JP2014171962A - Fresh water generator and fresh water generation method - Google Patents

Fresh water generator and fresh water generation method Download PDF

Info

Publication number
JP2014171962A
JP2014171962A JP2013046359A JP2013046359A JP2014171962A JP 2014171962 A JP2014171962 A JP 2014171962A JP 2013046359 A JP2013046359 A JP 2013046359A JP 2013046359 A JP2013046359 A JP 2013046359A JP 2014171962 A JP2014171962 A JP 2014171962A
Authority
JP
Japan
Prior art keywords
cooling water
heat exchanger
water
path
fresh water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013046359A
Other languages
Japanese (ja)
Inventor
Toru Oda
亨 織田
Nobutaka Tomota
伸孝 友田
Noriyuki Shimada
統行 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2013046359A priority Critical patent/JP2014171962A/en
Priority to TW107103826A priority patent/TWI639558B/en
Priority to TW103106171A priority patent/TW201441098A/en
Priority to CN201410068190.0A priority patent/CN104030378A/en
Priority to CN201710969865.2A priority patent/CN107522244B/en
Priority to KR1020140023926A priority patent/KR102058758B1/en
Publication of JP2014171962A publication Critical patent/JP2014171962A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J1/00Arrangements of installations for producing fresh water, e.g. by evaporation and condensation of sea water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/042Prevention of deposits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/043Details
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0012Recuperative heat exchangers the heat being recuperated from waste water or from condensates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/008Mobile apparatus and plants, e.g. mounted on a vehicle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fresh water generator which can be stably operated even if the temperature of cooling water is high, and a fresh water generation method.SOLUTION: In a fresh water generator including: a heat exchanger 8 connected to a circulatory pipe conduit 4 of cooling water for cooling an internal combustion engine; and a condenser 10 for generating distilled water by cooling, with seawater, steam generated from the heat exchanger 8 wherein the steam is generated as a result of the heat exchange, via the heat exchanger 8, of the seawater from the condenser 10 with the cooling water, a bypass pipe conduit 16 connecting an outgoing pipe conduit 7a on the upstream side of the heat exchanger 8 and an incoming pipe conduit 7b on the downstream side of the same is orchestrated, and cooling water on the downstream side of the heat exchanger 8 is returned to the cooling water on the upstream side of the same via the bypass pipe conduit 16.

Description

本発明は、造水装置及び造水方法に関する。   The present invention relates to a fresh water generator and a fresh water generation method.

従来、船舶に搭載したディーゼル機関等の内燃機関を冷却するための、例えば、80℃程度のジャケット冷却水を熱源とした造水装置では、内燃機関のジャケット冷却水の循環経路中に、大気圧未満に減圧した間接式の熱交換器を設けて、海から汲み上げた海水を、前記熱交換器において、前記内燃機関に対するジャケット冷却水を熱源として加熱し、水蒸気を発生させた後、気液分離し、気液分離後の水蒸気を凝縮することによって、淡水を製造するようにしている(例えば特許文献1参照)。   2. Description of the Related Art Conventionally, in a desalination apparatus using, for example, jacket cooling water at about 80 ° C. as a heat source for cooling an internal combustion engine such as a diesel engine mounted on a ship, atmospheric pressure is present in the circulation path of the jacket cooling water of the internal combustion engine. An indirect heat exchanger with a reduced pressure is provided, and the seawater pumped from the sea is heated using the jacket cooling water for the internal combustion engine as a heat source in the heat exchanger to generate water vapor, and then gas-liquid separation However, fresh water is produced by condensing water vapor after gas-liquid separation (see, for example, Patent Document 1).

特許第3923820号公報Japanese Patent No. 3923820

近年、船舶では、燃費の向上を図るのに伴って、内燃機関を冷却するジャケット冷却水の温度が高く、例えば、90℃以上となりつつあり、海水が流れる熱交換器に、海水の蒸発によって析出する塩及びスケールが多量に付着し、伝熱係数の低下による造水量の減少を避けることができないばかりか、前記塩及びスケールを除去するメンテナンスに多大の労力を必要とするという課題がある。   In recent years, in ships, as the fuel efficiency is improved, the temperature of jacket cooling water for cooling the internal combustion engine is high, for example, 90 ° C. or higher, and is deposited on the heat exchanger through which seawater flows by evaporation of seawater. There is a problem that a large amount of salt and scale adhere, and a decrease in the amount of water produced due to a decrease in the heat transfer coefficient cannot be avoided, and a large amount of labor is required for maintenance to remove the salt and scale.

本発明は、上述のような点に鑑みてなされたものであって、熱源とする冷却水が高温であっても、塩及びスケールの発生を抑制して安定した造水が行えるようにすることを目的とする。   The present invention has been made in view of the above points, and is capable of suppressing the generation of salt and scale and performing stable water production even when the cooling water as a heat source is at a high temperature. With the goal.

上記目的を達成するために、本発明では次のように構成している。   In order to achieve the above object, the present invention is configured as follows.

