to S8. The film forming apparatus 70 may be a single-wafer type film forming apparatus or an in-line type film forming apparatus. In the case of an in-line film forming apparatus, continuous processing can be performed and productivity can be improved.

成膜装置70は、複数の真空チャンバー71と各真空チャンバー71内を排気する排気装置(真空ポンプ)72とを備える。図3では、紙面左側からR1,R2、R3,R4、R5の5つの処理室に区画されたており、R1〜R5の各真空チャンバー間はゲートバルブ78を介して順に連なって設けたインライン方式の場合を示している。処理室R1はステップS2を行うロードロック室、処理室R2がステップS4を実施するプラズマ処理室、処理室R3がステップS5を行う金属膜成膜室、処理室R4がステップS6の重合膜からなる保護膜を製膜するプラズマ重合室、処理室R5が真空雰囲気から大気圧に戻して取り出す製品取り出し室である。また、排気装置72は、図面を簡単にするため処理室R2にのみ接続した状態を示し、処理室R1,R3,R4およびR5の各室に接続する排気装置の図示を省略している。また、処理室R1から処理室R2へ、処理室R2から処理室R3へなどの隣接する処理室間において成膜を行うリフレクタ基材21を移動させる図示しない駆動機構と、処理室R2,R3およびR4における処理工程を制御する図示しない制御機構を備えている。   The film forming apparatus 70 includes a plurality of vacuum chambers 71 and an exhaust device (vacuum pump) 72 that exhausts the inside of each vacuum chamber 71. In FIG. 3, the in-line method is divided into five processing chambers R 1, R 2, R 3, R 4, and R 5 from the left side of the drawing, and the vacuum chambers R 1 to R 5 are sequentially connected via a gate valve 78. Shows the case. The processing chamber R1 includes a load lock chamber that performs step S2, the processing chamber R2 includes a plasma processing chamber that performs step S4, the processing chamber R3 includes a metal film deposition chamber that performs step S5, and the processing chamber R4 includes the polymer film in step S6. A plasma polymerization chamber for forming a protective film and a processing chamber R5 are product take-out chambers which are taken out from a vacuum atmosphere by returning to atmospheric pressure. Further, the exhaust device 72 shows a state of being connected only to the processing chamber R2 for the sake of simplicity of illustration, and illustration of the exhaust device connected to each of the processing chambers R1, R3, R4, and R5 is omitted. In addition, a driving mechanism (not shown) that moves the reflector base 21 that performs film formation between adjacent processing chambers such as from the processing chamber R1 to the processing chamber R2 and from the processing chamber R2 to the processing chamber R3, processing chambers R2, R3, and A control mechanism (not shown) for controlling the processing steps in R4 is provided.

(ステップS3)
次にステップS3で排気装置72にて真空チャンバー71内を排気する。処理室R1内の図示しない支持ホルダにセットした後に処理室R1内の排気を実施する。なお、各室内の排気を個別に行う際には、ゲートバルブ78を閉めた状態とし隣り合う処理室から独立して真空度を制御可能としている。
(Step S3)
Next, the inside of the vacuum chamber 71 is exhausted by the exhaust device 72 in step S3. After setting on a support holder (not shown) in the processing chamber R1, the processing chamber R1 is evacuated. When exhausting each chamber individually, the gate valve 78 is closed and the degree of vacuum can be controlled independently of the adjacent processing chamber.

(ステップS4)
所定の減圧状態に到達した後に、処理室R1と処理室R2の間のゲートバルブ78を開いてリフレクタ基材21を処理室R2に移動する。ゲートバルブ78を閉めた後に、ガス供給部73よりニトロエタンガスを真空チャンバー71内に導入する。処理室R2における符号77がガス導入口である。また、図示しない高周波電源に接続した放電電極74を用いてプラズマ発生部76にニトロエタンガスのプラズマを発生させる。このニトロエタンガスプラズマ内により基材21の被成膜面を処理するステップS4を実施する。なお、プラズマ処理は所定の減圧雰囲気下で行い、所定の処理が終了後にニトロエタンガスの供給を停止する。
(Step S4)
After reaching a predetermined reduced pressure state, the gate valve 78 between the processing chamber R1 and the processing chamber R2 is opened to move the reflector substrate 21 to the processing chamber R2. After the gate valve 78 is closed, nitroethane gas is introduced into the vacuum chamber 71 from the gas supply unit 73. Reference numeral 77 in the processing chamber R2 is a gas inlet. Further, a plasma of the nitroethane gas is generated in the plasma generation unit 76 using the discharge electrode 74 connected to a high frequency power source (not shown). Step S4 of processing the film formation surface of the base material 21 in the nitroethane gas plasma is performed. Note that the plasma treatment is performed in a predetermined reduced-pressure atmosphere, and the supply of nitroethane gas is stopped after the completion of the predetermined treatment.

また、減圧化でニトロエタンのプラズマ放電に金属膜形成前プラズマ処理工程を実施したが、他のニトロメタンなどのニトロ化合物を用いて金属膜形成前プラズマ処理工程を実施することもできるであろう。   Moreover, although the plasma treatment process before metal film formation was implemented in the plasma discharge of nitroethane by decompression, the plasma treatment process before metal film formation could also be implemented using other nitro compounds such as nitromethane.

(ステップS5)
次し、ステップS5で金属膜の成膜形成を行う。具体的には、処理室R2でから処理室R3に真空状態を保ったままゲートバルブを開いて、金属膜の成膜を行うリフレクタ基材21を移動し、処理室R3にて金属膜の成膜を実施する。各処理室R2およびR3は各々の排気装置72にて真空チャンバー71内が排気されており、ステップS4とステップS5は連続して実施する。
(Step S5)
Next, in step S5, a metal film is formed. Specifically, the gate valve is opened while maintaining a vacuum state in the processing chamber R2 to the processing chamber R3, the reflector base material 21 on which the metal film is formed is moved, and the metal film is formed in the processing chamber R3. Implement the membrane. In each of the processing chambers R2 and R3, the inside of the vacuum chamber 71 is evacuated by the respective exhaust devices 72, and Step S4 and Step S5 are performed continuously.

