JP2014172766A - Method for manufacturing silicon nanoparticle - Google Patents

Method for manufacturing silicon nanoparticle Download PDF

Info

Publication number
JP2014172766A
JP2014172766A JP2013044180A JP2013044180A JP2014172766A JP 2014172766 A JP2014172766 A JP 2014172766A JP 2013044180 A JP2013044180 A JP 2013044180A JP 2013044180 A JP2013044180 A JP 2013044180A JP 2014172766 A JP2014172766 A JP 2014172766A
Authority
JP
Japan
Prior art keywords
silicon
silicon nanoparticles
mixed solution
nanoparticles
dispersion treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013044180A
Other languages
Japanese (ja)
Other versions
JP6057424B2 (en
Inventor
Kenji Hirakuri
健二 平栗
Shun Kitazawa
駿 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denki University
Original Assignee
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denki University filed Critical Tokyo Denki University
Priority to JP2013044180A priority Critical patent/JP6057424B2/en
Publication of JP2014172766A publication Critical patent/JP2014172766A/en
Application granted granted Critical
Publication of JP6057424B2 publication Critical patent/JP6057424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing silicon nanoparticles which can sufficiently control the particle diameter of silicon nanoparticles by suppressing particle agglomeration when manufacturing the silicon nanoparticles.SOLUTION: Silicon nanoparticles are manufactured by performing: an addition step of adding a silicon powder 11 to a mixed solution 10 in which water and methanol are mixed; a pre-dispersion step of dispersing silicon particles 13 composing the silicon powder 11 in the mixed solution 10 beforehand; and an etching step of obtaining silicon nanoparticles 15 by adding an etchant to the mixed solution 10 after the pre-dispersion step to narrow the diameter of the silicon particles 13.

Description

本発明は、化学エッチング法によりシリコン粉末からシリコンナノ粒子を製造するシリコンナノ粒子の製造方法に関する。   The present invention relates to a method for producing silicon nanoparticles in which silicon nanoparticles are produced from a silicon powder by a chemical etching method.

近年、ナノテクノロジーに対する関心が急速に高まっている。この中で、金属や半導体をナノメートルオーダーにまで微細化したものは量子ドットと呼ばれており、粒径によってバンドギャップエネルギーが増減し、光学的特性、電気的特性、磁気的特性、化学的特性などが変化する。また、量子ドットは、バルク結晶にはない物性を示すことや、微小サイズの粒子構造を持つことから、様々な分野への応用が期待されている(例えば、特許文献1参照)。   In recent years, interest in nanotechnology has increased rapidly. Among them, metal and semiconductors that have been refined to the nanometer order are called quantum dots, and the band gap energy increases or decreases depending on the particle size, resulting in optical, electrical, magnetic, and chemical properties. The characteristics change. In addition, quantum dots are expected to be applied in various fields because they exhibit physical properties not found in bulk crystals and have a micro-sized particle structure (for example, see Patent Document 1).

その中でもシリコン(Si)の量子ドットであるシリコンナノ粒子は、資源の豊富さや無毒性などの観点で、工業、医学、衣装、化粧、装飾の幅広い分野で応用されることが期待されており、現在、ディスプレイ、照明器具、太陽電池などの様々な分野で利用への期待が益々高まってきている。シリコンナノ粒子を利用した応用製品が使用されるようになれば莫大な効果が想定され、地球環境問題の解決に繋がることで社会的な波及効果も高い。   Among them, silicon nanoparticles, which are silicon (Si) quantum dots, are expected to be applied in a wide range of industries, medicine, costumes, makeup, and decoration from the viewpoint of resource abundance and non-toxicity. Currently, expectations for use in various fields such as displays, lighting fixtures, and solar cells are increasing. If application products using silicon nanoparticles are used, enormous effects are expected, and social ripple effects are high by leading to the solution of global environmental problems.

シリコンナノ粒子の製造方法としては、シリコンナノ粒子の蛍光波長を正確に制御するために、現在、PVDやCVDなどのドライプロセスで製造することが主流となっている。   As a manufacturing method of silicon nanoparticles, in order to accurately control the fluorescence wavelength of silicon nanoparticles, it is currently mainstream to manufacture by a dry process such as PVD or CVD.

WO2007/086302WO2007 / 086302

ところで、ドライプロセスでシリコンナノ粒子を製造するには大規模な装置を使用する必要があり、しかも、回収効率が低いため回収量(製造量)が低いという難点がある。このため、簡易的に大量合成可能なウェットプロセスによる製造が望まれている。   By the way, in order to produce silicon nanoparticles by a dry process, it is necessary to use a large-scale apparatus, and furthermore, since the collection efficiency is low, there is a problem that the collection amount (production amount) is low. For this reason, manufacture by the wet process which can be easily mass-synthesized is desired.

しかし、ウェットプロセスでシリコンナノ粒子を製造すると、粒子の凝集が生じてしまってシリコンナノ粒子の粒径を充分に制御できず、このため、意図した波長の蛍光を発するシリコンナノ粒子を製造し難いという問題がある。   However, if silicon nanoparticles are produced by a wet process, the particles are agglomerated and the particle size of the silicon nanoparticles cannot be sufficiently controlled. Therefore, it is difficult to produce silicon nanoparticles that emit fluorescence of the intended wavelength. There is a problem.

