JP2014173159A - Lubricant for powder metallurgy and powder mixture for powder metallurgy - Google Patents

Lubricant for powder metallurgy and powder mixture for powder metallurgy Download PDF

Info

Publication number
JP2014173159A
JP2014173159A JP2013048533A JP2013048533A JP2014173159A JP 2014173159 A JP2014173159 A JP 2014173159A JP 2013048533 A JP2013048533 A JP 2013048533A JP 2013048533 A JP2013048533 A JP 2013048533A JP 2014173159 A JP2014173159 A JP 2014173159A
Authority
JP
Japan
Prior art keywords
fatty acid
powder
copper salt
mass
powder metallurgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013048533A
Other languages
Japanese (ja)
Other versions
JP6221271B2 (en
Inventor
Kenji Yoshimura
健司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2013048533A priority Critical patent/JP6221271B2/en
Publication of JP2014173159A publication Critical patent/JP2014173159A/en
Application granted granted Critical
Publication of JP6221271B2 publication Critical patent/JP6221271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lubricant for powder metallurgy capable of improving flowability when filling a powder mixture into a mold, improving strength of a sintered body, adding reduction of an extraction pressure from the mold, and inhibiting contamination in a sintering furnace.SOLUTION: There is provided a lubricant for powder metallurgy consisting of a fatty acid copper salt powder having 6 to 24 carbon atoms (ACP) with a grain size summary value A of 2.5 or less and an aggregation degree B measured by a powder tester after standing under 80°C atmosphere for 10 minutes of 30% or less. The grain size summary value A=(D90-D10)/D50, where 1.0≤D50≤30.0, D10, D50 and D90 are 10% integrating diameter, median diameter and 90% integrating diameter based on volume of ACP respectively (μm). The Aggregation degree B={(the mass of ACP remained on mesh with 350 μm sieve mesh)×5+(the mass of ACP remained on mesh with 250 μm sieve mesh)×3+(the mass of ACP remained on mesh with 150 μm sieve mesh)×10.

Description

本発明は、金属粉末を含有する粉末混合物を圧縮成型し、さらに焼結して焼結体を製造する粉末冶金技術に関し、詳細には、粉末混合物を金型に充填する時の流動性向上、焼結体の強度向上、金型からの抜き出し圧力の低減を付与できるとともに、焼結炉内の汚染を抑制できる粉末冶金用潤滑剤、およびこの粉末冶金用潤滑剤を含有する粉末冶金用粉末混合物に関する。   The present invention relates to a powder metallurgy technique in which a powder mixture containing a metal powder is compression-molded and further sintered to produce a sintered body, and more specifically, improvement in fluidity when filling a mold with the powder mixture, Powder metallurgy lubricant capable of imparting improved strength of sintered body, reducing extraction pressure from mold, and suppressing contamination in sintering furnace, and powder mixture for powder metallurgy containing this powder metallurgy lubricant About.

粉末冶金とは、主原料となる金属粉末を金型に充填した後、圧縮成型することにより圧粉体とし、さらに高温で加熱することにより金属粒子を焼結させて金属成型体を製造する技術である。通常、金型へ金属粉末を充填する時に金属粉末相互の粒子摩擦を減じて流動性を向上させるために、あるいは圧縮時の金属粉末と金型壁面との摩擦を緩和し、圧縮後の金型からの抜き出し圧力を減じて金型の磨耗や破損を抑制するために、原料である金属粉末に粉末潤滑剤が添加されている。   Powder metallurgy is a technology that produces metal compacts by filling metal molds, which are the main raw materials, into compacts by compression molding, and then sintering metal particles by heating at high temperatures. It is. Usually, when filling metal mold with metal powder, to reduce particle friction between metal powders to improve fluidity, or to reduce friction between metal powder and mold wall surface during compression, mold after compression A powder lubricant is added to the metal powder as a raw material in order to reduce the extraction pressure from the metal and suppress the wear and breakage of the mold.

従来、粉末潤滑剤として、脂肪酸亜鉛塩、脂肪酸リチウム塩、脂肪酸モノアミド、エチレンビス脂肪酸アミド等の粉末が単独で、あるいは複数を組み合わせて使用されてきた。
例えば、特許文献1には、エチレンビスステアロアミド(N,N,−エチレンビス(ステアリン酸アミド))とステアリン酸亜鉛とを重量比1:9〜9:1で配合した粉末冶金用潤滑剤が開示されている。
また、特許文献2には、潤滑性鉄基冶金粉末組成物の製造方法において、ステアリン酸第二銅をテトラヒドロフランまたはジエチルアミン等の有機溶媒に溶解させた溶液を用いて鉄基粒子の冶金粉末組成物を濡らした後、有機溶媒を除去することによりステアリン酸第二銅の被覆を持つ鉄基粒子が得られることが開示されている。
さらに、特許文献3には、エチレンビスラウリンアミドを主成分とする粉体成形剤が開示されている。
Conventionally, powders such as fatty acid zinc salts, fatty acid lithium salts, fatty acid monoamides, and ethylenebisfatty acid amides have been used alone or in combination as powder lubricants.
For example, Patent Document 1 discloses a lubricant for powder metallurgy in which ethylene bisstearamide (N, N, -ethylenebis (stearic amide)) and zinc stearate are blended at a weight ratio of 1: 9 to 9: 1. Is disclosed.
Patent Document 2 discloses a metallurgical powder composition of iron-based particles using a solution obtained by dissolving cupric stearate in an organic solvent such as tetrahydrofuran or diethylamine in a method for producing a lubricious iron-based metallurgical powder composition. It is disclosed that iron-base particles having a cupric stearate coating can be obtained by removing the organic solvent after wetting.
Further, Patent Document 3 discloses a powder molding agent mainly composed of ethylenebislaurinamide.

しかし、粉末冶金用潤滑剤として脂肪酸亜鉛塩を用いた場合、焼結炉の脱ロウ時において、加熱分解後に生成する、脂肪酸亜鉛塩由来の酸化亜鉛が昇華し、焼結炉の炉壁や煙道に酸化亜鉛として堆積し汚染してしまう。この堆積物は、蓄積してくると炉壁から脱落し焼結製品の表面に付着し欠陥を発生させることがある。また、煙道の堆積物は、煙道を閉塞させ炉内雰囲気ガスの排出を阻害させるので、安定製造が困難になるという欠点がある。このため、粉末冶金メーカー、焼結メーカー各社は、定期的に焼結炉の操業を停止し、炉内温度が下がった後にこの堆積物を除去する作業を行っているので、生産管理面およびコスト面で大きな問題となっている。   However, when a fatty acid zinc salt is used as a lubricant for powder metallurgy, zinc oxide derived from the fatty acid zinc salt generated after thermal decomposition is sublimated during dewaxing of the sintering furnace, and the furnace wall and smoke of the sintering furnace are sublimated. It accumulates on the road as zinc oxide and becomes contaminated. As this deposit accumulates, it may fall off the furnace wall and adhere to the surface of the sintered product, causing defects. In addition, the flue deposits obstruct the discharge of atmospheric gas in the furnace by closing the flue, which makes it difficult to produce stably. For this reason, powder metallurgy manufacturers and sintering manufacturers regularly stop the operation of the sintering furnace and remove this deposit after the furnace temperature has dropped. This is a big problem.

特許文献2の方法では、テトラヒドロフランまたはジエチルアミン等の有機溶媒を工業的に完全に除去することは困難であり、また焼結時に有機溶媒の引火等の危険性があり、さらに作業性が煩雑であるという問題がある。   In the method of Patent Document 2, it is difficult to industrially remove an organic solvent such as tetrahydrofuran or diethylamine industrially, there is a risk of ignition of the organic solvent during sintering, and the workability is complicated. There is a problem.

また、脂肪酸モノアミドあるいはエチレンビス脂肪酸アミドを用いた場合、金属粉末の金型充填時に高い流動性が得られないことから圧縮後の成型体密度が上がらず、焼結体に十分な強度が得られないという問題があり、特許文献1のように脂肪酸亜鉛塩とエチレンビス脂肪酸アミドを併用しても、その問題点を完全に解決するには至っていない。   In addition, when fatty acid monoamide or ethylene bis fatty acid amide is used, high fluidity cannot be obtained when the metal powder is filled with the mold, so the density of the compact after compression does not increase, and sufficient strength is obtained for the sintered body. Even if fatty acid zinc salt and ethylene bis fatty acid amide are used together as in Patent Document 1, the problem has not been completely solved.

特開平8−143901号公報JP-A-8-143901 特表平8−504233号公報Japanese National Patent Publication No. 8-504233 特開平4−136104号公報JP-A-4-136104

本発明の目的は、従来の技術では解決が困難であった上記課題を解決することであり、粉末混合物を金型に充填する時の流動性向上、焼結体の強度向上、金型からの抜き出し圧力の低減を付与できるとともに、焼結炉内の汚染を抑制できる粉末冶金用潤滑剤、およびこの粉末冶金用潤滑剤を含有する粉末冶金用粉末混合物を提供することにある。   The object of the present invention is to solve the above-mentioned problems that have been difficult to solve with the prior art, and improve the fluidity when filling the mold with the powder mixture, the strength of the sintered body, An object of the present invention is to provide a lubricant for powder metallurgy that can give a reduction in extraction pressure and suppress contamination in the sintering furnace, and a powder mixture for powder metallurgy containing the lubricant for powder metallurgy.

