JP2014168067A - Polishing method of non-oxide single crystal substrate - Google Patents

Polishing method of non-oxide single crystal substrate Download PDF

Info

Publication number
JP2014168067A
JP2014168067A JP2014062124A JP2014062124A JP2014168067A JP 2014168067 A JP2014168067 A JP 2014168067A JP 2014062124 A JP2014062124 A JP 2014062124A JP 2014062124 A JP2014062124 A JP 2014062124A JP 2014168067 A JP2014168067 A JP 2014168067A
Authority
JP
Japan
Prior art keywords
polishing
single crystal
polishing liquid
crystal substrate
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014062124A
Other languages
Japanese (ja)
Inventor
Iori Yoshida
伊織 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2014062124A priority Critical patent/JP2014168067A/en
Publication of JP2014168067A publication Critical patent/JP2014168067A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing method which allows for maintenance of high polishing speed, even if circulation polishing of a non-oxide single crystal substrate, e.g., a silicon oxide single crystal substrate, having a high hardness and high chemical stability is performed for a longer time.SOLUTION: In a polishing method for supplying a polishing solution, containing a permanganic acid ion and water, to a polishing pad, bringing the polished surface of a non-oxide single crystal substrate into contact with the polishing pad, and performing the polishing by relative motion therebetween, the polishing solution is circulated by repeating the operation for recovering the polishing solution supplied to the polishing pad and used for polishing, and supplying the polishing solution thus recovered again to the polishing pad, and the pH of the polishing solution is adjusted to 5 or less at a moment in time when polishing the polished surface.

Description

本発明は、非酸化物単結晶基板を研磨するための研磨方法に関する。より詳しくは、炭化ケイ素単結晶基板等の循環研磨に適した研磨方法に関する。   The present invention relates to a polishing method for polishing a non-oxide single crystal substrate. More specifically, the present invention relates to a polishing method suitable for cyclic polishing of a silicon carbide single crystal substrate or the like.

炭化ケイ素(SiC)半導体は、シリコン半導体よりも絶縁破壊電界、電子の飽和ドリフト速度および熱伝導率が大きいため、炭化ケイ素半導体を用いて、従来のシリコンデバイスよりも高温、高速で動作が可能なパワーデバイスを実現する研究・開発がなされている。なかでも、電動二輪車、電気自動車やハイブリッドカー等のモータを駆動するための電源に使用する高効率なスイッチング素子の開発が注目されている。このようなパワーデバイスを実現するためには、高品質な炭化ケイ素半導体層をエピタキシャル成長させるための表面平滑な炭化ケイ素単結晶基板が必要である。   Silicon carbide (SiC) semiconductors have a higher breakdown electric field, electron saturation drift velocity, and thermal conductivity than silicon semiconductors, so silicon carbide semiconductors can be operated at higher temperatures and higher speeds than conventional silicon devices. Research and development to realize power devices has been conducted. In particular, the development of a highly efficient switching element used as a power source for driving a motor of an electric motorcycle, an electric vehicle, a hybrid car or the like has attracted attention. In order to realize such a power device, a silicon carbide single crystal substrate having a smooth surface for epitaxial growth of a high-quality silicon carbide semiconductor layer is required.

また、高密度で情報を記録するための光源として、青色レーザダイオードが注目されており、さらに、蛍光灯や電球に替わる光源としての白色ダイオードへのニーズが高まっている。このような発光素子は窒化ガリウム(GaN)半導体を用いて作製され、高品質な窒化ガリウム半導体層を形成するための基板として、炭化ケイ素単結晶基板が使用されている。   Also, blue laser diodes are attracting attention as light sources for recording information at high density, and there is an increasing need for white diodes as light sources that replace fluorescent lamps and light bulbs. Such a light-emitting element is manufactured using a gallium nitride (GaN) semiconductor, and a silicon carbide single crystal substrate is used as a substrate for forming a high-quality gallium nitride semiconductor layer.

こうした用途のための炭化ケイ素単結晶基板には、基板の平坦度、基板表面の平滑性等において高い加工精度が要求される。しかし、炭化ケイ素単結晶は硬度が極めて高く、耐腐食性に優れるため、基板を作製する場合の加工性が悪く、研磨速度が高く、かつ、高い平滑性、低スクラッチ性の炭化ケイ素単結晶基板を得ることは難しい。   A silicon carbide single crystal substrate for such applications requires high processing accuracy in terms of the flatness of the substrate, the smoothness of the substrate surface, and the like. However, since silicon carbide single crystal has extremely high hardness and excellent corrosion resistance, it has poor processability when manufacturing a substrate, high polishing rate, and high smoothness and low scratch resistance silicon carbide single crystal substrate. Hard to get.

従来から、炭化ケイ素単結晶基板の研磨は、砥粒と酸化剤と水を含む研磨剤を循環させて繰り返し使用(以下、「循環使用」という。)する方法で行われている。すなわち、研磨パッド上に供給して研磨に使用した研磨剤を回収し、回収された研磨剤を再び研磨パッド上に供給して研磨に使用する方法(以下、「循環研磨」の方法という。)で行われている。このような方法では、使用した研磨剤を1回の使用毎に廃棄する、いわゆるかけ流し研磨の方法と比べて、研磨剤の使用量を減らすことができるので、コストの低減や環境負荷の低減等を達成できる。   Conventionally, polishing of a silicon carbide single crystal substrate has been performed by a method of repeatedly using an abrasive containing abrasive grains, an oxidant and water (hereinafter referred to as “circulation use”). That is, a method of recovering an abrasive used for polishing by being supplied onto a polishing pad, and a method of supplying the recovered abrasive again to the polishing pad and using it for polishing (hereinafter referred to as “circulation polishing” method). It is done in In such a method, the amount of abrasive used can be reduced compared with the so-called pouring polishing method in which the used abrasive is discarded for each use, thereby reducing costs and reducing environmental impact. Etc. can be achieved.

しかしながら、従来からの循環研磨の方法では、研磨時間が長くなるにしたがって、循環使用される研磨剤中の酸化剤の劣化または分解や、砥粒の凝集やゲル化等を招きやすく、次第に研磨速度が低下するばかりでなく、炭化ケイ素単結晶基板の平滑性の悪化、スクラッチ発生等の不具合が生じやすい。そのため、良好な研磨を継続できる時間が短く、生産性の低下やコストの増加が生じていた。また、研磨剤の使用量削減によるコスト低減および環境負荷低減という前記効果も、十分ではなかった。
さらなる研磨剤使用量の削減のために、高い研磨速度を長時間維持することができ、研磨を継続できる時間が長い循環研磨の方法が求められている。
However, in the conventional circulating polishing method, as the polishing time becomes longer, the oxidizing agent in the circulating abrasive is deteriorated or decomposed, and the agglomeration and gelation of the abrasive grains are likely to occur. Not only decreases, but also causes problems such as deterioration of the smoothness of the silicon carbide single crystal substrate and generation of scratches. Therefore, the time during which good polishing can be continued is short, resulting in a decrease in productivity and an increase in cost. In addition, the above-described effects of cost reduction and environmental load reduction by reducing the amount of abrasive used are not sufficient.
In order to further reduce the amount of abrasive used, there is a need for a cyclic polishing method that can maintain a high polishing rate for a long period of time and that can continue polishing.

炭化ケイ素単結晶基板の表面を、高い研磨速度で高い平滑性、かつ、砥粒凝集によるスクラッチ発生を抑制する研磨方法として、砥粒を内包しない研磨パッドに、酸化還元電位が0.5V以上の、遷移金属を含む酸化剤と、水とを含み、砥粒を含まない研磨液を供給する方法が提案されている(例えば、特許文献1参照)。   As a polishing method for suppressing the occurrence of scratches due to abrasive aggregation, the surface of a silicon carbide single crystal substrate has a high polishing rate, high smoothness, and a polishing pad that does not contain abrasive grains has an oxidation-reduction potential of 0.5 V or more. A method of supplying a polishing liquid containing an oxidant containing a transition metal and water and not containing abrasive grains has been proposed (see, for example, Patent Document 1).