金属膜22の成膜は、金属材料供給部75から所定の減圧雰囲気下にて金属膜22を基材21上に形成する。処理室R3の内部上壁部にアルミニウム金属ターゲットもしくはアルミニウム合金金属ターゲットを金属材料供給部75として設けスパッタ法にて成膜する。スパッタを行うための雰囲気ガスをガス供給口73に接続したガス導入口77から導入し、図示しない放電電極にてDC(直流)プラズマを発生させて成膜する。フパッタ雰囲気ガスとしてはアルゴンガスを用いる。   In forming the metal film 22, the metal film 22 is formed on the base material 21 from the metal material supply unit 75 in a predetermined reduced pressure atmosphere. An aluminum metal target or an aluminum alloy metal target is provided as a metal material supply unit 75 on the inner upper wall portion of the processing chamber R3, and a film is formed by sputtering. An atmosphere gas for performing sputtering is introduced from a gas introduction port 77 connected to the gas supply port 73, and DC (direct current) plasma is generated by a discharge electrode (not shown) to form a film. Argon gas is used as the flapper atmosphere gas.

金属膜の成膜は、スパッタ法に限るものではない。例えば真空蒸着法、イオンプレーティング法などにより行っても良い。また、スパッタ法をアルゴンガスのDCプラズマで行う方法に限らるものではなく、他の不活性ガスを用いたプラズマを利用するものでも良い。また、基材21を移動しながら成膜を実施するようにしても良い。   The formation of the metal film is not limited to the sputtering method. For example, it may be performed by a vacuum deposition method, an ion plating method, or the like. Further, the sputtering method is not limited to the method using DC plasma of argon gas, and plasma using other inert gas may be used. Alternatively, film formation may be performed while moving the substrate 21.

(ステップS6)
次にステップS6として処理室R4にて保護膜形成を行う。処理室R3から処理室R4への基材21の移動は、処理室R2から処理室R3への移動に同期して、真空雰囲気を保ったまま同様に実施する。
(Step S6)
Next, in step S6, a protective film is formed in the processing chamber R4. The movement of the base material 21 from the processing chamber R3 to the processing chamber R4 is performed in the same manner while maintaining the vacuum atmosphere in synchronization with the movement from the processing chamber R2 to the processing chamber R3.

処理室R4が所定の減圧状態に到達した後に、ガス供給部73よりガス導入口77を経て原料モノマーを処理室R4の真空チャンバー71内に導入する。また、図示しない高周波電源に接続した放電電極74を用いてプラズマ発生部76にプラズマを発生させる。このとき、ガス供給部73からはアルゴン、水素、酸素等のキャリアガスも一緒に導入する。プラズマ発生部76で生じたプラズマのエネルギーを利用して重合膜23をステップS5で形成した金属膜22上に形成する。原料モノマーとしては、例えばヘキサメチルジシロキサンを用いることができる。なお、重合膜の形成も所定の減圧雰囲気下で行う。   After the processing chamber R4 reaches a predetermined reduced pressure state, the raw material monomer is introduced into the vacuum chamber 71 of the processing chamber R4 from the gas supply unit 73 through the gas introduction port 77. In addition, plasma is generated in the plasma generation unit 76 using the discharge electrode 74 connected to a high frequency power source (not shown). At this time, a carrier gas such as argon, hydrogen, oxygen or the like is also introduced from the gas supply unit 73. The polymer film 23 is formed on the metal film 22 formed in step S5 using the energy of the plasma generated by the plasma generator 76. As the raw material monomer, for example, hexamethyldisiloxane can be used. The polymer film is also formed in a predetermined reduced pressure atmosphere.

次にガス供給部73からの原料モノマーガスの供給を停止する。   Next, the supply of the raw material monomer gas from the gas supply unit 73 is stopped.

(ステップS7)
次にガス供給部73より原料モノマーの供給のみを停止して、重合膜(保護膜)23の表面をプラズマ発生部76に生成したプラズマにて処理を行い重合膜23の表面を親水化する。ステップS7で行うプラズマ処理で用いるプラズマ生成のために、ステップS6で用いたキャリアガスや、真空チャンバー71内の残存ガスを用いることも可能である。好ましくはガス供給部よりアルゴンガスや酸素ガス等の重合膜23の親水化処理に適したガスを用いたプラズマを生成させて行うことが好ましい。
(Step S7)
Next, only the supply of the raw material monomer from the gas supply unit 73 is stopped, and the surface of the polymerized film (protective film) 23 is treated with plasma generated in the plasma generating unit 76 to make the surface of the polymerized film 23 hydrophilic. The carrier gas used in step S6 or the residual gas in the vacuum chamber 71 can be used for plasma generation used in the plasma processing performed in step S7. Preferably, it is preferably performed by generating plasma using a gas suitable for hydrophilic treatment of the polymer film 23 such as argon gas or oxygen gas from a gas supply unit.

なお、親水化処理を行わない保護膜を形成する場合には、ステップS7を省略することができる。   In addition, when forming the protective film which does not perform a hydrophilic treatment, step S7 can be omitted.