本発明は上記課題に鑑みてなされたものであり、シリコンナノ粒子を製造する際に粒子凝集を抑えて粒径を充分に制御することが可能なシリコンナノ粒子の製造方法を提供することを課題とする。   The present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for producing silicon nanoparticles that can sufficiently control the particle size by suppressing particle aggregation when producing silicon nanoparticles. And

上記目的を達成するために、本発明に係るシリコンナノ粒子の製造方法は、化学エッチング法によりシリコン粉末からシリコンナノ粒子を製造するシリコンナノ粒子の製造方法であって、水と有機溶媒とを混合させた混合溶液にシリコン粉末を投入する投入工程と、前記シリコン粉末を構成するシリコン粒子を前記混合溶液内で予め分散させる前分散処理工程と、前記前分散処理工程を行った後の前記混合溶液にエッチング液を投入して前記シリコン粒子を細径化させることでシリコンナノ粒子とするエッチング工程と、を備えることを特徴とする。   In order to achieve the above object, a method for producing silicon nanoparticles according to the present invention is a method for producing silicon nanoparticles from silicon powder by a chemical etching method, wherein water and an organic solvent are mixed. A charging step of charging silicon powder into the mixed solution, a pre-dispersing step of predispersing silicon particles constituting the silicon powder in the mixed solution, and the mixed solution after performing the pre-dispersing step And an etching step of reducing the diameter of the silicon particles to form silicon nanoparticles.

本発明によれば、シリコンナノ粒子を製造する際に粒子凝集を抑えて粒径を充分に制御することができるシリコンナノ粒子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when manufacturing a silicon nanoparticle, the manufacturing method of the silicon nanoparticle which suppresses particle | grain aggregation and can fully control a particle size can be provided.

本発明の一実施形態に係るシリコンナノ粒子の製造方法の各工程を説明する模式的な説明図である。It is typical explanatory drawing explaining each process of the manufacturing method of the silicon nanoparticle concerning one embodiment of the present invention. 本発明の一実施形態に係るシリコンナノ粒子の製造方法のエッチング工程で、シリコン粒子の粒径が小さくなっていくことを説明する説明図であるIt is explanatory drawing explaining that the particle size of a silicon particle becomes small in the etching process of the manufacturing method of the silicon nanoparticle which concerns on one Embodiment of this invention. 実験例1で、シリコンナノ粒子の蛍光波長をフォトルミネッセンスで発光特性として検出することを説明する斜視図である。It is a perspective view explaining detecting the fluorescence wavelength of a silicon nanoparticle as a light emission characteristic by photoluminescence in Experimental example 1. 実験例1で、前分散処理時間をパラメータとして変化させて製造したシリコンナノ粒子の蛍光波長の測定結果を示すグラフ図である。It is a graph which shows the measurement result of the fluorescence wavelength of the silicon nanoparticle manufactured by experiment example 1 by changing the pre-dispersion processing time as a parameter. 実験例2で、前分散処理時間を0分として製造したシリコンナノ粒子の蛍光波長の測定結果をヒストグラムで示すグラフ図である。In Experimental example 2, it is a graph which shows the measurement result of the fluorescence wavelength of the silicon nanoparticle manufactured by making pre-dispersion processing time into 0 minute with a histogram. 実験例2で、前分散処理時間を15分として製造したシリコンナノ粒子の蛍光波長の測定結果をヒストグラムで示すグラフ図である。In Experimental example 2, it is a graph which shows the measurement result of the fluorescence wavelength of the silicon nanoparticle manufactured by making pre-dispersion processing time into 15 minutes with a histogram. 実験例2で、前分散処理時間を30分として製造したシリコンナノ粒子の蛍光波長の測定結果をヒストグラムで示すグラフ図である。In Experimental example 2, it is a graph which shows the measurement result of the fluorescence wavelength of the silicon nanoparticle manufactured by making pre-dispersion processing time into 30 minutes with a histogram. 実験例2で、前分散処理時間を45分として製造したシリコンナノ粒子の蛍光波長の測定結果をヒストグラムで示すグラフ図である。In Experimental example 2, it is a graph which shows the measurement result of the fluorescence wavelength of the silicon nanoparticle manufactured by making pre-dispersion processing time into 45 minutes with a histogram. 実験例2で、前分散処理時間を60分として製造したシリコンナノ粒子の蛍光波長の測定結果をヒストグラムで示すグラフ図である。In Experimental example 2, it is a graph which shows the measurement result of the fluorescence wavelength of the silicon nanoparticle manufactured by making pre-dispersion processing time into 60 minutes with a histogram. 実験例2で、前分散処理時間を75分として製造したシリコンナノ粒子の蛍光波長の測定結果をヒストグラムで示すグラフ図である。In Experimental example 2, it is a graph which shows the measurement result of the fluorescence wavelength of the silicon nanoparticle manufactured by making pre-dispersion processing time into 75 minutes with a histogram. 実験例2で、前分散処理時間を90分として製造したシリコンナノ粒子の蛍光波長の測定結果をヒストグラムで示すグラフ図である。In Experimental example 2, it is a graph which shows the measurement result of the fluorescence wavelength of the silicon nanoparticle manufactured by making pre-dispersion processing time into 90 minutes with a histogram. 実験例3で、水とメタノールとの混合比をパラメータとして変化させたときのシリコンナノ粒子の蛍光波長の測定結果を示すグラフ図である。In Experimental example 3, it is a graph which shows the measurement result of the fluorescence wavelength of a silicon nanoparticle when changing the mixing ratio of water and methanol as a parameter.

