JP2014169904A - Device and method for acquiring shape data of structure member - Google Patents

Device and method for acquiring shape data of structure member Download PDF

Info

Publication number
JP2014169904A
JP2014169904A JP2013041363A JP2013041363A JP2014169904A JP 2014169904 A JP2014169904 A JP 2014169904A JP 2013041363 A JP2013041363 A JP 2013041363A JP 2013041363 A JP2013041363 A JP 2013041363A JP 2014169904 A JP2014169904 A JP 2014169904A
Authority
JP
Japan
Prior art keywords
search
plane
data group
area
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013041363A
Other languages
Japanese (ja)
Other versions
JP6238531B2 (en
Inventor
Hiroaki Matsushita
裕明 松下
Koji Kuwabara
浩二 桑原
Huo Jia
佳 霍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2013041363A priority Critical patent/JP6238531B2/en
Publication of JP2014169904A publication Critical patent/JP2014169904A/en
Application granted granted Critical
Publication of JP6238531B2 publication Critical patent/JP6238531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for acquiring accurate shape data of a structure member, which can reduce work for data acquisition.SOLUTION: A method for acquiring shape data of a tabular junction member 5 by searching for a prescribed plane area on the basis of a data group obtained by a laser distance meter 9 and showing three-dimensional positions in a surface of the junction member 5, includes: a step of acquiring the data group showing three-dimensional positions in the surface of the junction member 5 by the laser distance meter 9; a step of detecting a search plane for search from the data group; and a step of projecting the data group on the detected search plane in consideration of an irradiation angle of laser light L from the laser distance meter 9 to acquire a data group representing the surface of the junction member 5.

Description

本発明は、構造部材の形状データの取得方法および取得装置に関するものである。   The present invention relates to a method and an apparatus for acquiring shape data of a structural member.

例えば、既存の構造物をリバースエンジニアリングする場合、例えば橋梁などを補修する場合、使われている構造部材を新しく製作する必要がある。
従来、橋梁などにおける構造部材の形状・寸法などをできるだけ正確に計測する計測装置としてレーザ光を用いたものがある(例えば、特許文献1参照)。
For example, when reverse engineering an existing structure, for example, when repairing a bridge or the like, it is necessary to newly manufacture a structural member that is used.
2. Description of the Related Art Conventionally, there is a measurement apparatus that uses laser light as a measuring device that measures the shape and dimensions of a structural member in a bridge or the like as accurately as possible (see, for example, Patent Document 1).

ところで、このようなレーザ計測装置は構造物全体の形状の計測には適しているが、精度が要求される狭く且つボルトなどが多数設けられている接合部の計測には適しておらず、このような接合部の計測には、カメラなどが用いられていた。つまり、レーザ光による計測とカメラ画像による位置検出が併用されていた。   By the way, such a laser measuring device is suitable for measuring the shape of the entire structure, but is not suitable for measuring a joint where a large number of bolts and the like that are required for precision are provided. A camera or the like has been used to measure such a joint. That is, measurement using a laser beam and position detection using a camera image are used together.

特開2007−58508号公報JP 2007-58508 A

ところで、橋梁などの構造物は屋外に設けられているため、外形が朽ちていたり、その構造部材同士を接合するガセットプレートなどの接合部材の連結に使われるボルトなども同時に計測してしまうため、上述したようなレーザ光による計測とカメラ画像を併用したとしても、正確な形状を得るのが難しいという問題があった。   By the way, since structures such as bridges are provided outdoors, the outer shape of the structure is degraded, and bolts used to connect joint members such as gusset plates that join the structural members together are also measured. Even when the measurement using the laser beam as described above and the camera image are used in combination, there is a problem that it is difficult to obtain an accurate shape.

また、レーザ光の計測による三次元の点群データと写真などの2次元の平面データを用いて、三次元の形状を計測する場合には、両者の重ね合わせ作業、すなわち人による作業が必要となり手間を要するとともに、その重ね合わせ部分については、位置データの精度が低下するという問題がある。   Also, when measuring 3D shapes using 3D point cloud data measured by laser light and 2D plane data such as photographs, it is necessary to superimpose them, that is, work by humans. In addition to the time and effort, there is a problem that the accuracy of the position data is reduced for the overlapped portion.

そこで、本発明は、データの取得の手間を軽減し得るとともに、精度の良い構造部材の形状データの取得方法および取得装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a method and an apparatus for acquiring the shape data of a structural member with high accuracy while reducing the time and effort of acquiring the data.

上記課題を解決するため、本発明の構造部材の形状データの取得方法は、レーザ距離計により得られる板状の構造部材の表面の三次元位置を示すデータ群に基づき所定の平面領域を探索することにより当該構造部材の形状データを取得する取得方法であって、
レーザ距離計により構造部材の表面の三次元位置を示すデータ群を取得する工程と、
上記データ群から探索を行うための探索平面を検出する工程と、
上記検出された探索平面にデータ群をレーザ距離計からのレーザ光の照射角度を考慮して投影し構造部材の表面を表すデータ群を取得する工程とを具備した方法である。
In order to solve the above-mentioned problem, the method for acquiring the shape data of the structural member according to the present invention searches for a predetermined plane region based on a data group indicating the three-dimensional position of the surface of the plate-like structural member obtained by the laser distance meter. An acquisition method for acquiring shape data of the structural member by
Acquiring a data group indicating a three-dimensional position of the surface of the structural member by a laser distance meter;
Detecting a search plane for searching from the data group;
And a step of projecting the data group on the detected search plane in consideration of the irradiation angle of the laser beam from the laser rangefinder to obtain the data group representing the surface of the structural member.

また、上記形状データの取得方法における探索平面を検出するに際し、所定の平面領域に係る三次元のデータ群を、構造部材の表面であると見做せる許容厚さ域と、この許容厚さ域の上側および下側で構造部材の表面と見做せない非許容厚さ域との3つの層に分けるとともに、上記許容厚さ域内のデータ群の平均値を用いる三層平面域検出法を適用する方法である。   Further, when detecting the search plane in the above-described shape data acquisition method, an allowable thickness area in which a three-dimensional data group related to a predetermined plane area can be regarded as the surface of the structural member, and the allowable thickness area The three-layer plane area detection method using the average value of the data group within the allowable thickness range is applied to the upper and lower sides of the structural member and the non-allowable thickness range that cannot be recognized as the surface of the structural member. It is a method to do.

また、上記形状データの取得方法において、
探索平面を第1探索軸と当該第1探索軸に直交する第2探索軸とで決定するとともにこれら第1探索軸および第2探索軸により探索平面を検出する工程として、
第1探索軸および第2探索軸を求めるのに三層平面域検出法を用いるとともに上記各探索軸を求めるための探索開始点を含む探索開始平面の領域および当該探索開始平面に含まれる初期探索軸を求める工程と、
上記探索開始平面の領域内で且つ初期探索軸に沿うデータ群に三層平面域検出法を適用して許容厚さ域内のデータ群を求めるとともにこのデータ群に最小二乗法を適用して新たな更新探索軸を求める工程と、
上記求められた更新探索軸上に上記探索開始点を投影するとともに、この更新探索軸上で探索開始平面の領域を延長し、この延長された平面領域内で且つ更新探索軸に沿うデータ群に三層平面域検出法を適用して許容厚さ域内のデータ群を求めるとともにこれらデータ群に最小二乗法を適用して更なる更新探索軸を求める工程を探索終了条件を満たすまで繰り返し行う工程と、
上記工程により求められた第1探索軸および第2探索軸により探索平面を決める工程とを具備した方法である。
Moreover, in the method for acquiring the shape data,
As a step of determining a search plane by a first search axis and a second search axis orthogonal to the first search axis and detecting the search plane by the first search axis and the second search axis,
The three-layer plane area detection method is used to obtain the first search axis and the second search axis, and the search start plane area including the search start point for obtaining each search axis and the initial search included in the search start plane The process of finding the axis;
A three-layer plane area detection method is applied to a data group in the search start plane area and along the initial search axis to obtain a data group within an allowable thickness area, and a new least square method is applied to the data group. Obtaining an update search axis;
Projecting the search start point on the obtained update search axis, extending the area of the search start plane on the update search axis, and in the data group along the update search axis in the extended plane area Applying the three-layer planar area detection method to obtain data groups within the allowable thickness range and applying the least squares method to these data groups to obtain further update search axes until the search end condition is satisfied ,
And a step of determining a search plane based on the first search axis and the second search axis obtained by the above steps.

さらに、上記各形状データの取得方法に、
構造部材の表面を表すデータ群に凸包処理を施し仮外形としての多角形を求める工程と、
上記求められた多角形の各辺を延長して交点を求める工程と、
上記交点を有し且つ多角形の外側に形成される仮想三角形の面積を求める工程と、
上記求められた仮想三角形のうち、面積が一番小さい仮想三角形を多角形に含ませて当該多角形の角数を1つ減らす工程と、
上記角数を減らす工程を繰り返すことにより当該角数が最終形状としての角数となるようにする工程とを具備した方法である。
Furthermore, in the acquisition method of each said shape data,
Applying a convex hull process to the data group representing the surface of the structural member to obtain a polygon as a temporary outline;
Extending each side of the obtained polygon to obtain an intersection; and
Obtaining an area of a virtual triangle having the intersection and formed outside the polygon;
Of the obtained virtual triangles, including the virtual triangle having the smallest area in the polygon and reducing the number of corners of the polygon by one;
A step of repeating the step of reducing the number of corners so that the number of corners becomes the number of corners as a final shape.

本発明の構造部材の形状データの取得装置は、レーザ距離計により得られる板状の構造部材の表面の三次元位置を示すデータ群に基づき所定の平面領域を探索することにより当該構造部材の形状データを取得する取得装置であって、
レーザ距離計により構造部材の表面の三次元位置を示すデータ群を取得するデータ群取得部と、
上記データ群から探索を行うための探索平面を検出する探索平面検出部と、
上記検出された探索用平面にデータ群をレーザ距離計からのレーザ光の照射角度を考慮して投影し構造部材の表面を表すデータ群を取得する表面データ取得部とを具備したものである。
The apparatus for acquiring shape data of a structural member according to the present invention searches for a predetermined planar region based on a data group indicating the three-dimensional position of the surface of a plate-shaped structural member obtained by a laser distance meter, thereby determining the shape of the structural member An acquisition device for acquiring data,
A data group acquisition unit for acquiring a data group indicating a three-dimensional position of the surface of the structural member by a laser distance meter;
A search plane detector for detecting a search plane for searching from the data group;
A surface data acquisition unit for acquiring a data group representing the surface of the structural member by projecting the data group on the detected search plane in consideration of the irradiation angle of the laser beam from the laser rangefinder.

また、上記形状データの取得装置の探索平面検出部において、所定の平面領域に係る三次元のデータ群を、構造部材の表面であると見做せる許容厚さ域と、この許容厚さ域の上側および下側で構造部材の表面と見做せない非許容厚さ域との3つの層に分けるとともに、上記許容厚さ域内のデータ群の平均値を用いる三層平面域検出法を適用するようにしたものである。   Further, in the search plane detection unit of the shape data acquisition device, an allowable thickness area in which a three-dimensional data group related to a predetermined plane area can be regarded as a surface of a structural member, and the allowable thickness area The upper and lower surfaces are divided into three layers, the surface of the structural member and the unacceptable thickness region that cannot be seen, and the three-layer planar region detection method using the average value of the data group within the allowable thickness region is applied. It is what I did.