(1)本発明の造水装置は、内燃機関を冷却する冷却水により海水を加熱し、大気圧未満に減圧して水蒸気を生成する熱交換器と、この熱交換器で発生した蒸気を冷却して蒸留水を生成する凝縮器とを備える造水装置であって、
前記熱交換器の上流側と下流側とを接続するバイパス経路を備え、該バイパス経路を介して、前記熱交換器の下流側の前記冷却水を、前記上流側の冷却水へ戻すものである。
(1) The fresh water generator of the present invention heats seawater with cooling water for cooling an internal combustion engine, cools the steam generated by the heat exchanger that generates steam by reducing the pressure below atmospheric pressure, and steam And a condenser for producing distilled water,
A bypass path connecting the upstream side and the downstream side of the heat exchanger is provided, and the cooling water downstream of the heat exchanger is returned to the upstream cooling water via the bypass path. .

本発明によると、熱交換器の上流側と下流側とを接続するバイパス経路を備え、該バイパス経路を介して、熱交換器で冷却された下流側の冷却水を、上流側の冷却水に戻すので、熱交換器の上流側の冷却水、すなわち、熱交換器へ供給される冷却水の温度を低下させることができる。これによって、内燃機関から供給される冷却水の温度が高温となっても、熱交換器へ供給する冷却水の温度を低く抑えることができるので、熱交換器で海水が蒸発して生じる塩及びケールの発生を抑制することが可能となり、当該造水装置の安定した運転を長期に亘って行なうことが可能となる。   According to the present invention, a bypass path connecting the upstream side and the downstream side of the heat exchanger is provided, and the downstream side cooling water cooled by the heat exchanger is converted into the upstream side cooling water via the bypass path. Since it returns, the temperature of the cooling water upstream of the heat exchanger, that is, the temperature of the cooling water supplied to the heat exchanger can be lowered. Thereby, even if the temperature of the cooling water supplied from the internal combustion engine becomes high, the temperature of the cooling water supplied to the heat exchanger can be kept low. It becomes possible to suppress the generation of kale, and it is possible to perform stable operation of the fresh water generator over a long period of time.

(2)本発明の好ましい実施態様では、前記熱交換器は、前記冷却水が循環する循環経路に分岐経路を介して接続され、前記分岐経路は、前記循環経路の前記冷却水を、前記熱交換器に供給する上流側の往き経路と、該熱交換器からの冷却水を前記循環経路に戻す下流側の戻り経路とを備え、
前記バイパス経路は、上流側の前記往き経路と下流側の前記戻り経路とを接続する。
(2) In a preferred embodiment of the present invention, the heat exchanger is connected to a circulation path through which the cooling water circulates via a branch path, and the branch path converts the cooling water in the circulation path to the heat. An upstream outgoing path for supplying to the exchanger, and a downstream return path for returning the cooling water from the heat exchanger to the circulation path,
The bypass path connects the upstream outbound path and the downstream return path.

この実施態様によると、循環経路を循環する冷却水が分岐経路へ分流され、分岐経路の往き経路を介して熱交換器へ供給されて、海水との熱交換によって冷却され、この冷却された冷却水が、分岐経路の戻り経路を介して循環経路に戻される一方、往き経路と戻り経路とを接続するバイパス経路を介して、熱交換器で冷却された冷却水が、熱交換器へ供給される冷却水に戻されて、熱交換器へ供給される冷却水の温度を低下させることができる。   According to this embodiment, the cooling water circulating through the circulation path is diverted to the branch path, supplied to the heat exchanger via the branch path, and cooled by heat exchange with seawater. Water is returned to the circulation path via the return path of the branch path, while the cooling water cooled by the heat exchanger is supplied to the heat exchanger via the bypass path connecting the forward path and the return path. The temperature of the cooling water supplied back to the heat exchanger can be lowered.

(3)本発明の他の実施態様では、前記バイパス経路には、該バイパス経路を流れる前記下流側の前記冷却水の流量を調整する流量調整手段が設けられる。   (3) In another embodiment of the present invention, the bypass path is provided with a flow rate adjusting means for adjusting the flow rate of the cooling water on the downstream side flowing through the bypass path.

この実施態様によると、バイパス経路を流れる下流側の冷却水の流量、すなわち、熱交換器で冷却された後、上流側へ戻される冷却水の流量を調整できるので、この戻される冷却水と上流側の冷却水とが混合された冷却水の温度を調整することができる。つまり、熱交換器へ供給される冷却水の温度を調整することができる。   According to this embodiment, the flow rate of the cooling water on the downstream side flowing through the bypass path, that is, the flow rate of the cooling water returned to the upstream side after being cooled by the heat exchanger can be adjusted. The temperature of the cooling water mixed with the side cooling water can be adjusted. That is, the temperature of the cooling water supplied to the heat exchanger can be adjusted.

(4)本発明の好ましい実施態様では、前記熱交換器の上流側の前記冷却水の温度及び下流前の前記冷却水の温度の少なくともいずれか一方の温度を検出する水温センサと、
前記水温センサの検出温度に基づいて、前記流量調整手段を制御する制御手段とを備える。
(4) In a preferred embodiment of the present invention, a water temperature sensor that detects at least one of the temperature of the cooling water upstream of the heat exchanger and the temperature of the cooling water before downstream,
Control means for controlling the flow rate adjusting means based on the temperature detected by the water temperature sensor.