(ステップS8)
最後にし成膜が完了したリフレクタ20を処理室R5に移動してステップS8を行う。ステップS8は図示しない排気弁を閉めた後に処理室R5の真空チャンバー71内の圧力を大気圧に戻し、金属膜22および重合膜23が形成してある基材21(リフレクタ20)を取り出す。これにより、目的とする金属被覆部材が得られる。
(Step S8)
Finally, the reflector 20 on which film formation has been completed is moved to the processing chamber R5, and step S8 is performed. In step S8, after closing an exhaust valve (not shown), the pressure in the vacuum chamber 71 of the processing chamber R5 is returned to atmospheric pressure, and the base material 21 (reflector 20) on which the metal film 22 and the polymer film 23 are formed is taken out. Thereby, the target metal-coated member is obtained.

本実施形態のリフレクタ20の製造工程を、図5に示す従来(特許文献2に記載の流れ図)のリフレクタの製造工程(工程P1〜P9)と比較する。従来法は、下地層の上に緩衝用の重合体膜を形成する工程(P2)と、緩衝用重合体膜の表面をプラズマによりボンバード処理する工程(P4)を実施した後に金属反射膜形成工程(P6)を実施する。そして、その上にプラズマCVDによりはっ水性の保護膜(酸化シリコン膜)を形成する工程(P7)と、はっ水性の保護膜の表面をプラズマによりボンバード処理するして親水化する工程(P9)が必要である。
一方、本実施形態の製造工程では、図4に示すように樹脂基材21の上に緩衝用の重合体膜を形成する工程(P2)が不要となっていることが分かる。
The manufacturing process of the reflector 20 of this embodiment is compared with the manufacturing process (process P1-P9) of the conventional reflector (flow chart described in patent document 2) shown in FIG. In the conventional method, after performing the step (P2) of forming a buffering polymer film on the underlayer and the step of bombarding the surface of the buffering polymer film with plasma (P4), the metal reflective film forming step (P6) is performed. Then, a step (P7) of forming a water-repellent protective film (silicon oxide film) by plasma CVD thereon, and a step of hydrophilizing the surface of the water-repellent protective film by plasma bombardment (P9) )is necessary.
On the other hand, in the manufacturing process of this embodiment, it turns out that the process (P2) of forming the polymer film for buffering on the resin base material 21 is unnecessary as shown in FIG.

このように、本実施形態によれば、金属膜を形成する前の緩衝用の重合体膜が不要となり、製造工程の簡素化が図れるため、製造コストが低減できる。   Thus, according to the present embodiment, the buffer polymer film before forming the metal film is not required, and the manufacturing process can be simplified, so that the manufacturing cost can be reduced.

また、本実施形態では、真空槽内の堆積物が剥がれてゴミの発生の原因となり得るプラズマCVDによる緩衝用重合体膜の製造工程が不要になるため、製造歩留まりを向上させることができる。   Moreover, in this embodiment, the manufacturing process of the buffering polymer film by plasma CVD which may cause the generation | occurrence | production of a dust by peeling the deposit in a vacuum chamber becomes unnecessary, and can improve a manufacturing yield.

さらに、従来のようにプラズマCVD装置の真空槽内の堆積膜を除去する必要がなく、
メンテナンス時間が短縮でき、生産効率が向上し、製造コストが低減できる。
Furthermore, there is no need to remove the deposited film in the vacuum chamber of the plasma CVD apparatus as in the past,
Maintenance time can be shortened, production efficiency can be improved, and manufacturing costs can be reduced.

本実施形態のリフレクタ20の膜構成は、各種ディスプレイの反射膜、各種電子部品の反射膜、太陽光発電装置の反射膜の用途に用いることができる。また照明装置の照射用のリフレクタに限らず、車両用灯具のエクステンションリフレクタなどの装飾用の金属被覆部材にも用いることができる。そしてこれらの金属被覆部材は、自動車用のヘッドライト、リアコンビネーションランプ、各種照明器具の用途等として用いることができる。   The film | membrane structure of the reflector 20 of this embodiment can be used for the use of the reflective film of various displays, the reflective film of various electronic components, and the reflective film of a solar power generation device. Moreover, it can be used not only for the reflector for irradiation of the lighting device but also for a metal cover member for decoration such as an extension reflector of a vehicular lamp. And these metal coating | coated members can be used for the use of the headlight for motor vehicles, a rear combination lamp, various lighting fixtures, etc.

特に自動車のヘッドライト等のように法規制で定められた配光規格を備えた用途に用いるリフレクタにおいては、設計通りの形状の反射面を形成することが重要となる。従来のように樹脂基材上に下地層を設け、下地層の上に金属反射膜を設ける場合に比べ、樹脂基材上に直接金属反射膜を形成するので、下地層の影響により設計値に比べ僅かに反射角度が異なって所望の配光特性が得られにくくなる、という問題が生じにくくなり、設計通りの配光特性が得やすくなる。   In particular, in a reflector used for an application having a light distribution standard defined by laws and regulations such as a headlight of an automobile, it is important to form a reflective surface having a shape as designed. Compared to the conventional case where a base layer is provided on a resin base material and a metal reflective film is provided on the base layer, the metal reflective film is formed directly on the resin base material. In comparison, the problem that the desired light distribution characteristics are hardly obtained due to slightly different reflection angles is less likely to occur, and the light distribution characteristics as designed are easily obtained.

本発明の照明装置のリフレクタ20を製造し、各種実施例および比較例の金属膜を作成し密着性および反射特性を確認した。   The reflector 20 of the illuminating device of the present invention was manufactured, metal films of various examples and comparative examples were prepared, and adhesion and reflection characteristics were confirmed.