また、上記形状データの取得装置の探索平面検出部において、探索平面を第1探索軸と当該第1探索軸に直交する第2探索軸とで決定するようになし且つこれら各探索軸を求めるのに三層平面域検出法を用いるとともに、
当該探索平面検出部を、
上記各探索軸を求めるための探索開始点を含む探索開始平面の領域および当該探索開始平面に含まれる初期探索軸を求める初期探索軸検出部と、
上記探索開始平面の領域内で且つ上記初期探索軸に沿うデータ群に三層平面域検出法を適用して許容厚さ域内のデータ群を求めるとともにこのデータ群に最小二乗法を適用して新たな更新探索軸を求める第1更新探索軸検出部と、
上記第1更新探索軸検出部で求められた更新探索軸上に上記探索開始点を投影するとともに、この更新探索軸上で探索開始平面の領域を延長し、この延長された平面領域内で且つ更新探索軸に沿うデータ群に三層平面域検出法を適用して許容厚さ域内のデータ群を求めるとともにこれらデータ群に最小二乗法を適用して更なる更新探索軸を求める工程を探索終了条件を満たすまで繰り返し行う第2更新探索軸検出部と、
上記第2更新探索軸検出部で求められた第1探索軸および第2探索軸により探索平面を決める探索平面決定部とを具備させたものである。
Further, in the search plane detection unit of the shape data acquisition apparatus, the search plane is determined by the first search axis and the second search axis orthogonal to the first search axis, and each search axis is obtained. In addition to using the three-layer planar area detection method,
The search plane detection unit is
An area of a search start plane including a search start point for obtaining each search axis and an initial search axis detection unit for obtaining an initial search axis included in the search start plane;
A three-layer plane area detection method is applied to a data group in the search start plane area and along the initial search axis to obtain a data group within an allowable thickness area, and a new least square method is applied to the data group. A first update search axis detector for obtaining a new update search axis;
Projecting the search start point on the update search axis obtained by the first update search axis detection unit, extending the area of the search start plane on the update search axis, and within the extended plane area and Searching the data group along the update search axis by applying the three-layer planar area detection method to obtain the data group within the allowable thickness range and applying the least squares method to these data groups to complete the process of obtaining the additional search axis A second update search axis detection unit that repeats until the condition is satisfied;
And a search plane determination unit that determines a search plane by the first search axis and the second search axis obtained by the second update search axis detection unit.

さらに、上記各形状データの取得装置に、構造部材の表面を表すデータ群に凸包処理を施し仮外形としての多角形を求める凸包処理部と、
この凸包処理部で求められた多角形の各辺を延長して交点を求める交点検出部と、
この交点検出部で求められた交点を有し且つ多角形の外側に形成される仮想三角形の面積を求める面積算出部と、
この面積算出部で求められた仮想三角形のうち、面積が一番小さい仮想三角形を多角形に含ませて当該多角形の角数を1つ減らす手順を繰り返すことにより当該角数が最終形状としての角数となるようにする角数減少部とを具備させたものである。
Furthermore, a convex hull processing unit for obtaining a polygon as a temporary outer shape by performing a convex hull processing on the data group representing the surface of the structural member in each shape data acquisition device,
An intersection detection unit that obtains an intersection by extending each side of the polygon obtained by the convex hull processing unit;
An area calculation unit for obtaining an area of a virtual triangle having an intersection obtained by the intersection detection unit and formed outside the polygon;
Among the virtual triangles obtained by the area calculation unit, the virtual triangle having the smallest area is included in the polygon and the procedure for reducing the number of corners of the polygon by one is repeated, so that the number of corners becomes the final shape. It is provided with a corner number reduction portion that makes the number of corners.

上記形状データの取得方法および取得装置によると、レーザ距離計により得られた構造部材の表面の三次元データ群から探索平面を検出するとともに、この検出された探索平面にデータ群をレーザ光の照射角度にて投影することにより、構造部材の表面を表すデータ群を取得するようにしたので、従来のレーザ光による計測とカメラ画像を併用してその表面を検出するものに比べて、容易に且つ精度が低下することなく、離れた場所に在る構造部材の形状を検出することができる。   According to the above-described shape data acquisition method and acquisition apparatus, a search plane is detected from the three-dimensional data group on the surface of the structural member obtained by the laser distance meter, and the data group is irradiated to the detected search plane with laser light. Since the data group representing the surface of the structural member is obtained by projecting at an angle, it is easier and more easily than the conventional method of detecting the surface using a combination of measurement with a laser beam and a camera image. It is possible to detect the shape of the structural member at a remote location without degrading accuracy.

本発明の実施例に係るデータの取得方法の対象となる接合部材を有する橋梁の全体を示す概略側面図である。It is a schematic side view which shows the whole bridge | bridging which has the joining member used as the object of the data acquisition method based on the Example of this invention. 同接合部材の要部を示す正面図である。It is a front view which shows the principal part of the joining member. 本実施例のデータの取得方法に用いられる三層平面域検出方法を説明する模式図である。It is a schematic diagram explaining the three-layer plane area detection method used for the data acquisition method of a present Example. 同取得方法における探索軸の求め方を説明する斜視図である。It is a perspective view explaining how to obtain a search axis in the acquisition method. 同取得方法における二次元グリッドを示す平面図である。It is a top view which shows the two-dimensional grid in the acquisition method. 同取得方法における探索平面を示す側面図である。It is a side view which shows the search plane in the acquisition method. 同取得方法により取得された接合部材の形状を示す平面図である。It is a top view which shows the shape of the joining member acquired by the acquisition method. 同取得方法における接合部材の外形を得る手順を説明する模式正面図である。It is a model front view explaining the procedure which acquires the external shape of the joining member in the acquisition method. 同取得方法における接合部材の孔を示すデータ群を示す概略正面図である。It is a schematic front view which shows the data group which shows the hole of the joining member in the same acquisition method. 同取得方法における接合部材の孔を求める際の分割領域を示す概略正面図である。It is a schematic front view which shows the division area at the time of calculating | requiring the hole of the joining member in the same acquisition method. 同取得方法における接合部材の孔を得る手順を説明する概略正面図である。It is a schematic front view explaining the procedure of obtaining the hole of the joining member in the acquisition method. 同取得方法における接合部材の孔の位置を得る手順を説明する要部拡大正面図である。It is a principal part enlarged front view explaining the procedure which acquires the position of the hole of the joining member in the acquisition method. 本発明の実施例に係るデータの取得装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the data acquisition apparatus which concerns on the Example of this invention. 同取得装置における平面データ取得手段の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the plane data acquisition means in the acquisition apparatus. 同取得装置における外形データ取得手段の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the external shape data acquisition means in the acquisition apparatus. 同取得装置における孔データ取得手段の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the hole data acquisition means in the acquisition apparatus. 同孔データ取得手段における孔抽出部の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the hole extraction part in the hole data acquisition means.

以下、本発明の実施例に係る構造部材の形状データの取得方法および取得装置を、図1〜図17に基づき説明する。
本実施例では、橋梁などの構造物の部材同士を連結する接合部材(構造部材の一例)の形状データを、レーザ距離計を用いて取得する場合について説明する。
Hereinafter, a method and apparatus for acquiring shape data of a structural member according to an embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, a case will be described in which shape data of a joining member (an example of a structural member) that connects structural members such as a bridge is acquired using a laser distance meter.

通常、図1に示すように、橋梁1は、下側の桁材2と、上側の梁材3と、これらを連結する連結材4とから構成されており、これらの部材同士は接合部材5により接合されており、本実施例では、例えばこの接合部材5の形状データをレーザ距離計9を用いて取得するものである。   As shown in FIG. 1, the bridge 1 is generally composed of a lower beam member 2, an upper beam member 3, and a connecting member 4 that connects them, and these members are joined members 5. In this embodiment, for example, the shape data of the joining member 5 is acquired by using the laser distance meter 9.

すなわち、桁材2側にレーザ距離計9を設置し、このレーザ距離計9からレーザ光Lを、例えば上側の接合部材5に対して照射し、出射から入射までの時間を計測して接合部材5までの距離を計測するようにしたもので、多数の点を計測して表面の三次元位置データを、すなわちデータ群を求めることにより、その形状データを求めるようにしたものである。なお、ここでは、接合部材5としては、図2に示すように、梁材3と連結材4とを板状の接合部材(所謂、ガセットプレートであり、以下、板材とも称する)5により接合するものについて説明する。   That is, the laser distance meter 9 is installed on the side of the beam member 2, the laser beam L is irradiated from the laser distance meter 9 to, for example, the upper bonding member 5, and the time from emission to incidence is measured and the bonding member is measured. The distance up to 5 is measured, and a large number of points are measured to obtain three-dimensional position data of the surface, that is, a data group, thereby obtaining the shape data. Here, as the joining member 5, as shown in FIG. 2, the beam member 3 and the connecting member 4 are joined by a plate-like joining member (so-called gusset plate, hereinafter also referred to as a plate member) 5. I will explain things.

具体的には、接合部材5の表面形状すなわち板材の平面形状、および連結具としてボルト7の挿入用孔の位置を取得する場合について説明する。
なお、本発明には、形状データの取得方法と取得装置とがあるが、理解を容易にするために、まず形状データの取得方法を説明し、その後、形状データの取得装置について説明する。
Specifically, the case where the surface shape of the joining member 5, that is, the planar shape of the plate material, and the position of the insertion hole of the bolt 7 as a connector will be described.
In the present invention, there are a shape data acquisition method and an acquisition device. In order to facilitate understanding, the shape data acquisition method will be described first, and then the shape data acquisition device will be described.

上述したように、レーザ距離計9により、レーザ光Lを接合部の接合部材(計測対象である構造部材であり、所定の平面領域の一例でもある)5に照射し接合部材5表面までの距離を計測するのであるが、レーザ光Lが照射される計測点は多数であり、例えば縦横2mm間隔(この数値に限定されるものでもなく、計測精度に応じて、例えば2〜5mm程度の間隔にされる)で設けられる。したがって、接合部材5の表面の位置を示す三次元のデータ群(点群データともいう)が得られ、これらのデータ群から接合部材5、特にその表面、すなわち平面およびボルト7の挿通用孔などの位置、具体的にはその中心位置が取得(検出)される。   As described above, the laser distance meter 9 irradiates the joining member (a structural member to be measured, which is also an example of a predetermined planar region) 5 with the laser beam L, and the distance to the surface of the joining member 5. However, there are a large number of measurement points irradiated with the laser beam L, for example, a vertical and horizontal interval of 2 mm (not limited to this numerical value, depending on the measurement accuracy, for example, an interval of about 2 to 5 mm) Provided). Therefore, a three-dimensional data group (also referred to as point cloud data) indicating the position of the surface of the joining member 5 is obtained. From these data groups, the joining member 5, particularly its surface, that is, a plane and a hole for inserting a bolt 7, etc. , Specifically, the center position is acquired (detected).