以下、添付図面を参照して、本発明の実施の形態について説明する。以下の説明では、すでに説明したものと同一または類似の構成要素には同一または類似の符号を付し、その詳細な説明を適宜省略している。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, the same or similar components as those already described are denoted by the same or similar reference numerals, and detailed description thereof is omitted as appropriate.

また、図面は模式的なものであり、寸法比などは現実のものとは異なることに留意すべきである。従って、具体的な寸法比などは以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   In addition, it should be noted that the drawings are schematic and the dimensional ratios and the like are different from actual ones. Therefore, specific dimensional ratios and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

また、以下に示す実施の形態は、この発明の技術的思想を具体化するための例示であって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。この発明の実施の形態は、要旨を逸脱しない範囲内で種々変更して実施できる。   The following embodiments are exemplifications for embodying the technical idea of the present invention, and the embodiments of the present invention are described below in terms of the material, shape, structure, arrangement, etc. of the components. It is not something specific. The embodiments of the present invention can be implemented with various modifications without departing from the scope of the invention.

また、以下の説明で「水」は「純水」を意味する。また、有機溶媒としてメタノールを用いる例で説明する。   In the following description, “water” means “pure water”. An example using methanol as the organic solvent will be described.

図1は、本発明の一実施形態(以下、本実施形態という)に係るシリコンナノ粒子の製造方法の各工程を説明する模式的な側面図であり、図2は、本実施形態でのエッチング工程を説明する説明図である。本実施形態に係るシリコンナノ粒子の製造方法は、化学エッチング法によりシリコン粉末からシリコンナノ粒子を製造する方法である。   FIG. 1 is a schematic side view for explaining each step of a method for producing silicon nanoparticles according to an embodiment of the present invention (hereinafter referred to as “this embodiment”), and FIG. 2 is an etching according to this embodiment. It is explanatory drawing explaining a process. The method for producing silicon nanoparticles according to the present embodiment is a method for producing silicon nanoparticles from silicon powder by a chemical etching method.

本実施形態では、まず、水とメタノール(有機溶媒)との混合溶液10を作成する。そして、この混合溶液10にシリコン粉末を投入する投入工程を行う(図1の(a)参照)。   In the present embodiment, first, a mixed solution 10 of water and methanol (organic solvent) is prepared. Then, a charging step of charging silicon powder into the mixed solution 10 is performed (see FIG. 1A).

更に、シリコン粉末11を投入した混合溶液10に、所定出力で所定時間にわたって超音波振動Sを与えることにより、シリコン粉末11を構成するシリコン粒子を混合溶液内で予め分散させる前分散処理工程を行う(図1の(b)参照)。この前分散処理工程によって、シリコン粉末11が分散されてなるシリコン粒子13が多数発生する(図1の(c)参照)。本実施形態では、この前分散処理工程で、混合溶液10の温度を一定に維持しつつ、主に、水とメタノールとの混合比と前分散処理工程を行う時間との少なくとも一方を制御することによって、後述のエッチング工程で形成されるシリコンナノ粒子の粒径を制御する。   Furthermore, a pre-dispersion treatment step is performed in which the silicon particles constituting the silicon powder 11 are preliminarily dispersed in the mixed solution by applying ultrasonic vibration S to the mixed solution 10 charged with the silicon powder 11 with a predetermined output for a predetermined time. (See (b) of FIG. 1). A large number of silicon particles 13 in which the silicon powder 11 is dispersed are generated by this pre-dispersion treatment step (see FIG. 1C). In the present embodiment, in this pre-dispersion process step, at least one of the mixing ratio of water and methanol and the time for performing the pre-dispersion process step is mainly controlled while keeping the temperature of the mixed solution 10 constant. Thus, the particle size of the silicon nanoparticles formed in the etching process described later is controlled.

なお、図1では模式的にシリコン粉末11および個々のシリコン粒子13を描いているが、シリコン粒子13は、複数のシリコン粒子同士が凝集しているものも含む概念である。また、シリコン粉末11からシリコン粒子13への分散度は、超音波振動Sの出力、超音波振動Sを与える時間、混合溶液10の温度、混合溶液10の圧力、などの諸条件に影響される。   In FIG. 1, the silicon powder 11 and the individual silicon particles 13 are schematically illustrated. However, the silicon particles 13 are concepts including those in which a plurality of silicon particles are aggregated. In addition, the degree of dispersion from the silicon powder 11 to the silicon particles 13 is affected by various conditions such as the output of the ultrasonic vibration S, the time during which the ultrasonic vibration S is applied, the temperature of the mixed solution 10, and the pressure of the mixed solution 10. .