(実施例1)
ポリカーボネート(polycarbonate)樹脂を原料として、照明装置の光源位置に焦点を有する回転放物面の凹面を備えたパラボラ形状の基材21を射出成形により平均厚み2.0mmにて形成した。同一樹脂を用いて密着力測定用の平板基板(平均厚み2.0mm)も射出成形にて形成した。
Example 1
Using a polycarbonate resin as a raw material, a parabolic substrate 21 having a concave paraboloid having a focal point at the light source position of the lighting device was formed with an average thickness of 2.0 mm by injection molding. A flat plate substrate (average thickness 2.0 mm) for measuring the adhesion force was also formed by injection molding using the same resin.

その基材21および平板基板を成膜装置70に入れ、基材ホルダー74にセットした後、真空チャンバー71内を1Pa以下の圧力に排気した。真空チャンバー71内に10Paの圧力までニトロエタンを導入した。10Paを保った状態で13.56MHzの高周波でプラズマ放電を生成させた。プラズマ生成時の入力電力は200W、プラズマ処理時間は5秒とした。   The base material 21 and the flat substrate were put in the film forming apparatus 70 and set in the base material holder 74, and then the inside of the vacuum chamber 71 was evacuated to a pressure of 1 Pa or less. Nitroethane was introduced into the vacuum chamber 71 up to a pressure of 10 Pa. Plasma discharge was generated at a high frequency of 13.56 MHz while maintaining 10 Pa. The input power during plasma generation was 200 W, and the plasma treatment time was 5 seconds.

ニトロエタンのプラズマによる処理(ボンバード処理)に連続して、純アルミ(JIS規格A1050)ターゲットを用い、DCスパッタ法により、入力電力8000W、成膜時間15秒、100%Ar雰囲気で、厚さ約100nmのアルミニウム膜23を成膜した。   Continuous with nitroethane plasma treatment (bombarding), using pure aluminum (JIS standard A1050) target, DC sputtering method, input power 8000W, film formation time 15 seconds, 100% Ar atmosphere, thickness of about 100nm An aluminum film 23 was formed.

続いて、基材21をプラズマCVDを行う処理室の真空処理装置に移動させ、原料ガスとしてHMDS(ヘキサメチルジシロキサン)を導入し、入力電力500W、成膜時間10秒で、厚さ約30nmの酸化シリコンの重合膜を13.56MHzの高周波プラズマ放電を生成させて行うプラズマCVD法で保護膜として成膜した。   Subsequently, the base material 21 is moved to a vacuum processing apparatus in a processing chamber for performing plasma CVD, HMDS (hexamethyldisiloxane) is introduced as a source gas, an input power of 500 W, a film formation time of 10 seconds, and a thickness of about 30 nm. A silicon oxide polymer film was formed as a protective film by a plasma CVD method in which a high frequency plasma discharge of 13.56 MHz was generated.

(実施例2)
実施例1のアルミニウム膜23成膜の前に行うニトロエタンのプラズマによる処理の条件を次のように変更した。他の工程および条件は実施例1と同様にして、実施例2のリフレクタを製造した。また、実施例1ではパラボラ形状の樹脂基材21と同じ樹脂製の平板基板を用いたが、以後の実施例および比較例では平板基板のみを用いて評価を実施した。
真空チャンバー71内にニトロエタンを導入し、10Paを保った状態で13.56MHzの高周波でプラズマ放電を生成させた。プラズマ生成時の入力電力は200W、プラズマ処理時間を実施例1の2倍の10秒とした。
(Example 2)
The conditions of plasma treatment with nitroethane performed before the formation of the aluminum film 23 of Example 1 were changed as follows. The other processes and conditions were the same as in Example 1, and the reflector of Example 2 was manufactured. In Example 1, a flat plate substrate made of the same resin as the parabola-shaped resin base material 21 was used, but evaluation was performed using only the flat plate substrate in the following Examples and Comparative Examples.
Nitroethane was introduced into the vacuum chamber 71 and plasma discharge was generated at a high frequency of 13.56 MHz while maintaining 10 Pa. The input power during plasma generation was 200 W, and the plasma processing time was 10 seconds, twice that of Example 1.

(実施例3)
実施例1のアルミニウム膜23成膜の前に行うニトロエタンのプラズマによる処理の条件を次のように変更した。他の工程および条件は実施例1と同様にして、実施例3のリフレクタを製造した。
真空チャンバー71内にニトロエタンを導入し、10Paを保った状態で13.56MHzの高周波でプラズマ放電を生成させた。プラズマ生成時の入力電力は200W、プラズマ処理時間を実施例1の3倍の15秒とした。
(Example 3)
The conditions of plasma treatment with nitroethane performed before the formation of the aluminum film 23 of Example 1 were changed as follows. The other processes and conditions were the same as in Example 1, and the reflector of Example 3 was manufactured.
Nitroethane was introduced into the vacuum chamber 71 and plasma discharge was generated at a high frequency of 13.56 MHz while maintaining 10 Pa. The input power at the time of plasma generation was 200 W, and the plasma processing time was 15 seconds, which is three times that of Example 1.

(比較例1):アルゴンプラズマ処理
実施例1のアルミニウム膜23成膜の前に行うニトロエタンのプラズマによる処理の条件を次のように変更した。他の工程および条件は実施例1と同様にした。
真空チャンバー71内にアルゴンガスを導入し、10Paを保った状態で13.56MHzの高周波でプラズマ放電を生成させた。プラズマ生成時の入力電力は200W、プラズマ処理時間は実施例1と同じ5秒とした。
(Comparative example 1): Argon plasma treatment The conditions for the treatment with nitroethane plasma performed before the formation of the aluminum film 23 of Example 1 were changed as follows. Other processes and conditions were the same as in Example 1.
Argon gas was introduced into the vacuum chamber 71, and plasma discharge was generated at a high frequency of 13.56 MHz while maintaining 10 Pa. The input power during plasma generation was 200 W, and the plasma processing time was 5 seconds, the same as in Example 1.