ところで、同一の板材の表面であれば、本来、同一平面上のデータとして得られるが、実際には、レーザ距離計9の計測誤差により板材の厚さ方向でばらつきが生じる。したがって、本実施例では、このばらつきのあるデータ群から板材表面を示す平面データを検出する方法として、三層平面域検出法というものを用いる。   By the way, if it is the surface of the same board | plate material, originally, it will be obtained as data on the same plane, but in reality, dispersion | variation arises in the thickness direction of a board | plate material by the measurement error of the laser distance meter 9. FIG. Therefore, in this embodiment, a method called a three-layer plane area detection method is used as a method for detecting plane data indicating the surface of the plate material from the data group having variations.

この三層平面域検出法とは、図3に示すように、計測の対象となる領域(なお、以下において、探索領域と称して説明する)の平面内に含まれる任意の軸方向に沿って所定間隔毎に分割する(区切る)ことにより連続する多数のグリッド(分割域)Gを設ける(考える)とともに、これら各グリッドGに対して板状の接合部材(以下、板材と表現した方が分かり易い場合には板材と称する)5の厚さ方向で、当該板材の表面であると見做し得る(正確に言うと、板材の厚さ範囲内と見做し得る)許容厚さ域(ターゲット域ともいう)Aと、この板材の表面から突出する例えばボルト7または当該板材とは異なる部材(他の板材)であると想定し得る非許容厚さ域(遷移域ともいう)Bとを考え、許容厚さ域Aに入っているデータ群を平面を示すデータと見做す方法である。なお、各グリッド毎に複数のデータが存在するが、その平均値が代表値と見做して処理が行われる。   As shown in FIG. 3, this three-layer plane area detection method is along an arbitrary axial direction included in the plane of an area to be measured (hereinafter referred to as a search area). A number of continuous grids (divided areas) G are provided (considered) by dividing (separating) at predetermined intervals, and a plate-like joining member (hereinafter referred to as a plate material) is understood for each grid G. In the thickness direction of 5 (referred to as plate material if easy), it can be considered as the surface of the plate material (to be precise, it can be considered within the thickness range of the plate material) A) and A non-allowable thickness region (also referred to as a transition region) B that can be assumed to be, for example, a bolt 7 or a member (other plate material) different from the plate material protruding from the surface of the plate material , Showing the plane of the data group in the allowable thickness range A It is a data and considered to method. Note that there are a plurality of data for each grid, but the processing is performed by regarding the average value as a representative value.

具体的に説明すると、接合部材5の表面を計測したデータ群を平面内の或る軸方向に沿って配置すると、図3に示すように、許容厚さ域Aおよびその両外側の非許容厚さ域Bのいずれかにプロットされることになる。   More specifically, when a data group obtained by measuring the surface of the joining member 5 is arranged along a certain axial direction in the plane, as shown in FIG. 3, the allowable thickness region A and the non-permissible thicknesses on both outer sides thereof. It will be plotted in any of the areas B.

図3においては、中央の7つのグリッド群G(G1)は許容厚さ域Aに入っていることを示すとともに、このグリッド群Gの両外側の4つのグリッド群G(G2)は非許容厚さ域Bに入っており、さらにその外側にも、それぞれ1つの許容厚さ域Aを示すグリッドG(G3)があることを示している。つまり、中央の7つのグリッド群G(G1)のデータは接合部材5の表面を示しているとともに、両外側の4つのグリッド群G(G2)はボルト7の頭部の表面であることを示している。以下の説明において、許容厚さ域Aに入っているグリッドを平面グリッド(ターゲットグリッドともいう)と称するとともに、非許容厚さ域Bに入っているグリッドを遷移グリッドと称して説明する。   FIG. 3 shows that the center seven grid groups G (G1) are within the allowable thickness range A, and the four grid groups G (G2) on both outer sides of the grid group G are non-allowable thicknesses. It is shown that there is a grid G (G3) that is in the range B and that further has one allowable thickness range A on the outside thereof. That is, the data of the seven grid groups G (G1) in the center indicate the surface of the joining member 5, and the four grid groups G (G2) on the outer sides indicate the surface of the head of the bolt 7. ing. In the following description, the grid in the allowable thickness area A is referred to as a planar grid (also referred to as a target grid), and the grid in the non-allowable thickness area B is referred to as a transition grid.

ところで、非許容厚さ域Bに少しでも点が存在するグリッドは、たとえ、許容厚さ域Aに点が存在していたとしても、許容厚さ域Aに存在しないものとして取り扱う。これは、グリッド毎の平均値を用いて平面を検出する際に、探索軸(後述する)が平面に収束しなくなるのを防止するためである。   By the way, a grid in which even a small point exists in the non-allowable thickness region B is treated as not existing in the allowable thickness region A even if a point exists in the allowable thickness region A. This is for preventing the search axis (described later) from converging on the plane when the plane is detected using the average value for each grid.

まず、平面データの取得方法について説明する。
(1)任意の計測点を指定して探索開始点を決める。
(2)探索開始点を含む探索用仮領域(例えば、半径20mm程度の小領域であり、一般的に言えば、レーザの奥行き方向精度の数倍程度(3〜7倍程度)、例えば4倍程度の半径とする領域である)を決めるとともに、この探索用仮領域内のデータ群から3点を適宜(または任意)に且つ複数組を抽出し、これら各組の3点のデータ群によりそれぞれ平面を求める[3点を平面の方程式(aX+bY+cZ+d=0)に代入することにより1つの平面を決めることができる]。そして、これら複数の平面の平均値を求めることにより、探索開始平面を求める。
(3)上記求められた探索開始平面の法線を求め、この法線に直交する平面、つまり探索開始平面上に任意方向の軸(初期探索軸であり、以下、x軸と称するとともに、法線方向をz軸と称す)を決める。なお、得られた探索開始平面上に任意方向の軸を決めるとともに、この探索開始平面に直交する軸を決めるようにしてもよい。
(4)次に、探索開始点からの探索範囲を決定する。
First, a method for acquiring plane data will be described.
(1) Specify an arbitrary measurement point and determine the search start point.
(2) Temporary search area including a search start point (for example, a small area having a radius of about 20 mm, generally speaking, about several times (about 3 to 7 times) the accuracy in the depth direction of the laser, for example, 4 times 3 points are extracted from the data group in the search temporary area as appropriate (or arbitrary) and a plurality of sets are extracted, and each of the 3 points data group of each set is extracted. A plane is obtained [one plane can be determined by substituting three points into the plane equation (aX + bY + cZ + d = 0)]. Then, a search start plane is obtained by obtaining an average value of the plurality of planes.
(3) The normal line of the obtained search start plane is obtained, and a plane orthogonal to the normal line, that is, an axis in an arbitrary direction on the search start plane (an initial search axis, hereinafter referred to as an x-axis, The line direction is called the z-axis). Note that an axis in an arbitrary direction may be determined on the obtained search start plane, and an axis orthogonal to the search start plane may be determined.
(4) Next, the search range from the search start point is determined.

すなわち、x軸方向で探索開始点から探索する所定の長さ範囲つまり初期探索領域を決定する。例えば、10個のグリッド群[1グリッドの幅は、同じ平面上に生じると思われる空白部(ここでは、ボルトの挿通用孔)の1/2〜1/3程度にされ、例えば1グリッドの幅を12.5mmとすると、初期探索領域は125mm(10個×12.5mm=125mm)となる]について探索する。この探索範囲としては、探索用仮領域の長さの数倍程度、例えば2〜5倍程度にされる。
(5)x軸に対して三層平面域検出法を適用する。
That is, a predetermined length range to be searched from the search start point in the x-axis direction, that is, an initial search area is determined. For example, 10 grid groups [the width of one grid is set to about 1/2 to 1/3 of a blank portion (here, a bolt insertion hole) that is supposed to be generated on the same plane. When the width is 12.5 mm, the initial search area is searched for 125 mm (10 × 12.5 mm = 125 mm). The search range is about several times the length of the search temporary area, for example, about 2 to 5 times.
(5) A three-layer plane area detection method is applied to the x-axis.

すなわち、図3に示すように、x軸に沿うデータ群を板材の厚さ方向と見做せるz軸方向に投影した場合の探索開始平面(H)からのずれ量を検出した後、このずれ量が許容厚さ域A内に属するデータ群を抽出する。
(6)この抽出されたデータ群に対し、グリッドG毎の平均値を求める。
(7)これらグリッドG毎に求められた平均値に最小二乗法を適用して、x軸を新たに求める。
(8)上記探索開始点を(7)で新たに求められた更新x軸(更新探索軸)上に投影する。
(9)この更新x軸上に投影された探索開始点を更新探索開始点として、さらに当該更新x軸に沿って探索領域を数倍に延ばす。例えば、探索領域を2倍に延ばす。
(10)上述した(1)〜(9)の手順を、非許容厚さ域Bのデータ群が探索終了条件[接合部材としてのデータが存在しないことが確実に言える範囲を超えるまで、具体的には、孔許容値(孔であると思われる空白部の最大距離)内に平面グリッドが存在しないという条件、簡単に言えば、データが存在しないという条件]を超えるまで、探索領域を広げながら(例えば、探索領域を、2倍から4倍、そして8倍へと等比拡大させて延ばしていく)繰り返し行う。すなわち、順次、更新x軸を求め、最終的に探索用としての探索x軸(第1探索軸)を求める。
(11)上記探索x軸を求めたと同様の手順を、探索開始平面にて当該x軸と直交するy軸についても行い、探索y軸(第2探索軸)を求める(図4参照)。
(12)次に、上記探索x軸と探索y軸との最接近点同士の中間点(z軸方向での中間位置)pを通り、探索x軸方向をx軸とするとともに探索y軸方向をy軸とする仮の探索平面(以下、仮探索平面という)を求める。そして、探索x軸と探索y軸とを仮探索平面上に投影する(図4の破線で示すx軸,y軸参照)。
(13)上記仮探索平面上で、上述したグリッドサイズを用いて、二次元グリッドを作成するとともにこの二次元グリッドのデータ群に対して、三層平面域検出法を適用して、平面グリッドを抽出する。なお、図5中、丸印が平面グリッドを示し、三角印が遷移グリッドを示す。
That is, as shown in FIG. 3, after detecting the amount of deviation from the search start plane (H) when the data group along the x-axis is projected in the z-axis direction which can be regarded as the thickness direction of the plate, this deviation is detected. A data group whose quantity falls within the allowable thickness range A is extracted.
(6) An average value for each grid G is obtained for the extracted data group.
(7) The least square method is applied to the average value obtained for each grid G to newly obtain the x-axis.
(8) The search start point is projected on the updated x-axis (updated search axis) newly obtained in (7).
(9) Using the search start point projected on the update x-axis as an update search start point, the search area is further extended several times along the update x-axis. For example, the search area is doubled.
(10) The above-described procedures (1) to (9) are performed until the data group in the non-allowable thickness region B exceeds the search end condition [exceeding the range where it can be reliably said that there is no data as a joining member. While expanding the search area until it exceeds the condition that the planar grid does not exist within the hole tolerance (maximum distance of the blank part that seems to be a hole), in other words, the condition that there is no data] (For example, the search area is extended by equal magnification from 2 times to 4 times and then 8 times). That is, the updated x-axis is obtained sequentially, and finally the search x-axis (first search axis) for search is obtained.
(11) The same procedure as that for obtaining the search x-axis is performed for the y-axis orthogonal to the x-axis on the search start plane to obtain the search y-axis (second search axis) (see FIG. 4).
(12) Next, an intermediate point (intermediate position in the z-axis direction) p between the closest points of the search x-axis and the search y-axis passes through the search x-axis direction as the x-axis and the search y-axis direction Is a temporary search plane (hereinafter referred to as a temporary search plane). Then, the search x-axis and the search y-axis are projected on the temporary search plane (see the x-axis and y-axis indicated by the broken lines in FIG. 4).
(13) On the temporary search plane, a two-dimensional grid is created using the grid size described above, and a three-layer plane area detection method is applied to the data group of the two-dimensional grid. Extract. In FIG. 5, circles indicate planar grids, and triangles indicate transition grids.