前分散処理工程後、化学エッチングによりシリコン粒子13の粒径を細径化させることでシリコンナノ粒子15とするエッチング工程を行う。このエッチング工程では、前分散処理工程後の混合溶液に、フッ化水素酸と硝酸とを混合させた混合酸液12を加え(図1の(c)参照)、超音波振動Sを与えながらシリコン粒子13の径を徐々に縮小させる(図1の(d)参照)。   After the pre-dispersion treatment step, an etching step is performed to make the silicon nanoparticles 15 by reducing the particle size of the silicon particles 13 by chemical etching. In this etching step, a mixed acid solution 12 in which hydrofluoric acid and nitric acid are mixed is added to the mixed solution after the pre-dispersion treatment step (see FIG. 1 (c)), and silicon is applied while applying ultrasonic vibration S. The diameter of the particle 13 is gradually reduced (see (d) of FIG. 1).

なお、エッチング工程で、シリコン粒子13の径が徐々に縮小されていく原理を図2に示す。シリコン粒子13の表面が硝酸で酸化され、この結果、シリコン粒子13の表面に酸化膜13mが形成される。そしてこの酸化膜13mはフッ化水素酸によって除去される。これが繰り返されるこによってシリコンナノ粒子(Si−NPs)15が形成される(図1の(e)参照)。   FIG. 2 shows the principle that the diameter of the silicon particles 13 is gradually reduced in the etching process. The surface of the silicon particles 13 is oxidized with nitric acid, and as a result, an oxide film 13 m is formed on the surface of the silicon particles 13. The oxide film 13m is removed by hydrofluoric acid. By repeating this, silicon nanoparticles (Si-NPs) 15 are formed (see FIG. 1E).

そして、シリコンナノ粒子15を、薬包紙あるいはメンブレンフィルターを用いて混合溶液10から回収し、乾燥させることで、所定粒径のシリコンナノ粒子15の粉体を得る。   And the silicon nanoparticle 15 is collect | recovered from the mixed solution 10 using a medicine wrapper or a membrane filter, and is dried, and the powder of the silicon nanoparticle 15 of a predetermined particle diameter is obtained.

以上説明したように、本実施形態では、シリコンナノ粒子を製造する際、水とメタノール(有機溶媒)とを混合させた混合溶液10にシリコン粉末11を投入し、シリコン粉末11を構成するシリコン粒子12を混合溶液内で予め分散させる前分散処理を行っており、その後、シリコン粒子12をエッチングして所定の粒径にしている。従って、シリコン粒子12をエッチングする段階ではシリコン粒子12の凝集が大きく回避されている。よって、製造するシリコンナノ粒子15の粒径を充分に制御することができるので、意図した波長の蛍光を発するシリコンナノ粒子15を精度良く効率的に製造することができる。   As described above, in the present embodiment, when producing silicon nanoparticles, silicon powder 11 is introduced into mixed solution 10 in which water and methanol (organic solvent) are mixed, and silicon particles constituting silicon powder 11 are formed. A pre-dispersion process is performed in which 12 is previously dispersed in the mixed solution, and then the silicon particles 12 are etched to have a predetermined particle size. Therefore, the aggregation of the silicon particles 12 is largely avoided at the stage of etching the silicon particles 12. Therefore, since the particle diameter of the silicon nanoparticles 15 to be manufactured can be sufficiently controlled, the silicon nanoparticles 15 that emit fluorescence with the intended wavelength can be manufactured with high accuracy and efficiency.

また、前分散処理工程で、混合溶液10の温度を一定に維持しつつ、主に、水とメタノールとの混合比と前分散処理工程を行う時間との少なくとも一方を制御することによって、シリコンナノ粒子15の粒径を制御している。従って、シリコンナノ粒子15の粒径制御がより高められている。なお、前分散処理時間の長さに応じてエッチング時間を調整することで粒径を制御することも可能である。   Further, in the pre-dispersion treatment step, while maintaining the temperature of the mixed solution 10 constant, mainly by controlling at least one of the mixing ratio of water and methanol and the time for performing the pre-dispersion treatment step, The particle size of the particles 15 is controlled. Therefore, the particle size control of the silicon nanoparticles 15 is further enhanced. The particle size can be controlled by adjusting the etching time according to the length of the pre-dispersion treatment time.

また、前分散処理工程では、混合溶液10に超音波振動Sを与えることでシリコン粒子13を分散させている。従って、簡易な手法でシリコン粒子13の前分散処理を行うことができる。   In the pre-dispersion process, the silicon particles 13 are dispersed by applying ultrasonic vibration S to the mixed solution 10. Therefore, the pre-dispersion process of the silicon particles 13 can be performed by a simple method.

また、有機溶媒としてメタノールを用いている。従って、安価な溶媒で効率良く前分散させることができる。   In addition, methanol is used as the organic solvent. Therefore, it can be efficiently predispersed with an inexpensive solvent.

なお、本実施形態において、前分散処理工程では超音波振動Sによりシリコン粒子13を分散させたが、スターラ等の他の手法でシリコン粒子13を分散させてもよい。   In the present embodiment, the silicon particles 13 are dispersed by the ultrasonic vibration S in the pre-dispersion process, but the silicon particles 13 may be dispersed by other methods such as a stirrer.