(比較例2):緩衝用重合体膜形成
実施例1のアルミニウム膜23成膜の前に行う工程を次のように変更した。他の工程および条件は実施例1と同様にした。
(Comparative Example 2): Formation of Buffer Polymer Film The process performed before the formation of the aluminum film 23 of Example 1 was changed as follows. Other processes and conditions were the same as in Example 1.

その平板基板を成膜装置70に入れ、基材ホルダー74にセットした後、真空チャンバー71内を1Pa以下の圧力に排気した。その後、緩衝用重合体膜形成工程と、アルゴンプラズマ処理工程を順次実施した後に、アルミニウム膜23の成膜を実施例1と同様の工程および条件で実施した。
緩衝用重合体膜形成工程は、原料ガスとしてHMDS(ヘキサメチルジシロキサン)を導入し、13.56MHzの高周波プラズマ放電を生成させて行うプラズマCVD法で厚さ約30nmの成膜した。プラズマ生成時の入力電力は200W、プラズマ処理時間は5秒とした。
アルゴンプラズマ処理工程は、10Paを保った状態で13.56MHzの高周波でプラズマ放電を生成させた。プラズマ生成時の入力電力は200W、プラズマ処理時間は実施例1と同じ5秒とした。
The flat substrate was put into the film forming apparatus 70 and set in the base material holder 74, and then the inside of the vacuum chamber 71 was evacuated to a pressure of 1 Pa or less. Thereafter, the buffer polymer film forming step and the argon plasma treatment step were sequentially performed, and then the aluminum film 23 was formed under the same process and conditions as in Example 1.
In the buffer polymer film forming step, HMDS (hexamethyldisiloxane) was introduced as a source gas, and a high frequency plasma discharge of 13.56 MHz was generated to form a film having a thickness of about 30 nm. The input power during plasma generation was 200 W, and the plasma treatment time was 5 seconds.
In the argon plasma treatment step, plasma discharge was generated at a high frequency of 13.56 MHz while maintaining 10 Pa. The input power during plasma generation was 200 W, and the plasma processing time was 5 seconds, the same as in Example 1.

(金属膜の密着力評価)
実施例1,2,3および比較例1,2の試料について密着力評価試験を行った。具体的には、平板基板に形成した被膜上からカッターで碁盤目に100等分の切れ目を入れ、その上からニチバン株式会社製のセロテープ(登録商標)を貼り、テープの剥離を行った。その際に碁盤目の全てのエリアにおいて金属膜および保護膜の剥離の無いものを○、金属膜および/または保護膜の剥離があったものを×として評価した。評価結果を表1に示す。
(Evaluation of adhesion of metal film)
The samples of Examples 1, 2, and 3 and Comparative Examples 1 and 2 were subjected to an adhesion evaluation test. Specifically, a 100-minute cut was made on the grid with a cutter from the film formed on the flat plate substrate, and cello tape (registered trademark) manufactured by Nichiban Co., Ltd. was applied thereon, and the tape was peeled off. At that time, in all areas of the grid, the case where there was no peeling of the metal film and the protective film was evaluated as ○, and the case where the metal film and / or the protective film was peeled was evaluated as x. The evaluation results are shown in Table 1.

Figure 2014173178
Figure 2014173178

表1のように、実施例1,2,3および比較例2の試料は、密着力評価試験において良好な結果を示した。比較例1の試料は金属膜の剥離が見られた。   As shown in Table 1, the samples of Examples 1, 2, 3 and Comparative Example 2 showed good results in the adhesion evaluation test. In the sample of Comparative Example 1, peeling of the metal film was observed.

(反射率の測定)
実施例1,2,3および比較例1,2のサンプルについて、350nm〜800nmの可視光域の反射率を調べた。その結果、いずれの試料も可視光域全体で85%以上の高い反射率を示した。この値から、実施例の試料はリフレクタとして十分な反射率であることが確認された。
(Measurement of reflectance)
For the samples of Examples 1, 2, 3 and Comparative Examples 1, 2, the reflectance in the visible light range of 350 nm to 800 nm was examined. As a result, all the samples showed a high reflectance of 85% or more in the entire visible light range. From this value, it was confirmed that the sample of the example had sufficient reflectivity as a reflector.

(外観および配光観察)
実施例1のパロボラ形状の基材に成膜したサンプルについて、外観観察を実施した。白濁などの問題点のない均一な金属光沢色の反射鏡の外観を示した。また、光源をセットして照射配向の観察も実施した。設計したパラボラ形状に対応した配光が観察された。
(Appearance and light distribution observation)
Appearance observation was performed on the sample formed on the Palo-Bola shaped substrate of Example 1. The appearance of a uniform metallic glossy mirror without problems such as white turbidity was shown. Moreover, the irradiation orientation was also observed by setting a light source. Light distribution corresponding to the designed parabolic shape was observed.

反射率測定および外観観察の結果から、緩衝用重合体膜を設けることなく、ポリカーボネート基材上に緩衝膜を介することなく直接に金属膜を形成しても、照明装置としての実用上問題となるような拡散光成分の増加などは見られなかった。   From the results of reflectance measurement and appearance observation, even if a metal film is formed directly on the polycarbonate base material without a buffer film without providing a buffer polymer film, there is a practical problem as a lighting device. Such an increase in diffuse light component was not observed.

以上のことから、実施例の試料は、従来の金属反射膜と同等の密着性、反射特性を備えたリフレクタが得られることが確認された。   From the above, it was confirmed that the sample of the example can provide a reflector having adhesion and reflection characteristics equivalent to those of a conventional metal reflective film.