この実施態様によると、熱交換器の上流側の熱交換前の冷却水の温度や熱交換器の下流側の熱交換後の冷却水の温度を検出し、それに基づいて、バイパス経路を介して上流側へ戻す下流側の冷却水の流量を制御することができる。   According to this embodiment, the temperature of the cooling water before the heat exchange on the upstream side of the heat exchanger and the temperature of the cooling water after the heat exchange on the downstream side of the heat exchanger are detected, and based on the detected temperature, The flow rate of the cooling water on the downstream side returned to the upstream side can be controlled.

(5)本発明の更に他の実施態様では、前記内燃機関が、船舶の内燃機関であり、前記冷却水が、前記内燃機関を冷却するジャケット冷却水である。   (5) In still another embodiment of the present invention, the internal combustion engine is an internal combustion engine of a ship, and the cooling water is jacket cooling water for cooling the internal combustion engine.

この実施態様によると、船舶の内燃機関を冷却するジャケット冷却水の温度が高温となっても、熱交換器へ供給する冷却水の温度を低く抑えることができるので、熱交換器で海水が蒸発して生じる塩及びスケールの発生を抑制することが可能となり、当該造水装置の安定した運転を長期に亘って行なうことが可能となる。   According to this embodiment, since the temperature of the cooling water supplied to the heat exchanger can be kept low even when the temperature of the jacket cooling water for cooling the internal combustion engine of the ship becomes high, seawater evaporates in the heat exchanger. Thus, it is possible to suppress the generation of salt and scale, and the stable operation of the fresh water generator can be performed over a long period of time.

(6)本発明の造水方法は、内燃機関を冷却する冷却水との熱交換によって海水を加熱すると共に、加熱された前記海水を減圧下で蒸発させて水蒸気を生成する加熱蒸発工程と、
生成された水蒸気を冷却して蒸留水を生成する凝縮工程とを備える造水方法であって、
前記加熱蒸発工程は、前記海水と熱交換した前記冷却水を、熱交換前の冷却水に戻す工程を含む。
(6) The fresh water generation method of the present invention heats seawater by heat exchange with cooling water that cools the internal combustion engine, and evaporates the heated seawater under reduced pressure to generate water vapor,
A condensing step of cooling the generated water vapor to generate distilled water,
The heating evaporation step includes a step of returning the cooling water heat-exchanged with the seawater to the cooling water before heat exchange.

本発明によると、加熱蒸発工程では、海水と熱交換して冷却された冷却水を、熱交換前の冷却水に戻す工程を含んでいるので、熱交換前の冷却水の温度を低下させることができる。これによって、内燃機関から供給される冷却水の温度が高温となっても、海水と熱交換する冷却水の温度を低く抑えることができるので、海水と冷却水との熱交換を行う熱交換器で海水が蒸発して生じる塩及びスケールの発生を抑制することが可能となり、造水を安定して長期に亘って行える。   According to the present invention, the heating and evaporation step includes a step of returning the cooling water cooled by exchanging heat with seawater to the cooling water before the heat exchange, so that the temperature of the cooling water before the heat exchange is lowered. Can do. As a result, even if the temperature of the cooling water supplied from the internal combustion engine becomes high, the temperature of the cooling water that exchanges heat with the seawater can be kept low, so that the heat exchanger performs heat exchange between the seawater and the cooling water. Therefore, it is possible to suppress the generation of salt and scale generated by evaporation of seawater, and the water can be formed stably over a long period of time.

このように本発明によれば、熱交換器の上流側と下流側とを接続するバイパス経路を備え、該バイパス経路を介して、熱交換器で冷却された下流側の冷却水を、上流側の冷却水に戻すので、熱交換器の上流側の冷却水、すなわち、熱交換器へ供給される冷却水の温度を低下させることができる。これによって、内燃機関から供給される冷却水の温度が高温となっても、熱交換器へ供給する冷却水の温度を低く抑えることができるので、熱交換器で海水が蒸発して生じる塩及びスケールの発生を抑制することが可能となり、安定した造水を長期に亘って行うことが可能となる。   As described above, according to the present invention, the bypass path connecting the upstream side and the downstream side of the heat exchanger is provided, and the downstream side cooling water cooled by the heat exchanger is supplied to the upstream side through the bypass path. Therefore, the temperature of the cooling water upstream of the heat exchanger, that is, the temperature of the cooling water supplied to the heat exchanger can be reduced. Thereby, even if the temperature of the cooling water supplied from the internal combustion engine becomes high, the temperature of the cooling water supplied to the heat exchanger can be kept low. It becomes possible to suppress generation | occurrence | production of a scale and it becomes possible to perform stable water preparation over a long period of time.

図1は、本発明の一実施形態の造水装置を備えるシステムの概略構成図である。FIG. 1 is a schematic configuration diagram of a system including a fresh water generator according to an embodiment of the present invention. 図2は、図1の造水装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the fresh water generator in FIG. 1. 図3は、本発明の他の実施形態の造水装置の概略構成図である。FIG. 3 is a schematic configuration diagram of a fresh water generator according to another embodiment of the present invention.

以下、図面によって本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施形態の造水装置1を備えるシステム2の概略構成図である。   FIG. 1 is a schematic configuration diagram of a system 2 including a fresh water generator 1 according to an embodiment of the present invention.

この実施形態のシステム2は、船舶に搭載され、ディーゼル機関等の内燃機関3と、この内燃機関3を冷却するジャケット冷却水を循環するための循環管路4と、循環ポンプ5とを備えている。   The system 2 of this embodiment is mounted on a ship and includes an internal combustion engine 3 such as a diesel engine, a circulation line 4 for circulating jacket cooling water that cools the internal combustion engine 3, and a circulation pump 5. Yes.

