JP2014167471A5 - - Google Patents

Download PDF

Info

Publication number
JP2014167471A5
JP2014167471A5 JP2014018030A JP2014018030A JP2014167471A5 JP 2014167471 A5 JP2014167471 A5 JP 2014167471A5 JP 2014018030 A JP2014018030 A JP 2014018030A JP 2014018030 A JP2014018030 A JP 2014018030A JP 2014167471 A5 JP2014167471 A5 JP 2014167471A5
Authority
JP
Japan
Prior art keywords
load
holding
bearing
bearings
bearing test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014018030A
Other languages
Japanese (ja)
Other versions
JP6148992B2 (en
JP2014167471A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2014018030A priority Critical patent/JP6148992B2/en
Priority claimed from JP2014018030A external-priority patent/JP6148992B2/en
Publication of JP2014167471A publication Critical patent/JP2014167471A/en
Publication of JP2014167471A5 publication Critical patent/JP2014167471A5/ja
Application granted granted Critical
Publication of JP6148992B2 publication Critical patent/JP6148992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

上記課題を解決するために成された本発明に係る軸受試験装置は、
a)4個の軸受に回転可能に支持される1本の主軸と、
b)前記4個の軸受のうち外側に位置する2個の軸受にそれぞれロッドを介して繋がれた2個の第1保持部と、
c)前記第1保持部と前記主軸を挟んで反対側に配置された、前記4個の軸受のうち内側に位置する2個の軸受にそれぞれロッドを介して繋がれた2個の第2保持部と、
d)前記第1保持部と前記第2保持部の離間距離を変更することにより、前記軸受に荷重を付与する荷重付与手段と、
e)前記主軸に回転トルクを付与する駆動機構と、
を備えることを特徴とする。
A bearing test apparatus according to the present invention, which has been made to solve the above problems,
a) one main shaft rotatably supported by four bearings;
b) two first holding portions respectively connected to two bearings located on the outside of the four bearings via rods;
c) Two second holdings arranged on the opposite sides of the first holding part and the main shaft and connected to two bearings located on the inner side among the four bearings via rods, respectively. And
d) a load applying means for applying a load to the bearing by changing a separation distance between the first holding portion and the second holding portion;
e) a drive mechanism for applying a rotational torque to the spindle;
It is characterized by providing.

図17(a)及び(b)に示すように、1本の主軸22が4個のコンロッド201の大端軸受203に回転可能に保持されている。このとき、内側に位置する2本のコンロッド201の小端軸受204はいずれも主軸22の図示右側に位置し、外側に位置する2本のコンロッド201の小端軸受204は主軸22の図示左側に位置する。そして、図17(a)では、右側に位置する2個の小端軸受204に1本の第1保持軸211が挿通されており、左側に位置する小端軸受204に1本の第2保持軸212が挿通されている。一方、図17(b)では、右側に位置する2個の小端軸受204にそれぞれ別の第1保持軸211が挿通されている。これら第1保持軸211は、右側保持板213に固定された軸保持部214に取り付けられている。また、左側に位置する2個の小端軸受204にはそれぞれ別の第2保持軸212が挿通されている。これら第2保持軸212は、左側保持板215に固定された軸保持部216(図13の符号「136」に対応)に取り付けられている。例えば軸保持部214,216(図13の符号「134」,「136」に対応)は図18に示すように、保持軸211,212が挿通される孔を有するU字状の支持部材218と、この支持部材218を保持板213,215に固定する軸部材221から構成することができる。
本発明の軸受試験装置は、図17の(a)及び(b)のいずれの態様も含まれる。
As shown in FIGS. 17A and 17B, one main shaft 22 is rotatably held by the large end bearings 203 of the four connecting rods 201. At this time, the small end bearings 204 of the two connecting rods 201 positioned on the inner side are both positioned on the right side of the main shaft 22 in the drawing, and the small end bearings 204 of the two connecting rods 201 positioned on the outer side are positioned on the left side of the main shaft 22 in the drawing. To position. In FIG. 17A, one first holding shaft 211 is inserted into two small end bearings 204 located on the right side, and one second holding shaft 211 is placed on the small end bearing 204 located on the left side. The shaft 212 is inserted. On the other hand, in FIG. 17B, different first holding shafts 211 are inserted through the two small end bearings 204 located on the right side. These first holding shafts 211 are attached to a shaft holding portion 214 fixed to the right holding plate 213. Further, separate second holding shafts 212 are inserted through the two small end bearings 204 located on the left side. These second holding shafts 212 are attached to a shaft holding portion 216 (corresponding to reference numeral “136” in FIG. 13) fixed to the left holding plate 215. For example, the shaft holding portions 214 and 216 (corresponding to reference numerals “134” and “136” in FIG. 13) are formed with U-shaped support members 218 having holes through which the holding shafts 211 and 212 are inserted, as shown in FIG. The support member 218 can be composed of a shaft member 221 that fixes the support plates 213 and 215 to each other.
The bearing test apparatus of the present invention includes both the modes shown in FIGS. 17 (a) and 17 (b).