本発明者は、上記課題を解決するために鋭意検討を重ねた結果、特定の粒度要約値および凝集度を有する脂肪酸銅塩粒子からなる粉末冶金用潤滑剤を用いることで、金型充填時の流動性向上、焼結体の強度向上、金型からの抜き出し圧力の低減を付与できるとともに、焼結炉内の汚染を抑制できることを見出した。   As a result of intensive studies in order to solve the above problems, the present inventor used a lubricant for powder metallurgy composed of fatty acid copper salt particles having a specific particle size summary value and agglomeration degree. It has been found that the fluidity can be improved, the strength of the sintered body can be improved, and the extraction pressure from the mold can be reduced, and contamination in the sintering furnace can be suppressed.

すなわち、本発明は、炭素数6〜24の脂肪酸銅塩粒子からなる粉末冶金用潤滑剤であって、前記脂肪酸銅塩粒子は、下記(1)式で表される粒度要約値Aが2. 5以下であり、かつ80℃の環境下に10分放置後にパウダーテスターで測定される下記(2)式で表される凝集度Bが30%以下であることを特徴とする粉末冶金用潤滑剤である。   That is, the present invention is a powder metallurgical lubricant comprising fatty acid copper salt particles having 6 to 24 carbon atoms, and the fatty acid copper salt particles have a particle size summary value A represented by the following formula (1) of 2. A lubricant for powder metallurgy, characterized in that it has a cohesion degree B expressed by the following formula (2) of 30% or less measured by a powder tester after being left for 10 minutes in an environment at 80 ° C. It is.

粒度要約値A = (D90−D10) /D50(但し、1. 0≦D50≦30. 0)・・・(1)式
D10:脂肪酸銅塩の体積基準における10%積算径(μm)
D50:脂肪酸銅塩の体積基準におけるメジアン径(μm)
D90:脂肪酸銅塩の体積基準における90%積算径(μm)
Particle size summary value A = (D90−D10) / D50 (where 1.0 ≦ D50 ≦ 30.0) (1) Formula D10: 10% integrated diameter (μm) of fatty acid copper salt based on volume
D50: Median diameter (μm) of fatty acid copper salt based on volume
D90: 90% integrated diameter (μm) of fatty acid copper salt based on volume

凝集度B=〔(篩目350μmの篩に残存する脂肪酸銅塩粒子の質量)/2〕×100×(1/1)+〔(篩目250μmの篩に残存する脂肪酸銅塩粒子の質量)/2〕×100×(3/5)+〔(篩目150μmの篩に残存する脂肪酸銅塩粒子の質量)/2〕×100×(1/5)〕・・・(2)式   Aggregation degree B = [(mass of fatty acid copper salt particles remaining on sieve with 350 μm sieve) / 2] × 100 × (1/1) + [(mass of fatty acid copper salt particles remaining on sieve with 250 μm sieve) / 2] × 100 × (3/5) + [(mass of fatty acid copper salt particles remaining on a sieve having a mesh size of 150 μm) / 2] × 100 × (1/5)] (2) formula

また本発明は、金属粉末と、本発明の粉末冶金用潤滑剤とを含有することを特徴とする粉末冶金用粉末混合物である。   Moreover, this invention is a powder mixture for powder metallurgy characterized by including the metal powder and the lubricant for powder metallurgy of this invention.

本発明の粉末冶金用潤滑剤は、粉末混合物を金型に充填する時の流動性向上、焼結体の強度向上、金型からの抜き出し圧力の低減を付与できるとともに、焼結炉内の汚染を抑制することができる。また、本発明の粉末冶金用粉末混合物は、本発明の粉末冶金用潤滑剤を含有するので、金型に充填する際に充填がし易くなり、焼結体の強度が向上する。また金型から圧縮成型体を抜き出すときの抜き出し圧力が低減するので、金型の磨耗や破損を抑制することができる。さらに焼結炉内の汚染が抑制されるという効果を奏する。   The lubricant for powder metallurgy according to the present invention can provide improved fluidity when filling a mold with a powder mixture, improved strength of the sintered body, reduced extraction pressure from the mold, and contamination in the sintering furnace. Can be suppressed. Moreover, since the powder mixture for powder metallurgy of the present invention contains the lubricant for powder metallurgy of the present invention, the powder mixture is easily filled when filled in the mold, and the strength of the sintered body is improved. Moreover, since the extraction pressure at the time of extracting a compression molding body from a metal mold | die reduces, abrasion and damage to a metal mold | die can be suppressed. Furthermore, there is an effect that contamination in the sintering furnace is suppressed.

以下、本発明の粉末冶金用潤滑剤および粉末冶金用粉末混合物の実施形態について順次説明する。   Hereinafter, embodiments of the powder metallurgy lubricant and powder metallurgy powder mixture of the present invention will be sequentially described.

〔粉末冶金用潤滑剤〕
本発明の粉末冶金用潤滑剤は炭素数6〜24の脂肪酸銅塩粒子からなる。かかる脂肪酸銅塩粒子は、炭素数6〜24の脂肪酸に対して銅の酸化物もしくは水酸化物を反応させる直接法によって、または炭素数6〜24の脂肪酸と一価のアルカリ化合物とを反応させて脂肪酸アルカリ化合物塩を調製し、さらに二価の銅塩と水溶液中で反応させる複分解法によって、調製することができる。
[Lubricant for powder metallurgy]
The lubricant for powder metallurgy according to the present invention comprises fatty acid copper salt particles having 6 to 24 carbon atoms. Such fatty acid copper salt particles are obtained by reacting a copper oxide or hydroxide with a fatty acid having 6 to 24 carbon atoms or by reacting a fatty acid having 6 to 24 carbon atoms with a monovalent alkali compound. A fatty acid alkali compound salt can be prepared by a metathesis method in which the salt is further reacted with a divalent copper salt in an aqueous solution.

本発明で用いられる炭素数6〜24の脂肪酸は、天然由来の脂肪酸および合成脂肪酸のいずれであってもよく、飽和脂肪酸および不飽和脂肪酸のいずれであってもよく、直鎖状および分岐状のいずれであってもよい。さらに、脂肪酸の構造中に、水酸基、アルデヒド基、エポキシ基等の官能基が含まれていてもよい。好ましくは炭素数が12〜22の直鎖飽和脂肪酸である。脂肪酸の炭素数が6未満の場合は、得られる脂肪酸銅塩粒子の粉末冶金用潤滑剤としての効果が得られ難く、炭素数が24を超える脂肪酸は工業的に入手が困難であり、また、複分解法においては、得られる脂肪酸アルカリ化合物塩の水に対する溶解度が著しく低下するので生産性が低くなるおそれがある。   The fatty acid having 6 to 24 carbon atoms used in the present invention may be either a naturally occurring fatty acid or a synthetic fatty acid, may be any of a saturated fatty acid and an unsaturated fatty acid, and may be a linear or branched fatty acid. Either may be sufficient. Furthermore, a functional group such as a hydroxyl group, an aldehyde group, or an epoxy group may be included in the structure of the fatty acid. Preferably, it is a linear saturated fatty acid having 12 to 22 carbon atoms. When the number of carbon atoms of the fatty acid is less than 6, it is difficult to obtain an effect as a lubricant for powder metallurgy of the obtained fatty acid copper salt particles, and fatty acids having more than 24 carbon atoms are difficult to obtain industrially, In the metathesis method, the solubility of the resulting fatty acid alkali compound salt in water is remarkably reduced, so that the productivity may be lowered.

上記脂肪酸としては、例えば、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストオレイン酸、パルミチン酸、パルミトオレイン酸、ステアリン酸、オレイン酸、リノール酸、アラキン酸、ベヘン酸、エルカ酸、ヒドロキシステアリン酸およびエポキシステアリン酸などが挙げられ、その中ではステアリン酸が好ましい。混合脂肪酸を用いる場合は、好ましくはステアリン酸含有量が50%以上、より好ましくは60%以上、さらに好ましくは70%以上の混合脂肪酸が用いられる。   Examples of the fatty acid include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, myristoleic acid, palmitic acid, palmitooleic acid, stearic acid, oleic acid, linoleic acid, arachic acid, behenic acid, Examples include erucic acid, hydroxystearic acid, and epoxy stearic acid, among which stearic acid is preferred. When using a mixed fatty acid, a mixed fatty acid having a stearic acid content of preferably 50% or more, more preferably 60% or more, and even more preferably 70% or more is used.

直接法において用いられる銅の酸化物もしくは水酸化物としては、酸化銅(II)、水酸化銅(II)が挙げられる。   Examples of the copper oxide or hydroxide used in the direct method include copper oxide (II) and copper hydroxide (II).

複分解法において用いられる一価のアルカリ化合物としては、アルカリ金属(ナトリウム、カリウムなど)の水酸化物、およびアンモニア、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類などが挙げられる。脂肪酸アルカリ化合物塩を調製したときに水に対する溶解度が高い点から、好ましくはナトリウム、カリウムなどのアルカリ金属の水酸化物である。   Examples of the monovalent alkali compound used in the metathesis method include hydroxides of alkali metals (sodium, potassium, etc.) and amines such as ammonia, monoethanolamine, diethanolamine, and triethanolamine. From the viewpoint of high solubility in water when the fatty acid alkali compound salt is prepared, alkali metal hydroxides such as sodium and potassium are preferred.