上記実施形態はあらゆる点で単なる例示にすぎない。これらの記載によって本発明は限定的に解釈されるものではない。例えば、ヘッドランプやリアコンビネーションランプのリフレクタを例に説明したが、エクステンションリフレクタなどと称される装飾目的の金属被覆部材にも適用できる。   The above embodiment is merely an example in all respects. The present invention is not construed as being limited to these descriptions. For example, a reflector for a headlamp or a rear combination lamp has been described as an example, but the present invention can also be applied to a metal covering member for decoration purposes called an extension reflector.

また、図3に示した成膜装置70は、複数の真空チャンバー71を用いたインライン方式の成膜装置で説明したが、同じ真空チャンバー内にてステップS4、ステップS5、ステップS6の処理を行うバッチ方式の成膜装置を用いても良い。バッチ方式の成膜装置としては、例えばリフレクタ基材を真空チャンバーの中心にて回転する回転ドラムに取り付け、回転しながら、順次ステップS4、ステップS5、ステップS6の処理を行えるように、夫々のステップでの処理に応じたプラズマ処理用の電極、金属蒸発部、プラズマ重合部を同じ真空チャンバー内に設けておけば良い。また、回転ドラムの代わりに順次ステップS4、ステップS5、ステップS6の処理を行う空間を移動する移動機構を用いるものでも良い。   Further, although the film forming apparatus 70 shown in FIG. 3 has been described as an in-line film forming apparatus using a plurality of vacuum chambers 71, the processes in steps S4, S5, and S6 are performed in the same vacuum chamber. A batch-type film forming apparatus may be used. As a batch-type film forming apparatus, for example, a reflector substrate is attached to a rotating drum that rotates at the center of a vacuum chamber, and the steps S4, S5, and S6 are sequentially performed while rotating. An electrode for plasma processing, a metal evaporation portion, and a plasma polymerization portion corresponding to the processing in the above may be provided in the same vacuum chamber. Further, instead of the rotating drum, a moving mechanism that sequentially moves in the space where the processes of step S4, step S5, and step S6 are performed may be used.

本発明は、自動車灯体リフレクターやエクステンションリフレクター、二輪灯体リフレクターやエクステンションリフレクター、一般照明器具のリフレクター、一般装飾品、自動車用ヘッドライト、一般照明、野外照明、バックライト照明、LED装置、ディスプレー、光ディスク等の電子機器の電極や反射鏡などに利用可能である。
The present invention includes an automotive lamp reflector, an extension reflector, a two-wheeled lamp reflector, an extension reflector, a general lighting fixture reflector, a general ornament, an automotive headlight, general lighting, outdoor lighting, backlight lighting, an LED device, a display, It can be used for an electrode of an electronic device such as an optical disk or a reflecting mirror.

10 エクステンションリフレクタ
20 リフレクタ
21 基材
22 金属膜
23 重合膜(保護膜)
30 光源(光源バルブ)
40 レンズカバー
50 ハウジング
60 灯室
70 成膜装置
71 真空チャンバー
72 排気装置(真空ポンプ)
73 ガス供給部
74 放電電極
75 金属材料供給部
76 プラズマ発生部
77 ガス導入口
78 ゲートバルブ
R1,R2,R3,R4,R5 処理室
10 Extension Reflector 20 Reflector 21 Base Material 22 Metal Film 23 Polymerized Film (Protective Film)
30 Light source (light source bulb)
40 Lens cover 50 Housing 60 Light chamber 70 Film forming device 71 Vacuum chamber 72 Exhaust device (vacuum pump)
73 Gas supply section 74 Discharge electrode 75 Metal material supply section 76 Plasma generation section 77 Gas inlet 78 Gate valve R1, R2, R3, R4, R5 Processing chamber

Claims (6)