しかしながら、特許文献1の研磨方法による炭化ケイ素単結晶基板の研磨速度は高く、かつ、砥粒の凝集に起因するスクラッチ発生も抑制されてはいるが、循環研磨の方法においては、研磨液を長時間使用した場合に、研磨速度が低下するという問題があった。   However, although the polishing rate of the silicon carbide single crystal substrate by the polishing method of Patent Document 1 is high and the generation of scratches due to the agglomeration of the abrasive grains is suppressed, in the circulating polishing method, the polishing liquid is long. When used for a long time, there was a problem that the polishing rate was lowered.

国際公開2012/147605号パンフレットInternational Publication 2012/147605 Pamphlet

本発明は、このような問題を解決するためになされたもので、炭化ケイ素単結晶基板等の、硬度が高く化学的安定性が高い非酸化物単結晶基板の研磨において、研磨液を長期間循環使用した場合にも、高い研磨速度を維持することが可能な研磨方法を提供することを目的とする。   The present invention has been made to solve such problems. In polishing a non-oxide single crystal substrate having high hardness and high chemical stability, such as a silicon carbide single crystal substrate, the polishing liquid is used for a long period of time. An object of the present invention is to provide a polishing method capable of maintaining a high polishing rate even when it is circulated.

本発明の非酸化物単結晶基板の研磨方法は、研磨パッドに、過マンガン酸イオンと水を含む研磨液を供給し、非酸化物単結晶基板の被研磨面と前記研磨パッドを接触させ、両者間の相対運動により研磨する方法であり、前記研磨パッドに供給され研磨に使用された研磨液を回収し、前記回収した研磨液を再び研磨パッドに供給する操作を繰り返し行うことで前記研磨液を循環させるとともに、前記被研磨面を研磨する時点での前記研磨液のpHを5以下に調整することを特徴とする。   In the polishing method for a non-oxide single crystal substrate of the present invention, a polishing liquid containing permanganate ions and water is supplied to a polishing pad, the surface to be polished of the non-oxide single crystal substrate is brought into contact with the polishing pad, A method of polishing by relative movement between the two, wherein the polishing liquid supplied to the polishing pad and used for polishing is recovered, and the operation of supplying the recovered polishing liquid to the polishing pad again is repeated. And the pH of the polishing liquid at the time of polishing the surface to be polished is adjusted to 5 or less.

本発明の非酸化物単結晶基板の研磨方法において、前記研磨液が砥粒を含まないことが好ましい。また、前記研磨パッドも砥粒を含まないことが好ましい。そして、前記被研磨面を研磨する時点での前記研磨液のpHを3以下に調整することがより好ましく、前記研磨パッドに供給される前記研磨液の過マンガン酸イオンの濃度が0.05質量%以上5質量%以下であることが好ましい。またさらに、前記非酸化物単結晶基板は、炭化ケイ素(SiC)単結晶基板または窒化ガリウム(GaN)単結晶基板とすることができる。   In the non-oxide single crystal substrate polishing method of the present invention, it is preferable that the polishing liquid does not contain abrasive grains. Moreover, it is preferable that the said polishing pad also does not contain an abrasive grain. The pH of the polishing liquid at the time of polishing the surface to be polished is more preferably adjusted to 3 or less, and the concentration of permanganate ions in the polishing liquid supplied to the polishing pad is 0.05 mass. % Or more and 5% by mass or less is preferable. Still further, the non-oxide single crystal substrate may be a silicon carbide (SiC) single crystal substrate or a gallium nitride (GaN) single crystal substrate.

本発明の研磨方法によれば、非酸化物単結晶基板、特にSiC単結晶基板等の硬度が高く化学的安定性の高い化合物半導体基板の研磨において、研磨液を循環使用した場合にも、高い研磨速度を維持して、研磨液を長い時間使用することができる。したがって、それらの基板の生産性の向上に寄与することができる。
なお、本発明において、「被研磨面」とは研磨対象物の研磨される面であり、例えば表面を意味する。
According to the polishing method of the present invention, in polishing a compound semiconductor substrate having high hardness and high chemical stability, such as a non-oxide single crystal substrate, particularly a SiC single crystal substrate, it is high even when the polishing liquid is circulated and used. The polishing liquid can be used for a long time while maintaining the polishing rate. Therefore, it can contribute to the improvement of productivity of those substrates.
In the present invention, the “surface to be polished” is a surface to be polished of an object to be polished, such as a surface.

本発明の研磨方法に使用可能な研磨装置の第1の例を示す図である。It is a figure which shows the 1st example of the grinding | polishing apparatus which can be used for the grinding | polishing method of this invention. 本発明の研磨方法に使用可能な研磨装置の第2の例を示す図である。It is a figure which shows the 2nd example of the grinding | polishing apparatus which can be used for the grinding | polishing method of this invention. 本発明の研磨方法に使用可能な研磨装置の第3の例を示す図である。It is a figure which shows the 3rd example of the grinding | polishing apparatus which can be used for the grinding | polishing method of this invention. 実施例および比較例における累積研磨時間と研磨速度の関係を示すグラフである。It is a graph which shows the relationship between the accumulation | polishing polishing time and polishing rate in an Example and a comparative example.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

[研磨方法]
本発明の研磨方法は、公知の研磨パッドを使用し、この研磨パッドに前記した研磨液を供給しながら、研磨対象物である非酸化物単結晶基板の被研磨面と研磨パッドとを接触させ、両者間の相対運動により研磨を行う方法である。本発明においては、研磨パッドに供給され研磨に使用された研磨液を回収し、回収した研磨液を再び研磨パッドに供給する操作を繰り返し行うことで研磨液を循環させる。すなわち、研磨に使用された研磨液の回収から研磨パッドへの再供給までを連続的に行い、研磨液を、その回収部と研磨パッドへの再供給部との間を循環させる。この際、被研磨面を研磨する時点での研磨液のpHを5以下に調整する。
[Polishing method]
In the polishing method of the present invention, a known polishing pad is used, and the surface to be polished of the non-oxide single crystal substrate, which is an object to be polished, is brought into contact with the polishing pad while supplying the polishing liquid to the polishing pad. In this method, polishing is performed by relative movement between the two. In the present invention, the polishing liquid supplied to the polishing pad and used for polishing is recovered, and the polishing liquid is circulated by repeatedly performing the operation of supplying the recovered polishing liquid to the polishing pad again. That is, the recovery from the polishing liquid used for polishing to the resupply to the polishing pad are continuously performed, and the polishing liquid is circulated between the recovery unit and the resupply unit to the polishing pad. At this time, the pH of the polishing liquid at the time of polishing the surface to be polished is adjusted to 5 or less.

研磨液の少なくとも一部が循環使用される循環研磨の方法は、研磨液が1回の研磨使用毎に廃棄されるかけ流し研磨の方法と比較して研磨液の消費量を減らすことができる。しかし、従来の循環研磨の方法では、研磨の進行に伴い、研磨液のpHが上昇し、次第に研磨速度が低下するという問題があった。   The circulating polishing method in which at least a part of the polishing liquid is used in circulation can reduce the consumption of the polishing liquid as compared with the flow-through polishing method in which the polishing liquid is discarded for each polishing use. However, the conventional circulating polishing method has a problem that the pH of the polishing liquid increases with the progress of polishing, and the polishing rate gradually decreases.

そのため、本発明の研磨方法では、被研磨面を研磨する時点での研磨液のpHを5以下に調整して、研磨速度の低下を抑制する。被研磨面を研磨する時点での研磨液のpHが5超では、循環使用する過程で研磨速度が著しく低下することがある。また、被研磨面の平滑性が悪化するおそれがある。研磨液を長期間使用した際の研磨速度の向上の点から、被研磨面を研磨する時点での研磨液のpHは3以下であることが好ましい。   Therefore, in the polishing method of the present invention, the pH of the polishing liquid at the time of polishing the surface to be polished is adjusted to 5 or less to suppress a decrease in the polishing rate. If the pH of the polishing liquid at the time of polishing the surface to be polished is more than 5, the polishing rate may be remarkably lowered during the process of circulation. In addition, the smoothness of the surface to be polished may be deteriorated. From the viewpoint of improving the polishing rate when the polishing liquid is used for a long time, the pH of the polishing liquid at the time of polishing the surface to be polished is preferably 3 or less.