また、本実施形態では、有機溶媒としてメタノールを用いたが、エタノール等の他のアルコールや、エーテル、アセトン、トルエンなどの他の溶媒を用いてもよい。   In this embodiment, methanol is used as the organic solvent. However, other alcohols such as ethanol, and other solvents such as ether, acetone, and toluene may be used.

(実験例1)
本発明者らは、前分散処理時間をパラメータとして変化させ、室温で、シリコンナノ粒子(Si−NPs)の蛍光の波長を検出する実験を行った。
(Experimental example 1)
The present inventors performed an experiment to detect the wavelength of fluorescence of silicon nanoparticles (Si-NPs) at room temperature by changing the pre-dispersion treatment time as a parameter.

本実験例では、原料であるシリコン粉末としては100mgのシリコン粒子(粒径100nm、シリコン純度98%以上)を用いた。前分散処理時間としては、0、15、30、45、60、75、90(単位は何れも「分」)の各時間で行った。エッチング時間は全て15分とした。   In this experimental example, 100 mg of silicon particles (particle size: 100 nm, silicon purity: 98% or more) was used as the raw material silicon powder. The pre-dispersion processing time was 0, 15, 30, 45, 60, 75, and 90 (units are “minutes”). All etching times were 15 minutes.

投入工程でシリコン粉末を投入する混合溶液としては、何れの前分散処理時間であっても、水5mlとメタノール5mlとを混合させたもの(溶液量は10ml)をテフロン(デユポン社の登録商標)製のビーカーに入れて用いた。   As a mixed solution in which silicon powder is charged in the charging step, Teflon (registered trademark of Deyupon Co., Ltd.) obtained by mixing 5 ml of water and 5 ml of methanol at any pre-dispersion treatment time is used. Used in a beaker.

エッチング工程で使用する混合酸液12としては、何れの前分散処理時間であってもフッ化水素酸20mlと硝酸2mlとを混合させたもの(溶液量は22ml)を用いた。エッチング時間は何れも15分とした。   As the mixed acid solution 12 used in the etching process, a mixture of 20 ml of hydrofluoric acid and 2 ml of nitric acid (the amount of the solution is 22 ml) is used for any pre-dispersion treatment time. The etching time was 15 minutes.

シリコンナノ粒子の発光特性は、フォトルミネッセンス(PhotoLuminescence:PL)により測定した。図3は、本実験例で、シリコンナノ粒子の蛍光波長をフォトルミネッセンスで検出することを説明する斜視図である。   The luminescence characteristics of the silicon nanoparticles were measured by photoluminescence (PhotoLuminescence: PL). FIG. 3 is a perspective view for explaining that the fluorescence wavelength of silicon nanoparticles is detected by photoluminescence in this experimental example.

本実験例では、キセノンランプ20に365nmの光学帯域通過フィルター(図示せず)を装着した。そして、キセノンランプ20(朝日分光製、LAX−100)から発せられて光学帯域通過フィルターを通過した光を励起光22として、製造したシリコンナノ粒子15に照射し、シリコンナノ粒子15の発光(蛍光)の波長を検出器24で検出した。検出器24としてはマルチチャンネル検出器(浜松ホトニクス製、C8808−01)を用いた。その際、室温で、加算平均回数20回、繰り返し計測10回、露光時間19msとした。測定結果を図4に示す。なお、シリコンナノ粒子からの発光(蛍光)は肉眼で観察できるほど高輝度であった。   In this experimental example, a 365 nm optical bandpass filter (not shown) was attached to the xenon lamp 20. Then, the light emitted from the xenon lamp 20 (manufactured by Asahi Spectroscope, LAX-100) and passed through the optical bandpass filter is used as the excitation light 22 to irradiate the manufactured silicon nanoparticles 15, and the silicon nanoparticles 15 emit light (fluorescence). ) Was detected by the detector 24. As the detector 24, a multi-channel detector (manufactured by Hamamatsu Photonics, C8808-01) was used. At that time, the average number of additions was 20 times, the repeated measurement was 10 times, and the exposure time was 19 ms at room temperature. The measurement results are shown in FIG. The light emission (fluorescence) from the silicon nanoparticles was so bright that it could be observed with the naked eye.

図4から判るように、前分散処理時間の長さと発光のピーク波長との関係は、グラフ上で右下がりの一次関数で示される関係となっていた。   As can be seen from FIG. 4, the relationship between the length of the pre-dispersion processing time and the peak wavelength of light emission is a relationship represented by a linear function that descends to the right on the graph.

本実験例により、前分散処理時間を制御することで、シリコンナノ粒子の発光波長を良好に制御できること、すなわち、シリコンナノ粒子の粒径を良好に制御できることが判った。   From this experimental example, it was found that by controlling the pre-dispersion treatment time, the emission wavelength of the silicon nanoparticles can be controlled well, that is, the particle size of the silicon nanoparticles can be controlled well.

また、発光波長は550〜730nmの範囲であり、緑色から赤色までの可視領域でのマルチカラー発光を実現できることが確認された。   The emission wavelength is in the range of 550 to 730 nm, and it was confirmed that multicolor emission in the visible region from green to red can be realized.