(14)これら抽出された平面グリッド毎においてそれぞれ点群の平均値を求め、そしてこれらの点に対し、最小二乗法を適用し接合部材の表面を表す探索平面を求める。図6に、この求められた探索平面を示す。なお、図6中、丸印は平面グリッドでの平均値を示している。
(15)上記探索平面に対して且つレーザ光Lの照射角度も考慮し、許容厚さ域A内に入るデータ群をそれぞれ投影し、探索平面上でのデータ群を取得する。勿論、探索平面上でのデータ群すなわち投影点は、計測点を通り且つその計測点の計測に係るレーザ光Lの照射角度から得られる方向余弦を持つ直線と、探索平面との交点として求められる。言い換えれば、計測誤差に起因する探索平面から外れているデータ群を探索平面上にレーザ光Lの照射方向に沿って置き直していることになる。これにより、計測対象である板材の表面を示すデータ群が容易に且つ精度よく取得される。
(14) The average value of the point group is obtained for each of the extracted plane grids, and the search plane representing the surface of the joining member is obtained by applying the least square method to these points. FIG. 6 shows the obtained search plane. In FIG. 6, circles indicate average values on a planar grid.
(15) Each data group that falls within the allowable thickness region A is projected with respect to the search plane and in consideration of the irradiation angle of the laser beam L, and a data group on the search plane is acquired. Of course, the data group on the search plane, that is, the projection point, is obtained as an intersection of the search plane and a straight line that passes through the measurement point and has a direction cosine obtained from the irradiation angle of the laser light L related to the measurement of the measurement point. . In other words, the data group deviating from the search plane due to the measurement error is relocated along the irradiation direction of the laser light L on the search plane. Thereby, the data group which shows the surface of the board | plate material which is a measuring object is acquired easily and accurately.

すなわち、平面グリッドGを抽出することにより、探索平面に位置する板材のデータ、およびその突出部分を除いた、つまり、ボルト7の挿通用孔(図7に示す、但し、図7は分かりやすいように、図2のものを上下逆に図示している)8を抽出し得るデータ群(二次元データ群)を取得することができる。   That is, by extracting the plane grid G, the plate material data located in the search plane and the protruding portion thereof are excluded, that is, the insertion hole for the bolt 7 (shown in FIG. 7, provided that FIG. 7 is easy to understand. In addition, the data group (two-dimensional data group) from which 8 can be extracted can be acquired.

そして、これらのデータ群に基づき、板材である接合部材5の外形およびボルト7の挿通孔8の位置、より正確には、その中心位置を抽出することができる。
次に、上記接合部材5の表面を示す平面データからその外形を求める手順について説明する。ここでは、図7に示すような接合部材5の場合について説明する。
(1)許容厚さ域A内にあるデータ群に凸法処理を施して外形を求める。
Based on these data groups, the outer shape of the joining member 5 that is a plate material and the position of the insertion hole 8 of the bolt 7, more precisely, the center position thereof can be extracted.
Next, a procedure for obtaining the outer shape from the plane data indicating the surface of the joining member 5 will be described. Here, the case of the joining member 5 as shown in FIG. 7 will be described.
(1) The convex shape is applied to the data group in the allowable thickness range A to obtain the outer shape.

すなわち、最外周の平面グリッドのデータ群に対して凸包処理を施すことにより、当該データ群の外形を抽出する。
凸包処理とは、データ群のうち、例えば端の点を第一点aに指定し、この第一点aに対する他の点への角度を求めるとともに、角度で他の点を整列させる。そして、第一点aから、整列された次の第二点bおよびさらにその次の第三点cとを直線で連結し、三角形を作る。次に、次の第四点dを連結した場合、2点(b,d)を結ぶ直線よりも中間の第三点cが内側に入る場合には、凸包ではなくなるため、第三点cを除外し、新たな3つの点(a,b,d)にて三角形を作る。このように、順次、連結する点を増やして行く際に、或る点がその前後の点に対して凹んだ状態になっている場合には、その或る点を外していくことにより、全体として、凸状の多角形を得る処理である。なお、凸包処理を簡単に言えば、二次元の点群を全て囲むように輪ゴムをかけると、輪ゴムは連続線分を形成することになり、この閉じた連続線分を求める処理をいう。
(2)次に、本来の形状である最終形状の角数を入力する。例えば、板材が長方形である場合には「4」を入力する(この数値は、予め、設定しておいてもよい)。
(3)例えば、図8(a)で示すように、角が8つ形成されている場合には、各辺を当該8角形の外側で交差するようにそれぞれ延長して、図8(b)に示すように、交点[(イ)〜(チ)]を求める。
(4)次に、図8(c)に示すように、これらの交点を有し且つ板材の外側に形成される三角形の面積を求め、一番小さい三角形の部分(斜線にて示す)を板材に含ませて、その角数を1つ減らす。
(5)上記手順を繰り返し、図8(d)に示すように、角数が最終形状の5つ(5角)になるようにする。
That is, the outer shape of the data group is extracted by performing convex hull processing on the data group of the outermost planar grid.
In the convex hull process, for example, an end point is designated as the first point a in the data group, an angle to the other point with respect to the first point a is obtained, and the other points are aligned by the angle. Then, from the first point a, the next aligned second point b and further the next third point c are connected by a straight line to form a triangle. Next, when the next fourth point d is connected, when the third point c in the middle of the straight line connecting the two points (b, d) enters inside, the third point c And a triangle is formed with three new points (a, b, d). In this way, when increasing the number of points to be sequentially connected, if a certain point is in a state of being depressed with respect to the previous and subsequent points, the whole point is removed by removing the certain point. As a process for obtaining a convex polygon. In brief, the convex hull process is a process of obtaining a closed continuous line segment by forming a continuous line segment when the rubber band is applied so as to surround the two-dimensional point group.
(2) Next, the number of corners of the final shape, which is the original shape, is input. For example, if the plate is rectangular, “4” is input (this numerical value may be set in advance).
(3) For example, as shown in FIG. 8A, when eight corners are formed, each side is extended so as to intersect outside the octagon, and FIG. As shown in Fig. 5, the intersection points [(I) to (H)] are obtained.
(4) Next, as shown in FIG. 8 (c), the area of a triangle having these intersections and formed on the outside of the plate material is obtained, and the smallest triangular portion (shown by diagonal lines) is the plate material. To reduce the number of corners by one.
(5) The above procedure is repeated so that the number of corners becomes five (five corners) of the final shape as shown in FIG.

この最終形状が求める板材の形状データとなる。すなわち、接合部材5の最終形状のデータが取得される。
さらに、上記抽出された平面データに基づき接合部材5に設けられている連結具であるボルト7の挿通用孔の位置、すなわち孔の中心位置を求める手順について説明する。
This final shape is the shape data of the plate material to be obtained. That is, the final shape data of the joining member 5 is acquired.
Further, a procedure for obtaining the position of the insertion hole of the bolt 7 that is a connecting tool provided in the joining member 5 based on the extracted plane data, that is, the center position of the hole will be described.

以下の説明では、例えば矩形状の検索対象領域を複数個、例えば4個に分割し、そしてデータが存在している分割領域をさらに4個に分割し、この手順を繰り返し最後の分割領域が所定の大きさ(最終領域であり、当然ながら、孔の大きさより小さく、面積で比較すると、1/2〜1/3程度の大きさにされている)になるまで繰り返すことにより、孔の有無を検出する場合について説明する。   In the following description, for example, a rectangular search target region is divided into a plurality of, for example, four, and the divided region where data exists is further divided into four, and this procedure is repeated to determine the final divided region as a predetermined region. By repeating until the size becomes (the final region, which is, of course, smaller than the size of the hole and compared with the area, the size is about 1/2 to 1/3), A case of detection will be described.

なお、検索対象領域を4分割したものを1次グリッドと称し、次にこの4分割されたものを2次グリッドと称し、そしてさらに順次分割していき、n回目に4分割したものをn次グリッドと称して説明する。また、分割されるグリッドを親グリッドと称するとともに、4分割して得られるグリッドを子グリッドと称する場合もある。   Note that the search target area divided into four parts is called a primary grid, then the four divided parts are called secondary grids, and further divided sequentially, and the n-th divided one is divided into n-orders. This will be described as a grid. In addition, the divided grid is referred to as a parent grid, and a grid obtained by dividing into four is sometimes referred to as a child grid.

例えば、図9は、接合部材5の表面として得られたデータ郡を6回分割した場合(検索対象領域は0次グリッドであり、これを含めると、7層の検索となる)のグリッドの分割状態を示している。なお、図9についても、図2のものを上下逆に図示している。また、参考として、図10に、接合部材5の表面の分割の仕方(分割領域)を示しておく。   For example, FIG. 9 shows the division of the grid when the data group obtained as the surface of the joining member 5 is divided six times (the search target area is a zero-order grid and including this includes a seven-layer search). Indicates the state. Note that FIG. 9 also shows that in FIG. 2 upside down. For reference, FIG. 10 shows a method of dividing the surface of the joining member 5 (divided region).