本発明の研磨方法では、研磨液のpHは、研磨液に後述するpH調整剤を添加することで、調整することができる。本発明の研磨方法では、必ずしも予め研磨液のpHを上記した所定の範囲に調整したものとして研磨の場に供給する必要はなく、被研磨面を研磨する時点での研磨液のpHを所定の範囲に調整すればよい。すなわち、本発明の研磨方法において、研磨対象物である非酸化物単結晶基板の被研磨面と研磨パッドを相対運動させる際に、研磨液が被研磨面に接触する時点での、当該研磨液のpHが5以下、好ましくは3以下に調整されていればよい。   In the polishing method of the present invention, the pH of the polishing liquid can be adjusted by adding a pH adjuster described later to the polishing liquid. In the polishing method of the present invention, it is not always necessary to supply the polishing liquid to the polishing site in advance by adjusting the pH of the polishing liquid to the above-mentioned predetermined range. Adjust to the range. That is, in the polishing method of the present invention, when the polishing target surface of the non-oxide single crystal substrate that is the polishing target and the polishing pad are relatively moved, the polishing liquid at the time when the polishing liquid comes into contact with the polishing target surface. The pH should be adjusted to 5 or less, preferably 3 or less.

研磨液のpHは、研磨液が循環される過程における任意の時点で、研磨液にpH調整剤を添加することで上記した所定の範囲に調整することができる。pH調整剤の添加方法として具体的には、研磨液を循環させる配管内の研磨液のpHを測定しながら、当該配管内にpH調整剤を添加する方法を用いることができる。また、研磨液を循環使用するに際し、研磨液を一旦貯留するタンクを設け、当該タンク内の研磨液のpHを測定しながら、当該タンク内にpH調整剤を添加する方法を用いてもよい。また、被研磨面に、研磨液とともにpH調整剤を供給して、被研磨面上において、研磨液のpHを調整してもよい。いずれの方法においても、被研磨面を研磨する時点での研磨液のpHを所定の範囲に調整するように、研磨液にpH調整剤を添加する。   The pH of the polishing liquid can be adjusted to the predetermined range described above by adding a pH adjuster to the polishing liquid at an arbitrary point in the process of circulating the polishing liquid. Specifically, a method of adding a pH adjusting agent to the pipe while measuring the pH of the polishing liquid in the pipe through which the polishing liquid is circulated can be used as a method for adding the pH adjusting agent. In addition, when circulating the polishing liquid, a method may be used in which a tank for temporarily storing the polishing liquid is provided, and a pH adjuster is added to the tank while measuring the pH of the polishing liquid in the tank. Further, a pH adjusting agent may be supplied to the surface to be polished together with the polishing liquid to adjust the pH of the polishing liquid on the surface to be polished. In any method, a pH adjuster is added to the polishing liquid so that the pH of the polishing liquid at the time of polishing the surface to be polished is adjusted to a predetermined range.

[研磨液]
本発明に使用する研磨液は、過マンガン酸イオンと水を含有する。本発明に使用する研磨液に含有される過マンガン酸イオンは、酸化剤としての作用により、後述する研磨対象物(例えば、SiC単結晶基板やGaN単結晶基板)の被研磨面に酸化層を形成するものである。この酸化層を機械的な力で被研磨面から除去することにより、研磨対象物の研磨が促進される。すなわち、SiCやGaN等の化合物半導体は非酸化物であり、難研磨材料であるが、研磨液中の過マンガン酸イオンにより、表面に酸化層を形成することができる。形成された酸化層は、研磨対象物に比べて硬度が低く研磨されやすい。そのため、本発明の研磨液によれば、難研磨物である非酸化物単結晶基板の研磨において、十分に高い研磨速度を得ることができる。
[Polishing liquid]
The polishing liquid used in the present invention contains permanganate ions and water. The permanganate ion contained in the polishing liquid used in the present invention forms an oxide layer on the surface to be polished (for example, a SiC single crystal substrate or a GaN single crystal substrate) to be described later by the action as an oxidizing agent. To form. By removing this oxide layer from the surface to be polished by mechanical force, polishing of the object to be polished is promoted. That is, compound semiconductors such as SiC and GaN are non-oxides and are difficult to polish, but an oxide layer can be formed on the surface by permanganate ions in the polishing liquid. The formed oxide layer has a lower hardness than the object to be polished and is easily polished. Therefore, according to the polishing liquid of the present invention, a sufficiently high polishing rate can be obtained in polishing a non-oxide single crystal substrate which is a difficult-to-polish product.

SiC単結晶基板の研磨において、過マンガン酸イオンにより高い研磨速度が得られる理由を以下に詳述する。
(1)過マンガン酸イオンは、SiC単結晶を酸化する酸化力が強い。
SiC単結晶を酸化するための酸化剤の酸化力が弱すぎると、SiC単結晶基板の被研磨面との反応が不十分となり、その結果十分に平滑な表面を得ることができない。酸化剤が物質を酸化する酸化力の指標として、酸化還元電位が用いられる。過マンガン酸イオンの酸化還元電位は1.70Vであり、酸化剤として一般に用いられる過塩素酸カリウム(KClO)(酸化還元電位1.20V)や次亜塩素酸ナトリウム(NaClO)(酸化還元電位1.63V)に比べて、酸化還元電位が高い。
(2)過マンガン酸イオンは反応速度が大きい。
過マンガン酸イオンは、酸化力の強い酸化剤として知られている過酸化水素(酸化還元電位1.76V)に比べて、酸化反応の反応速度が大きいので、酸化力の強さを速やかに発揮することができる。
(3)過マンガン酸イオンは、人体に対して毒性が低く安全である。
(4)過マンガン酸塩は、後述する分散媒である水に完全に溶解する。したがって、溶解残渣が基板の平滑性に悪影響を与えることがない。
The reason why a high polishing rate can be obtained by permanganate ions in polishing a SiC single crystal substrate will be described in detail below.
(1) Permanganate ions have strong oxidizing power to oxidize SiC single crystals.
If the oxidizing power of the oxidizing agent for oxidizing the SiC single crystal is too weak, the reaction with the polished surface of the SiC single crystal substrate becomes insufficient, and as a result, a sufficiently smooth surface cannot be obtained. An oxidation-reduction potential is used as an index of the oxidizing power with which an oxidizing agent oxidizes a substance. The redox potential of permanganate ions is 1.70 V, and potassium perchlorate (KClO 4 ) (redox potential 1.20 V) or sodium hypochlorite (NaClO) (redox potential) generally used as an oxidizing agent. Compared with 1.63 V), the redox potential is high.
(2) Permanganate ion has a high reaction rate.
Since permanganate ions have a higher oxidation reaction rate than hydrogen peroxide (oxidation-reduction potential: 1.76 V), which is known as an oxidizing agent with a strong oxidizing power, the oxidizing power is exerted quickly. can do.
(3) Permanganate ions are safe and low in toxicity to the human body.
(4) The permanganate is completely dissolved in water, which will be described later. Therefore, the dissolution residue does not adversely affect the smoothness of the substrate.