そこで、上記軸受試験装置においては、図16の(a)及び(b)に示すように、4個の軸受のうち内側の2個の軸受(大端軸受203)のみ、或いは外側の2個の軸受(大端軸受203)のみの前記主軸22に垂直な方向への移動を規制する拘束手段220を備えると良い。拘束手段220は、後述する「上下位置拘束板53」に相当する(図3参照)。なお、図16は、上記した図17(a)の態様において、主軸22が挿通された軸受(大端軸受203)を拘束手段220で拘束する例を示しているが、図17(b)に示す態様でも同様に拘束手段で拘束することができる。このような構成によれば、より正確に軸受の摩擦、摩耗等を測定することができる。 Therefore, in the above bearing test apparatus, as shown in FIGS. 16A and 16B, only the two inner bearings (large end bearing 203) among the four bearings, or the outer two It is preferable to provide a restraining means 220 for restricting movement of only the bearing (large end bearing 203) in a direction perpendicular to the main shaft 22. The restraining means 220 corresponds to a “vertical position restraining plate 53” described later (see FIG. 3). FIG. 16 shows an example in which the bearing (large end bearing 203 ) through which the main shaft 22 is inserted is restrained by the restraining means 220 in the embodiment of FIG. 17 (a). Similarly, the illustrated embodiment can be restrained by restraining means. According to such a configuration, the friction, wear, etc. of the bearing can be measured more accurately.

第1保持軸及び第2保持軸を一対の荷重軸間にそれぞれ掛け渡すように取り付け、第1保持軸及び第2保持軸の取り付け位置を変更することにより両保持軸間の離間距離を変更することができる。この場合、荷重軸(これは、後述する「荷重軸34」(図2,図9〜図11参照)、または「両ねじ荷重軸171」(図12参照)に相当する。)に対して保持軸をねじ及びナット等の締結部材を用いて取り付けるようにすれば、前記荷重軸と前記締結部材が荷重付与手段となる。また、前記締結部材に加えて、前記荷重付与手段が、前記第1保持軸と前記第2保持軸の離間距離を変更するガス圧または油圧ピストンを備えることも好ましい構成である。 The first holding shaft and the second holding shaft are mounted so as to span between the pair of load shafts, and the separation distance between the two holding shafts is changed by changing the mounting position of the first holding shaft and the second holding shaft. be able to. In this case, it is held with respect to a load shaft (this corresponds to a “load shaft 34” (see FIGS. 2 and 9 to 11) described later, or a “both screw load shaft 171” (see FIG. 12)). If the shaft is attached using a fastening member such as a screw and a nut, the load shaft and the fastening member become load applying means. In addition to the fastening member, it is also preferable that the load applying means includes a gas pressure or hydraulic piston that changes a separation distance between the first holding shaft and the second holding shaft.