複分解法において用いられる脂肪酸アルカリ化合物塩は、一価のアルカリ化合物と脂肪酸とを、一般に、脂肪酸の融点以上であり、かつ該脂肪酸が分解しない程度の温度、好ましくは100℃以下、より好ましくは50〜100℃、さらに好ましくは60〜95℃、特に好ましくは70〜95℃で反応させて得られる。   The fatty acid alkali compound salt used in the metathesis method is a temperature at which the monovalent alkali compound and the fatty acid are generally not lower than the melting point of the fatty acid and do not decompose, preferably 100 ° C. or less, more preferably 50 It is obtained by reacting at -100 ° C, more preferably 60-95 ° C, particularly preferably 70-95 ° C.

脂肪酸銅塩粒子としては、上記で得られた脂肪酸アルカリ化合物塩と二価の銅塩とを水溶液中で反応させて得られる脂肪酸銅塩粒子を用いることが好ましい。
二価の銅塩としては、例えば、塩化銅、硫酸銅、硝酸銅などが挙げられる。特に、塩化銅、硫酸銅は、水に対する溶解度が高く、効率的に脂肪酸アルカリ化合物塩と反応する点から好ましい。
上記反応は、具体的には、二価の銅塩含有水溶液および脂肪酸アルカリ化合物塩含有水溶液を別々に調製し、これらを混合することにより行われる。例えば、脂肪酸アルカリ化合物塩含有水溶液中に二価の銅塩含有水溶液を滴下することによって行われる。
なお、銅塩水溶液の滴下速度は、5.0×10−3mol/秒以下が好ましく、3.0×10−3mol/秒以下がより好ましい。滴下速度が5.0×10−3mol/秒を超えると、得られる脂肪酸銅塩粒子の粒度分布が幅広くなったり、粗大粒子が生成して、本発明で規定する物性値が得られなくなるおそれがある。
As the fatty acid copper salt particles, it is preferable to use fatty acid copper salt particles obtained by reacting the fatty acid alkali compound salt obtained above with a divalent copper salt in an aqueous solution.
Examples of the divalent copper salt include copper chloride, copper sulfate, and copper nitrate. In particular, copper chloride and copper sulfate are preferable because they have high solubility in water and efficiently react with the fatty acid alkali compound salt.
Specifically, the above reaction is performed by separately preparing a divalent copper salt-containing aqueous solution and a fatty acid alkali compound salt-containing aqueous solution and mixing them. For example, it is performed by dropping a divalent copper salt-containing aqueous solution into a fatty acid alkali compound salt-containing aqueous solution.
In addition, the dropping rate of the copper salt aqueous solution is preferably 5.0 × 10 −3 mol / second or less, and more preferably 3.0 × 10 −3 mol / second or less. When the dropping rate exceeds 5.0 × 10 −3 mol / second, the particle size distribution of the obtained fatty acid copper salt particles may be broadened or coarse particles may be generated, and the physical property values defined in the present invention may not be obtained. There is.

脂肪酸銅塩製造時の脂肪酸アルカリ化合物塩の濃度は、脂肪酸銅塩の生産性の点、および脂肪酸アルカリ化合物塩含有水溶液または得られる脂肪酸銅塩スラリーのハンドリング性の点から、通常、1〜20質量%、好ましくは5〜15質量%である。脂肪酸アルカリ化合物塩の濃度が1質量%未満の場合は、脂肪酸銅塩の生産性が低下するおそれがある。20質量%を超える場合は、脂肪酸アルカリ化合物塩含有水溶液または得られる脂肪酸銅塩スラリーの粘度が上昇するので、均一な反応を行うことが困難になることがある。
また、二価の銅塩含有液中の二価の銅塩の濃度は、脂肪酸銅塩の生産性の点、および脂肪酸アルカリ化合物塩含有水溶液または得られる脂肪酸銅塩スラリーのハンドリング性の点から、通常、10〜50質量%、好ましくは10〜40質量%である。
The concentration of the fatty acid alkali compound salt during the production of the fatty acid copper salt is usually 1 to 20 masses from the viewpoint of the productivity of the fatty acid copper salt and the handleability of the fatty acid alkali compound salt-containing aqueous solution or the resulting fatty acid copper salt slurry. %, Preferably 5 to 15% by mass. When the concentration of the fatty acid alkali compound salt is less than 1% by mass, the productivity of the fatty acid copper salt may be reduced. When it exceeds 20 mass%, the viscosity of the fatty acid alkali compound salt-containing aqueous solution or the resulting fatty acid copper salt slurry increases, so that it may be difficult to perform a uniform reaction.
In addition, the concentration of the divalent copper salt in the divalent copper salt-containing liquid is determined from the point of productivity of the fatty acid copper salt and the handling property of the fatty acid alkali compound salt-containing aqueous solution or the obtained fatty acid copper salt slurry. Usually, it is 10-50 mass%, Preferably it is 10-40 mass%.

脂肪酸アルカリ化合物塩と二価の銅塩との反応は、脂肪酸アルカリ化合物塩の溶解度を考慮して、当業者が通常行う温度条件下で行われる。好ましくは50〜100℃、より好ましくは60〜95℃である。
脂肪酸アルカリ化合物塩と二価の銅塩との反応時に脂肪酸銅塩スラリーを安定化させて、脂肪酸銅塩の生産性を向上させる目的で、ポリアルキレングリコール系エーテル、特にオキシプロピレンブロックがオキシエチレンブロックで挟まれた構造(EO−PO−EO)を有するトリブロックエーテルを脂肪酸銅塩スラリー中に存在させることが好ましい。脂肪酸銅塩スラリー中におけるポリアルキレングリコール系エーテルの含有量は、通常、脂肪酸アルカリ化合物塩100質量部に対して、0.01〜5質量部、好ましくは0.05〜2質量部である。
なお、ポリアルキレングリコール系エーテルは、一価のアルカリ化合物と脂肪酸とを反応させる前に反応系に存在させても良く、また脂肪酸アルカリ化合物塩と二価の銅塩との反応の前に反応系に存在させても良い。
The reaction between the fatty acid alkali compound salt and the divalent copper salt is performed under temperature conditions that are usually performed by those skilled in the art in consideration of the solubility of the fatty acid alkali compound salt. Preferably it is 50-100 degreeC, More preferably, it is 60-95 degreeC.
Polyalkylene glycol ethers, especially oxypropylene blocks, are oxyethylene blocks for the purpose of stabilizing fatty acid copper salt slurries and improving the productivity of fatty acid copper salts during the reaction of fatty acid alkali compound salts with divalent copper salts. It is preferable that a triblock ether having a structure sandwiched between (EO-PO-EO) is present in the fatty acid copper salt slurry. The content of the polyalkylene glycol ether in the fatty acid copper salt slurry is usually 0.01 to 5 parts by mass, preferably 0.05 to 2 parts by mass with respect to 100 parts by mass of the fatty acid alkali compound salt.
The polyalkylene glycol ether may be present in the reaction system before reacting the monovalent alkali compound with the fatty acid, or the reaction system before the reaction between the fatty acid alkali compound salt and the divalent copper salt. May be present.

上記方法によって、脂肪酸銅塩スラリーが得られる。この脂肪酸銅塩スラリーはそのまま、あるいは遠心脱水機、フィルタープレス、真空回転濾過機などにより溶媒を分離し、必要に応じて、洗浄を行い、副生する無機塩を除去した後に、回転乾燥機、気流乾燥装置、通気式乾燥機、噴霧式乾燥機、流動層型乾燥装置などにより乾燥させる。乾燥方法は、連続式または回分式、あるいは常圧または真空下のいずれでもよい。さらに、乾燥させた脂肪酸銅塩を必要に応じて粉砕する。粉砕方法は、例えばピンミル、ジェットミル、アトマイザー等によることができる。粉砕された脂肪酸銅塩粒子は分級される。例えば、振動を与えて篩い分けを行う多段篩装置等を用いて分級を行ない、粒度分布を調整する。このようにして、本発明の粉末冶金用潤滑剤としての脂肪酸銅塩粒子を得ることができる。   By the above method, a fatty acid copper salt slurry is obtained. This fatty acid copper salt slurry is used as it is or after separating the solvent by a centrifugal dehydrator, filter press, vacuum rotary filter, etc., and if necessary, washing and removing by-product inorganic salts, followed by a rotary dryer, Drying is performed by an air dryer, an aeration dryer, a spray dryer, a fluidized bed dryer or the like. The drying method may be continuous, batch, normal pressure or vacuum. Furthermore, the dried fatty acid copper salt is pulverized as necessary. The pulverization method can be performed by, for example, a pin mill, a jet mill, an atomizer or the like. The pulverized fatty acid copper salt particles are classified. For example, classification is performed using a multistage sieving apparatus or the like that applies vibrations and performs sieving to adjust the particle size distribution. In this way, fatty acid copper salt particles as the powder metallurgy lubricant of the present invention can be obtained.

本発明に用いられる脂肪酸銅塩粒子は、粒度分布の揃ったものとすることで、金属粉末中に均一に存在させることが可能となり、または結合剤を効率的に分散させることができる。これにより、流動性、焼結体の強度、および圧縮成型後の金型からの抜き出し性を向上させるという本発明の作用効果をより安定して発現させ易くする。具体的には、脂肪酸銅塩粒子の下記(1)式で表される粒度要約値Aを2.5以下にする。   By making the fatty acid copper salt particles used in the present invention uniform in particle size distribution, they can be uniformly present in the metal powder, or the binder can be efficiently dispersed. As a result, the effects of the present invention that improve the fluidity, the strength of the sintered body, and the ability to pull out from the mold after compression molding can be more stably expressed. Specifically, the particle size summary value A represented by the following formula (1) of the fatty acid copper salt particles is set to 2.5 or less.