内燃機関3を冷却するジャケット冷却水の循環管路4には、第1バルブ6が設置されると共に、この第1バルブ6をバイパスする分岐管路7が接続されている。この分岐管路7は、循環管路4からのジャケット冷却水を造水装置1に供給する往き管路7aと、造水装置1からの冷却水を循環管路4に戻す戻り管路7bとを備えている。   The jacket cooling water circulation line 4 for cooling the internal combustion engine 3 is provided with a first valve 6 and a branch line 7 that bypasses the first valve 6. The branch line 7 includes an outward line 7 a that supplies jacket cooling water from the circulation line 4 to the fresh water generator 1, and a return line 7 b that returns cooling water from the fresh water generator 1 to the circulation line 4. It has.

循環回路4の第1バルブ6を操作することによって、造水装置1へのジャケット冷却水の流量を調整することができる。この造水装置1は、分岐管路7を介して供給されるジャケット冷却水を熱源として海水から淡水を製造するものである。   By operating the first valve 6 of the circulation circuit 4, the flow rate of the jacket cooling water to the fresh water generator 1 can be adjusted. This fresh water generator 1 produces fresh water from seawater using jacket cooling water supplied via a branch pipe 7 as a heat source.

図2は、図1の造水装置1の概略構成を示す図である。   FIG. 2 is a diagram showing a schematic configuration of the fresh water generator 1 of FIG.

この実施形態の造水装置1は、原料水である海水とジャケット冷却水との間接熱交換を行い、海水を加熱して、大気圧未満に減圧して水蒸気を生成する熱交換器8と、この熱交換器8で発生した蒸気を気液分離する気液分離缶9と、気液分離缶9で気液分離された蒸気を、図示しないポンプによって汲み上げた原料水としての海水により冷却して蒸留水を生成する凝縮器10とを備えている。   The fresh water generator 1 of this embodiment performs indirect heat exchange between seawater which is raw water and jacket cooling water, heats the seawater, depressurizes it below atmospheric pressure, and generates water vapor, The gas-liquid separation can 9 for gas-liquid separation of the steam generated in the heat exchanger 8 and the vapor separated from the gas-liquid separation can 9 are cooled by seawater as raw water pumped up by a pump (not shown). And a condenser 10 for producing distilled water.

熱交換器8には、循環管路4から分岐された往き管路7aを介してジャケット冷却水が供給され、熱交換器8で熱交換されて冷却されたジャケット冷却水は、戻り管路7bを介して循環管路4へ戻される。往き管路7aには、第2バルブ13及び第1逆止弁14が設置される一方、戻り管路7bには、第3バルブ15が設置される。   The jacket cooling water is supplied to the heat exchanger 8 through the forward pipe 7a branched from the circulation pipe 4, and the jacket cooling water cooled by heat exchange in the heat exchanger 8 is returned to the return pipe 7b. To return to the circulation line 4. The second valve 13 and the first check valve 14 are installed in the forward pipeline 7a, while the third valve 15 is installed in the return pipeline 7b.

凝縮器10、これに連通する気液分離缶9及び熱交換器8は、凝縮器10に接続した真空ポンプ等の真空発生源11によって、その内部が大気圧未満の減圧に維持される。気液分離缶9は、内部にデミスター12を備えており、熱交換器8でジャケット冷却水との熱交換によって加熱されて蒸発した水蒸気が供給され、気液分離される。気液分離缶9内で気液分離された後のブライン海水は、海に再び返される。   The inside of the condenser 10, the gas-liquid separation can 9 and the heat exchanger 8 communicating with the condenser 10 is maintained at a reduced pressure below atmospheric pressure by a vacuum generation source 11 such as a vacuum pump connected to the condenser 10. The gas-liquid separation can 9 includes a demister 12 inside, and is supplied with steam evaporated by heat exchange with the jacket cooling water in the heat exchanger 8 to be gas-liquid separated. The brine seawater after the gas-liquid separation in the gas-liquid separation can 9 is returned to the sea again.

凝縮器10からの海水と往き管路7aからのジャケット冷却水との熱交換を行う熱交換器8は、薄い金属製の熱交換プレートの複数枚を、その間にシール部材を挟んで積層し、この積層体を、その両側に配設した面板をボルトにて締結することによって、前記各熱交換プレートの間に、加熱側隙間流路の複数個と、被加熱側隙間流路の複数個とを交互に形成する、プレート式の熱交換器からなる。加熱側隙間流路にジャケット冷却水が供給され、被加熱側隙間流路に、凝縮器10からの海水が供給される。   The heat exchanger 8 that performs heat exchange between the seawater from the condenser 10 and the jacket cooling water from the outgoing pipe 7a is formed by laminating a plurality of thin metal heat exchange plates with a seal member interposed therebetween, The laminated body is fastened with bolts to face plates disposed on both sides thereof, so that a plurality of heating side gap flow paths and a plurality of heated side gap flow paths are interposed between the heat exchange plates. Are composed of plate-type heat exchangers. Jacket cooling water is supplied to the heating-side clearance channel, and seawater from the condenser 10 is supplied to the heated-side clearance channel.