以下、連結具であるボルト7の挿通用孔8の位置を求める手順を、図9および図10に基づき具体的に説明する。
(1)得られた板材のデータ群(二次元データ群)を全て囲み得る検索対象領域を示す検索枠21を設定する。
(2)検索枠21を4分割して4個の1次グリッド(群)22を得る(図10の(a)部参照)。
(3)データが存在する1次グリッド22を4分割して2次グリッド(群)23を得る(図10の(b)部参照)。
(4)データが存在する2次グリッド23を4分割して3次グリッド(群)24を得る(図10の(b)部参照)。
(5)上記分割作業と同様に、データが存在する(n−1)次グリッドをさらに4分割してn次グリッド(群)を得る。例えば、4次グリッド(群)25、5次グリッド(群)26を得る(図10の(c)部参照)。
(6)n次グリッドが最小単位(検索対象の大きさより小さい領域、上述したように、例えば1/2〜1/3程度の大きさ)になった場合には分割作業を停止する。ここでは、6次グリッド(群)27が得られると、分割作業が停止される(図10の(d)部参照)。
(7)次に、同一の親グリッドに含まれる複数の子グリッドについて、それぞれのデータの有無状態が同一である場合には子グリッド同士を結合(マージ)して、子グリッドを無くす。このマージ処理を、その対象が無くなるまで繰り返す。
(8)次に、隣接するグリッド同士のデータの有無状態が同一であるものについては、同一のラベルとなるようにラベリング処理を行う。すなわち、データの有無に応じて、2種類のラベリングが施されたことになる。
(9)データが無い同一ラベルグループのうち、面積が許容範囲(孔の最小値から最大値の範囲)内にあるものを抽出し、その重心位置を挿通用孔8の仮中心位置と決定する。例えば、図11に示すようなデータが得られ、その中心にデータが存在しない空白部が得られ、これがボルト7の挿通用孔8であることを示し、またその重心を仮中心位置とする。
Hereinafter, the procedure for obtaining the position of the insertion hole 8 of the bolt 7 which is a connector will be specifically described with reference to FIGS. 9 and 10.
(1) A search frame 21 indicating a search target area that can enclose all the data group (two-dimensional data group) of the obtained plate material is set.
(2) The search frame 21 is divided into four to obtain four primary grids (groups) 22 (see part (a) of FIG. 10).
(3) The primary grid 22 in which data exists is divided into four to obtain a secondary grid (group) 23 (see part (b) of FIG. 10).
(4) The secondary grid 23 in which data exists is divided into four to obtain a tertiary grid (group) 24 (see part (b) of FIG. 10).
(5) Similar to the above division operation, the (n-1) th order grid in which data exists is further divided into four to obtain an nth order grid (group). For example, a quaternary grid (group) 25 and a quintic grid (group) 26 are obtained (see part (c) of FIG. 10).
(6) When the n-th order grid becomes the smallest unit (area smaller than the size of the search target, as described above, for example, about 1/2 to 1/3), the division work is stopped. Here, when the sixth grid (group) 27 is obtained, the division work is stopped (see part (d) in FIG. 10).
(7) Next, regarding the plurality of child grids included in the same parent grid, when the data presence / absence states are the same, the child grids are joined (merged) to eliminate the child grids. This merging process is repeated until there are no more targets.
(8) Next, a labeling process is performed so that the data having the same presence / absence state between adjacent grids has the same label. That is, two types of labeling are performed according to the presence or absence of data.
(9) From the same label group with no data, those having an area within the allowable range (range from the minimum value to the maximum value of the hole) are extracted, and the position of the center of gravity is determined as the temporary center position of the insertion hole 8. . For example, data as shown in FIG. 11 is obtained, and a blank portion where no data exists is obtained at the center thereof, indicating that this is the insertion hole 8 for the bolt 7, and the center of gravity is set as the temporary center position.

次に、上記手順にて求められた孔の中心位置の精度を上げる手順について説明する。
(10)図12に示すように、上記(9)の手順で求められた仮中心位置31を中心とし、その孔を放射状に複数個、例えば16個に分割する。
(11)次に、放射状に分割された各扇形状部32内のデータ群のうち、一番、仮中心位置31に近いデータを1個だけ抽出する。
(12)次に、上記抽出された各扇形状部32内のデータを、任意に3個取り出してこれら3点を通る円を求める。
(13)上記(12)で求められた円内に含まれるデータ個数がノイズとして許容し得る個数(例えば、2〜3個で、ノイズ許容個数ともいえる)内である円のうち、最も半径が大きい円33を求め、この円33の中心位置をボルト7の挿通用孔8の中心と見做す。
Next, a procedure for increasing the accuracy of the center position of the hole obtained by the above procedure will be described.
(10) As shown in FIG. 12, the hole is radially divided into a plurality of, for example, 16 holes around the temporary center position 31 obtained in the procedure of (9).
(11) Next, from the data group in each fan-shaped part 32 divided radially, only one piece of data closest to the temporary center position 31 is extracted.
(12) Next, arbitrarily extract three pieces of data in each of the extracted fan-shaped portions 32 to obtain a circle passing through these three points.
(13) Among the circles in which the number of data included in the circle obtained in (12) above is within the number that can be allowed as noise (for example, 2 to 3 and can be said to be the allowable number of noise), the radius is the largest. A large circle 33 is obtained, and the center position of the circle 33 is regarded as the center of the insertion hole 8 for the bolt 7.

すなわち、上記手順により、ボルト7の挿通用孔8の中心位置が取得されたことになる。
次に、上記データの取得方法を実行するためのデータの取得装置について説明する。
That is, the center position of the insertion hole 8 for the bolt 7 is acquired by the above procedure.
Next, a data acquisition apparatus for executing the data acquisition method will be described.

なお、この取得装置は、レーザ距離計により得られた三次元のデータ群に基づき、接合部材の平面を示すデータ、および接合部材の外形、並びに連結具であるボルトの中心つまり挿通用孔の中心位置を求めるものであり、実際には、コンピュータ装置に具備されたプログラムにより実行されるものである。   In addition, this acquisition device is based on the three-dimensional data group obtained by the laser distance meter, data indicating the plane of the joining member, the outer shape of the joining member, and the center of the bolt that is the connecting tool, that is, the center of the insertion hole. The position is obtained, and is actually executed by a program provided in the computer apparatus.

そのため、この取得装置の説明においては、プログラムの主要部分、つまり演算機能を特徴的に表した構成要件(後述するが、取得部、検出部、決定部、処理部、算出部、減少部、抽出部、分割部、設定部など)を具備するものとして説明する。   For this reason, in the description of the acquisition device, the main part of the program, that is, the configuration requirements characteristically representing the calculation function (which will be described later, the acquisition unit, the detection unit, the determination unit, the processing unit, the calculation unit, the reduction unit, the extraction unit, A description will be given assuming that the image processing apparatus includes a unit, a division unit, a setting unit, and the like.

図13に示すように、この形状データの取得装置40は、大きく分けて、接合部材5の表面と見做し得る所定の平面領域における三次元のデータ群を取得する平面データ取得手段41と、この平面データ取得手段41で得られたデータ群からその外形データを取得(抽出)する外形データ取得手段42と、上記平面データ取得手段41にて得られたデータ群から連結具であるボルト7の挿入用孔8の中心位置を取得(抽出)する孔データ取得手段43とから構成されている。   As shown in FIG. 13, the shape data acquisition device 40 is broadly divided into plane data acquisition means 41 that acquires a three-dimensional data group in a predetermined plane region that can be regarded as the surface of the joining member 5; The outline data acquisition means 42 for acquiring (extracting) the outline data from the data group obtained by the plane data acquisition means 41, and the bolt 7 which is a connector from the data group obtained by the plane data acquisition means 41. It is comprised from the hole data acquisition means 43 which acquires (extracts) the center position of the hole 8 for insertion.

まず、平面データ取得手段41について説明する。
この平面データ取得手段41には、図14に示すように、レーザ距離計9により接合部材5の表面の三次元位置を示すデータ群を取得するデータ群取得部51と、このデータ群取得部51で取得されたデータ群から探索を行うための探索平面を検出する探索平面検出部52と、この探索平面検出部52で検出された探索平面にデータ群をレーザ距離計9からのレーザ光Lの照射角度を考慮して投影し構造部材の表面を表すデータ群を取得する表面データ取得部53とが具備されている。
First, the plane data acquisition unit 41 will be described.
As shown in FIG. 14, the plane data acquisition unit 41 includes a data group acquisition unit 51 that acquires a data group indicating the three-dimensional position of the surface of the joining member 5 by the laser distance meter 9, and the data group acquisition unit 51. The search plane detection unit 52 for detecting a search plane for performing a search from the data group acquired in step (2), and the data group is placed on the search plane detected by the search plane detection unit 52 of the laser light L from the laser rangefinder 9. A surface data acquisition unit 53 that acquires a data group that is projected in consideration of the irradiation angle and that represents the surface of the structural member is provided.

また、上記探索平面検出部52は、探索平面を探索x軸(第1探索軸)と当該探索x軸に直交する探索y軸(第2探索軸)とで決定するようにするとともにこれら各探索軸を求めるのに三層平面域検出法が用いられるものであり、
当該探索平面検出部52には、上記各探索軸を求めるための探索開始点を含む探索開始平面の領域および当該探索開始平面に含まれる初期探索軸を求める初期探索軸検出部56と、
上記探索開始平面の領域内で且つ上記初期探索軸に沿うデータ群に三層平面域検出法を適用して許容厚さ域内のデータ群を求めるとともにこのデータ群に最小二乗法を適用して新たな更新探索軸を求める第1更新探索軸検出部57と、
上記第1更新探索軸検出部57で求められた更新探索軸上に上記探索開始点を投影するとともに、この更新探索軸上で探索開始平面の領域を延長し、この延長された平面領域内で且つ更新探索軸に沿うデータ群に三層平面域検出法を適用して許容厚さ域内のデータ群を求めるとともにこれらデータ群に最小二乗法を適用して更なる更新探索軸を求める工程を探索終了条件を満たすまで繰り返し行う第2更新探索軸検出部58と、
上記第2更新探索軸検出部58で求められた探索x軸および探索y軸により探索平面を決める探索平面決定部59とが具備されている。
Further, the search plane detection unit 52 determines a search plane based on a search x-axis (first search axis) and a search y-axis (second search axis) orthogonal to the search x-axis. A three-layer planar area detection method is used to determine the axis,
The search plane detection unit 52 includes an initial search axis detection unit 56 that calculates a search start plane area including a search start point for determining each search axis and an initial search axis included in the search start plane.
A three-layer plane area detection method is applied to a data group in the search start plane area and along the initial search axis to obtain a data group within an allowable thickness area, and a new least square method is applied to the data group. A first update search axis detector 57 for obtaining an update search axis;
The search start point is projected on the update search axis obtained by the first update search axis detection unit 57, and the area of the search start plane is extended on the update search axis. In addition, the three-layer plane area detection method is applied to the data group along the update search axis to obtain a data group within the allowable thickness range, and the process of obtaining a further update search axis by applying the least square method to these data groups is searched. A second update search axis detection unit 58 that is repeatedly performed until an end condition is satisfied;
A search plane determination unit 59 that determines a search plane based on the search x-axis and the search y-axis obtained by the second update search axis detection unit 58 is provided.

なお、上記各更新探索軸検出部57,58には、図示しないが、探索開始平面上で求められた初期探索軸に三層平面域検出法および最小二乗法を適用して新たなx軸を求めるとともに順次更新して探索x軸を求める探索x軸決定部と、上記探索x軸を求めたと同様の手順を、探索開始平面にて当該x軸と直交するy軸についても行い探索y軸を求める探索y軸決定部とが具備されている。   Although not shown in the drawings, the update search axis detectors 57 and 58 apply a new x-axis by applying the three-layer plane area detection method and the least square method to the initial search axis obtained on the search start plane. A search x-axis determination unit that obtains a search x-axis by obtaining and updating the search x-axis and a procedure similar to that for obtaining the search x-axis are performed for a y-axis that is orthogonal to the x-axis on the search start plane, and a search y-axis is obtained. And a search y-axis determination unit to be obtained.