高い研磨速度を得るために、研磨パッドに供給される研磨液中の過マンガン酸イオンの含有割合(濃度)は、0.05質量%以上5質量%以下が好ましい。過マンガン酸イオンの含有割合が0.05質量%未満では、酸化剤としての効果が期待できず、研磨により平滑な面を形成するのに非常に長時間を要する。過マンガン酸イオンの含有割合が5質量%を超えると、研磨液の温度によっては、過マンガン酸塩が完全に溶解しきれずに析出し、固体の過マンガン酸塩が被研磨面と接触することによりスクラッチが発生するおそれがある。研磨液に含まれる過マンガン酸イオンの含有割合は、0.1質量%以上4.5質量%以下がさらに好ましく、0.2質量%以上4.0質量%以下が特に好ましい。   In order to obtain a high polishing rate, the content (concentration) of permanganate ions in the polishing liquid supplied to the polishing pad is preferably 0.05% by mass or more and 5% by mass or less. If the content of permanganate ions is less than 0.05% by mass, the effect as an oxidizing agent cannot be expected, and it takes a very long time to form a smooth surface by polishing. When the content of permanganate ions exceeds 5% by mass, depending on the temperature of the polishing liquid, the permanganate may not be completely dissolved and precipitates, and the solid permanganate contacts the surface to be polished. May cause scratches. The content of permanganate ions contained in the polishing liquid is more preferably 0.1% by mass or more and 4.5% by mass or less, and particularly preferably 0.2% by mass or more and 4.0% by mass or less.

研磨液に含有される、過マンガン酸イオンの供給源としては、過マンガン酸カリウムや過マンガン酸ナトリウム等の過マンガン酸塩が好ましい。   As a source of permanganate ions contained in the polishing liquid, permanganate such as potassium permanganate and sodium permanganate is preferable.

(砥粒)
本発明に使用する研磨液は、研磨砥粒として、酸化ケイ素(シリカ)粒子、酸化セリウム(セリア)粒子、酸化アルミニウム(アルミナ)粒子、酸化ジルコニウム(ジルコニア)粒子、酸化チタン(チタニア)粒子、酸化マンガン粒子、炭化ケイ素粒子、ダイヤモンド粒子等を含有していてもよいが、上記砥粒を含有しないことが好ましい。研磨液が砥粒を含有しない場合には、砥粒の分散性に留意することなく研磨液を使用することができる、砥粒の凝集が発生しないため、被研磨物表面へのダメージが抑制されるというという利点がある。また、上記したように、被研磨面に形成された酸化層は、研磨対象物に比べて硬度が低く研磨されやすいので、砥粒を内包しない研磨パッドとの接触によっても除去することができる。したがって、十分に高い研磨速度を得ることができる。
(Abrasive grains)
The polishing liquid used in the present invention includes, as abrasive grains, silicon oxide (silica) particles, cerium oxide (ceria) particles, aluminum oxide (alumina) particles, zirconium oxide (zirconia) particles, titanium oxide (titania) particles, and oxidized particles. Although it may contain manganese particles, silicon carbide particles, diamond particles, etc., it is preferable not to contain the abrasive grains. When the polishing liquid does not contain abrasive grains, the polishing liquid can be used without paying attention to the dispersibility of the abrasive grains, and since no agglomeration of the abrasive grains occurs, damage to the surface of the workpiece is suppressed. There is an advantage that. Further, as described above, the oxide layer formed on the surface to be polished has a hardness lower than that of the object to be polished and is easily polished, so that it can be removed by contact with a polishing pad that does not contain abrasive grains. Therefore, a sufficiently high polishing rate can be obtained.

(研磨液のpH)
本発明に使用する研磨液は、研磨特性の点から、被研磨面を研磨する時点でのpHが5以下、好ましくは3以下に調整される。本発明に使用する研磨液は、被研磨面を研磨する時点でpHが上記した所定の範囲であればよく、被研磨面を研磨する時点以外の時点での研磨液のpHは特に限定されない。
(PH of polishing liquid)
In the polishing liquid used in the present invention, the pH at the time of polishing the surface to be polished is adjusted to 5 or less, preferably 3 or less from the viewpoint of polishing characteristics. The polishing liquid used in the present invention may have a pH within the above-described range at the time of polishing the surface to be polished, and the pH of the polishing liquid at a time other than the time of polishing the surface to be polished is not particularly limited.

(pH調整剤)
研磨液のpHは、pH調整剤である酸または塩基性化合物の添加・配合により調整することができる。酸としては、硝酸、硫酸、リン酸、塩酸のような無機酸、ギ酸、酢酸、プロピオン酸、酪酸等の飽和カルボン酸、乳酸、リンゴ酸、クエン酸等のヒドロキシ酸、フタル酸、サリチル酸等の芳香族カルボン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸等のジカルボン酸、アミノ酸、複素環系のカルボン酸のような有機酸を使用できる。硝酸およびリン酸の使用が好ましく、中でも硝酸の使用が特に好ましい。塩基性化合物としては、アンモニア、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、テトラメチルアンモニウム等の4級アンモニウム化合物、モノエタノールアミン、エチルエタノールアミン、ジエタノールアミン、プロピレンジアミン等の有機アミンを使用できる。水酸化カリウム、水酸化ナトリウムの使用が好ましく、中でも水酸化カリウムが特に好ましい。
(PH adjuster)
The pH of the polishing liquid can be adjusted by adding or blending an acid or basic compound that is a pH adjusting agent. Examples of acids include inorganic acids such as nitric acid, sulfuric acid, phosphoric acid and hydrochloric acid, saturated carboxylic acids such as formic acid, acetic acid, propionic acid and butyric acid, hydroxy acids such as lactic acid, malic acid and citric acid, phthalic acid and salicylic acid. Organic acids such as aromatic carboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid and other dicarboxylic acids, amino acids, and heterocyclic carboxylic acids can be used. The use of nitric acid and phosphoric acid is preferred, and the use of nitric acid is particularly preferred. As the basic compound, quaternary ammonium compounds such as ammonia, lithium hydroxide, potassium hydroxide, sodium hydroxide and tetramethylammonium, and organic amines such as monoethanolamine, ethylethanolamine, diethanolamine and propylenediamine can be used. Use of potassium hydroxide and sodium hydroxide is preferable, and potassium hydroxide is particularly preferable.

これらの酸または塩基性化合物の含有割合(濃度)は、研磨液のpHを所定の範囲(pH5以下、好ましくは3以下)に調整する量とする。   The content ratio (concentration) of these acids or basic compounds is an amount that adjusts the pH of the polishing liquid to a predetermined range (pH 5 or less, preferably 3 or less).

(水)
本発明に使用する研磨液においては、分散媒として水が含有される。水は、過マンガン酸イオンおよび必要に応じて添加される後述する任意成分を分散・溶解するための媒体である。水については、特に制限はないが、配合成分に対する影響、不純物の混入、pH等への影響の観点から、純水、超純水、イオン交換水(脱イオン水)が好ましい。
(water)
The polishing liquid used in the present invention contains water as a dispersion medium. Water is a medium for dispersing / dissolving permanganate ions and optional components to be described later added as necessary. Although there is no restriction | limiting in particular about water, From a viewpoint of the influence with respect to a mixing | blending component, mixing of an impurity, pH, etc., pure water, ultrapure water, and ion-exchange water (deionized water) are preferable.

(研磨液の調製および任意成分)
本発明に使用する研磨液は、前記した成分が前記所定の割合で含有され、均一に溶解した混合状態になるように調製され使用される。混合には、研磨液の製造に通常用いられる撹拌翼による撹拌混合方法を採ることができる。研磨液は、必ずしも予め構成する研磨成分をすべて混合したものとして研磨の場に供給する必要はない。研磨の場に供給する際に、研磨成分が混合されて研磨液の組成になってもよい。
(Preparation of polishing liquid and optional components)
The polishing liquid used in the present invention is prepared and used so as to be in a mixed state in which the above-described components are contained in the predetermined ratio and uniformly dissolved. For mixing, a stirring and mixing method using a stirring blade usually used in the production of a polishing liquid can be employed. The polishing liquid does not necessarily have to be supplied to the polishing site as a mixture of all the polishing components that are configured in advance. When supplying to a polishing place, polishing components may be mixed to form a polishing liquid composition.