この実施形態の熱交換器8は、小型で軽量のプレート式の熱交換器であり、設置スペースも小さなものとなる。   The heat exchanger 8 of this embodiment is a small and lightweight plate-type heat exchanger and has a small installation space.

近年、船舶の内燃機関3を冷却するための循環管路4を循環するジャケット冷却水の温度が高く、例えば、90℃程度以上になり、循環管路4からのジャケット冷却水を、そのまま熱交換器8に導入して海水と熱交換させると、海水の蒸発によって析出する塩及びスケールが、熱交換器8に多量に付着する。熱交換器8に多量の塩及びスケールが付着すると、伝熱係数の低下による造水量の減少を避けることができないばかりか、前記塩及びスケールを除去するメンテナンスの頻度が増えると共に、多大の労力を必要とする。   In recent years, the temperature of the jacket cooling water circulating through the circulation line 4 for cooling the internal combustion engine 3 of the ship is high, for example, about 90 ° C. or higher, and the jacket cooling water from the circulation line 4 is directly heat-exchanged. When introduced into the vessel 8 to exchange heat with seawater, a large amount of salt and scale deposited by evaporation of the seawater adhere to the heat exchanger 8. When a large amount of salt and scale adheres to the heat exchanger 8, not only can a decrease in the amount of water produced due to a decrease in the heat transfer coefficient be avoided, but the maintenance frequency for removing the salt and scale increases, and a great deal of labor is required. I need.

そこで、この実施形態では、塩及びスケールの付着を抑制して安定した運転を長期に亘って行えるように、次のように構成している。   Therefore, in this embodiment, the following configuration is employed so that the adhesion of salt and scale can be suppressed and stable operation can be performed over a long period of time.

すなわち、熱交換器8の上流側の往き管路7aと、下流側の戻り管路7bとを接続するバイパス管路16を設けており、このバイパス管路16を介して、戻り管路7bのジャケット冷却水の一部を、往き管路7aのジャケット冷却水に戻すようにしている。   That is, a bypass pipe 16 is provided for connecting the upstream outgoing pipe 7 a and the downstream return pipe 7 b of the heat exchanger 8, and the return pipe 7 b is connected via the bypass pipe 16. A part of the jacket cooling water is returned to the jacket cooling water of the outgoing pipe 7a.

このバイパス管路16には、ポンプ17と、往き管路7aへ戻すジャケット冷却水の流量を調整する第4バルブ18と、第2逆止弁19とが設けられる。   The bypass line 16 is provided with a pump 17, a fourth valve 18 that adjusts the flow rate of the jacket cooling water returned to the forward line 7 a, and a second check valve 19.

以上の構成を有する造水装置1では、図1の内燃機関3が駆動され、循環ポンプ5によってジャケット冷却水の循環が開始されると、造水装置1の往き管路7aの第2バルブ13及び戻り管路7bの第3バルブ15が開放され、循環管路4のジャケット冷却水が、熱交換器8へ分流される。   In the fresh water generator 1 having the above-described configuration, when the internal combustion engine 3 of FIG. 1 is driven and the circulation of the jacket cooling water is started by the circulation pump 5, the second valve 13 of the forward conduit 7 a of the fresh water generator 1. The third valve 15 of the return line 7b is opened, and the jacket cooling water of the circulation line 4 is diverted to the heat exchanger 8.

また、造水装置1の運転が開始されると共に、バイパス管路16のポンプ17が駆動される。これによって、熱交換器8に供給されたジャケット冷却水が、凝縮器10からの海水によって冷却され、戻り管路7bを介して循環回路4へ戻される。   Further, the operation of the fresh water generator 1 is started, and the pump 17 of the bypass pipeline 16 is driven. Thereby, the jacket cooling water supplied to the heat exchanger 8 is cooled by the seawater from the condenser 10 and returned to the circulation circuit 4 through the return pipe 7b.

このとき、戻り管路7bのジャケット冷却水の一部が、バイパス管路16へ供給され、往き管路7aに戻される。これによって、往き管路7aの熱交換前のジャケット冷却水に、熱交換器8で冷却された戻り管路7bの冷却水が混合される。これによって、往き管路7aとバイパス管路16との接続部よりも下流側、すなわち、熱交換器8の入口付近のジャケット冷却水の温度が低下する。   At this time, a part of the jacket cooling water in the return line 7b is supplied to the bypass line 16 and returned to the forward line 7a. Thereby, the cooling water of the return pipe line 7b cooled by the heat exchanger 8 is mixed with the jacket cooling water before the heat exchange of the forward pipe line 7a. As a result, the temperature of the jacket cooling water on the downstream side of the connecting portion between the forward pipe 7 a and the bypass pipe 16, that is, near the inlet of the heat exchanger 8 is lowered.

例えば、この実施形態では、循環管路4から往き管路7aへ供給されるジャケット冷却水の温度は、90℃程度であり、バイパス管路16からのジャケット冷却水が混合された後のジャケット冷却水、すなわち、熱交換器8の入口付近のジャケット冷却水の温度は、80℃程度であり、熱交換器8で凝縮器10からの海水との熱交換によって冷却された後のジャケット冷却水、すなわち、熱交換器8の出口付近のジャケット冷却水の温度は、70℃程度である。   For example, in this embodiment, the temperature of the jacket cooling water supplied from the circulation pipe 4 to the outgoing pipe 7a is about 90 ° C., and the jacket cooling after the jacket cooling water from the bypass pipe 16 is mixed. The temperature of the water, that is, the jacket cooling water near the inlet of the heat exchanger 8 is about 80 ° C., and is cooled by heat exchange with the seawater from the condenser 10 in the heat exchanger 8, That is, the temperature of the jacket cooling water near the outlet of the heat exchanger 8 is about 70 ° C.