また、図15に示すように、上記外形データ取得手段42には、接合部材5の表面を表すデータ群に凸包処理を施し仮外形としての多角形を求める凸包処理部(多角形処理部ともいえる)61と、この凸包処理部61で求められた多角形の各辺を延長して交点を求める交点検出部62と、この交点検出部62で得られた交点を有し且つ多角形の外側に形成される仮想三角形の面積を求める面積算出部63と、この面積算出部63で求められた一番小さい仮想三角形の部分を多角形に含ませて当該多角形の角数を1つ減らすとともに、当該角数が最終形状としての所定角数になるまで繰り返す角数減少部64とが具備されている。   Further, as shown in FIG. 15, the outer shape data acquisition unit 42 performs a convex hull processing on the data group representing the surface of the joining member 5 to obtain a polygon as a temporary outer shape (polygon processing unit). 61), an intersection detection unit 62 that obtains an intersection by extending each side of the polygon obtained by the convex hull processing unit 61, and a polygon having an intersection obtained by the intersection detection unit 62 An area calculation unit 63 for obtaining the area of the virtual triangle formed outside the polygon, and the polygonal portion including the smallest virtual triangle part obtained by the area calculation unit 63 to determine the number of corners of the polygon. An angle reduction unit 64 is provided that reduces and repeats until the number of corners reaches a predetermined number as the final shape.

さらに、図16に示すように、孔データ取得手段43には、前処理としてデータ群(上述した平面データ取得手段にて得られたデータ群で、つまり、三層平面域検出法が用いられて得られたデータ群である)から孔部を抽出するための孔抽出部71と、この孔抽出部71で抽出された孔の中心を仮中心位置として当該孔を放射状の直線により複数の扇形状領域に分割する領域分割部72と、この領域分割部72で分割された各扇形状領域内のデータ群のうち、仮中心位置に最も近いデータを抽出する仮中心位置抽出部73と、この仮中心位置抽出部73で抽出された各扇形状領域内のデータを任意に3個取り出すとともにこれら3点を通る円を複数個求める円算出部74と、この円算出部74で求められた円内に含まれるデータ個数がノイズ許容個数内である円のうち、最も半径が大きい円を抽出するとともに、この円の中心位置を連結具であるボルト7の挿通用孔8の中心とする孔位置算出部75とが具備されている。   Furthermore, as shown in FIG. 16, the hole data acquisition means 43 uses a data group (a data group obtained by the above-described plane data acquisition means, that is, a three-layer plane area detection method) as preprocessing. A hole extracting unit 71 for extracting a hole from the obtained data group), and the hole center extracted by the hole extracting unit 71 as a temporary center position, and the hole is formed in a plurality of fan shapes by a radial straight line. An area dividing unit 72 that divides the area, a temporary center position extracting unit 73 that extracts data closest to the temporary center position from the data group in each fan-shaped area divided by the area dividing unit 72, and the temporary A circle calculation unit 74 that arbitrarily extracts three pieces of data in each fan-shaped region extracted by the center position extraction unit 73 and obtains a plurality of circles passing through these three points, and the inside of the circle obtained by the circle calculation unit 74 The number of data included in the A circle having the largest radius is extracted from the circles within the capacity, and a hole position calculation unit 75 having the center position of the circle as the center of the insertion hole 8 of the bolt 7 serving as a connector is provided. Yes.

上記孔抽出部71には、図17に示すように、得られたデータ群を全て囲み得る検索対象領域を示す検索枠を設定する検索枠設定部81と、この検索枠設定部81で設定された検索枠を4分割して4個の1次分割域(1次グリッド)を得た後、データが存在する1次グリッドを4分割して4個の2次分割域(2次グリッド)を得る工程を、順次、繰り返すことにより、データが存在する(n−1)次グリッドをさらに4分割するとともに、当該分割された4個のn次分割域(n次グリッド)が孔より小さい面積である最小単位になるまで繰り返す分割処理部82と、この分割処理部82で得られたデータに対して、同一の親グリッドに含まれる複数の子グリッドについて、それぞれのデータの有無状態が同一である場合には子グリッド同士を結合して子グリッドを無くすマージ処理を、その対象が無くなるまで繰り返す結合処理部83と、この結合処理部83で得られた隣接するグリッド同士のデータの有無状態が同一であるものについては、同一のラベルとなるようにラベリング処理を行うラベリング処理部84と、このラベリング処理部84で得られたものに対して、データが無い同一ラベルグループのうち、面積が許容範囲(孔の最小値から最大値までの範囲)内にあるものを抽出し、その重心位置を挿通用孔の仮中心位置と決定する仮中心位置決定部85とが具備されている。   In the hole extraction unit 71, as shown in FIG. 17, a search frame setting unit 81 for setting a search frame indicating a search target area that can enclose all the obtained data groups, and the search frame setting unit 81 are set. The search frame is divided into four to obtain four primary divided areas (primary grids), and then the primary grid in which data exists is divided into four to obtain four secondary divided areas (secondary grids). By sequentially repeating the obtaining process, the (n-1) th order grid in which data exists is further divided into four, and the four divided nth order divided areas (nth order grids) are smaller than the holes. The division processing unit 82 that repeats until it reaches a certain minimum unit, and the data obtained by the division processing unit 82 has the same data presence / absence status for a plurality of child grids included in the same parent grid. In the case of child grids The merge processing that repeats the merge process for eliminating child grids until the target disappears, and the data processing status of adjacent grids obtained by the merge processing unit 83 are the same. The labeling processing unit 84 that performs the labeling process so as to be the label, and the labeling processing unit 84 obtained from the labeling processing unit 84, the area of the same label group without data is within an allowable range (from the minimum value of the hole to the maximum value). And a temporary center position determining unit 85 that extracts a portion within the range) and determines the position of the center of gravity as the temporary center position of the insertion hole.

なお、上記実施例においては、互いに直交する探索x軸と探索y軸との2つの探索軸にて求められる探索平面に対して適用したが、これとは別に複数の探索軸を求めて探索するようにすれば、複雑な形状を有する表面に対しても、十分な形状データを取得することができる。   In the above-described embodiment, the present invention is applied to a search plane obtained by two search axes, ie, a search x-axis and a search y-axis that are orthogonal to each other. In this way, sufficient shape data can be acquired even for a surface having a complicated shape.

ところで、上記実施例においては、平面探索時およびデータ投影時に三層平面域検出法をそれぞれ用いたが、そのときの許容厚さ域(ターゲット域)の大きさ(寸法)については、同じ大きさであってもよいが、それぞれに応じた大きさにすることができる。また、同じデータ群に対しても、平面によって、例えば計測角度や誤差範囲などを考慮して許容厚さ域の大きさを変更してもよい。これにより、さらに精度の高い平面形状を取得することができる。すなわち、許容厚さ域の大きさは計測対象物の表面状態に応じて適宜変更することができる。   By the way, in the above embodiment, the three-layer plane area detection method is used at the time of plane search and data projection, but the size (dimension) of the allowable thickness area (target area) at that time is the same size. Although it may be, it can be made the size according to each. For the same data group, the size of the allowable thickness range may be changed by considering the measurement angle, error range, etc., depending on the plane. Thereby, a more accurate planar shape can be acquired. That is, the size of the allowable thickness region can be changed as appropriate according to the surface state of the measurement object.

また、上記実施例においては、平面データの取得について説明したが、取得したデータ群から平行な複数の平面データを取得することにより、奥行き寸法および立体形状のデータも取得することができる。   In the above embodiment, the acquisition of the plane data has been described. However, by acquiring a plurality of parallel plane data from the acquired data group, the data of the depth dimension and the three-dimensional shape can also be acquired.

さらに、上記実施例においては、既設の橋梁を対象としたので、ボルト等の突出部の点群から孔の中心位置を求める場合について説明したが、孔部を直接計測できる場合には、当然ながら、孔そのものの大きさ(寸法)を取得することができる。   Furthermore, in the above embodiment, since the existing bridge is targeted, the case where the center position of the hole is obtained from the point group of the projecting part such as a bolt has been described, but of course, when the hole part can be directly measured, The size (dimension) of the hole itself can be acquired.

特に、三層平面域検出法を用いることにより、構造部材である接合部材の挿通用孔にボルトが取り付けられているような場合、すなわちボルト孔がボルトにより見えない場合でも、ボルトの頭部を除去した孔データ(点群データ)を得ることができるので、ボルトを取り外すことなく、ボルトの挿通用孔の中心位置を得ることができる。また、除去する対象物がボルトの頭部の他に、例えばリベット、座金などのように、平面から突出している部材であってもよい。すなわち、これらが挿通されまたは配置されている孔の中心位置を精度良く取得することができる。   In particular, by using the three-layer plane area detection method, even when a bolt is attached to the insertion hole of the joining member, which is a structural member, that is, even when the bolt hole is not visible by the bolt, the head of the bolt is removed. Since the removed hole data (point cloud data) can be obtained, the center position of the bolt insertion hole can be obtained without removing the bolt. In addition to the bolt head, the object to be removed may be a member protruding from a flat surface, such as a rivet or a washer. That is, the center position of the hole through which these are inserted or arranged can be obtained with high accuracy.

上述した形状データの取得方法および取得装置の構成によると、レーザ距離計により接合部材の表面の三次元位置のデータ群を得るとともに、これら得られたデータ群に対して探索平面領域を求め、この探索平面領域における厚さ方向のデータ群に対して、三層平面域検出法を適用して、接合部材と見做し得る平面データを抽出するようにしたので、従来のように、レーザ光による計測とカメラ画像を併用してその表面を検出するものに比べて、容易に且つ精度が低下することなく、離れた場所に在る接合部材の形状を検出することができる。   According to the shape data acquisition method and the configuration of the acquisition device described above, a data group of the three-dimensional position of the surface of the joining member is obtained by a laser distance meter, and a search plane region is obtained for the obtained data group, Since the three-layer plane area detection method is applied to the data group in the thickness direction in the search plane area, plane data that can be regarded as a joining member is extracted. The shape of the joining member at a remote location can be detected easily and without a decrease in accuracy as compared with the case where the surface is detected using both measurement and camera images.

ここで、孔データの取得方法および取得装置の概略構成について記載しておく。
孔データの取得方法には、物体表面の有無を示すデータ群から抽出された孔の中心を仮中心位置として当該孔を放射状の直線により複数の扇形状領域に分割する工程と、
上記分割された各扇形状領域内のデータ群のうち、仮中心位置に最も近いデータを抽出する工程と、
上記抽出された各扇形状領域内のデータを任意に3個取り出すとともにこれら3点を通る円を複数求める工程と、
上記求められた円内に含まれるデータ個数がノイズ許容個数内である円のうち、半径が最も大きい円を抽出するとともに、この円の重心を孔の中心位置として取得する工程とが具備されている。
Here, the outline configuration of the hole data acquisition method and acquisition apparatus will be described.
The hole data acquisition method includes the step of dividing the hole into a plurality of fan-shaped regions by a radial line with the center of the hole extracted from the data group indicating the presence or absence of the object surface as a temporary center position;
Extracting the data closest to the temporary center position from the data group in each of the divided fan-shaped regions;
Arbitrarily extracting three pieces of data in each of the extracted fan-shaped regions and obtaining a plurality of circles passing through these three points;
A step of extracting a circle having the largest radius from among the circles in which the number of data included in the obtained circle is within the allowable number of noises, and obtaining the center of gravity of the circle as the center position of the hole. Yes.