本発明に係る軸受試験装置の全体構成図。1 is an overall configuration diagram of a bearing test apparatus according to the present invention. 本発明の実施例1に係る軸受試験部の構成を示す、(c)のII-A−II-A線に沿う平面図(a)、正面図(b)、(a)のII-C−II-C線に沿う側面図(c)、軸受保持軸に取り付けられたスペーサを示す拡大図(d)。The top view (a) which shows the structure of the bearing test part which concerns on Example 1 of this invention along the II-A-II-A line of (c), front view (b), II-C- of (a) Side view along line II-C (c), enlarged view (d) showing the spacer attached to the bearing holding shaft. 軸受ハウジングに上下位置拘束板を取り付けた状態で示す供試軸受の図。The figure of the test bearing shown in the state which attached the vertical position restraint board to the bearing housing. 主軸の先端部分の形状の説明図。Explanatory drawing of the shape of the front-end | tip part of a main axis | shaft. 供試軸受が有する保持部内のブッシュと軸受保持軸の形状を示す図。The figure which shows the shape of the bush in the holding part which a test bearing has, and a bearing holding shaft. 供試軸受に掛かる荷重の説明図。Explanatory drawing of the load applied to a test bearing. オルダム型軸継ぎ手から成るクラッチの分解斜視図。The exploded perspective view of the clutch which consists of an Oldham type shaft joint. 軸受に引張荷重、圧縮荷重をかけたときの実験結果を示し、摩擦係数μとゾンマーフェルト数Sの関係を示す図。The figure which shows the experimental result when a tensile load and a compressive load are applied to a bearing, and shows the relationship between the friction coefficient μ and the Sommerfeld number S. 本発明の実施例2に係る軸受試験部の要部を示す、(c)のIX-A−IX-A線に沿う平面図(a)、正面図(b)、(a)のIX-C−IX-C線に沿う側面図(c)。The top view along the IX-A-IX-A line of (c) which shows the principal part of the bearing test part which concerns on Example 2 of this invention (a), front view (b), IX-C of (a) Side view along line IX-C (c). 軸受試験部の構成を示す、(c)のX-A−X-A線に沿う平面図(a)、正面図(b)、(a)のX-C−X-C線に沿う側面図(c)。The top view (a) in alignment with the X-A-X-A line of (c) which shows the structure of a bearing test part, the front view (b), and the side view along the X-C-X-C line of (a). 本発明の実施例3に係る軸受試験部の構成を示す、(b)のXI-A−XI-A線に沿う平面図(a)、(a)のXI-B−XI-B線に沿う側面図(b)。The top view along the XI-A-XI-A line of (b) which shows the composition of the bearing test part concerning Example 3 of the present invention (a), along the XI-B-XI-B line of (a) Side view (b). 本発明の実施例4に係る軸受試験部の構成を示す図。The figure which shows the structure of the bearing test part which concerns on Example 4 of this invention. 本発明の実施例5に係る軸受試験部の構成を示す、平面図(a)、正面図(b)、側面図(c)。The top view (a), front view (b), and side view (c) which show the structure of the bearing test part which concerns on Example 5 of this invention. 本発明に係る軸受試験装置の試験対象軸受の一例であるコネクティングロッドの構成を示し、保持部にかかる荷重とその方向と主軸回転方向と潤滑油の油膜圧力,軸中心の軸受中心に対する偏心を説明する図。1 shows a configuration of a connecting rod which is an example of a bearing to be tested in a bearing test apparatus according to the present invention, and describes a load applied to a holding portion, its direction, a rotation direction of a main shaft, an oil film pressure of lubricating oil, and an eccentricity of the shaft center with respect to the bearing center To do. 2個の軸受を回転する主軸に取り付け、反対方向に荷重をかけたときの主軸と軸受の位置関係、力の関係を示す図であり、 (a)は 引張荷重をかけたとき、 (b)は 引張荷重を掛け、且つ主軸とロッドに垂直な方向に拘束したとき、(c)は 圧縮荷重をかけたとき、(d)は 圧縮荷重を掛け、且つ主軸とロッドに垂直な方向に拘束したときを示す。It is a figure which shows the positional relationship of a spindle and a bearing when two bearings are attached to the rotating spindle and a load is applied in the opposite direction, and the relationship between the forces, (a) when a tensile load is applied, (b) When a tensile load is applied and restrained in a direction perpendicular to the main shaft and the rod, (c) When a compressive load is applied, (d) applies a compressive load and constrains in a direction perpendicular to the main shaft and the rod Show the time. 本発明に係る軸受試験装置における、試験対象軸受(コネクティングロッド)主軸とロッドの軸に垂直な方向への移動を規制する拘束手段の説明図。Explanatory drawing of the restraint means which controls the movement to the direction perpendicular | vertical to the main axis | shaft of a test object bearing (connecting rod) and the axis | shaft of a rod in the bearing test apparatus which concerns on this invention. 本発明に係る軸受試験装置における、試験対象軸受(コネクティングロッド)と主軸、第1及び第2保持軸の位置関係を示す図。The figure which shows the positional relationship of a test object bearing (connecting rod), a main shaft, and the 1st and 2nd holding shaft in the bearing test apparatus which concerns on this invention. U字状の軸保持部を示す図。The figure which shows a U-shaped shaft holding part.