研磨液には、本発明の趣旨に反しない限り、潤滑剤、キレート化剤、還元剤、粘性付与剤または粘度調節剤、防錆剤等を必要に応じて適宜含有させることができる。ただし、これらの添加剤が、酸または塩基性化合物の機能を有する場合は、酸または塩基性化合物として扱うものとする。   Unless it is contrary to the meaning of the present invention, the polishing liquid may appropriately contain a lubricant, a chelating agent, a reducing agent, a viscosity imparting agent or a viscosity modifier, a rust preventive agent, and the like as necessary. However, when these additives have the function of an acid or a basic compound, they are handled as an acid or a basic compound.

潤滑剤としては、アニオン性、カチオン性、ノニオン性、両性の界面活性剤、多糖類、水溶性高分子等を使用できる。
界面活性剤としては、疎水基として脂肪族炭化水素基、芳香族炭化水素基を有し、またそれら疎水基内にエステル、エーテル、アミド等の結合基、アシル基、アルコキシル基等の連結基を1つ以上導入したもの、親水基として、カルボン酸、スルホン酸、硫酸エステル、リン酸、リン酸エステル、アミノ酸からなるものを使用できる。
多糖類としては、アルギン酸、ペクチン、カルボキシメチルセルロース、カードラン、プルラン、キサンタンガム、カラギナン、ジェランガム、ローカストビーンガム、アラビアガム、タマリンド、サイリウム等を使用できる。
水溶性高分子としては、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ポリメタクリル酸、ポリアクリルアミド、ポリアスパラギン酸、ポリグルタミン酸、ポリエチレンイミン、ポリアリルアミン、ポリスチレンスルホン酸等を使用できる。
As the lubricant, anionic, cationic, nonionic, amphoteric surfactants, polysaccharides, water-soluble polymers and the like can be used.
As the surfactant, there are an aliphatic hydrocarbon group and an aromatic hydrocarbon group as a hydrophobic group, and a linking group such as an ester, ether, amide, etc., an acyl group, an alkoxyl group, etc. is included in the hydrophobic group. One having one or more introduced groups and one having a carboxylic acid, a sulfonic acid, a sulfate ester, a phosphoric acid, a phosphate ester or an amino acid can be used as the hydrophilic group.
Examples of polysaccharides that can be used include alginic acid, pectin, carboxymethylcellulose, curdlan, pullulan, xanthan gum, carrageenan, gellan gum, locust bean gum, gum arabic, tamarind, and psyllium.
As the water-soluble polymer, polyacrylic acid, polyvinyl alcohol, polyvinyl pyrrolidone, polymethacrylic acid, polyacrylamide, polyaspartic acid, polyglutamic acid, polyethyleneimine, polyallylamine, polystyrene sulfonic acid and the like can be used.

[研磨対象物]
このような研磨液を使用して研磨する研磨対象物は、非酸化物単結晶基板である。非酸化物単結晶基板としては、SiC単結晶基板やGaN単結晶基板のような化合物半導体基板が挙げられる。特に、前記SiC単結晶基板やGaN単結晶基板のような、修正モース硬度が10以上の単結晶基板の被研磨面を、前記研磨液を使用して研磨することで、研磨速度向上の効果をよりいっそう得ることができる。
[Polishing object]
A polishing object to be polished using such a polishing liquid is a non-oxide single crystal substrate. Examples of non-oxide single crystal substrates include compound semiconductor substrates such as SiC single crystal substrates and GaN single crystal substrates. In particular, by polishing the polished surface of a single crystal substrate having a modified Mohs hardness of 10 or more, such as the SiC single crystal substrate or the GaN single crystal substrate, using the polishing liquid, the effect of improving the polishing rate can be obtained. You can get even more.

[研磨装置]
本発明の研磨方法において、研磨装置としては従来公知の研磨装置を使用することができる。図1に、本発明の研磨方法に使用可能な研磨装置の第1の例を示すが、本発明に使用される研磨装置はこのような構造のものに限定されるものではない。
[Polishing equipment]
In the polishing method of the present invention, a conventionally known polishing apparatus can be used as the polishing apparatus. FIG. 1 shows a first example of a polishing apparatus that can be used in the polishing method of the present invention, but the polishing apparatus used in the present invention is not limited to such a structure.

図1に示す研磨装置10においては、研磨定盤1がその垂直な軸心C1の回りに回転可能に支持された状態で設けられており、この研磨定盤1は、定盤駆動モータ2により、図に矢印で示す方向に回転駆動されるようになっている。この研磨定盤1の上面には、研磨パッド3が貼り着けられている。   In the polishing apparatus 10 shown in FIG. 1, a polishing surface plate 1 is provided in a state of being rotatably supported around a vertical axis C <b> 1, and this polishing surface plate 1 is provided by a surface plate driving motor 2. , And is driven to rotate in the direction indicated by the arrow in the figure. A polishing pad 3 is attached to the upper surface of the polishing surface plate 1.

一方、研磨定盤1上の軸心C1から偏心した位置には、下面においてSiC単結晶基板等の研磨対象物4を吸着または保持枠等を用いて保持する基板保持部材(キャリヤ)5が、その軸心C2の回りに回転可能でかつ軸心C2方向に移動可能に支持されている。この基板保持部材5は、図示しないキャリヤ駆動モータにより、あるいは上記研磨定盤1から受ける回転モーメントにより、矢印で示す方向に回転されるように構成されている。基板保持部材5の下面、すなわち上記研磨パッド3と対向する面には、研磨対象物4である非酸化物単結晶基板が保持されている。研磨対象物4は、研磨時に、所定の荷重で研磨パッド3に押圧される。   On the other hand, at a position eccentric from the axis C1 on the polishing surface plate 1, a substrate holding member (carrier) 5 for holding the polishing object 4 such as an SiC single crystal substrate on the lower surface by suction or using a holding frame or the like, It is supported so as to be rotatable around the axis C2 and movable in the direction of the axis C2. The substrate holding member 5 is configured to be rotated in a direction indicated by an arrow by a carrier drive motor (not shown) or by a rotational moment received from the polishing surface plate 1. On the lower surface of the substrate holding member 5, that is, the surface facing the polishing pad 3, a non-oxide single crystal substrate that is an object to be polished 4 is held. The polishing object 4 is pressed against the polishing pad 3 with a predetermined load during polishing.

また、図1に示す研磨装置10は、研磨液6を貯留する研磨液タンク7と、研磨液タンク7から研磨液供給手段8を用いて、研磨パッド3に研磨液6を供給する研磨液供給管9とを備えている。また、基板保持部材5の近傍には、研磨液供給管9に接続された滴下ノズルまたはスプレーノズル(図示を省略。)が設けられており、研磨液タンク7から送出された研磨液6が研磨定盤1上に供給されるようになっている。   Further, the polishing apparatus 10 shown in FIG. 1 has a polishing liquid tank 7 for storing the polishing liquid 6 and a polishing liquid supply for supplying the polishing liquid 6 to the polishing pad 3 using the polishing liquid supply means 8 from the polishing liquid tank 7. And a tube 9. Further, a dripping nozzle or a spray nozzle (not shown) connected to the polishing liquid supply pipe 9 is provided in the vicinity of the substrate holding member 5, and the polishing liquid 6 sent from the polishing liquid tank 7 is polished. It is supplied on the surface plate 1.

さらに、研磨装置10は、研磨に使用した研磨液6を研磨パッド3から回収する回収手段(図示せず)を有し、回収した研磨液6が研磨液タンク7に輸送される構成となっている。研磨液タンク7に戻った研磨液6は、再び研磨液供給手段8を用いて研磨液供給管9を経て研磨パッド3に供給される。研磨液6は、このようにして循環使用される。   Further, the polishing apparatus 10 has a recovery means (not shown) for recovering the polishing liquid 6 used for polishing from the polishing pad 3, and the recovered polishing liquid 6 is transported to the polishing liquid tank 7. Yes. The polishing liquid 6 that has returned to the polishing liquid tank 7 is supplied again to the polishing pad 3 through the polishing liquid supply pipe 9 using the polishing liquid supply means 8. The polishing liquid 6 is circulated and used in this way.