また、上記取得方法には前処理工程が具備されており、この前処理工程は、
得られたデータ群を全て囲み得る検索対象領域を示す検索枠を設定する工程と、
検索枠を4分割して4個の1次分割域を得た後、データが存在する1次分割域を4分割して4個の2次分割域を得る工程と、
上記分割域の分割を繰り返すことにより、データが存在する(n−1)次分割域(以下、親分割域と称す)をさらに4分割するとともに、当該分割された4個のn次分割域(以下、子分割域と称す)が孔より小さい面積である最小単位になるまで繰り返す工程と、
同一の親分割域に含まれる複数の子分割域について、それぞれのデータの有無状態が同一である場合には子分割域同士を結合して子分割域を無くすマージ処理を、その対象が無くなるまで繰り返す工程と、
隣接する分割域同士のデータの有無状態が同一であるものについては、同一のラベルとなるようにラベリング処理を行う工程と、
データが無い同一ラベルグループのうち、面積が許容値(孔の最小値から最大値までの範囲)内にあるものを孔として抽出するとともに、その重心を孔の仮中心位置と決定する工程とから構成されている。
In addition, the acquisition method includes a pretreatment process,
Setting a search frame indicating a search target area that can enclose all the obtained data groups;
Dividing the search frame into four to obtain four primary divided areas, and then dividing the primary divided area where data exists into four to obtain four secondary divided areas;
By repeating the division of the divided area, the (n-1) th order divided area (hereinafter referred to as a parent divided area) in which data exists is further divided into four and the divided nth order divided areas ( (Hereinafter referred to as a sub-divided area) is repeated until the minimum unit is an area smaller than the hole,
When multiple child sub-regions included in the same parent sub-region have the same data presence / absence status, merge processing is performed until the child sub-regions are eliminated by combining the child sub-regions until the target is removed. Repeating the process;
For the same data presence / absence state between adjacent divided areas, a step of performing a labeling process so as to be the same label,
From the same label group with no data, the area whose area is within an allowable value (range from the minimum value to the maximum value of the hole) is extracted as a hole, and the center of gravity is determined as the temporary center position of the hole It is configured.

さらに、孔データの取得装置には、物体表面の有無を示すデータ群から抽出された孔の中心を仮中心位置として当該孔を放射状の直線により複数の扇形状領域に分割する形状分割部と、
この形状分割部で分割された各扇形状領域内のデータ群のうち、仮中心位置に最も近い内寄りデータを抽出する内寄りデータ抽出部と、
この内寄りデータ抽出部で抽出された扇形状領域内におけるデータを任意に3個取り出すとともにこれら3点を通る円を複数求める円算出部と、
この円算出部で求められた円内に含まれるデータ個数がノイズ許容個数内である円のうち、最も半径が大きい円を抽出するとともに、この円の中心を孔の中心位置とする中心位置算出部とが具備されている。
Furthermore, the hole data acquisition device includes a shape dividing unit that divides the hole into a plurality of fan-shaped regions by a radial line with the center of the hole extracted from the data group indicating the presence or absence of the object surface as a temporary center position;
Among the data groups in each fan-shaped region divided by the shape dividing unit, an inward data extracting unit that extracts inward data closest to the temporary center position;
A circle calculation unit for arbitrarily extracting three pieces of data in the fan-shaped region extracted by the inward data extraction unit and obtaining a plurality of circles passing through these three points;
The circle with the largest radius is extracted from the circles whose data is within the allowable number of noises, and the center position is calculated with the center of this circle as the center of the hole. Are provided.

また、孔データの取得装置には、前処理手段が具備されており、
この前処理手段は、得られたデータ群を全て囲み得る検索対象領域を示す検索枠を設定する検索枠設定部と、
この検索枠設定部で設定された検索枠を4分割して4個の1次分割域を得た後、データが存在する1次分割域を4分割して4個の2次分割域を得る工程を、順次、繰り返すことにより、データが存在する(n−1)次分割域(以下、親分割域と称す)をさらに4分割するとともに、当該分割された4個のn次分割域(以下、子分割域と称す)が孔より小さい面積である最小単位になるまで繰り返す分割処理部と、
この分割処理部で得られたデータに対して、同一の親分割域に含まれる複数の子分割域について、それぞれのデータの有無状態が同一である場合には子分割域同士を結合して子分割域を無くすマージ処理を、その対象が無くなるまで繰り返す結合処理部と、
この結合処理部で得られた隣接する分割域同士のデータの有無状態が同一であるものについては、同一のラベルとなるようにラベリング処理を行うラベリング処理部と、
このラベリング処理部で得られたものに対して、データが無い同一ラベルグループのうち、面積が許容範囲内にあるものを抽出し、その重心を孔の仮中心位置と決定する仮中心位置決定部とから構成されている。
In addition, the hole data acquisition device is provided with pre-processing means,
The preprocessing means includes a search frame setting unit that sets a search frame indicating a search target area that can enclose all the obtained data groups,
After dividing the search frame set by the search frame setting unit into four to obtain four primary divided areas, the primary divided area in which data exists is divided into four to obtain four secondary divided areas. By repeating the process in sequence, the (n-1) th order division area (hereinafter referred to as a parent division area) in which data exists is further divided into four, and the four divided nth order division areas (hereinafter referred to as parent division areas). A division processing unit that repeats until it becomes a minimum unit that is an area smaller than the hole),
For the data obtained by this division processing unit, when the presence / absence state of each data is the same for a plurality of child divided areas included in the same parent divided area, the child divided areas are joined to each other. A merge processing unit that repeats the merge processing for eliminating the divided area until the target is eliminated; and
A labeling processing unit that performs a labeling process so as to have the same label for those having the same data presence / absence state between adjacent divided areas obtained by the combining processing unit,
A temporary center position determination unit that extracts the same label group having no data from those obtained by the labeling processing unit and whose area is within the allowable range and determines the center of gravity as the temporary center position of the hole. It consists of and.

1 橋梁
2 桁材
3 梁材
4 連結材
5 接合板材
7 ボルト
8 挿通用孔
9 レーザ距離計
40 形状データ取得装置
41 平面データ取得手段
42 外形データ取得手段
43 孔データ取得手段
51 データ群取得部
52 探索平面検出部
53 表面データ取得部
56 初期探索軸検出部
57 第1更新探索軸検出部
58 第2更新探索軸検出部
59 探索平面決定部
61 多角形検出部
62 交点検出部
63 面積算出部
64 角数減少部
71 孔抽出部
72 領域分割部
73 仮中心位置算出部
74 円算出部
75 孔位置算出部
81 検索枠設定部
82 分割処理部
83 結合処理部
84 ラベリング処理部
85 仮中心位置決定部
DESCRIPTION OF SYMBOLS 1 Bridge 2 Girder material 3 Beam material 4 Connection material 5 Joint board material 7 Bolt 8 Insertion hole 9 Laser distance meter 40 Shape data acquisition apparatus 41 Plane data acquisition means 42 Outline data acquisition means 43 Hole data acquisition means 51 Data group acquisition part 52 Search plane detection unit 53 Surface data acquisition unit 56 Initial search axis detection unit 57 First update search axis detection unit 58 Second update search axis detection unit 59 Search plane determination unit 61 Polygon detection unit 62 Intersection detection unit 63 Area calculation unit 64 Angle reduction unit 71 Hole extraction unit 72 Region division unit 73 Temporary center position calculation unit 74 Circle calculation unit 75 Hole position calculation unit 81 Search frame setting unit 82 Division processing unit 83 Joining processing unit 84 Labeling processing unit 85 Temporary center position determination unit

Claims (8)