本発明において粒度要約値Aは、マイクロトラックレーザー回折法により測定した粒子径から算出される。粒度要約値Aが2.5を超えると、金属粉末中に存在する脂肪酸銅塩粒子の粒子径のバラツキにより、粉末混合物の流動性が不安定となり、混合機からの排出性、金型への充填性が低下するばかりか、粉末混合物の嵩密度が低下し、目的とする強度を有する焼結体を製造できなくなる可能性がある。粒度要約値Aは、2.0以下がより好ましく、これにより本発明の作用効果がさらにより安定して得られる。   In the present invention, the particle size summary value A is calculated from the particle size measured by the microtrack laser diffraction method. When the particle size summary value A exceeds 2.5, the fluidity of the powder mixture becomes unstable due to the variation in the particle diameter of the fatty acid copper salt particles present in the metal powder, the dischargeability from the mixer, and the release to the mold. Not only is the filling property lowered, but the bulk density of the powder mixture is lowered, which may make it impossible to produce a sintered body having the desired strength. The particle size summary value A is more preferably 2.0 or less, whereby the effects of the present invention can be obtained more stably.

なお、粒度要約値Aの調整は、脂肪酸アルカリ化合物塩の濃度、脂肪酸アルカリ化合物塩と二価の銅塩との反応時の温度、二価の銅塩含有水溶液を脂肪酸アルカリ化合物塩含有水溶液に滴下する際の滴下速度をそれぞれ適宜調整することによって行うことができる。また、粒度分布が広い、つまり粒度要約値Aの値が大きいものについては、後処理において、100メッシュ、200メッシュ、330メッシュ等の篩を用いて分級することによって行なうことができる。   The particle size summary value A is adjusted by adding the concentration of the fatty acid alkali compound salt, the temperature during the reaction between the fatty acid alkali compound salt and the divalent copper salt, and dropping the divalent copper salt-containing aqueous solution into the fatty acid alkali compound salt-containing aqueous solution. It can carry out by adjusting the dripping speed | rate at the time of doing suitably, respectively. In addition, those having a wide particle size distribution, that is, a particle size summary value A having a large value can be obtained by classification using a sieve of 100 mesh, 200 mesh, 330 mesh or the like in post-processing.

ここで使用するマイクロトラックレーザー回折法は、レーザー光を粒子に照射することによって得られる散乱光を利用して、粒度分布を求める方法である。本発明においては、脂肪酸銅塩粒子が溶解しない有機溶媒、例えばエタノール、イソプロピルアルコールなどの有機溶媒を循環させたところに試料をそのまま投入する湿式による測定とする。また、本発明における測定対象は粒子径0.1〜200μmの範囲であり、下記の(1)式で表わされる値を粒度要約値Aとした。なお、本発明においては、例えば日機装株式会社製のマイクロトラックMT−3000を用いて測定することができる。   The microtrack laser diffraction method used here is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light. In the present invention, the measurement is performed by a wet method in which an organic solvent in which fatty acid copper salt particles are not dissolved, for example, an organic solvent such as ethanol or isopropyl alcohol, is circulated. Moreover, the measurement object in this invention is the range of particle diameter 0.1-200 micrometers, and let the value represented by following (1) Formula be the particle size summary value A. FIG. In the present invention, measurement can be performed using, for example, Microtrack MT-3000 manufactured by Nikkiso Co., Ltd.

粒度要約値A = (D90−D10) /D50(但し、1. 0≦D50≦30. 0)・・・(1)式
D10:脂肪酸銅塩の体積基準における10%積算径(μm)
D50:脂肪酸銅塩の体積基準におけるメジアン径(μm)
D90:脂肪酸銅塩の体積基準における90%積算径(μm)
Particle size summary value A = (D90−D10) / D50 (where 1.0 ≦ D50 ≦ 30.0) (1) Formula D10: 10% integrated diameter (μm) of fatty acid copper salt based on volume
D50: Median diameter (μm) of fatty acid copper salt based on volume
D90: 90% integrated diameter (μm) of fatty acid copper salt based on volume

粉末冶金用粉末混合物の製造においては、通常、全材料を混合釜に投入し、30分〜2時間混合する。混合時は、金属粉末粒子同士の衝突熱により混合釜内が70〜90℃程度になる。本発明者の検討によれば、脂肪酸銅塩粒子を80℃の環境下に10分放置後にパウダーテスターで測定したときの下記(2)式で表される凝集度B(%)が30%以下であることにより、粉末冶金用粉末混合物を製造するための上記混合条件でも、脂肪酸銅塩粒子が解れ易く、粉末冶金用粉末混合物中に素早く均一に分散することができる。したがって、粉末冶金用粉末混合物の流動性向上に伴って嵩密度を上げることができ、混合機からの排出性、金型への充填性を向上させることができる。凝集度Bは27%以下がより好ましく、さらに好ましくは25%以下である。凝集度Bが25%以下であるとき、本発明の作用効果がさらにより安定して得られる。   In the production of a powder mixture for powder metallurgy, all materials are usually put into a mixing kettle and mixed for 30 minutes to 2 hours. At the time of mixing, the inside of the mixing pot becomes about 70 to 90 ° C. due to the collision heat between the metal powder particles. According to the study of the present inventor, the aggregation degree B (%) represented by the following formula (2) when the fatty acid copper salt particles are measured with a powder tester after being left in an environment of 80 ° C. for 10 minutes is 30% or less. Therefore, even under the above-described mixing conditions for producing a powder mixture for powder metallurgy, the fatty acid copper salt particles can be easily broken and can be quickly and uniformly dispersed in the powder mixture for powder metallurgy. Therefore, the bulk density can be increased along with the improvement of the fluidity of the powder mixture for powder metallurgy, and the discharge property from the mixer and the filling property to the mold can be improved. The degree of aggregation B is more preferably 27% or less, and further preferably 25% or less. When the aggregation degree B is 25% or less, the effects of the present invention can be obtained more stably.

なお、凝集度Bの調整は、脂肪酸アルカリ化合物塩と二価の銅塩との反応を穏和な条件下で行ない、反応によって得られるスラリー中の脂肪酸銅塩粒子同士の凝集を防ぐことによって行うことができる。つまり、例えば、脂肪酸アルカリ化合物塩と二価の銅塩との反応時の反応率を低下させない程度の穏和な温度で反応を行ったり、熟成時間を短縮したりすることによって行なうことができる。反応時のこれら因子を適宜調整することによって、凝集度Bを本発明規定の範囲に調整することができる。   In addition, the adjustment of the aggregation degree B is performed by performing the reaction between the fatty acid alkali compound salt and the divalent copper salt under mild conditions and preventing aggregation of the fatty acid copper salt particles in the slurry obtained by the reaction. Can do. That is, for example, the reaction can be performed at a mild temperature that does not reduce the reaction rate during the reaction between the fatty acid alkali compound salt and the divalent copper salt, or by shortening the aging time. By appropriately adjusting these factors during the reaction, the degree of aggregation B can be adjusted within the range specified in the present invention.

凝集度B=〔(篩目350μmの篩に残存する脂肪酸銅塩粒子の質量)/2〕×100×(1/1)+〔(篩目250μmの篩に残存する脂肪酸銅塩粒子の質量)/2〕×100×(3/5)+〔(篩目150μmの篩に残存する脂肪酸銅塩粒子の質量)/2〕×100×(1/5)〕・・・(2)式   Aggregation degree B = [(mass of fatty acid copper salt particles remaining on sieve with 350 μm sieve) / 2] × 100 × (1/1) + [(mass of fatty acid copper salt particles remaining on sieve with 250 μm sieve) / 2] × 100 × (3/5) + [(mass of fatty acid copper salt particles remaining on a sieve having a mesh size of 150 μm) / 2] × 100 × (1/5)] (2) formula

ここで使用するパウダーテスターによる脂肪酸銅塩粒子の凝集度Bは、下記の測定方法で得られた値である。すなわち、例えばパウダーテスター(ホソカワミクロン株式会社製、PT−N型)を用いて下記の(a)〜(f)の工程を行なう。
(a)80℃に設定された恒温機内で、測定対象の脂肪酸銅塩粒子を10分間放置する。
(b)パウダーテスターの振動台に、上層から篩目350μm、250μm、150μmの篩いを順次セットする。
(c)上記(a)工程後の脂肪酸銅塩粒子2.0gを即座に篩目350μmの篩上に静かにのせる。
(d)篩を振幅1mmで105秒間振動させる。
(e)各篩に残存した脂肪酸銅塩粒子の質量を計測する。
(f)上記(e)工程で得られた各質量にそれぞれ1/1、3/5および1/5の重みを順次に乗じ、これらを加算して上記(2)式により百分率を算出した値を凝集度B(%)とする。
以上の(a)〜(f)の工程を5回繰り返し、その平均値を測定値とする。
The aggregation degree B of the fatty acid copper salt particles by the powder tester used here is a value obtained by the following measurement method. That is, for example, the following steps (a) to (f) are performed using a powder tester (manufactured by Hosokawa Micron Corporation, PT-N type).
(A) The fatty acid copper salt particles to be measured are left for 10 minutes in a thermostat set to 80 ° C.
(B) Sieves of 350 μm, 250 μm, and 150 μm are sequentially set from the upper layer on the vibrating table of the powder tester.
(C) Immediately place 2.0 g of the fatty acid copper salt particles after the step (a) gently on a sieve having a sieve size of 350 μm.
(D) Vibrate the sieve with an amplitude of 1 mm for 105 seconds.
(E) The mass of the fatty acid copper salt particles remaining on each sieve is measured.
(F) A value obtained by multiplying each mass obtained in the step (e) by a weight of 1/1, 3/5, and 1/5 in order, and adding these to calculate the percentage by the above equation (2). Is a degree of aggregation B (%).
The above steps (a) to (f) are repeated five times, and the average value is taken as the measured value.