また、研磨装置10は、研磨液タンク7にpH調整剤供給管12を介して接続されたpH調整剤タンク11を備えている。そして、pH調整剤供給手段14が、pH調整剤タンク11に貯留されたpH調整剤13を研磨液タンク7内に供給し、研磨液タンク7内の研磨液6のpHを、5以下、好ましくは3以下となるように調整する。これにより、研磨対象物4の被研磨面を研磨する時点における研磨液6のpHが上記した所定の範囲に調整される。pH調整剤供給手段14が供給するpH調整剤13の供給量は、研磨液タンク7内の研磨液6のpHを所定の範囲に調整する量とする。   Further, the polishing apparatus 10 includes a pH adjusting agent tank 11 connected to the polishing liquid tank 7 through a pH adjusting agent supply pipe 12. Then, the pH adjusting agent supply means 14 supplies the pH adjusting agent 13 stored in the pH adjusting agent tank 11 into the polishing liquid tank 7, and the pH of the polishing liquid 6 in the polishing liquid tank 7 is preferably 5 or less, preferably. Is adjusted to 3 or less. As a result, the pH of the polishing liquid 6 at the time of polishing the surface to be polished of the polishing object 4 is adjusted to the predetermined range described above. The supply amount of the pH adjusting agent 13 supplied by the pH adjusting agent supply means 14 is an amount for adjusting the pH of the polishing liquid 6 in the polishing liquid tank 7 to a predetermined range.

このような研磨装置10による研磨に際しては、研磨定盤1およびそれに貼り着けられた研磨パッド3と、基板保持部材5およびその下面に保持された研磨対象物4とが、定盤駆動モータ2およびキャリヤ駆動モータによりそれぞれの軸心の回りに回転駆動される。そして、その状態で、滴下ノズル等から研磨液6が研磨パッド3の表面に供給され、基板保持部材5に保持された研磨対象物4がその研磨パッド3に押し付けられる。それにより、研磨対象物4の被研磨面、すなわち研磨パッド3に対向する面が化学的機械的に研磨される。   When polishing by such a polishing apparatus 10, the polishing platen 1 and the polishing pad 3 attached thereto, the substrate holding member 5 and the polishing object 4 held on the lower surface of the polishing platen 1, It is rotationally driven around each axis by a carrier drive motor. In this state, the polishing liquid 6 is supplied from the dropping nozzle or the like to the surface of the polishing pad 3, and the polishing object 4 held by the substrate holding member 5 is pressed against the polishing pad 3. Thereby, the surface to be polished of the polishing object 4, that is, the surface facing the polishing pad 3 is chemically and mechanically polished.

基板保持部材5は、回転運動だけでなく直線運動をしてもよい。また、研磨定盤1および研磨パッド3も回転運動を行うものでなくてもよく、例えばベルト式で一方向に移動するものであってもよい。   The substrate holding member 5 may perform a linear motion as well as a rotational motion. Further, the polishing surface plate 1 and the polishing pad 3 do not have to rotate, and may move in one direction, for example, by a belt type.

研磨パッド3としては、不織布、発泡ポリウレタン等の多孔質樹脂等からなる公知のものを使用できる。また、研磨パッド3への研磨液6の供給を促進し、あるいは研磨パッド3に研磨液6が一定量溜まるようにするために、研磨パッド3の表面に格子状、同心円状、らせん状などの溝加工が施されていてもよい。さらに、必要により、パッドコンディショナーを研磨パッド3の表面に接触させて、研磨パッド3表面のコンディショニングを行いながら研磨してもよい。   As the polishing pad 3, a known one made of a nonwoven resin, a porous resin such as foamed polyurethane, or the like can be used. Further, in order to promote the supply of the polishing liquid 6 to the polishing pad 3 or to collect a certain amount of the polishing liquid 6 on the polishing pad 3, the surface of the polishing pad 3 has a lattice shape, a concentric circle shape, a spiral shape, or the like. Groove processing may be performed. Further, if necessary, polishing may be performed while bringing the pad conditioner into contact with the surface of the polishing pad 3 and conditioning the surface of the polishing pad 3.

このような研磨装置10による研磨条件に特に制限はないが、基板保持部材5に荷重をかけて研磨パッド3に押し付けることでより研磨圧力を高め、研磨速度を向上させることが可能である。研磨圧力は5〜80kPa程度が好ましく、被研磨面内における研磨速度の均一性、平坦性、スクラッチ等の研磨欠陥防止の観点から、10〜50kPa程度がより好ましい。研磨定盤1および基板保持部材5の回転数は、50〜500rpm程度が好ましいがこれに限定されない。また、研磨液6の供給量については、研磨液6の組成や上記した研磨条件等により適宜調整され選択される。   The polishing conditions by the polishing apparatus 10 are not particularly limited, but it is possible to increase the polishing pressure and improve the polishing rate by applying a load to the substrate holding member 5 and pressing it against the polishing pad 3. The polishing pressure is preferably about 5 to 80 kPa, and more preferably about 10 to 50 kPa from the viewpoint of polishing rate uniformity in the polished surface, flatness, and prevention of polishing defects such as scratches. The rotation speed of the polishing surface plate 1 and the substrate holding member 5 is preferably about 50 to 500 rpm, but is not limited thereto. The supply amount of the polishing liquid 6 is appropriately adjusted and selected depending on the composition of the polishing liquid 6 and the above polishing conditions.

なお、図1に示す研磨装置10では、pH調整剤供給手段14が、研磨液タンク7内にpH調整剤13を供給する構成となっているが、図2に示す第2例の研磨装置20のように、pH調整剤供給管12を研磨液供給管9に接続し、研磨液供給管9内で研磨液6にpH調整剤13を添加してするように構成してもよい。この場合、pH調整剤供給管12は、研磨液供給管9の任意の位置に接続することができる。例えば、pH調整剤供給管12は、研磨液供給管9の、研磨液タンク7の上流側に接続されていてもよく、下流側に接続されていてもよい。   In the polishing apparatus 10 shown in FIG. 1, the pH adjusting agent supply means 14 is configured to supply the pH adjusting agent 13 into the polishing liquid tank 7, but the polishing apparatus 20 of the second example shown in FIG. As described above, the pH adjusting agent supply pipe 12 may be connected to the polishing liquid supply pipe 9, and the pH adjusting agent 13 may be added to the polishing liquid 6 in the polishing liquid supply pipe 9. In this case, the pH adjusting agent supply pipe 12 can be connected to an arbitrary position of the polishing liquid supply pipe 9. For example, the pH adjusting agent supply pipe 12 may be connected to the polishing liquid supply pipe 9 on the upstream side of the polishing liquid tank 7 or may be connected to the downstream side.

また、図3に示す第3例の研磨装置30のように、基板保持部材5の近傍に、pH調整剤供給管12に接続した滴下ノズルまたはスプレーノズル(図示を省略。)を設け、pH調整剤タンク11から送出されたpH調整剤13を研磨パッド3上の研磨液6に供給するように構成してもよい。   Further, like the polishing apparatus 30 of the third example shown in FIG. 3, a dripping nozzle or a spray nozzle (not shown) connected to the pH adjusting agent supply pipe 12 is provided in the vicinity of the substrate holding member 5 to adjust the pH. The pH adjusting agent 13 delivered from the agent tank 11 may be supplied to the polishing liquid 6 on the polishing pad 3.

以上説明した本発明の研磨方法は、研磨液を循環使用することによる研磨速度の低下が抑制するという特徴を有している。これにより研磨工程の効率が向上するだけでなく、研磨液の消費量の低減や、パッドのドレッシングやフラッシングなどの頻度低減によるダウンタイムの短縮、更にはパッド消費量の削減にもつながり、研磨工程を効率的に行えるため、各種デバイス製造の量産性向上に与える意義は非常に大きいといえる。   The polishing method of the present invention described above is characterized in that a reduction in polishing rate due to the circulating use of the polishing liquid is suppressed. This not only improves the efficiency of the polishing process, but also reduces the consumption of polishing liquid, shortens downtime by reducing the frequency of pad dressing and flushing, etc., and further reduces the pad consumption. Therefore, it can be said that it has great significance for improving the mass productivity of various device manufacturing.