レーザ距離計により得られる板状の構造部材の表面の三次元位置を示すデータ群に基づき所定の平面領域を探索することにより当該構造部材の形状データを取得する取得方法であって、
レーザ距離計により構造部材の表面の三次元位置を示すデータ群を取得する工程と、
上記データ群から探索を行うための探索平面を検出する工程と、
上記検出された探索平面にデータ群をレーザ距離計からのレーザ光の照射角度を考慮して投影し構造部材の表面を表すデータ群を取得する工程と
を具備したことを特徴とする構造部材の形状データの取得方法。
An acquisition method for acquiring shape data of a structural member by searching a predetermined plane region based on a data group indicating a three-dimensional position of the surface of a plate-shaped structural member obtained by a laser distance meter,
Acquiring a data group indicating a three-dimensional position of the surface of the structural member by a laser distance meter;
Detecting a search plane for searching from the data group;
Projecting the data group on the detected search plane in consideration of the irradiation angle of the laser beam from the laser rangefinder to obtain a data group representing the surface of the structural member. How to get shape data.
探索平面を検出するに際し、所定の平面領域に係る三次元のデータ群を、構造部材の表面であると見做せる許容厚さ域と、この許容厚さ域の上側および下側で構造部材の表面と見做せない非許容厚さ域との3つの層に分けるとともに、上記許容厚さ域内のデータ群の平均値を用いる三層平面域検出法を適用することを特徴とする請求項1に記載の構造部材の形状データの取得方法。   When detecting the search plane, the three-dimensional data group related to the predetermined plane region is allowed to be regarded as the surface of the structural member, and the upper and lower sides of the allowable thickness region of the structural member. 2. A three-layer planar area detection method using an average value of a data group in the allowable thickness range is applied while being divided into three layers of a surface and an unacceptable thickness range that cannot be recognized. A method for obtaining shape data of the structural member according to the above. 探索平面を第1探索軸と当該第1探索軸に直交する第2探索軸とで決定するとともにこれら第1探索軸および第2探索軸により探索平面を検出する工程として、
第1探索軸および第2探索軸を求めるのに三層平面域検出法を用いるとともに上記各探索軸を求めるための探索開始点を含む探索開始平面の領域および当該探索開始平面に含まれる初期探索軸を求める工程と、
上記探索開始平面の領域内で且つ初期探索軸に沿うデータ群に三層平面域検出法を適用して許容厚さ域内のデータ群を求めるとともにこのデータ群に最小二乗法を適用して新たな更新探索軸を求める工程と、
上記求められた更新探索軸上に上記探索開始点を投影するとともに、この更新探索軸上で探索開始平面の領域を延長し、この延長された平面領域内で且つ更新探索軸に沿うデータ群に三層平面域検出法を適用して許容厚さ域内のデータ群を求めるとともにこれらデータ群に最小二乗法を適用して更なる更新探索軸を求める工程を探索終了条件を満たすまで繰り返し行う工程と、
上記工程により求められた第1探索軸および第2探索軸により探索平面を検出する工程と
を具備させたことを特徴とする請求項2に記載の構造部材の形状データの取得方法。
As a step of determining a search plane by a first search axis and a second search axis orthogonal to the first search axis and detecting the search plane by the first search axis and the second search axis,
The three-layer plane area detection method is used to obtain the first search axis and the second search axis, and the search start plane area including the search start point for obtaining each search axis and the initial search included in the search start plane The process of finding the axis;
A three-layer plane area detection method is applied to a data group in the search start plane area and along the initial search axis to obtain a data group within an allowable thickness area, and a new least square method is applied to the data group. Obtaining an update search axis;
Projecting the search start point on the obtained update search axis, extending the area of the search start plane on the update search axis, and in the data group along the update search axis in the extended plane area Applying the three-layer planar area detection method to obtain data groups within the allowable thickness range and applying the least squares method to these data groups to obtain further update search axes until the search end condition is satisfied ,
The method for obtaining shape data of a structural member according to claim 2, further comprising a step of detecting a search plane based on the first search axis and the second search axis obtained by the above steps.
構造部材の表面を表すデータ群に凸包処理を施し仮外形としての多角形を求める工程と、
上記求められた多角形の各辺を延長して交点を求める工程と、
上記交点を有し且つ多角形の外側に形成される仮想三角形の面積を求める工程と、
上記求められた仮想三角形のうち、面積が一番小さい仮想三角形を多角形に含ませて当該多角形の角数を1つ減らす工程と、
上記角数を減らす工程を繰り返すことにより当該角数が最終形状としての角数となるようにする工程と
を具備したことを特徴とする請求項1乃至3のいずれか一項に記載の構造部材の形状データの取得方法。
Applying a convex hull process to the data group representing the surface of the structural member to obtain a polygon as a temporary outline;
Extending each side of the obtained polygon to obtain an intersection; and
Obtaining an area of a virtual triangle having the intersection and formed outside the polygon;
Of the obtained virtual triangles, including the virtual triangle having the smallest area in the polygon and reducing the number of corners of the polygon by one;
The structural member according to any one of claims 1 to 3, further comprising a step of repeating the step of reducing the number of corners so that the number of corners becomes a number of corners as a final shape. To acquire the shape data.
レーザ距離計により得られる板状の構造部材の表面の三次元位置を示すデータ群に基づき所定の平面領域を探索することにより当該構造部材の形状データを取得する取得装置であって、
レーザ距離計により構造部材の表面の三次元位置を示すデータ群を取得するデータ群取得部と、
上記データ群から探索を行うための探索平面を検出する探索平面検出部と、
上記検出された探索用平面にデータ群をレーザ距離計からのレーザ光の照射角度を考慮して投影し構造部材の表面を表すデータ群を取得する表面データ取得部と
を具備したことを特徴とする構造部材の形状データの取得装置。
An acquisition device for acquiring shape data of a structural member by searching a predetermined plane region based on a data group indicating a three-dimensional position of the surface of a plate-shaped structural member obtained by a laser distance meter,
A data group acquisition unit for acquiring a data group indicating a three-dimensional position of the surface of the structural member by a laser distance meter;
A search plane detector for detecting a search plane for searching from the data group;
And a surface data acquisition unit for acquiring a data group representing the surface of the structural member by projecting the data group on the detected search plane in consideration of the irradiation angle of the laser beam from the laser rangefinder. An apparatus for acquiring shape data of a structural member.
探索平面検出部において、所定の平面領域に係る三次元のデータ群を、構造部材の表面であると見做せる許容厚さ域と、この許容厚さ域の上側および下側で構造部材の表面と見做せない非許容厚さ域との3つの層に分けるとともに、上記許容厚さ域内のデータ群の平均値を用いる三層平面域検出法を適用したことを特徴とする請求項5に記載の構造部材の形状データの取得装置。   In the search plane detection unit, an allowable thickness area in which a three-dimensional data group relating to a predetermined plane area can be regarded as the surface of the structural member, and the surface of the structural member above and below the allowable thickness area 6. A three-layer plane area detection method using an average value of a data group in the allowable thickness area is applied to the three layers of an unacceptable thickness area that cannot be regarded as An apparatus for acquiring shape data of the structural member described. 探索平面検出部において、探索平面を第1探索軸と当該第1探索軸に直交する第2探索軸とで決定するようになし且つこれら各探索軸を求めるのに三層平面域検出法を用いるとともに、
当該探索平面検出部を、
上記各探索軸を求めるための探索開始点を含む探索開始平面の領域および当該探索開始平面に含まれる初期探索軸を求める初期探索軸検出部と、
上記探索開始平面の領域内で且つ上記初期探索軸に沿うデータ群に三層平面域検出法を適用して許容厚さ域内のデータ群を求めるとともにこのデータ群に最小二乗法を適用して新たな更新探索軸を求める第1更新探索軸検出部と、
上記第1更新探索軸検出部で求められた更新探索軸上に上記探索開始点を投影するとともに、この更新探索軸上で探索開始平面の領域を延長し、この延長された平面領域内で且つ更新探索軸に沿うデータ群に三層平面域検出法を適用して許容厚さ域内のデータ群を求めるとともにこれらデータ群に最小二乗法を適用して更なる更新探索軸を求める工程を探索終了条件を満たすまで繰り返し行う第2更新探索軸検出部と、
上記第2更新探索軸検出部で求められた第1探索軸および第2探索軸により探索平面を決定する探索平面決定部と
を具備させたことを特徴とする請求項6に記載の構造部材の形状データの取得装置。
In the search plane detection unit, the search plane is determined by a first search axis and a second search axis orthogonal to the first search axis, and a three-layer plane area detection method is used to obtain each search axis. With
The search plane detection unit is
An area of a search start plane including a search start point for obtaining each search axis and an initial search axis detection unit for obtaining an initial search axis included in the search start plane;
A three-layer plane area detection method is applied to a data group in the search start plane area and along the initial search axis to obtain a data group within an allowable thickness area, and a new least square method is applied to the data group. A first update search axis detector for obtaining a new update search axis;
Projecting the search start point on the update search axis obtained by the first update search axis detection unit, extending the area of the search start plane on the update search axis, and within the extended plane area and Searching the data group along the update search axis by applying the three-layer planar area detection method to obtain the data group within the allowable thickness range and applying the least squares method to these data groups to complete the process of obtaining the additional search axis A second update search axis detection unit that repeats until the condition is satisfied;
The structural member according to claim 6, further comprising: a search plane determination unit that determines a search plane based on the first search axis and the second search axis obtained by the second update search axis detection unit. Shape data acquisition device.
構造部材の表面を表すデータ群に凸包処理を施し仮外形としての多角形を求める凸包処理部と、
この凸包処理部で求められた多角形の各辺を延長して交点を求める交点検出部と、
この交点検出部で求められた交点を有し且つ多角形の外側に形成される仮想三角形の面積を求める面積算出部と、
この面積算出部で求められた仮想三角形のうち、面積が一番小さい仮想三角形を多角形に含ませて当該多角形の角数を1つ減らす手順を繰り返すことにより当該角数が最終形状としての角数となるようにする角数減少部と
を具備したことを特徴とする請求項5乃至7のいずれか一項に記載の構造部材の形状データの取得装置。
A convex hull processing unit that performs convex hull processing on the data group representing the surface of the structural member to obtain a polygon as a temporary outline;
An intersection detection unit that obtains an intersection by extending each side of the polygon obtained by the convex hull processing unit;
An area calculation unit for obtaining an area of a virtual triangle having an intersection obtained by the intersection detection unit and formed outside the polygon;
Among the virtual triangles obtained by the area calculation unit, the virtual triangle having the smallest area is included in the polygon and the procedure for reducing the number of corners of the polygon by one is repeated, so that the number of corners becomes the final shape. An apparatus for acquiring shape data of a structural member according to any one of claims 5 to 7, further comprising: a number-decreasing unit configured to obtain a number of corners.
JP2013041363A 2013-03-04 2013-03-04 Method and apparatus for acquiring shape data of structural member Active JP6238531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041363A JP6238531B2 (en) 2013-03-04 2013-03-04 Method and apparatus for acquiring shape data of structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041363A JP6238531B2 (en) 2013-03-04 2013-03-04 Method and apparatus for acquiring shape data of structural member

Publications (2)

Publication Number Publication Date
JP2014169904A true JP2014169904A (en) 2014-09-18
JP6238531B2 JP6238531B2 (en) 2017-11-29

Family

ID=51692388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041363A Active JP6238531B2 (en) 2013-03-04 2013-03-04 Method and apparatus for acquiring shape data of structural member

Country Status (1)

Country Link
JP (1) JP6238531B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018140403A (en) * 2017-02-27 2018-09-13 Jfeスチール株式会社 Steel plate shape corrector
JP2020085857A (en) * 2018-11-30 2020-06-04 東京電力ホールディングス株式会社 Bolt detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326347A (en) * 1997-05-27 1998-12-08 Meidensha Corp Detection device and detection method for three-dimensional position attitude of circlar feature of parts, and recording medium for the detection device and detection method
JP2009136987A (en) * 2007-12-10 2009-06-25 Toyota Motor Corp Mobile robot and method of correcting floor surface shape data
JP2011134234A (en) * 2009-12-25 2011-07-07 Honda Motor Co Ltd Movable area extracting device, movable area extracting system, movable area extracting method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326347A (en) * 1997-05-27 1998-12-08 Meidensha Corp Detection device and detection method for three-dimensional position attitude of circlar feature of parts, and recording medium for the detection device and detection method
JP2009136987A (en) * 2007-12-10 2009-06-25 Toyota Motor Corp Mobile robot and method of correcting floor surface shape data
JP2011134234A (en) * 2009-12-25 2011-07-07 Honda Motor Co Ltd Movable area extracting device, movable area extracting system, movable area extracting method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018140403A (en) * 2017-02-27 2018-09-13 Jfeスチール株式会社 Steel plate shape corrector
JP2020085857A (en) * 2018-11-30 2020-06-04 東京電力ホールディングス株式会社 Bolt detection method
JP7217451B2 (en) 2018-11-30 2023-02-03 東京電力ホールディングス株式会社 Bolt detection method

Also Published As

Publication number Publication date
JP6238531B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
CN109596059B (en) Aircraft skin gap and step difference measuring method based on parallel line structured light
KR101604037B1 (en) method of making three dimension model and defect analysis using camera and laser scanning
JP5991489B2 (en) Road deformation detection device, road deformation detection method and program
Turkan et al. Tracking of secondary and temporary objects in structural concrete work
Kwak et al. Precise photogrammetric reconstruction using model-based image fitting for 3D beam deformation monitoring
Yang et al. A simple image‐based strain measurement method for measuring the strain fields in an RC‐wall experiment
JP6201059B2 (en) Ground shape estimation program, ground shape estimation device, and ground shape estimation method
Zhang et al. Relative orientation based on multi-features
US20140081602A1 (en) Method, system and program for generating three-dimensional model
JP2012137933A (en) Position specifying method of planimetric features to be photographed, program thereof, display map, photographic position acquiring method, program thereof and photographic position acquiring device
JP6238531B2 (en) Method and apparatus for acquiring shape data of structural member
KR20200089467A (en) Algorithm and tool development for deformation detection of structures through profile
Cabaleiro et al. Algorithm for the analysis of the geometric properties of cross-sections of timber beams with lack of material from LIDAR data
JP6035031B2 (en) Three-dimensional shape measuring device using multiple grids
JP5451457B2 (en) 3D model generation apparatus and computer program
JP2007212187A (en) Stereo photogrammetry system, stereo photogrammetry method, and stereo photogrammetry program
Shan et al. Stereovision monitoring for entire collapse of a three‐story frame model under earthquake excitation
US20210141983A1 (en) Processing apparatus, method of detecting a feature part of a cad model, and non-transitory computer readable medium storing a program
JP6560547B2 (en) Boundary point extraction method and measurement method using total station
JP6120614B2 (en) Method and apparatus for acquiring hole data
JP6584236B2 (en) Method for determining edge of three-dimensional structure and method for determining outer surface of three-dimensional structure
UEHAN et al. Development of an aerial survey system and numerical analysis modeling software for unstable rock blocks
CN115597524A (en) Hole axis perpendicularity error measuring method, device and equipment
FI127088B (en) Method and system for determining production dimensions of a connecting element
KR101401040B1 (en) Apparatus and method for inspecting target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250