(実験例2)
また、本発明者らは、0、15、30、45、60、75、90(単位は何れも「分」)の各前分散処理時間について、シリコンナノ粒子の粒度分布として、シリコンナノ粒子の粒径と体積比との関係を、メックス製ゼータサイザーNano-ZSを使用して求めた。原料であるシリコン粉末としては、実験例1と同様、100mgのシリコン粒子(粒径100nm、シリコン純度98%以上)を用いた。投入工程でシリコン粉末を投入する混合溶液としては、何れの前分散処理時間であっても水10mlとメタノール10mlとを混合させたもの(溶液量は20ml)を用いた。
(Experimental example 2)
In addition, the present inventors, for each pre-dispersion processing time of 0, 15, 30, 45, 60, 75, 90 (unit is “minute”), as the particle size distribution of silicon nanoparticles, The relationship between the particle size and the volume ratio was determined using a Metz Zetasizer Nano-ZS. As the raw material silicon powder, 100 mg of silicon particles (particle size: 100 nm, silicon purity: 98% or more) were used as in Experimental Example 1. As the mixed solution into which the silicon powder was charged in the charging step, a mixture of 10 ml of water and 10 ml of methanol (the amount of the solution was 20 ml) was used for any pre-dispersion treatment time.

測定結果を図5〜図11に示す。図5〜図11から判るように、前分散処理時間が長いほど、シリコン粉末の分散(シリコン粒子の分散)がなされている。   The measurement results are shown in FIGS. As can be seen from FIGS. 5 to 11, the longer the pre-dispersion treatment time, the more the silicon powder is dispersed (silicon particles are dispersed).

また、図5から判るように、前分散処理を開始する前、すなわち前分散処理時間が0分の場合では、シリコン粉末の粒径は2000nm程度であることが確認された。   Further, as can be seen from FIG. 5, it was confirmed that the particle size of the silicon powder was about 2000 nm before the start of the pre-dispersion treatment, that is, when the pre-dispersion treatment time was 0 minutes.

また、図11から判るように、前分散処理時間を90分としたときには、10〜20nmの粒径のシリコン粒子が多量に存在していた。   As can be seen from FIG. 11, when the pre-dispersion treatment time was 90 minutes, a large amount of silicon particles having a particle diameter of 10 to 20 nm were present.

(実験例3)
本発明者らは、投入工程でシリコン粉末を投入する混合溶液について、水(HO)とメタノール(CHOH)との混合比をパラメータとして変化させ、シリコンナノ粒子(Si−NPs)の蛍光の波長を検出する実験を行った。本実験例では、前分散処理時間を全て同じとし、混合溶液の温度を一定とした。原料であるシリコン粉末、エッチング工程で使用する混合酸液12、および、シリコンナノ粒子の発光(蛍光)の測定方法、については実験例1と同じ条件とした。測定結果を図12に示す。
(Experimental example 3)
The inventors changed the mixing ratio of water (H 2 O) and methanol (CH 3 OH) as a parameter for the mixed solution in which the silicon powder was charged in the charging step, and the silicon nanoparticles (Si-NPs) An experiment was conducted to detect the wavelength of fluorescence. In this experimental example, the pre-dispersion treatment times were all the same, and the temperature of the mixed solution was constant. The silicon powder as the raw material, the mixed acid solution 12 used in the etching process, and the method for measuring the luminescence (fluorescence) of the silicon nanoparticles were the same as in Experimental Example 1. The measurement results are shown in FIG.

図12から判るように、水:メタノールの混合比と発光のピーク波長との関係は、グラフ上で右下がりの一次関数で示される関係となっていた。このようにメタノールの割合が高いほうが、発光のピーク波長が短い、すなわちシリコンナノ粒子の粒径が小さい、という結果になったのは、水に比べてメタノールのほうがシリコン粒子の分散性が良いのでエッチングが促進されたことが原因と考えられる。なお、水:メタノールが1:9の場合については、化学エッチングによって原料であるシリコン粒子が完全に溶けきってしまったため、発光(蛍光)を観測することができなかった。   As can be seen from FIG. 12, the relationship between the mixing ratio of water: methanol and the peak wavelength of light emission is a relationship indicated by a linear function that descends to the right on the graph. The higher the ratio of methanol, the shorter the peak emission wavelength, that is, the smaller the particle size of the silicon nanoparticles, because methanol has better dispersibility of silicon particles than water. It is thought that the etching was promoted. In the case of water: methanol of 1: 9, the silicon particles as the raw material were completely dissolved by chemical etching, and thus light emission (fluorescence) could not be observed.

本実験例により、水とメタノールとの混合比を制御することで、シリコンナノ粒子の発光波長を良好に制御できること、すなわち、シリコンナノ粒子の粒径を良好に制御できることが判った。   From this experimental example, it was found that the emission wavelength of silicon nanoparticles can be controlled well, that is, the particle size of silicon nanoparticles can be controlled well by controlling the mixing ratio of water and methanol.

また、発光波長は550〜690nmの範囲であり、緑色から赤色までの可視領域でのマルチカラー発光を実現できることが確認された。   The emission wavelength is in the range of 550 to 690 nm, and it was confirmed that multicolor emission in the visible region from green to red can be realized.