なお、主軸22のとがり先端と位置決め板26との接触は点接触が望ましいが、スラスト荷重が大きい場合は円錐台として、主軸22のとがり先端と位置決め板26を面接触としても良い。このとき、とがり先端の位置決め板26との接触面は主軸22の直径の10%以下であることが好ましい。また、主軸22のとがり先端の形状は図4の(a)に示すような円錐状の他、(b)に示すように円錐状の頂部を球面状にしたり、(c)に示すように円錐状の頂部を該頂部よりも大きい円錐角の円錐状にしたりしても良い。このようにすることにより、主軸22のとがり先端の強度を向上することができる。主軸22のとがり先端と該主軸22との同心度を高めるためには、主軸22の端部を直接加工することが好ましいが、主軸22とは別に形成した球面状や円錐状等の部材を主軸22の端部に取り付けても良い。 In addition, although the point contact is desirable for the contact between the sharp tip of the main shaft 22 and the positioning plate 26, when the thrust load is large, the sharp tip of the main shaft 22 and the positioning plate 26 may be in surface contact. At this time, it is preferable that the contact surface of the pointed tip with the positioning plate 26 is 10% or less of the diameter of the main shaft 22. In addition to the conical shape as shown in FIG. 4 (a), the shape of the pointed tip of the main shaft 22 is a conical top as shown in FIG. 4 (b) or a conical shape as shown in (c). The top of the shape may be a cone having a larger cone angle than the top. By doing in this way, the intensity | strength of the pointed end of the main axis | shaft 22 can be improved. In order to increase the concentricity between the sharp tip of the main shaft 22 and the main shaft 22, it is preferable to directly process the end of the main shaft 22, but a spherical or conical member formed separately from the main shaft 22 is used as the main shaft. You may attach to the edge part of 22. FIG.

図9は本発明の実施例2に係る軸受試験部20の一部(軸受試験ユニット)の構成を示している。この実施例では、内側の2個の供試軸受30が有する保持部45は後側の軸受保持軸32に、外側の2個の供試軸受30が有する保持部45は前側の軸受保持軸32に取り付けられている。なお、図9には図示しないが、実施例1と同様、本実施例でも内側の2個の保持部45及び外側の2個の保持部45は、スペーサによって所定位置を挟んで対称な位置に位置決めされている。
また、本実施例では、ねじによる圧縮荷重と油圧ピストンによる引張荷重を組み合わせて供試軸受30に付与する。油圧ピストンを制御することにより荷重を変動させることができる。本実施例では、荷重軸用ばね71がナット52で荷重軸34に取り付けられている。
FIG. 9 shows a configuration of a part (bearing test unit) of the bearing test unit 20 according to the second embodiment of the present invention. In this embodiment, the holding portions 45 of the two inner test bearings 30 are provided on the rear bearing holding shaft 32, and the holding portions 45 of the two outer test bearings 30 are provided on the front bearing holding shaft 32. Is attached. Although not shown in FIG. 9, as in the first embodiment, in this embodiment, the inner two holding portions 45 and the outer two holding portions 45 are positioned symmetrically with a predetermined position sandwiched by spacers. It is positioned.
In this embodiment, the compression load by the screw and the tensile load by the hydraulic piston are combined and applied to the test bearing 30. The load can be varied by controlling the hydraulic piston. In this embodiment, the load shaft spring 71 is attached to the load shaft 34 with a nut 52.