(研磨液の調製)
過マンガン酸カリウムを純水に加え、撹拌翼を用いて10分間撹拌し、次いで、pH調整剤である硝酸を撹拌しながら徐々に添加して、研磨液全体に対する含有割合(濃度;質量%)が、過マンガン酸イオン濃度として3.8質量%、pH2.1の研磨液を得た。
(Preparation of polishing liquid)
Potassium permanganate is added to pure water, stirred for 10 minutes using a stirring blade, and then nitric acid as a pH adjuster is gradually added with stirring, and the content ratio (concentration: mass%) with respect to the entire polishing liquid However, a polishing liquid having a permanganate ion concentration of 3.8% by mass and pH 2.1 was obtained.

(研磨条件)
研磨機としては、研磨定盤の直径が16インチの小型片面研磨装置(MAT社製BC−15)を使用した。研磨パッドとしては、SUBA800−XY−groove(ニッタハース社製)を使用し、研磨前にダイヤディスクおよびブラシを用いて、研磨パッドのコンディショニングを行った。
(Polishing conditions)
As a polishing machine, a small single-side polishing apparatus (BC-15 manufactured by MAT) having a polishing platen diameter of 16 inches was used. As a polishing pad, SUBA800-XY-groove (manufactured by Nitta Haas) was used, and the polishing pad was conditioned using a diamond disk and a brush before polishing.

研磨液の研磨パッド上への循環供給速度を0.4L/分、研磨液タンク内の研磨液量を2L、研磨定盤の回転数を90rpm、基板保持部の回転数を90rpm、研磨圧を5psi(34.5kPa)として、図1に示すのと同様の装置を用いて、循環研磨を行った。   The circulating supply rate of polishing liquid onto the polishing pad is 0.4 L / min, the amount of polishing liquid in the polishing liquid tank is 2 L, the rotation speed of the polishing surface plate is 90 rpm, the rotation speed of the substrate holder is 90 rpm, and the polishing pressure is Circulating polishing was performed at 5 psi (34.5 kPa) using the same apparatus as shown in FIG.

(pHの測定)
循環研磨中における研磨液タンク内の研磨液のpHを、横河電機社製のpH81−11を使用し20℃±2℃で測定した。なお、本実施例において、研磨液は、研磨液タンクから被研磨面に供給するまでの間、pH調整剤の添加を行っていないため、研磨液タンク内の研磨液のpHは、被研磨面を研磨する時点での研磨液のpHとほぼ同一であるとみなすことができる。
(Measurement of pH)
The pH of the polishing liquid in the polishing liquid tank during cyclic polishing was measured at 20 ° C. ± 2 ° C. using pH 81-11 manufactured by Yokogawa Electric Corporation. In this embodiment, since the polishing liquid is not added with a pH adjusting agent until it is supplied from the polishing liquid tank to the surface to be polished, the pH of the polishing liquid in the polishing liquid tank is set to the surface to be polished. Can be considered to be substantially the same as the pH of the polishing liquid at the time of polishing.

(被研磨物)
被研磨物として、ダイヤモンド砥粒を用いて予備研磨処理を行った3インチ径の4H−SiC基板を使用し、主面(0001)がC軸に対して4°+0.5°以内のSiC単結晶基板をそれぞれ使用し、Si面側を研磨し評価した。
(Polished object)
As an object to be polished, a 3 inch diameter 4H—SiC substrate that has been subjected to a preliminary polishing process using diamond abrasive grains is used, and a SiC single body whose principal surface (0001) is within 4 ° + 0.5 ° with respect to the C axis is used. Each crystal substrate was used, and the Si surface side was polished and evaluated.

(研磨速度の測定)
研磨速度は、ある循環研磨時間の前後における、単位時間当たりの基板(ウェハ)の厚さの変化量(nm/hr)で評価した。具体的には、厚さが既知の研磨基板の質量と各時間研磨した後の基板質量とを測定し、その差から質量変化を求めた。そして、この質量変化から求めた基板の厚さの時間当たりの変化を、下記の式を用いて算出した。
(研磨速度(V)の計算式)
Δm=m0−m1
V=Δm/m0 × T0 × 60/t
(式中、Δm(g)は研磨前後の質量変化、m0(g)は研磨前基板の質量、m1(g)は研磨後基板の質量、Vは研磨速度(nm/hr)、T0は研磨前基板の厚さ(nm)、tは研磨時間(min)を表す。)
(Measurement of polishing rate)
The polishing rate was evaluated by the change amount (nm / hr) of the thickness of the substrate (wafer) per unit time before and after a certain cyclic polishing time. Specifically, the mass of the polishing substrate having a known thickness and the substrate mass after polishing each time were measured, and the mass change was determined from the difference. And the change per time of the thickness of the board | substrate calculated | required from this mass change was computed using the following formula.
(Calculation formula of polishing rate (V))
Δm = m0−m1
V = Δm / m0 × T0 × 60 / t
(Where, Δm (g) is the mass change before and after polishing, m0 (g) is the mass of the substrate before polishing, m1 (g) is the mass of the substrate after polishing, V is the polishing rate (nm / hr), and T0 is polishing. (The thickness (nm) of the front substrate and t represents the polishing time (min).)

(実施例)
循環研磨中の研磨液タンク内の研磨液のpHが3.0以下を維持し続けるように、pH調整剤として硝酸水溶液を添加しながら、循環研磨を行った。累積研磨時間に対する研磨速度と研磨液のpHを表1に示す。
(Example)
Cyclic polishing was performed while adding a nitric acid aqueous solution as a pH adjuster so that the pH of the polishing liquid in the polishing liquid tank during cyclic polishing was maintained at 3.0 or lower. Table 1 shows the polishing rate and the pH of the polishing liquid with respect to the cumulative polishing time.

Figure 2014168067
Figure 2014168067

(比較例)
研磨液タンク内の研磨液のpH調整を行うための硝酸水溶液を添加しない以外は、実施例と同様の方法で循環研磨を行った。累積研磨時間に対する研磨速度と研磨液のpHを表2に示す。
(Comparative example)
Circulating polishing was performed in the same manner as in Example except that an aqueous nitric acid solution for adjusting the pH of the polishing liquid in the polishing liquid tank was not added. Table 2 shows the polishing rate and the pH of the polishing liquid with respect to the cumulative polishing time.

Figure 2014168067
Figure 2014168067

実施例と比較例における累積研磨時間に対する研磨速度のグラフを図4に示す。   FIG. 4 shows a graph of the polishing rate against the cumulative polishing time in the examples and comparative examples.

表1、2及び図4からわかるように、実施例は研磨液タンク内の研磨液のpHを3以下に維持することで、累積研磨時間が15時間付近においても、研磨速度が1000nm/hr付近と高い研磨速度を維持できているのに対して、比較例は、累積研磨時間が5時間付近で、研磨速度が1000nm/hr付近まで急低下し、その後、累積研磨時間が13時間付近において、400nm/hr付近まで研磨速度が大幅に低下している。   As can be seen from Tables 1 and 2 and FIG. 4, in the examples, the polishing rate in the polishing solution tank is maintained at 3 or less, and the polishing rate is around 1000 nm / hr even when the accumulated polishing time is around 15 hours. While the high polishing rate can be maintained, the comparative example shows a cumulative polishing time of around 5 hours and a sharp reduction of the polishing rate to around 1000 nm / hr, and then a cumulative polishing time of around 13 hours. The polishing rate is greatly reduced to around 400 nm / hr.

本発明によれば、非酸化物単結晶基板、特にSiC単結晶基板等の硬度が高く化学的安定性の高い化合物半導体基板を、研磨液を循環使用して研磨する方法において、高い研磨速度を維持して、研磨液を長い時間使用することができる。したがって、それらの基板の生産性の向上に寄与することができる。   According to the present invention, in a method of polishing a non-oxide single crystal substrate, particularly a compound semiconductor substrate having high hardness and high chemical stability, such as a SiC single crystal substrate, by using a polishing liquid in a circulating manner, a high polishing rate is obtained. The polishing liquid can be used for a long time. Therefore, it can contribute to the improvement of productivity of those substrates.