このように、熱交換器8に供給されるジャケット冷却水の温度を低下させることができるので、このジャケット冷却水と熱交換器8で熱交換する海水が蒸発する際に、熱交換器8に塩及びスケールが付着するのを抑制することができる。   Thus, since the temperature of the jacket cooling water supplied to the heat exchanger 8 can be lowered, when the seawater heat exchanged between the jacket cooling water and the heat exchanger 8 evaporates, The adhesion of salt and scale can be suppressed.

これによって、塩及びスケールによる伝熱係数の低下によって造水量が減少することを低減できるとともに、塩及びスケールの除去等のメンテナンスの頻度及び労力を大幅に低減することができ、当該造水装置1を長期に亘って安定して運転することができる。   Thereby, while being able to reduce that the amount of fresh water is reduced due to a decrease in heat transfer coefficient due to salt and scale, the frequency and labor of maintenance such as removal of salt and scale can be greatly reduced. Can be stably operated over a long period of time.

本発明の他の実施形態として、図3に示すように、熱交換器8の入口付近のジャケット冷却水の温度を検出する水温センサ20を設けると共に、この水温センサ20によって検出されるジャケット冷却水の水温に基づいて、バイパス管路16の流量調整弁としての第4バルブ18の開度を制御する制御手段としてのコントローラ21を設け、熱交換器8の入口付近のジャケット冷却水の温度が、目標温度になるように、第4バルブ18の開度を制御してもよい。   As another embodiment of the present invention, as shown in FIG. 3, a water temperature sensor 20 for detecting the temperature of the jacket cooling water near the inlet of the heat exchanger 8 is provided, and the jacket cooling water detected by the water temperature sensor 20 is provided. Is provided with a controller 21 as a control means for controlling the opening degree of the fourth valve 18 as a flow rate adjustment valve of the bypass pipe 16, and the temperature of the jacket cooling water near the inlet of the heat exchanger 8 is You may control the opening degree of the 4th valve | bulb 18 so that it may become target temperature.

なお、水温センサ20は、熱交換器8の入口付近に限らず、熱交換器8の出口付近に設けてもよい。   The water temperature sensor 20 is not limited to the vicinity of the inlet of the heat exchanger 8 but may be provided near the outlet of the heat exchanger 8.

上述の実施形態では、造水装置1の熱交換器8は、循環管路4から分岐した分岐管路7に設けたけれども、本発明の他の実施形態として、造水装置1の熱交換器8を循環管路4中に設けてもよい。   In the above-described embodiment, the heat exchanger 8 of the fresh water generator 1 is provided in the branch pipe 7 branched from the circulation pipe 4, but as another embodiment of the present invention, the heat exchanger of the fresh water generator 1 is used. 8 may be provided in the circulation line 4.

熱交換器8は、プレート式の熱交換器に限らず、多管式やその他の熱交換器であってもよい。   The heat exchanger 8 is not limited to a plate type heat exchanger, and may be a multi-tube type or other heat exchanger.

1 造水装置
3 内燃機関
4 循環管路(循環経路)
5 循環ポンプ
7 分岐管路(分岐経路)
8 熱交換器
9 気液分離缶
10 凝縮器
16 バイパス管路(バイパス経路)
20 水温センサ
21 コントローラ
DESCRIPTION OF SYMBOLS 1 Fresh water generator 3 Internal combustion engine 4 Circulation line (circulation path)
5 Circulation pump 7 Branch pipe (branch path)
8 Heat Exchanger 9 Gas-Liquid Separation Can 10 Condenser 16 Bypass Pipeline (Bypass Path)
20 Water temperature sensor 21 Controller

Claims (6)