図10は、図9に示す軸受試験ユニットの一部を軸受試験部20に組み込んだ状態を示す。軸受試験ユニットは4本の荷重軸34によりフレーム21に組み付けられている。
4本の荷重軸34はフレーム21の4個の貫通孔にはめ込まれており、軸方向に可動な状態にある。供試軸受30のうち内側の2個の供試軸受は上下位置拘束板53により拘束されている。本実施例では、内側の2個の供試軸受30は、ロッド41と平行な方向及び垂直な方向の両方に拘束されている。上下位置拘束板53は脚78により基礎台2に固定されている。
本実施例では、ナット52を締めることにより圧縮荷重をかけることができる。これが最大圧縮荷重となる。次に4個の油圧シリンダ73に同一油圧をかけて引張荷重をかける。引張荷重は油圧荷重からナット52を締めたことによる圧縮荷重を引いたものである。油圧を動的にかけると、4個の供試軸受30に等しい変動荷重が発生する。
FIG. 10 shows a state in which a part of the bearing test unit shown in FIG. The bearing test unit is assembled to the frame 21 by four load shafts 34.
The four load shafts 34 are fitted in the four through holes of the frame 21 and are movable in the axial direction. Of the test bearings 30, the two inner test bearings are restrained by a vertical position restraint plate 53. In this embodiment, the two inner test bearings 30 are constrained in both a direction parallel to the rod 41 and a direction perpendicular thereto. The vertical position restricting plate 53 is fixed to the base 2 by legs 78 .
In this embodiment, a compressive load can be applied by tightening the nut 52. This is the maximum compressive load. Next, the same hydraulic pressure is applied to the four hydraulic cylinders 73 to apply a tensile load. The tensile load is the hydraulic load minus the compressive load caused by tightening the nut 52. When the hydraulic pressure is dynamically applied, a variable load equal to the four test bearings 30 is generated.

図11は基本構造が実施例1の軸受試験部20と同じであるが、変動荷重を目標として改造したものである。この実施例では、実施例2の油圧シリンダに代えて、ばね81とカム82により圧縮荷重を発生させている。内側または外側の対となる2個の左右の供試軸受30の荷重を均等化させるために、ばね81と2個の荷重板51の連結に、荷重板51と接合板85と2本のアーム842を3本のピン841で結合したトラス機構84を用いる。ピン841の結合によるトラス機構84を用いたのは、回転拘束が無く、支持部に力のモーメントが発生しないピン結合により、2個の荷重板51に均等に荷重を分配すると共に、同一の軸受保持軸32に保持部45が取り付けられた軸受のうちの一方の軸受に荷重が偏らないよう配慮したためである。この軸受試験部20の荷重軸34に荷重軸用ばね71をつけてナット52で締めて軸受に引張荷重をかける。ここで、ナット52は引張荷重側の4個のみで、実施例1に示したような圧縮荷重側の4個はない。 FIG. 11 shows the basic structure which is the same as that of the bearing test section 20 of the first embodiment, but is modified with a variable load as a target. In this embodiment, a compression load is generated by a spring 81 and a cam 82 instead of the hydraulic cylinder of the second embodiment. In order to equalize the load of the two left and right test bearings 30 that form a pair inside or outside, the load plate 51, the joining plate 85, and the two arms are connected to the connection of the spring 81 and the two load plates 51. A truss mechanism 84 in which 842 is coupled by three pins 841 is used. The truss mechanism 84 by the coupling of the pins 841 is used to distribute the load evenly to the two load plates 51 by using the pin coupling that does not have rotational constraints and does not generate a moment of force in the support portion, and the same bearing. This is because the load is not biased to one of the bearings in which the holding portion 45 is attached to the holding shaft 32. A load shaft spring 71 is attached to the load shaft 34 of the bearing test section 20 and tightened with a nut 52 to apply a tensile load to the bearing. Here, there are only four nuts 52 on the tensile load side, and there are no four nuts on the compression load side as shown in the first embodiment.

カム82はカム軸83に1体に接合され、カム軸83を中心に回転自在にフレーム21に取り付けられている。荷重板51は接合板85と2本のアーム842を3本のピン841で結合したトラス機構84を介してばね81の一端に取り付けられており、このばね81の他端がカム82に接している。このような構成により、カム軸83を介してカム82を回転させればばね81を通して荷重板51に掛かる圧縮荷重を変動させることができる。圧縮荷重はばね81の縮み荷重からナット52で閉めた引張荷重を引いた値である。カム82の回転には大きなトルクが必要である。モータでカム82を回転させる構造にしても良い。また、カム82に代えて油圧ピストン等の方式でばね81に変位を与えてもよい。 The cam 82 is joined to the cam shaft 83 as one body, and is attached to the frame 21 so as to be rotatable about the cam shaft 83. The load plate 51 is attached to one end of a spring 81 via a truss mechanism 84 in which a joining plate 85 and two arms 842 are coupled by three pins 841, and the other end of the spring 81 is in contact with the cam 82. Yes. With such a configuration, if the cam 82 is rotated via the cam shaft 83, the compressive load applied to the load plate 51 through the spring 81 can be varied. The compressive load is a value obtained by subtracting the tensile load closed by the nut 52 from the contracted load of the spring 81. A large torque is required for the rotation of the cam 82. The cam 82 may be rotated by a motor. Further, the spring 81 may be displaced by a method such as a hydraulic piston instead of the cam 82.