1…研磨定盤、2…定盤駆動モータ、3…研磨パッド、4…研磨対象物、5…基板保持部材、6…研磨液、7…研磨液タンク、8…研磨液供給手段、9…研磨液供給管、10…研磨装置、11…pH調整剤タンク、12…pH調整剤供給管、13…pH調整剤、14…pH調整剤供給手段、10,20,30…研磨装置、C1…軸心、C2…軸心。   DESCRIPTION OF SYMBOLS 1 ... Polishing surface plate, 2 ... Surface plate drive motor, 3 ... Polishing pad, 4 ... Polishing object, 5 ... Substrate holding member, 6 ... Polishing liquid, 7 ... Polishing liquid tank, 8 ... Polishing liquid supply means, 9 ... Polishing liquid supply pipe, 10 ... polishing apparatus, 11 ... pH adjusting agent tank, 12 ... pH adjusting agent supplying pipe, 13 ... pH adjusting agent, 14 ... pH adjusting agent supplying means, 10, 20, 30 ... polishing apparatus, C1 ... Axis center, C2 ... Axis center.

Claims (6)

研磨パッドに、過マンガン酸イオンと水を含む研磨液を供給し、非酸化物単結晶基板の被研磨面と前記研磨パッドを接触させ、両者間の相対運動により研磨する方法であり、
前記研磨パッドに供給され研磨に使用された研磨液を回収し、前記回収した研磨液を再び研磨パッドに供給する操作を繰り返し行うことで前記研磨液を循環させるとともに、
前記被研磨面を研磨する時点での前記研磨液のpHを5以下に調整することを特徴とする非酸化物単結晶基板の研磨方法。
A polishing pad containing a permanganate ion and water is supplied to the polishing pad, the polishing surface of the non-oxide single crystal substrate is brought into contact with the polishing pad, and polishing is performed by relative movement between the two.
Recovering the polishing liquid supplied to the polishing pad and used for polishing, circulating the polishing liquid by repeatedly performing the operation of supplying the recovered polishing liquid to the polishing pad again,
A polishing method for a non-oxide single crystal substrate, wherein the pH of the polishing liquid at the time of polishing the surface to be polished is adjusted to 5 or less.
前記研磨液が砥粒を含まない請求項1に記載の非酸化物単結晶基板の研磨方法。   The method for polishing a non-oxide single crystal substrate according to claim 1, wherein the polishing liquid does not contain abrasive grains. 前記研磨パッドが砥粒を含まない請求項1または2に記載の非酸化物単結晶基板の研磨方法。   The method for polishing a non-oxide single crystal substrate according to claim 1, wherein the polishing pad does not contain abrasive grains. 前記被研磨面を研磨する時点での前記研磨液のpHを3以下に調整する請求項1〜3のいずれか1項に記載の非酸化物単結晶基板の研磨方法。   The method for polishing a non-oxide single crystal substrate according to any one of claims 1 to 3, wherein a pH of the polishing liquid at the time of polishing the surface to be polished is adjusted to 3 or less. 前記研磨パッドに供給される前記研磨液中の過マンガン酸イオンの含有割合が0.05質量%以上5質量%以下である請求項1〜4のいずれか1項に記載の非酸化物単結晶基板の研磨方法。   The non-oxide single crystal according to any one of claims 1 to 4, wherein a content ratio of permanganate ions in the polishing liquid supplied to the polishing pad is 0.05% by mass or more and 5% by mass or less. A method for polishing a substrate. 前記非酸化物単結晶基板は、炭化ケイ素単結晶基板または窒化ガリウム単結晶基板である請求項1〜5のいずれか1項に記載の非酸化物単結晶基板の研磨方法。   The method for polishing a non-oxide single crystal substrate according to claim 1, wherein the non-oxide single crystal substrate is a silicon carbide single crystal substrate or a gallium nitride single crystal substrate.
JP2014062124A 2014-03-25 2014-03-25 Polishing method of non-oxide single crystal substrate Pending JP2014168067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062124A JP2014168067A (en) 2014-03-25 2014-03-25 Polishing method of non-oxide single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062124A JP2014168067A (en) 2014-03-25 2014-03-25 Polishing method of non-oxide single crystal substrate

Publications (1)

Publication Number Publication Date
JP2014168067A true JP2014168067A (en) 2014-09-11

Family

ID=51617585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062124A Pending JP2014168067A (en) 2014-03-25 2014-03-25 Polishing method of non-oxide single crystal substrate

Country Status (1)

Country Link
JP (1) JP2014168067A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411567A (en) * 2018-11-06 2019-03-01 南京大学 A method of promoting superconducting nano-wire device superconductivity
JP2020505756A (en) * 2017-01-05 2020-02-20 キャボット マイクロエレクトロニクス コーポレイション Compositions and methods for polishing silicon carbide
JP2020527851A (en) * 2017-07-10 2020-09-10 シンマット, インコーポレーテッドSinmat, Inc. Hard material polishing without using hard polishing particles
JP2021503170A (en) * 2018-10-16 2021-02-04 山▲東▼天岳先▲進▼科技股▲フン▼有限公司 Single crystal silicon carbide substrate with high flatness and low damage and large diameter and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505756A (en) * 2017-01-05 2020-02-20 キャボット マイクロエレクトロニクス コーポレイション Compositions and methods for polishing silicon carbide
JP7148521B2 (en) 2017-01-05 2022-10-05 シーエムシー マテリアルズ,インコーポレイティド Composition and method for polishing silicon carbide
JP2020527851A (en) * 2017-07-10 2020-09-10 シンマット, インコーポレーテッドSinmat, Inc. Hard material polishing without using hard polishing particles
JP7254722B2 (en) 2017-07-10 2023-04-10 インテグリス・インコーポレーテッド Hard material polishing without hard abrasive particles
US11820918B2 (en) 2017-07-10 2023-11-21 Entegris, Inc. Hard abrasive particle-free polishing of hard materials
JP2021503170A (en) * 2018-10-16 2021-02-04 山▲東▼天岳先▲進▼科技股▲フン▼有限公司 Single crystal silicon carbide substrate with high flatness and low damage and large diameter and its manufacturing method
KR20210109665A (en) * 2018-10-16 2021-09-06 에스아이씨씨 컴퍼니 리미티드 High-flatness, low-damage and large-diameter monocrystalline silicon carbide substrate, and manufacturing method therefor
KR102471865B1 (en) * 2018-10-16 2022-11-28 에스아이씨씨 컴퍼니 리미티드 High-flatness, low-damage and large-diameter monocrystalline silicon carbide substrate, and manufacturing method therefor
JP7298915B2 (en) 2018-10-16 2023-06-27 山▲東▼天岳先▲進▼科技股▲フン▼有限公司 Method for manufacturing single-crystal silicon carbide substrate
CN109411567A (en) * 2018-11-06 2019-03-01 南京大学 A method of promoting superconducting nano-wire device superconductivity

Similar Documents

Publication Publication Date Title
JP5935865B2 (en) Method for manufacturing silicon carbide single crystal substrate
JP5614498B2 (en) Polishing method of non-oxide single crystal substrate
US9085714B2 (en) Polishing agent and polishing method
WO2013035539A1 (en) Polishing agent and polishing method
JP2012248569A (en) Polishing agent and polishing method
JP4759298B2 (en) Abrasive for single crystal surface and polishing method
JPWO2013088928A1 (en) Cleaning agent and method for manufacturing silicon carbide single crystal substrate
KR102176147B1 (en) Polishing composition
JP6145501B1 (en) Polishing composition and silicon substrate polishing method
JP2014168067A (en) Polishing method of non-oxide single crystal substrate
JP2014160833A (en) Polishing method of non-oxide single crystal substrate
JP2001303050A (en) Grinding liquid composition