さらに、本発明に用いられる脂肪酸銅塩粒子は、ゆるみ嵩密度(Da)(g/cc)が0.120≦Da≦0.250であることが好ましい。0.120≦Da≦0.250であることにより、金属粉末と混合した際に、脂肪酸銅塩粒子に高い滑り性が得られ、粉末混合物に流動性をさらに付与することができる。   Furthermore, the fatty acid copper salt particles used in the present invention preferably have a loose bulk density (Da) (g / cc) of 0.120 ≦ Da ≦ 0.250. By being 0.120 <= Da <= 0.250, when mixed with metal powder, high slipperiness is obtained for the fatty acid copper salt particles, and fluidity can be further imparted to the powder mixture.

ゆるみ嵩密度(Da)は、下記の測定方法で得られた値である。まず、例えばパウダーテスター(ホソカワミクロン株式会社製、PT−N型)を用い、振動台に篩目710μmの篩をセットし、その中に試料250ccを入れ、30秒間振動させて、篩の下方に設置した測定用カップの中に、落下した試料を集める。付属のブレードを用いて、カップ上の余分な脂肪酸金属塩粒子をすりきった後、試料の入ったカップの重量を測定する。なお、本発明においては、この操作・測定を5回繰り返し、その平均値を嵩密度(Da)の測定値とする。PT−N型では、自動で測定値が表示される。   The loose bulk density (Da) is a value obtained by the following measuring method. First, for example, a powder tester (made by Hosokawa Micron Corporation, PT-N type) is used, and a sieve with a mesh size of 710 μm is set on a vibration table, and a sample of 250 cc is placed therein, vibrated for 30 seconds, and placed under the sieve. Collect the dropped sample in the measuring cup. Using the attached blade, scrape excess fatty acid metal salt particles on the cup, and then weigh the cup containing the sample. In the present invention, this operation / measurement is repeated five times, and the average value is taken as the measurement value of the bulk density (Da). In the PT-N type, the measured value is automatically displayed.

ゆるみ嵩密度(Da)(g/cc)=試料の入ったカップの重量(g)/カップの容積(cc)・・・(3)式   Loose bulk density (Da) (g / cc) = weight of cup containing sample (g) / volume of cup (cc) (3)

〔粉末冶金用粉末混合物〕
本発明の粉末冶金用粉末混合物は、金属粉末と、本発明の粉末冶金用潤滑剤とを含有し、金属粉末100質量部に対し、本発明の粉末冶金用潤滑剤を、好ましくは0.01〜2質量部、より好ましくは0.05〜1質量部含有させて得られる。
[Powder mixture for powder metallurgy]
The powder mixture for powder metallurgy according to the present invention contains a metal powder and the lubricant for powder metallurgy according to the present invention. Preferably, the lubricant for powder metallurgy according to the present invention is preferably 0.01 per 100 parts by mass of the metal powder. ˜2 parts by mass, more preferably 0.05 to 1 part by mass.

金属粉末としては、一般的に用いられる鉄粉末や鋼粉末のほか、銅、チタン、タングステン、モリブデン、ニッケル、コバルト、クロムなどの粉末を挙げることができ、これらを合金化した鉄−ニッケル合金、鉄−コバルト合金などの粉末も用いることができる。   Examples of the metal powder include generally used iron powder and steel powder, as well as powders of copper, titanium, tungsten, molybdenum, nickel, cobalt, chromium, and the like, and an iron-nickel alloy obtained by alloying them. Powders such as iron-cobalt alloys can also be used.

本発明の粉末冶金用粉末混合物は、結合剤をさらに含有していてもよい。結合剤としては、銅粉末、黒鉛粉末、二硫化モリブデン粉末、錫粉末などが挙げられ、さらに、これら粉末の2種以上を組み合わせて用いてもよい。結合剤は、金属粉末100質量部に対し、5質量部程度までの含有量で用いられる。   The powder mixture for powder metallurgy of the present invention may further contain a binder. Examples of the binder include copper powder, graphite powder, molybdenum disulfide powder, and tin powder, and two or more of these powders may be used in combination. A binder is used by content to about 5 mass parts with respect to 100 mass parts of metal powder.

本発明の粉末冶金用粉末混合物は、他の粉末冶金用潤滑剤を含有していてもよい。他の粉末冶金用潤滑剤としては、エチレンビスステアリン酸アミドおよびステアリン酸アミドが挙げられる。他の粉末冶金用潤滑剤を用いる場合、本発明の粉末冶金用潤滑剤と他の粉末冶金用潤滑剤とを質量比1:9〜9:1で乾式混合させた潤滑剤混合物として用いてもよい。   The powder mixture for powder metallurgy of the present invention may contain other powder metallurgy lubricants. Other powder metallurgy lubricants include ethylene bis stearamide and stearamide. When using other powder metallurgy lubricants, the powder metallurgy lubricant of the present invention and other powder metallurgy lubricants may be used as a lubricant mixture obtained by dry mixing at a mass ratio of 1: 9 to 9: 1. Good.

本発明の粉末冶金用粉末混合物は、均一な混合物を得るのに十分な時間、十分に混合される。通常、混合物は30分間〜2時間、より好ましくは45分間〜1.5時間混合され、均一な混合物が得られる。混合に際しては、ボールミキサーなどいずれの好適な混合手段を用いることができる。   The powder mixture for powder metallurgy of the present invention is sufficiently mixed for a time sufficient to obtain a uniform mixture. Usually, the mixture is mixed for 30 minutes to 2 hours, more preferably 45 minutes to 1.5 hours to obtain a uniform mixture. For mixing, any suitable mixing means such as a ball mixer can be used.

本発明の粉末冶金用粉末混合物は、次いで、金型に流し込み圧縮成型される。さらに、圧縮成型体は、金型からの抜き出し処理がなされ、通常、圧縮成型体の焼結が起きる焼結炉に運ばれる。焼結とは、圧縮成型体の大部分の成分の液相温度以下に圧縮成型体を加熱することによる圧縮成型体中の隣接面の結合である。焼結は、通常の焼結温度(1050〜1300℃)にて、また選択的に窒素と水素のガス混合物の還元雰囲気下で、いずれも20分間〜1時間、好ましくは30分間行なわれ、これにより、接触点で粉末粒子の拡散結合が達成され、焼結塊が形成させる。   The powder mixture for powder metallurgy of the present invention is then poured into a mold and compression molded. Furthermore, the compression-molded body is extracted from the mold and is usually conveyed to a sintering furnace where the compression-molded body is sintered. Sintering is the bonding of adjacent surfaces in a compression molded body by heating the compression molded body below the liquidus temperature of most components of the compression molded body. Sintering is carried out at a normal sintering temperature (1050-1300 ° C.) and optionally under a reducing atmosphere of a gas mixture of nitrogen and hydrogen, both for 20 minutes to 1 hour, preferably 30 minutes. Thus, diffusion bonding of the powder particles is achieved at the contact point, and a sintered mass is formed.

以下、実施例および比較例を挙げて本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

〔粉末冶金用潤滑剤の調製〕
(実施例1)
3Lセパラブルフラスコに混合脂肪酸(ミリスチン酸を2.1質量%、パルミチン酸を30.3質量%、ステアリン酸を66.5%、アラキン酸を0.8質量%、およびベヘン酸を0.3質量%含有する。)250g、ポリエチレングリコール・ポリプロピレングリコール・ブロックエーテル(日油株式会社製、商品名:プロノン♯104)を0.75gおよび水2500gを仕込み、90℃まで昇温した。次いで、48質量%水酸化ナトリウム水溶液を77.2g加え、同温度(90℃)にて1時間攪拌し、脂肪酸アルカリ化合物塩水溶液を得た。
その後、90℃に保持したまま、20質量%硫酸銅水溶液151.2gを30分間(1.1×10−4mol/秒)かけて脂肪酸アルカリ化合物塩水溶液に滴下した。滴下終了後、90℃に保持して10分間攪拌して熟成した。得られた混合脂肪酸銅塩水溶液スラリーに水1500gを加え、65℃以下まで冷却した。その後、吸引濾過機でろ過し、1000gの水で2回水洗し、得られたケーキをミクロンドライヤーで乾燥、粉砕して脂肪酸銅塩粒子を得た。
[Preparation of lubricant for powder metallurgy]
Example 1
A 3 L separable flask was mixed with mixed fatty acids (2.1% by weight myristic acid, 30.3% by weight palmitic acid, 66.5% stearic acid, 0.8% by weight arachidic acid, and 0.3% behenic acid. 250 g, polyethylene glycol / polypropylene glycol / block ether (manufactured by NOF Corporation, trade name: Pronon # 104) was charged with 0.75 g and water 2500 g, and the temperature was raised to 90.degree. Subsequently, 77.2g of 48 mass% sodium hydroxide aqueous solution was added, and it stirred at the same temperature (90 degreeC) for 1 hour, and obtained fatty-acid alkali compound salt aqueous solution.
Then, 151.2g of 20 mass% copper sulfate aqueous solution was dripped at the fatty-acid alkali compound salt aqueous solution over 30 minutes (1.1 * 10 < -4 > mol / sec), hold | maintaining at 90 degreeC. After completion of dropping, the mixture was kept at 90 ° C. and stirred for 10 minutes for aging. 1500 g of water was added to the obtained mixed fatty acid copper salt aqueous solution slurry and cooled to 65 ° C. or lower. Thereafter, the mixture was filtered with a suction filter, washed twice with 1000 g of water, and the obtained cake was dried and pulverized with a micron dryer to obtain fatty acid copper salt particles.