内燃機関を冷却する冷却水により海水を加熱し、大気圧未満に減圧して水蒸気を生成する熱交換器と、この熱交換器で発生した蒸気を冷却して蒸留水を生成する凝縮器とを備える造水装置であって、
前記熱交換器の上流側と下流側とを接続するバイパス経路を備え、該バイパス経路を介して、前記熱交換器の下流側の前記冷却水を、前記上流側の冷却水へ戻す、
ことを特徴とする造水装置。
A heat exchanger that heats seawater with cooling water that cools the internal combustion engine, reduces the pressure to less than atmospheric pressure to generate water vapor, and a condenser that cools the steam generated in the heat exchanger and generates distilled water. A fresh water generator comprising:
A bypass path connecting the upstream side and the downstream side of the heat exchanger, and through the bypass path, the cooling water downstream of the heat exchanger is returned to the upstream cooling water.
A fresh water generator characterized by that.
前記熱交換器は、前記冷却水が循環する循環経路に分岐経路を介して接続され、前記分岐経路は、前記循環経路の前記冷却水を、前記熱交換器に供給する上流側の往き経路と、該熱交換器からの冷却水を前記循環経路に戻す下流側の戻り経路とを備え、
前記バイパス経路は、上流側の前記往き経路と下流側の前記戻り経路とを接続する、
請求項1に記載の造水装置。
The heat exchanger is connected to a circulation path through which the cooling water circulates via a branch path, and the branch path includes an upstream outgoing path that supplies the cooling water of the circulation path to the heat exchanger. A downstream return path for returning the cooling water from the heat exchanger to the circulation path,
The bypass path connects the forward path upstream and the return path downstream.
The fresh water generator according to claim 1.
前記バイパス経路には、該バイパス経路を流れる前記下流側の前記冷却水の流量を調整する流量調整手段が設けられる、
請求項1または2に記載の造水装置。
The bypass path is provided with a flow rate adjusting means for adjusting the flow rate of the cooling water on the downstream side flowing through the bypass path.
The fresh water generator according to claim 1 or 2.
前記熱交換器の上流側の前記冷却水の温度及び下流前の前記冷却水の温度の少なくともいずれか一方の温度を検出する水温センサと、
前記水温センサの検出温度に基づいて、前記流量調整手段を制御する制御手段とを備える、
請求項3に記載の造水装置。
A water temperature sensor for detecting the temperature of at least one of the temperature of the cooling water upstream of the heat exchanger and the temperature of the cooling water before downstream;
Control means for controlling the flow rate adjusting means based on the detected temperature of the water temperature sensor,
The fresh water generator according to claim 3.
前記内燃機関が、船舶の内燃機関であり、前記冷却水が、前記内燃機関を冷却するジャケット冷却水である、
請求項1ないし4のいずれかに記載の造水装置。
The internal combustion engine is an internal combustion engine of a ship, and the cooling water is jacket cooling water for cooling the internal combustion engine;
The fresh water generator according to any one of claims 1 to 4.
内燃機関を冷却する冷却水との熱交換によって海水を加熱すると共に、加熱された前記海水を減圧下で蒸発させて水蒸気を生成する加熱蒸発工程と、
生成された水蒸気を冷却して蒸留水を生成する凝縮工程とを備える造水方法であって、
前記加熱蒸発工程は、前記海水と熱交換した前記冷却水を、熱交換前の冷却水に戻す工程を含む、
ことを特徴とする造水方法。
A heating and evaporation step of heating seawater by heat exchange with cooling water for cooling the internal combustion engine, and evaporating the heated seawater under reduced pressure to generate water vapor;
A condensing step of cooling the generated water vapor to generate distilled water,
The heating and evaporating step includes a step of returning the cooling water heat-exchanged with the seawater to the cooling water before heat exchange.
A fresh water generation method characterized by that.
JP2013046359A 2013-03-08 2013-03-08 Fresh water generator and fresh water generation method Pending JP2014171962A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013046359A JP2014171962A (en) 2013-03-08 2013-03-08 Fresh water generator and fresh water generation method
TW107103826A TWI639558B (en) 2013-03-08 2014-02-25 Desalination plant
TW103106171A TW201441098A (en) 2013-03-08 2014-02-25 Device and method of seawater desalination
CN201410068190.0A CN104030378A (en) 2013-03-08 2014-02-27 Water Making Device And Water Making Method
CN201710969865.2A CN107522244B (en) 2013-03-08 2014-02-27 Water making device
KR1020140023926A KR102058758B1 (en) 2013-03-08 2014-02-28 Fresh water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046359A JP2014171962A (en) 2013-03-08 2013-03-08 Fresh water generator and fresh water generation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017143432A Division JP2017192942A (en) 2017-07-25 2017-07-25 Fresh water generator

Publications (1)

Publication Number Publication Date
JP2014171962A true JP2014171962A (en) 2014-09-22

Family

ID=51461409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046359A Pending JP2014171962A (en) 2013-03-08 2013-03-08 Fresh water generator and fresh water generation method

Country Status (4)