透光性の樹脂カバーと、前記樹脂カバーと接合するハウジングと、
前記樹脂カバーとハウジングとで区画された空間内に配置した光源および樹脂基材上に金属反射膜を形成した金属被覆部材とを備えた照明装置に用いる前記金属被覆部材の製造方法であって、
3次元形状に形成した樹脂基材を用意する工程と、
前記樹脂基材を真空装置内に設置して、真空に排気する工程と、
真空に排気した真空装置内にニトロ化合物を導入し、減圧化で前記ニトロ化合物のプラズマ放電に前記樹脂基材を曝す金属反射膜形成前プラズマ処理工程と、
前記樹脂基材の上に、真空雰囲気で金属膜を成膜する金属膜形成工程と、
前記金属膜の上に、真空雰囲気で保護膜を形成する保護膜形成工程とを、
順に行うことを特徴とする金属被覆部材の製造方法。
A translucent resin cover, a housing joined to the resin cover,
A method for producing the metal-coated member used in a lighting device comprising a light source disposed in a space defined by the resin cover and a housing and a metal-coated member having a metal reflective film formed on a resin substrate,
Preparing a resin substrate formed into a three-dimensional shape;
Installing the resin substrate in a vacuum device and exhausting it to a vacuum;
Introducing a nitro compound into a vacuum apparatus evacuated to vacuum, and plasma treatment step before forming a metal reflection film to expose the resin substrate to plasma discharge of the nitro compound by reducing the pressure,
A metal film forming step of forming a metal film in a vacuum atmosphere on the resin substrate;
A protective film forming step of forming a protective film in a vacuum atmosphere on the metal film;
It carries out in order, The manufacturing method of the metal-coated member characterized by the above-mentioned.
前記金属反射膜形成前プラズマ処理工程が高周波プラズマを用いたプラズマ放電を使用し、
前記金属膜形成工程が、前記ニトロエタンのプラズマを停止させた後に、真空状態を保ったまま蒸着法またはスパッタ法を用いて金属膜を成膜する工程であり、
前記保護膜形成工程が、前記金属膜の成膜を停止させた後に、真空状態を保ったまま高周波プラズマによる重合法を用いて重合膜を形成する工程である
ことを特徴とする請求項1に記載の金属被覆部材の製造方法。
The plasma treatment process before forming the metal reflection film uses plasma discharge using high-frequency plasma,
The metal film forming step is a step of forming a metal film using a vapor deposition method or a sputtering method while maintaining a vacuum state after stopping the nitroethane plasma.
The protective film forming step is a step of forming a polymer film using a polymerization method using high frequency plasma while maintaining a vacuum state after stopping the formation of the metal film. The manufacturing method of the metal-coated member of description.
前記保護膜形成工程の後に、さらに同じ真空装置内において真空雰囲気を保ったまま前記保護膜をプラズマ放電にさらして親水化する処理を行う親水化処理工程を、行うことを特徴とする請求項1に記載の金属被覆部材の製造方法。   2. The hydrophilic treatment step of performing a treatment of hydrophilizing the protective film by exposing it to plasma discharge while maintaining a vacuum atmosphere in the same vacuum apparatus after the protective film forming step. The manufacturing method of the metal-coated member as described in 2. 前記請求項1乃至請求項3の何れかに記載された金属被覆部材の製造方法を実施する製造装置であって、
前記樹脂基材を真空装置内に設置して、真空に排気する工程を行う第1の処理室と、
前記第1の処理室とゲートバルブを介して接続され、ニトロエタンの導入口とプラズマ放電用電極を備えた前記金属反射膜形成前プラズマ処理工程を行う第2の処理室と、
前記第2の処理室とゲートバルブを介して接続され、前記樹脂基材の上にスパッタ法または真空蒸着法にて金属膜を成膜する工程を行う第3の処理室と、
前記第3の処理室とゲートバルブを介して接続され、保護膜材料ガスの導入口とプラズマ放電用電極を備え、前記金属膜の上に当該プラズマ放電用電極により形成したプラズマ雰囲気下で前記保護膜形成工程を行う第4の処理室とを、有し、
前記樹脂基材を第1の処理室、第2の処理室、第3の処理室および第4の処理室の順に順次移動させる運搬機構と、
前記第2の処理室、第3の処理室および第4の処理室において、それぞれの工程を同時に実施可能に制御する制御機構を備えることを特徴とする真空製造装置。
A manufacturing apparatus for performing the method for manufacturing a metal-coated member according to any one of claims 1 to 3,
A first processing chamber in which the resin base material is placed in a vacuum apparatus and evacuated to a vacuum;
A second treatment chamber connected to the first treatment chamber via a gate valve, and performing the plasma treatment step before forming the metal reflection film, comprising a nitroethane inlet and a plasma discharge electrode;
A third processing chamber connected to the second processing chamber via a gate valve and performing a step of forming a metal film on the resin base material by sputtering or vacuum deposition;
The protection chamber is connected to the third processing chamber via a gate valve, and includes a protective film material gas inlet and a plasma discharge electrode, and the protection is performed in a plasma atmosphere formed on the metal film by the plasma discharge electrode. A fourth processing chamber for performing a film forming step,
A transport mechanism for sequentially moving the resin base material in the order of the first processing chamber, the second processing chamber, the third processing chamber, and the fourth processing chamber;
A vacuum manufacturing apparatus comprising a control mechanism for controlling the respective processes so as to be simultaneously executable in the second processing chamber, the third processing chamber, and the fourth processing chamber.
前記請求項1乃至請求項3の何れかに記載された金属被覆部材の製造方法を実施する製造装置であって、
真空に排気する排気装置が接続された真空装置と、
前記真空装置内に設けられた樹脂基材を設置する基材支持部と、
前記真空装置内に、ニトロエタンの導入口とプラズマ放電用電極を備えた前記金属反射膜形成前プラズマ処理工程を行う処理部と、
スパッタ法または真空蒸着法にて金属膜を成膜する工程を行う処理部と、
保護膜材料ガスの導入口とプラズマ放電用電極を備え、当該プラズマ放電用電極により形成したプラズマ雰囲気下で前記保護膜形成工程を行う処理部とを、有し、
前記金属反射膜形成前プラズマ処理工程を行う処理部、前記金属膜を成膜する工程を行う処理部および前記保護膜形成工程を行う処理部の順に前記樹脂基材を相対的に移動させる移動機構とを備えることを特徴とする真空製造装置。
A manufacturing apparatus for performing the method for manufacturing a metal-coated member according to any one of claims 1 to 3,
A vacuum device connected to an exhaust device for exhausting to a vacuum;
A base material support portion for installing a resin base material provided in the vacuum device;
In the vacuum apparatus, a processing unit for performing the plasma treatment step before forming the metal reflection film, which is provided with an inlet for nitroethane and an electrode for plasma discharge,
A processing unit for performing a step of forming a metal film by sputtering or vacuum deposition;
A protective film material gas inlet and a plasma discharge electrode, and a processing section for performing the protective film formation step in a plasma atmosphere formed by the plasma discharge electrode,
A moving mechanism that relatively moves the resin base material in the order of a processing unit that performs the plasma treatment step before forming the metal reflective film, a processing unit that performs the step of forming the metal film, and a processing unit that performs the protective film forming step. A vacuum manufacturing apparatus comprising:
前記請求項1乃至請求項3の何れかに記載された金属被覆部材の製造方法により製造された金属被覆部材を準備する工程と、
前記金属被覆部材を、透光性の樹脂カバーと、前記樹脂カバーと接合するハウジングとで区画された空間内に配置する工程とを特徴とする照明装置の製造方法。
Preparing a metal-coated member produced by the method for producing a metal-coated member according to any one of claims 1 to 3;
A method of manufacturing a lighting device, comprising: placing the metal covering member in a space defined by a translucent resin cover and a housing joined to the resin cover.
JP2013049470A 2013-03-12 2013-03-12 Method of manufacturing metal-coated member and vacuum manufacturing apparatus thereof Active JP6161149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013049470A JP6161149B2 (en) 2013-03-12 2013-03-12 Method of manufacturing metal-coated member and vacuum manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013049470A JP6161149B2 (en) 2013-03-12 2013-03-12 Method of manufacturing metal-coated member and vacuum manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2014173178A true JP2014173178A (en) 2014-09-22
JP6161149B2 JP6161149B2 (en) 2017-07-12