(実施例2)
3Lセパラブルフラスコに混合脂肪酸(ミリスチン酸を1.6質量%、パルミチン酸を24.0質量%、ステアリン酸を73.4質量%、アラキン酸を0.7質量%、およびベヘン酸を0.3質量%含有する。)250g、ポリエチレングリコール・ポリプロピレングリコール・ブロックエーテル(日油株式会社製、商品名:プロノン♯104)を0.75gおよび水2500gを仕込み、90℃まで昇温した。次いで、48質量%水酸化ナトリウム水溶液を76.5g加え、同温度(90℃)にて1時間攪拌し、脂肪酸アルカリ化合物塩水溶液を得た。
その後、90℃に保持したまま、20質量%硫酸銅水溶液150.1gを1時間(5.2×10−4mol/秒)かけて脂肪酸アルカリ化合物塩水溶液に滴下した。滴下終了後、さらに、90℃にて1時間攪拌した。得られた混合脂肪酸銅塩水溶液スラリーに水1500gを加え、65℃以下まで冷却した。その後、吸引濾過機でろ過し、1000gの水で2回水洗し、得られたケーキをミクロンドライヤーで乾燥、粉砕して脂肪酸銅塩粒子を得た。
(Example 2)
In a 3 L separable flask, mixed fatty acids (1.6% by mass of myristic acid, 24.0% by mass of palmitic acid, 73.4% by mass of stearic acid, 0.7% by mass of arachidic acid, and 0.1% of behenic acid were added. 3 g%) 250 g, 0.75 g of polyethylene glycol / polypropylene glycol / block ether (manufactured by NOF Corporation, trade name: Pronon # 104) and 2500 g of water were charged, and the temperature was raised to 90.degree. Subsequently, 76.5g of 48 mass% sodium hydroxide aqueous solution was added, and it stirred at the same temperature (90 degreeC) for 1 hour, and obtained fatty-acid alkali compound salt aqueous solution.
Then, 150.1g of 20 mass% copper sulfate aqueous solution was dripped at the fatty-acid alkali compound salt aqueous solution over 1 hour (5.2 * 10 < -4 > mol / sec), hold | maintaining at 90 degreeC. After completion of dropping, the mixture was further stirred at 90 ° C. for 1 hour. 1500 g of water was added to the obtained mixed fatty acid copper salt aqueous solution slurry and cooled to 65 ° C. or lower. Thereafter, the mixture was filtered with a suction filter, washed twice with 1000 g of water, and the obtained cake was dried and pulverized with a micron dryer to obtain fatty acid copper salt particles.

(実施例3)
4Lステンレス製ニーダーに混合脂肪酸(ミリスチン酸を2.1質量%、パルミチン酸を30.3質量%、ステアリン酸を66.5質量%、アラキン酸を0.8質量%、およびベヘン酸を0.3質量%含有する。)を1000g(2.9モル)仕込み、80℃まで昇温した。次いで、酸化銅(II)110g(1.5モル)を加え、反応により生成する水を除去しながら内温を180℃まで昇温し、同温度で1時間攪拌を継続した。
その後、ステンレスバットに排出し、放冷して固化した後に気流式粉砕装置を使用して粉砕を行い、空気分級機で分級して150μm以上の粒子を除去し、脂肪酸銅塩粒子を得た。
(Example 3)
4L stainless steel kneader mixed with mixed fatty acids (myristic acid 2.1 mass%, palmitic acid 30.3 mass%, stearic acid 66.5 mass%, arachidic acid 0.8 mass%, and behenic acid 0.00%. 3% by mass) was charged in an amount of 1000 g (2.9 mol), and the temperature was raised to 80 ° C. Next, 110 g (1.5 mol) of copper (II) oxide was added, the internal temperature was raised to 180 ° C. while removing water produced by the reaction, and stirring was continued at that temperature for 1 hour.
Thereafter, the mixture was discharged into a stainless bat, allowed to cool and solidified, and then pulverized using an airflow pulverizer, classified by an air classifier to remove particles of 150 μm or more, and fatty acid copper salt particles were obtained.

(比較例1)
4Lステンレス製ニーダーに混合脂肪酸(ミリスチン酸を2.1質量%、パルミチン酸を30.3質量%、ステアリン酸を66.5質量%、アラキン酸を0.8質量%、およびベヘン酸を0.3質量%含有する。)を1000g(2.9モル)仕込み、80℃まで昇温した。次いで、酸化銅(II)110g(1.5モル)を加え、反応により生成する水を除去しながら内温を180℃まで昇温し、同温度で1時間攪拌を継続した。
その後、ステンレスバットに排出し、放冷して固化した後に気流式粉砕装置を使用して粉砕を行い、空気分級機で分級して500μm以上の粒子を除去し、脂肪酸銅塩粒子を得た。
(Comparative Example 1)
4L stainless steel kneader mixed with mixed fatty acids (myristic acid 2.1 mass%, palmitic acid 30.3 mass%, stearic acid 66.5 mass%, arachidic acid 0.8 mass%, and behenic acid 0.00%. 3% by mass) was charged in an amount of 1000 g (2.9 mol), and the temperature was raised to 80 ° C. Next, 110 g (1.5 mol) of copper (II) oxide was added, the internal temperature was raised to 180 ° C. while removing water produced by the reaction, and stirring was continued at that temperature for 1 hour.
Thereafter, the mixture was discharged into a stainless bat, allowed to cool and solidified, and then pulverized using an airflow pulverizer, classified by an air classifier to remove particles of 500 μm or more, and fatty acid copper salt particles were obtained.

(比較例2)
3Lセパラブルフラスコに混合脂肪酸(ミリスチン酸を1.6質量%、パルミチン酸を24.0質量%、ステアリン酸を73.4質量%、アラキン酸を0.7質量%、およびベヘン酸を0.3質量%含有する。)250g、ポリエチレングリコール・ポリプロピレングリコール・ブロックエーテル(日油株式会社製、商品名:プロノン♯104)を0.75gおよび水2500gを仕込み、98℃まで昇温した。次いで、48質量%水酸化ナトリウム水溶液76.5gを加え、同温度(98℃)にて1時間攪拌し、脂肪酸アルカリ化合物塩水溶液を得た。
その後、98℃に保持したまま、20質量%硫酸銅水溶液150.1gを1時間(5.2×10−4mol/秒)かけて脂肪酸アルカリ化合物塩水溶液に滴下した。滴下終了後、さらに、98℃にて1時間攪拌した。得られた混合脂肪酸銅塩水溶液スラリーに水1500gを加え、65℃以下まで冷却した。その後、吸引濾過機でろ過し、1000gの水で2回水洗し、得られたケーキをミクロンドライヤーで乾燥、粉砕して脂肪酸銅塩粒子を得た。
(Comparative Example 2)
In a 3 L separable flask, mixed fatty acids (1.6% by mass of myristic acid, 24.0% by mass of palmitic acid, 73.4% by mass of stearic acid, 0.7% by mass of arachidic acid, and 0.1% of behenic acid were added. 3 g.) 250 g, 0.75 g of polyethylene glycol / polypropylene glycol / block ether (manufactured by NOF Corporation, trade name: Pronon # 104) and 2500 g of water were charged, and the temperature was raised to 98.degree. Subsequently, 76.5 g of 48 mass% sodium hydroxide aqueous solution was added, and it stirred at the same temperature (98 degreeC) for 1 hour, and obtained fatty-acid alkali compound salt aqueous solution.
Then, 150.1g of 20 mass% copper sulfate aqueous solution was dripped at the fatty-acid alkali compound salt aqueous solution over 1 hour (5.2 * 10 < -4 > mol / sec), hold | maintaining at 98 degreeC. After completion of dropping, the mixture was further stirred at 98 ° C. for 1 hour. 1500 g of water was added to the obtained mixed fatty acid copper salt aqueous solution slurry and cooled to 65 ° C. or lower. Thereafter, the mixture was filtered with a suction filter, washed twice with 1000 g of water, and the obtained cake was dried and pulverized with a micron dryer to obtain fatty acid copper salt particles.