Country Link
JP (1) JP2014171962A (en)
KR (1) KR102058758B1 (en)
CN (2) CN104030378A (en)
TW (2) TWI639558B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078374A (en) * 2015-10-21 2017-04-27 株式会社ササクラ Fresh water generation system
CN111874200A (en) * 2020-07-07 2020-11-03 武汉理工大学 LNG ship heat energy comprehensive utilization system
WO2022065322A1 (en) * 2020-09-25 2022-03-31 株式会社ササクラ Management device managing vacuum vaporization-type fresh water generation device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107763867A (en) * 2016-08-16 2018-03-06 维克(天津)有限公司 One kind refrigeration water circuit system
CN108928968B (en) * 2018-08-17 2022-01-04 沧州临港中科保生物科技有限公司 Multifunctional sea water desalting salting-out device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2643974A (en) * 1946-01-31 1953-06-30 Griscom Russell Co Apparatus for using waste heat from heat engines for evaporation of water
JPS6051589A (en) * 1983-08-30 1985-03-23 Mitsui Eng & Shipbuild Co Ltd Fresh water preparing apparatus due to utilization of high temperature waste heat
JPS6243692U (en) * 1985-09-06 1987-03-16
JP2003245656A (en) * 2002-02-25 2003-09-02 Sasakura Engineering Co Ltd Plate type fresh water generator using jacket cooling water with respect to marine internal combustion engine as source of heat
JP2004306807A (en) * 2003-04-08 2004-11-04 Sasakura Engineering Co Ltd Method and device for thermally recovering blow water in boiler for vessel
JP2009248013A (en) * 2008-04-08 2009-10-29 Miura Co Ltd Fresh water generating apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302297A (en) * 1977-05-24 1981-11-24 Humiston Gerald F Desalination apparatus with power generation
DE4431546A1 (en) * 1994-09-05 1996-03-07 Jakob Dr Ing Hois Process and device for desalination of sea water
JP2004121994A (en) * 2002-10-02 2004-04-22 Ebara Corp Vacuum evaporation type distillation equipment
CN101344298B (en) * 2007-11-15 2010-06-09 上海海事大学 Air conditioner and sea water desalination combined operation system
DE102009007193A1 (en) * 2009-02-03 2010-08-05 Alstom Technology Ltd. Purifying salt-containing water using hot exhaust gases of combustion device of gas-turbine power plant, comprises partially evaporating the water to be cleaned with exhaust gas by direct heat transfer and then removing droplets of steam
CN101863522B (en) * 2009-12-16 2012-07-04 黄石市高耐斯热工设备有限公司 Diesel exhaust seawater desalination device
US8460551B2 (en) * 2010-05-26 2013-06-11 King Abdulaziz City For Science And Technology Solar membrane distillation system and method of use
CN101985369B (en) * 2010-11-29 2013-08-21 南京中船绿洲环保有限公司 Plate type sea water desalinating device
JP5624443B2 (en) * 2010-12-02 2014-11-12 株式会社ササクラ Air conditioner
JP5672450B2 (en) * 2011-02-25 2015-02-18 株式会社ササクラ Fresh water generator and fresh water generation method
JP5708926B2 (en) * 2011-05-18 2015-04-30 株式会社Ihi Seawater desalination system and method
CN102336450A (en) * 2011-08-10 2012-02-01 国家***天津海水淡化与综合利用研究所 Seawater distillation desalting device utilizing residual heat of diesel engine and desalting method
CN102774917B (en) * 2012-08-14 2013-07-03 众和海水淡化工程有限公司 Petrifaction waste heat utilization based low-temperature multiple-effect sea water distillation desalinization system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2643974A (en) * 1946-01-31 1953-06-30 Griscom Russell Co Apparatus for using waste heat from heat engines for evaporation of water
JPS6051589A (en) * 1983-08-30 1985-03-23 Mitsui Eng & Shipbuild Co Ltd Fresh water preparing apparatus due to utilization of high temperature waste heat
JPS6243692U (en) * 1985-09-06 1987-03-16
JP2003245656A (en) * 2002-02-25 2003-09-02 Sasakura Engineering Co Ltd Plate type fresh water generator using jacket cooling water with respect to marine internal combustion engine as source of heat
JP2004306807A (en) * 2003-04-08 2004-11-04 Sasakura Engineering Co Ltd Method and device for thermally recovering blow water in boiler for vessel
JP2009248013A (en) * 2008-04-08 2009-10-29 Miura Co Ltd Fresh water generating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078374A (en) * 2015-10-21 2017-04-27 株式会社ササクラ Fresh water generation system
CN111874200A (en) * 2020-07-07 2020-11-03 武汉理工大学 LNG ship heat energy comprehensive utilization system
WO2022065322A1 (en) * 2020-09-25 2022-03-31 株式会社ササクラ Management device managing vacuum vaporization-type fresh water generation device

Also Published As

Publication number Publication date
KR20140110743A (en) 2014-09-17
CN104030378A (en) 2014-09-10
CN107522244B (en) 2021-01-01
TW201819309A (en) 2018-06-01
TWI639558B (en) 2018-11-01
KR102058758B1 (en) 2019-12-23
CN107522244A (en) 2017-12-29
TW201441098A (en) 2014-11-01

Similar Documents

Publication Publication Date Title
JP2014171962A (en) Fresh water generator and fresh water generation method
US6936140B2 (en) Water distillation system
US8021519B2 (en) Water distillation system
US20140290247A1 (en) Integrative System of Concentrating Solar Power Plant and Desalineation Plant
KR102565956B1 (en) Fresh water generation system
JP2013180625A (en) Exhaust heat recovery type ship propulsion device, and operation method therefor
US20210283525A1 (en) Low energy ejector desalination system
JP2013160132A (en) Exhaust-heat recovery and utilization system
MX2007003302A (en) Seawater desalination plant.
KR101584418B1 (en) Boiler plant
JP2017192942A (en) Fresh water generator
CN102649591B (en) Water-producing device and water-producing method
KR101878825B1 (en) Fresh water generating equipment for vessels by using waste heat
JP3923820B2 (en) Plate-type fresh water generator using jacket cooling water as a heat source for marine internal combustion engines
JP5975208B2 (en) Seawater desalination apparatus and seawater desalination method using the same
TW202042896A (en) Membrane distillation device
WO2012066579A2 (en) Process for utilization of low pressure, low temperature steam from steam turbine for desalination of sea water
JP2011177600A (en) Seawater desalination system
KR101871319B1 (en) evaporative fresh water generating system for ship
JP3240840U (en) Marine seawater desalination equipment
WO2015060169A1 (en) Power generation plant
JP2024055349A (en) Seawater desalination system and seawater desalination method
AU766985B2 (en) Water distillation system
JPS6365802B2 (en)
KR20140142868A (en) Metal sodium producing system and producing method of it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170516