10 混合溶液
11 シリコン粉末
12 混合酸液(エッチング液)
13 シリコン粒子
15 シリコンナノ粒子
S 超音波振動
10 Mixed solution 11 Silicon powder 12 Mixed acid solution (etching solution)
13 Silicon particles 15 Silicon nanoparticles S Ultrasonic vibration

Claims (4)

化学エッチング法によりシリコン粉末からシリコンナノ粒子を製造するシリコンナノ粒子の製造方法であって、
水と有機溶媒とを混合させた混合溶液にシリコン粉末を投入する投入工程と、
前記シリコン粉末を構成するシリコン粒子を前記混合溶液内で予め分散させる前分散処理工程と、
前記前分散処理工程を行った後の前記混合溶液にエッチング液を投入して前記シリコン粒子を細径化させることでシリコンナノ粒子とするエッチング工程と、
を備えることを特徴とするシリコンナノ粒子の製造方法。
A method for producing silicon nanoparticles by producing silicon nanoparticles from silicon powder by a chemical etching method,
A charging step of charging silicon powder into a mixed solution in which water and an organic solvent are mixed;
A pre-dispersion treatment step of pre-dispersing silicon particles constituting the silicon powder in the mixed solution;
Etching step to form silicon nanoparticles by introducing an etchant into the mixed solution after performing the pre-dispersion treatment step to reduce the diameter of the silicon particles,
A method for producing silicon nanoparticles, comprising:
前記前分散処理工程で、前記混合溶液の温度を一定に維持しつつ、前記水と前記有機溶媒との混合比と前記前分散処理工程を行う時間との少なくとも一方を制御することによって、前記エッチング工程で形成される前記シリコンナノ粒子の粒径を制御することを特徴とする請求項1記載のシリコンナノ粒子の製造方法。   In the pre-dispersion treatment step, the etching is performed by controlling at least one of a mixing ratio of the water and the organic solvent and a time for performing the pre-dispersion treatment step while keeping the temperature of the mixed solution constant. The method for producing silicon nanoparticles according to claim 1, wherein a particle size of the silicon nanoparticles formed in the process is controlled. 前記前分散処理工程では、超音波振動により前記シリコン粒子を分散させることを特徴とする請求項1または2記載のシリコンナノ粒子の製造方法。   3. The method for producing silicon nanoparticles according to claim 1, wherein in the pre-dispersion treatment step, the silicon particles are dispersed by ultrasonic vibration. 前記有機溶媒としてアルコールを用いることを特徴とする請求項1〜3のうちいずれか1項記載のシリコンナノ粒子の製造方法。   The method for producing silicon nanoparticles according to claim 1, wherein alcohol is used as the organic solvent.
JP2013044180A 2013-03-06 2013-03-06 Method for producing silicon nanoparticles Active JP6057424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013044180A JP6057424B2 (en) 2013-03-06 2013-03-06 Method for producing silicon nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013044180A JP6057424B2 (en) 2013-03-06 2013-03-06 Method for producing silicon nanoparticles

Publications (2)

Publication Number Publication Date
JP2014172766A true JP2014172766A (en) 2014-09-22
JP6057424B2 JP6057424B2 (en) 2017-01-11

Family

ID=51694388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013044180A Active JP6057424B2 (en) 2013-03-06 2013-03-06 Method for producing silicon nanoparticles

Country Status (1)