Family

ID=51694728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013049470A Active JP6161149B2 (en) 2013-03-12 2013-03-12 Method of manufacturing metal-coated member and vacuum manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP6161149B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084495A (en) * 2014-10-24 2016-05-19 株式会社日本製鋼所 Film deposition method for forming metal film and protective film and film deposition apparatus
EP4001878A1 (en) * 2020-11-23 2022-05-25 Marelli Automotive Lighting Italy S.p.A. Con Socio Unico A system and method for determining the reflectance of a reflector of a lamp of a motor vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013225A (en) * 1983-07-02 1985-01-23 Asahi Chem Ind Co Ltd Light transmitting member and light-beam projecting device using the member
JPS62243617A (en) * 1986-04-16 1987-10-24 Japan Synthetic Rubber Co Ltd Process for plasma polymerization treatment
JPS6347360A (en) * 1986-08-13 1988-02-29 Nisshin Steel Co Ltd Production of colored metallic material
JPH06192837A (en) * 1991-05-22 1994-07-12 Nippon Steel Corp Hard cabon film applied amorphous magnetic alloy thin strip
JPH08274142A (en) * 1995-03-30 1996-10-18 Anelva Corp In-line film forming device
JPH10231310A (en) * 1997-02-10 1998-09-02 Leybold Syst Gmbh Protection and coating of mirror surface layer of projector reflector and apparatus therefor
JP2005249572A (en) * 2004-03-04 2005-09-15 National Institute Of Advanced Industrial & Technology Micro flow-path chip manufacturing method, micro flow-path chip, biomolecule separating method using the micro flow-path chip, and electrophoresis device comprising the micro flow-path chip
JP2010001542A (en) * 2008-06-20 2010-01-07 Ulvac Japan Ltd Film deposition method and film deposition apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013225A (en) * 1983-07-02 1985-01-23 Asahi Chem Ind Co Ltd Light transmitting member and light-beam projecting device using the member
JPS62243617A (en) * 1986-04-16 1987-10-24 Japan Synthetic Rubber Co Ltd Process for plasma polymerization treatment
JPS6347360A (en) * 1986-08-13 1988-02-29 Nisshin Steel Co Ltd Production of colored metallic material
JPH06192837A (en) * 1991-05-22 1994-07-12 Nippon Steel Corp Hard cabon film applied amorphous magnetic alloy thin strip
JPH08274142A (en) * 1995-03-30 1996-10-18 Anelva Corp In-line film forming device
JPH10231310A (en) * 1997-02-10 1998-09-02 Leybold Syst Gmbh Protection and coating of mirror surface layer of projector reflector and apparatus therefor
JP2005249572A (en) * 2004-03-04 2005-09-15 National Institute Of Advanced Industrial & Technology Micro flow-path chip manufacturing method, micro flow-path chip, biomolecule separating method using the micro flow-path chip, and electrophoresis device comprising the micro flow-path chip
JP2010001542A (en) * 2008-06-20 2010-01-07 Ulvac Japan Ltd Film deposition method and film deposition apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084495A (en) * 2014-10-24 2016-05-19 株式会社日本製鋼所 Film deposition method for forming metal film and protective film and film deposition apparatus
EP4001878A1 (en) * 2020-11-23 2022-05-25 Marelli Automotive Lighting Italy S.p.A. Con Socio Unico A system and method for determining the reflectance of a reflector of a lamp of a motor vehicle

Also Published As

Publication number Publication date
JP6161149B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP4401516B2 (en) Lamp reflector with plasma polymer barrier coating
GB2105729A (en) Surface processing of a substrate material
JP6161149B2 (en) Method of manufacturing metal-coated member and vacuum manufacturing apparatus thereof
US8221551B2 (en) Apparatus for producing a reflector
JP5046074B2 (en) Method and apparatus for forming optical thin films
JP2010257714A (en) Vehicular lamp fitting, lens for vehicular lamp fitting, and method for manufacturing the same
US6458428B2 (en) Line-type film-forming method
US6736532B2 (en) Headlight assembly
JP5529459B2 (en) Coating method
JPWO2013168647A1 (en) Method for producing gas barrier film
JP2010001542A (en) Film deposition method and film deposition apparatus
JP2008105313A (en) Transparent element equipped with hard coat structure and hard coat structure
US10544499B1 (en) Reflector for vehicle lighting
JP5890111B2 (en) Reflector and lighting device
JP2018070901A (en) Production method of radar cover
JP2013538279A (en) Automobile parts made of polymer surface treatment materials
JP3836549B2 (en) Method for forming protective film
KR101928150B1 (en) Manufacturing method of reflector using vacuum deposition
JP6928309B2 (en) How to manufacture a reflector
JP2014181357A (en) Plasma polymerization apparatus and production method
KR20180086449A (en) Application of Multiple Plasma Coating Layers in Continuous Vacuum
JP7479905B2 (en) Reflective material and its manufacturing method
JP2012014117A (en) Reflecting mirror, illumination device, and method for manufacturing reflecting mirror
JP4040306B2 (en) Lamp and reflector manufacturing method
JP2016175372A (en) Gas barrier film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170609

R150 Certificate of patent or registration of utility model

Ref document number: 6161149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250