(比較例3)
60gのKOHを1Lの蒸留水中に溶かした後、ステアリン酸70gを加えて攪拌し、この溶液を加熱して沸騰させることによりステアリン酸カリウムを作成した。次に、この作成液を冷却することでゼリー状にした。これを16時間放置して分離させた固体のステアリン酸カリウムを、等量のメタノールと混ぜ合わせてから濾過した。ステアリン酸1質量部に対してメタノール4質量部を用い、この濾過処理をさらに2回行った。
次にステアリン酸カリウム(約3g)を150mlの蒸留水中に溶かした。これとは別に、50mlの蒸留水に約1.2gの硫酸銅を溶かした溶液も作成した。これら2つの溶液を混合して、ステアリン酸第二銅を青い沈殿物として生成させた。この沈殿物を濾過し、蒸留水で洗浄して乾燥後、粉砕して脂肪酸銅塩粒子を得た。
(Comparative Example 3)
After dissolving 60 g of KOH in 1 L of distilled water, 70 g of stearic acid was added and stirred, and this solution was heated to boiling to prepare potassium stearate. Next, this preparation solution was cooled to form a jelly. The solid potassium stearate separated by standing for 16 hours was mixed with an equal amount of methanol and then filtered. This filtration treatment was further performed twice using 4 parts by mass of methanol per 1 part by mass of stearic acid.
Next, potassium stearate (about 3 g) was dissolved in 150 ml of distilled water. Separately, a solution in which about 1.2 g of copper sulfate was dissolved in 50 ml of distilled water was also prepared. These two solutions were mixed to produce cupric stearate as a blue precipitate. The precipitate was filtered, washed with distilled water, dried, and pulverized to obtain fatty acid copper salt particles.

(比較例4)
脂肪酸銅塩粒子の代わりに脂肪酸金属塩粒子として、ステアリン酸亜鉛(日油株式会社製、商品名「ジンクステアレート」)を用いた。
(Comparative Example 4)
Instead of the fatty acid copper salt particles, zinc stearate (manufactured by NOF Corporation, trade name “zinc stearate”) was used as the fatty acid metal salt particles.

実施例1〜3および比較例1〜4の脂肪酸銅(金属)塩粒子について、粒度要約値A〔体積基準における10%積算径D10(μm)、体積基準におけるメジアン径D50(μm)、体積基準における90%積算径D90(μm)から算出した値〕、ゆるみ嵩密度Da(g/cc)および凝集度B(%)を、それぞれ以下の装置を用い、上述の方法で測定した。その結果を表1に示す。   About fatty acid copper (metal) salt particles of Examples 1 to 3 and Comparative Examples 1 to 4, the particle size summary value A [10% integrated diameter D10 (μm) on volume basis, median diameter D50 (μm) on volume basis, volume basis The value calculated from the 90% integrated diameter D90 (μm)], the loose bulk density Da (g / cc), and the degree of aggregation B (%) were measured by the methods described above using the following apparatuses. The results are shown in Table 1.

(1)粒度(D10、D50、D90)
粒度分布測定装置(機器名「マイクロトラックMT−3000」日機装株式会社製)で測定した(原理:レーザー回折・散乱法)。
測定する粉体の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが10%、50%、90%となる点の粒子径をそれぞれ10%径(D10)、50%径(D50)、90%径(D90)(μm)として求めた。
(1) Particle size (D10, D50, D90)
It was measured with a particle size distribution measuring device (device name “Microtrack MT-3000” manufactured by Nikkiso Co., Ltd.) (principle: laser diffraction / scattering method).
When the cumulative curve was determined with the total volume of the group of powders to be measured as 100%, the particle diameter at the point where the cumulative curve was 10%, 50%, and 90% was 10% diameter (D10) and 50% diameter, respectively. (D50), 90% diameter (D90) (μm).

(2)ゆるみ嵩密度
粉体特性評価装置(機器名「パウダーテスターPT−N型」ホソカワミクロン株式会社製)で測定した。
(2) Loose bulk density The loose bulk density was measured with a powder property evaluation apparatus (device name “Powder Tester PT-N type” manufactured by Hosokawa Micron Corporation).

(3)凝集度B
粉体特性評価装置(機器名「パウダーテスターPT−N型」ホソカワミクロン株式会社製)で測定した。脂肪酸銅(金属)塩粒子を80℃の環境下に10分放置したものを測定試料とした。
(3) Aggregation degree B
It was measured with a powder property evaluation apparatus (device name “Powder Tester PT-N type” manufactured by Hosokawa Micron Corporation). A fatty acid copper (metal) salt particle left in an environment at 80 ° C. for 10 minutes was used as a measurement sample.

Figure 2014173159
Figure 2014173159

(実施例1〜4および比較例1〜5;粉末冶金用粉末混合物の製造と評価)
ベース金属粉末として純鉄粉(神戸製鋼所製、商品名「アトメル300M」)を用い、この純鉄粉100質量部に対して、市販の銅粉末2質量部、黒鉛粉末0.8質量部、表1に示した粉末冶金用潤滑剤0.1質量部を加えて混合し、この混合物を羽根付ミキサーによって30分間高速攪拌した。攪拌後、排出して混合粉末のサンプルを得た。
得られた混合粉末を用いて、見かけ密度、流動度、抜き出し圧力を測定した。また、混合粉末の特性の測定として、混合粉末の焼結体について、引張り強さ、炉内汚染を測定した。結果を表2に示した。
(Examples 1-4 and Comparative Examples 1-5; Production and evaluation of powder mixture for powder metallurgy)
Using pure iron powder (trade name “Atmel 300M” manufactured by Kobe Steel) as the base metal powder, 2 parts by mass of commercially available copper powder, 0.8 part by mass of graphite powder, 0.1 parts by mass of the powder metallurgical lubricant shown in Table 1 was added and mixed, and this mixture was stirred at high speed for 30 minutes with a bladed mixer. After stirring, the sample was discharged to obtain a mixed powder sample.
Using the obtained mixed powder, the apparent density, fluidity, and extraction pressure were measured. Further, as a measurement of the characteristics of the mixed powder, the tensile strength and the contamination in the furnace were measured for the sintered body of the mixed powder. The results are shown in Table 2.

見かけ密度(g/cm
JIS Z 2504(金属粉の見掛密度試験法)に準じて行った。
Apparent density (g / cm 3 )
The test was conducted according to JIS Z 2504 (Apparent density test method for metal powder).

流動度(sec/50g)
JIS Z 2502(金属粉の流動度試験法)に準じ、直径2.63mmのオリフィスを50gの金属粉末が流れ出るまでの時間を流動度(秒/50g)とした。
Fluidity (sec / 50g)
According to JIS Z 2502 (fluidity test method for metal powder), the time required for 50 g of metal powder to flow out of an orifice having a diameter of 2.63 mm was defined as fluidity (second / 50 g).

抜き出し圧力(MPa)
成形圧を4ton/cmに設定して、直径11.3mm×高さ11mmのタブレットを圧縮成形し、ついで金型から成形体を抜き出し、その時の抜き出し圧力で評価した。なお、抜き出し圧力は、抜き出しに必要な力を上記のタブレットの断面積(直径11.3mmの円の面積)で除した値である。
Extraction pressure (MPa)
The molding pressure was set to 4 ton / cm 2, and a tablet having a diameter of 11.3 mm × height of 11 mm was compression-molded. Then, the molded body was extracted from the mold, and the extraction pressure at that time was evaluated. The extraction pressure is a value obtained by dividing the force required for extraction by the cross-sectional area of the tablet (the area of a circle having a diameter of 11.3 mm).

引張り強さ(MPa)
上記の抜き出し圧力の測定にて圧縮成形した成形体に、弱酸化性のRXガス雰囲気下で、昇温速度:60℃/分、保持:1200℃×20分、冷却速度:60℃/分の条件で焼結を施し、焼結体とした。焼結後、大気中にて180℃、60分の焼戻し処理を施した。なお、焼結体の引張強さは、JIS Z 2550に従い測定した。
Tensile strength (MPa)
The molded body compression-molded by the above extraction pressure measurement was heated at a rate of 60 ° C./min, held at 1200 ° C. for 20 minutes, and cooled at a rate of 60 ° C./min in a weakly oxidizing RX gas atmosphere. Sintering was performed under the conditions to obtain a sintered body. After sintering, a tempering treatment was performed at 180 ° C. for 60 minutes in the air. The tensile strength of the sintered body was measured according to JIS Z 2550.

炉内汚染
上記の引張り強さの測定で焼結を施した焼結炉の汚れを観察し、以下の基準で評価した。
○:焼結炉内部の表面に析出物(汚れ)が無い。
×:焼結炉内部の表面に析出物(汚れ)が有る。
Contamination in the furnace Stain of the sintering furnace subjected to the sintering was observed by the above-described measurement of the tensile strength, and evaluated according to the following criteria.
○: There is no precipitate (dirt) on the surface inside the sintering furnace.
X: There are precipitates (dirt) on the surface inside the sintering furnace.

表2に記載の実施例1〜3では表1中の実施例1〜3の粉末冶金用潤滑剤を用い、表2に記載の実施例4では表1中の実施例1記載の潤滑剤50質量部と脂肪酸アミド50質量部をナウターミキサーで30分間乾式混合して得た混合潤滑剤を用いた。なお、脂肪酸アミドは、日油株式会社製「アルフローH−50TF」(エチレンビスステアリン酸アミド)である。   In Examples 1 to 3 shown in Table 2, the powder metallurgy lubricants of Examples 1 to 3 in Table 1 were used, and in Example 4 shown in Table 2, the lubricant 50 described in Example 1 of Table 1 was used. A mixed lubricant obtained by dry mixing 30 parts by mass with 50 parts by mass of a fatty acid amide with a Nauter mixer was used. The fatty acid amide is “Alflow H-50TF” (ethylenebisstearic acid amide) manufactured by NOF Corporation.