Country Link
JP (1) JP6057424B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101724415B1 (en) * 2016-03-10 2017-04-11 주식회사 쇼나노 Antimicrobial agent using silicon and manufacturing method thereof
CN106744973A (en) * 2016-11-20 2017-05-31 安徽大学 A kind of method that sonochemistry prepares unformed silicon nano material
JP2018039695A (en) * 2016-09-07 2018-03-15 学校法人東京電機大学 Method for producing silicon nanoparticle
WO2018155519A1 (en) * 2017-02-22 2018-08-30 学校法人東京電機大学 Method for producing silicon nanoparticles containing p-type or n-type impurities, method for manufacturing solar cell element, and method for manufacturing semiconductor device
CN110964519A (en) * 2019-11-25 2020-04-07 福建医科大学 Preparation method of gram-grade high-quantum-yield fluorescent silicon nanoparticles
WO2023218673A1 (en) 2022-05-12 2023-11-16 エム・テクニック株式会社 Manufacturing method for single crystal spherical silicon nanoparticles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320195A (en) * 2004-05-07 2005-11-17 Napura:Kk Spherical silicon fine particles and method for producing the same
JP2006071330A (en) * 2004-08-31 2006-03-16 Tokyo Denki Univ Nanosilicon fluorescence element for detecting/visual sensing cancerous cells and its manufacturing method
JP2007077002A (en) * 2005-09-12 2007-03-29 Sharp Corp Method for forming rare earth element-doped oxide precursor having silicon nanocrystal
JP2008019113A (en) * 2006-07-11 2008-01-31 Catalysts & Chem Ind Co Ltd Method for producing silicon particulate-containing liquid and method for producing silicon particulate
WO2009047995A1 (en) * 2007-10-13 2009-04-16 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320195A (en) * 2004-05-07 2005-11-17 Napura:Kk Spherical silicon fine particles and method for producing the same
JP2006071330A (en) * 2004-08-31 2006-03-16 Tokyo Denki Univ Nanosilicon fluorescence element for detecting/visual sensing cancerous cells and its manufacturing method
JP2007077002A (en) * 2005-09-12 2007-03-29 Sharp Corp Method for forming rare earth element-doped oxide precursor having silicon nanocrystal
JP2008019113A (en) * 2006-07-11 2008-01-31 Catalysts & Chem Ind Co Ltd Method for producing silicon particulate-containing liquid and method for producing silicon particulate
WO2009047995A1 (en) * 2007-10-13 2009-04-16 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101724415B1 (en) * 2016-03-10 2017-04-11 주식회사 쇼나노 Antimicrobial agent using silicon and manufacturing method thereof
JP2018039695A (en) * 2016-09-07 2018-03-15 学校法人東京電機大学 Method for producing silicon nanoparticle
CN106744973A (en) * 2016-11-20 2017-05-31 安徽大学 A kind of method that sonochemistry prepares unformed silicon nano material
WO2018155519A1 (en) * 2017-02-22 2018-08-30 学校法人東京電機大学 Method for producing silicon nanoparticles containing p-type or n-type impurities, method for manufacturing solar cell element, and method for manufacturing semiconductor device
JPWO2018155519A1 (en) * 2017-02-22 2019-12-12 学校法人東京電機大学 Method for producing p-type or n-type impurity-containing silicon nanoparticles, method for producing solar cell element, and method for producing semiconductor device
JP7151974B2 (en) 2017-02-22 2022-10-12 学校法人東京電機大学 Method for producing silicon nanoparticles containing p-type or n-type impurities, method for producing solar cell element, and method for producing semiconductor device
CN110964519A (en) * 2019-11-25 2020-04-07 福建医科大学 Preparation method of gram-grade high-quantum-yield fluorescent silicon nanoparticles
WO2023218673A1 (en) 2022-05-12 2023-11-16 エム・テクニック株式会社 Manufacturing method for single crystal spherical silicon nanoparticles
WO2023218617A1 (en) 2022-05-12 2023-11-16 エム・テクニック株式会社 Single-crystal spherical silicon nanoparticles
KR20230159459A (en) 2022-05-12 2023-11-21 엠. 테크닉 가부시키가이샤 Method for manufacturing single crystal spherical silicon nanoparticles
KR20230159458A (en) 2022-05-12 2023-11-21 엠. 테크닉 가부시키가이샤 Single crystal spherical silicon nanoparticles

Also Published As

Publication number Publication date
JP6057424B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6057424B2 (en) Method for producing silicon nanoparticles
Wu et al. Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs
Kumar et al. Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence
Nguyen et al. Shape-and size-controlled synthesis of monoclinic ErOOH and cubic Er2O3 from micro-to nanostructures and their upconversion luminescence
Su et al. Facile synthesis and photoelectric properties of carbon dots with upconversion fluorescence using arc-synthesized carbon by-products
Darbandi et al. A facile synthesis method to silica coated CdSe/ZnS nanocomposites with tuneable size and optical properties
US20150021521A1 (en) Quantum dot-containing compositions including an emission stabilizer, products including same, and method
Molaei et al. Synthesizing and investigating photoluminescence properties of CdTe and CdTe@ CdS core-shell quantum dots (QDs): a new and simple microwave activated approach for growth of CdS shell around CdTe core
Chae et al. Excitation dynamics in anisotropic nanostructures of star-shaped CdS
Hagura et al. Highly luminescent silica-coated ZnO nanoparticles dispersed in an aqueous medium
Wei et al. Size sorted multicolor fluorescence graphene oxide quantum dots obtained by differential velocity centrifugation
Sato et al. Controlled chemical etching for silicon nanocrystals with wavelength-tunable photoluminescence
Kim et al. Metal-enhanced fluorescence in polymer composite films with Au@ Ag@ SiO 2 nanoparticles and InP@ ZnS quantum dots
Mordvinova et al. Phosphine synthetic route features and postsynthetic treatment of InP quantum dots
CN104030256B (en) A kind of CdSe quantum dot and preparation method thereof
KR101837579B1 (en) Graphene quantum dot and au nanocomplex having an enhanced photoluminescence characteristic and manufacturing method thereof and metal ion detector using the same
Zhang et al. Facile synthesis of water-soluble ZnS quantum dots with strong luminescent emission and biocompatibility
Huang et al. Correlation of excitation-wavelength dependent photoluminescence with the fractal microstructures of porous silicon
KR20140081152A (en) Fabricating method and film for amplifying luminescence
Arias-Cerón et al. Semiconductor nanocrystals of InP@ ZnS: synthesis and characterization
Li et al. Stable and water-soluble CdTe@ SiO2 composite nanospheres: Preparation, characterization and application in LED
Tang et al. Aqueous synthesis of panchromatic luminescent CdTeSe alloyed quantum dots
Huang et al. Introducing carbon dots to moderate the blue emission from zinc vanadium oxide hydroxide hydrate nanoplates
Ma et al. A simple approach towards uniform spherical Ag-like nanoparticles
Ghamsari et al. CdS colloidal nanocrystals with narrow green emission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161202

R150 Certificate of patent or registration of utility model

Ref document number: 6057424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250