また、表2に記載の比較例1〜4では表1中の比較例1〜4の粉末冶金用潤滑剤を用い、表2に記載の比較例5では表1中の比較例4記載の潤滑剤50質量部と脂肪酸アミド50質量部をナウターミキサーで30分間乾式混合して得た混合潤滑剤を用いた。なお、脂肪酸アミドは、日油株式会社製「アルフローH−50TF」(エチレンビスステアリン酸アミド)である。   In Comparative Examples 1 to 4 shown in Table 2, the lubricant for powder metallurgy of Comparative Examples 1 to 4 in Table 1 is used, and in Comparative Example 5 shown in Table 2, the lubrication described in Comparative Example 4 in Table 1 is used. A mixed lubricant obtained by dry-mixing 50 parts by mass of the agent and 50 parts by mass of the fatty acid amide with a Nauter mixer for 30 minutes was used. The fatty acid amide is “Alflow H-50TF” (ethylenebisstearic acid amide) manufactured by NOF Corporation.

Figure 2014173159
Figure 2014173159

表2に示す実施例1〜4の結果より、本発明による粉末冶金用潤滑剤を使用すると、抜き出し圧力を低減でき、引張り強さが870MPa以上となり、炉内汚染を起こさなかった。
これに対し、比較例1〜3は、抜き出し圧力が9.6MPa以上と高く、引張り強度も780MPa以下となった。また、比較例4〜5では、引張り強度が750MPa以下となり、従来用いられるステアリン酸亜鉛の影響により炉内汚染を引き起こした。
From the results of Examples 1 to 4 shown in Table 2, when the powder metallurgy lubricant according to the present invention was used, the extraction pressure could be reduced, the tensile strength became 870 MPa or more, and no furnace contamination occurred.
On the other hand, Comparative Examples 1 to 3 had a high extraction pressure of 9.6 MPa or more and a tensile strength of 780 MPa or less. Moreover, in Comparative Examples 4-5, tensile strength became 750 Mpa or less and caused the contamination in a furnace by the influence of the zinc stearate used conventionally.

本発明の粉末冶金用潤滑剤は、鉄基粉末などの金属粉末を含有する粉末混合物を圧縮成型し、さらに焼結して焼結体を製造する粉末冶金技術に利用することができ、粉末混合物を金型に充填する時の流動性向上、焼結体の強度向上、金型からの抜き出し圧力の低減を付与できるとともに、焼結炉内の汚染を抑制することができる。したがって、本発明の粉末冶金用潤滑剤を用いることにより、生産管理面、コスト面および作業性の面で有利に、十分な強度を有する焼結体を製造することができる。   The lubricant for powder metallurgy according to the present invention can be used for powder metallurgy technology in which a powder mixture containing a metal powder such as iron-based powder is compression molded and further sintered to produce a sintered body. In addition to improving the fluidity when filling the mold, the strength of the sintered body, and the reduction of the extraction pressure from the mold, contamination in the sintering furnace can be suppressed. Therefore, by using the powder metallurgy lubricant of the present invention, it is possible to produce a sintered body having sufficient strength in terms of production management, cost, and workability.

Claims (2)

炭素数6〜24の脂肪酸銅塩粒子からなる粉末冶金用潤滑剤であって、前記脂肪酸銅塩粒子は、下記(1)式で表される粒度要約値Aが2. 5以下であり、かつ80℃の環境下に10分放置後にパウダーテスターで測定される下記(2)式で表される凝集度Bが30%以下であることを特徴とする粉末冶金用潤滑剤。

粒度要約値A= (D90−D10) /D50(但し、1. 0≦D50≦30. 0)・・・(1)式
D10:脂肪酸銅塩の体積基準における10%積算径(μm)
D50:脂肪酸銅塩の体積基準におけるメジアン径(μm)
D90:脂肪酸銅塩の体積基準における90%積算径(μm)

凝集度B=〔(篩目350μmの篩に残存する脂肪酸銅塩粒子の質量)/2〕×100×(1/1)+〔(篩目250μmの篩に残存する脂肪酸銅塩粒子の質量)/2〕×100×(3/5)+〔(篩目150μmの篩に残存する脂肪酸銅塩粒子の質量)/2〕×100×(1/5)〕・・・(2)式
A lubricant for powder metallurgy comprising fatty acid copper salt particles having 6 to 24 carbon atoms, wherein the fatty acid copper salt particles have a particle size summary value A represented by the following formula (1) of 2.5 or less, and A lubricant for powder metallurgy, characterized in that an agglomeration degree B represented by the following formula (2) measured by a powder tester after standing in an environment of 80 ° C. for 10 minutes is 30% or less.

Particle size summary value A = (D90−D10) / D50 (where 1.0 ≦ D50 ≦ 30.0) (1) Formula D10: 10% integrated diameter (μm) of fatty acid copper salt based on volume
D50: Median diameter (μm) of fatty acid copper salt based on volume
D90: 90% integrated diameter (μm) of fatty acid copper salt based on volume

Aggregation degree B = [(mass of fatty acid copper salt particles remaining on sieve with 350 μm sieve) / 2] × 100 × (1/1) + [(mass of fatty acid copper salt particles remaining on sieve with 250 μm sieve) / 2] × 100 × (3/5) + [(mass of fatty acid copper salt particles remaining on a sieve having a mesh size of 150 μm) / 2] × 100 × (1/5)] (2) formula
金属粉末と、請求項1に記載の粉末冶金用潤滑剤とを含有することを特徴とする粉末冶金用粉末混合物。   A powder mixture for powder metallurgy comprising a metal powder and the lubricant for powder metallurgy according to claim 1.
JP2013048533A 2013-03-11 2013-03-11 Powder metallurgy lubricant and powder metallurgy powder mixture Active JP6221271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013048533A JP6221271B2 (en) 2013-03-11 2013-03-11 Powder metallurgy lubricant and powder metallurgy powder mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048533A JP6221271B2 (en) 2013-03-11 2013-03-11 Powder metallurgy lubricant and powder metallurgy powder mixture

Publications (2)

Publication Number Publication Date
JP2014173159A true JP2014173159A (en) 2014-09-22
JP6221271B2 JP6221271B2 (en) 2017-11-01

Family

ID=51694711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048533A Active JP6221271B2 (en) 2013-03-11 2013-03-11 Powder metallurgy lubricant and powder metallurgy powder mixture

Country Status (1)

Country Link
JP (1) JP6221271B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330792A (en) * 1992-11-13 1994-07-19 Hoeganaes Corporation Method of making lubricated metallurgical powder composition
JPH0931608A (en) * 1995-07-19 1997-02-04 Sumitomo Special Metals Co Ltd High performance rare earth-iron-boron-carbon magnet material excellent in corrosion resistance
JP2000273502A (en) * 1999-03-24 2000-10-03 Nof Corp Metallic salt of fatty acid for powder metallurgy
JP2009098555A (en) * 2007-10-19 2009-05-07 Ricoh Co Ltd Lubricant supplying unit, process cartridge, image forming apparatus, lubricant supplying member and supply
US20100243945A1 (en) * 2009-03-25 2010-09-30 Tdk Corporation Soft magnetic core and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330792A (en) * 1992-11-13 1994-07-19 Hoeganaes Corporation Method of making lubricated metallurgical powder composition
JPH08504233A (en) * 1992-11-13 1996-05-07 ホーガニーズ コーポレイション Method of making lubricious metallurgical powder composition
JPH0931608A (en) * 1995-07-19 1997-02-04 Sumitomo Special Metals Co Ltd High performance rare earth-iron-boron-carbon magnet material excellent in corrosion resistance
JP2000273502A (en) * 1999-03-24 2000-10-03 Nof Corp Metallic salt of fatty acid for powder metallurgy
JP2009098555A (en) * 2007-10-19 2009-05-07 Ricoh Co Ltd Lubricant supplying unit, process cartridge, image forming apparatus, lubricant supplying member and supply
US20100243945A1 (en) * 2009-03-25 2010-09-30 Tdk Corporation Soft magnetic core and manufacturing method thereof
JP2010251696A (en) * 2009-03-25 2010-11-04 Tdk Corp Soft magnetic powder core and method of manufacturing the same

Also Published As

Publication number Publication date
JP6221271B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
EP1976652B1 (en) Lubricant for powder metallurgical compositions
JP5271958B2 (en) Iron-based powder composition containing a binder-lubricant combination and manufacture of the powder composition
JP6729546B2 (en) Metal soap and method for producing the same
JP2010265454A (en) Lubricant combination and process for preparing the same
KR20160133015A (en) Lubricant for powder metallurgical compositions
JP2005307348A (en) Iron-based powder mixture for powder metallurgy
JP6098338B2 (en) Clogging prevention agent for abrasive cloth and clogging prevention composition for abrasive cloth
JP6221271B2 (en) Powder metallurgy lubricant and powder metallurgy powder mixture
KR20170010825A (en) New product
JPH0694563B2 (en) Iron-based powder mixture for powder metallurgy and method for producing the same
JP6119611B2 (en) Resin coated sand fluidity improver
JP6760495B2 (en) Mixed powder for powder metallurgy
JP6098337B2 (en) Anti-blocking agent for nitrogen fertilizer and nitrogen fertilizer composition
JP2022050859A (en) Manufacturing method of metal powder
CN112584948A (en) Mixed powder for powder metallurgy and lubricant for powder metallurgy
JP2014218533A (en) Resin-coated sand dispersant and proppant composition for gas well or oil well

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6221271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250