このような構成により、本実施例においても、荷重51の取付位置、及びフレームに対する荷重軸34の取付位置を調整することにより、供試軸受30にかかる荷重を調整することができる。
さらに、本実施例では、4個の供試軸受30の保持部45にそれぞれ別の軸受保持軸132を挿通したため、4個の供試軸受30のサイズが異なる場合でも、各供試軸受30に最適な大きさや形状の軸保持部及び軸受保持軸を用いて試験を行うことができる。また、本実施例の軸受試験装置では、軸保持部134,136に荷重測定センサ(ひずみゲージ)を貼る(なお、軸保持部134,136であればどこでも良いが、特に図18に符号221で示す軸部材に貼り付けることが好ましい。)ことにより、各供試軸受30の荷重を測定することができる。軸受のロッド部に荷重測定センサ(ひずみゲージ)を貼ると、軸受を変えるたびに荷重測定センサからのひずみ信号の検定を荷重計で行わなければならないが、軸保持部に荷重測定センサを貼り付けた場合は、ひずみ信号の検定を荷重計で1回行えば、軸受を変更しても荷重を求めることができる。
With such a configuration, also in this embodiment, the load applied to the test bearing 30 can be adjusted by adjusting the mounting position of the load plate 51 and the mounting position of the load shaft 34 with respect to the frame.
Furthermore, in this embodiment, since the bearing holding shafts 132 are inserted into the holding portions 45 of the four test bearings 30, even if the four test bearings 30 are different in size, The test can be performed using the shaft holding portion and the bearing holding shaft having the optimum size and shape. Further, in the bearing test apparatus of the present embodiment, a load measuring sensor (strain gauge) is attached to the shaft holding portions 134 and 136 (note that the shaft holding portions 134 and 136 may be anywhere, but in FIG. It is preferable to affix to the shaft member shown.), The load of each test bearing 30 can be measured. If a load measurement sensor (strain gauge) is attached to the rod part of the bearing, the load signal must be verified with a load meter each time the bearing is changed, but the load measurement sensor is attached to the shaft holder. In this case, if the strain signal is verified once with a load meter, the load can be obtained even if the bearing is changed.

Claims (8)

a) 4個の軸受に回転可能に支持される1本の主軸と、
b) 前記4個の軸受のうち外側に位置する2個の軸受にそれぞれロッドを介して繋がれた2個の第1保持部と、
c) 前記第1保持部と前記主軸を挟んで反対側に配置された、前記4個の軸受のうち内側に位置する2個の軸受にそれぞれロッドを介して繋がれた2個の第2保持部と、
d) 前記第1保持部と前記第2保持部の離間距離を変更することにより、前記軸受に荷重を付与する荷重付与手段と、
e) 前記主軸に回転トルクを付与する駆動機構と、
を備えることを特徴とする軸受試験装置。
a) one main shaft rotatably supported by four bearings;
b) two first holding portions respectively connected to two outer bearings among the four bearings via rods;
c) Two second holdings arranged on the opposite sides of the first holding part and the main shaft and connected to two bearings located on the inner side among the four bearings via rods, respectively. And
d) load applying means for applying a load to the bearing by changing a separation distance between the first holding portion and the second holding portion;
e) a drive mechanism for applying rotational torque to the main shaft;
A bearing test apparatus comprising:
請求項1に記載の軸受試験装置において、
前記4個の軸受のうち内側の2個あるいは外側の2個の軸受の、前記主軸に垂直でかつ前記ロッドに垂直な方向の移動を規制する拘束手段を備えることを特徴とする軸受試験装置。
The bearing test apparatus according to claim 1,
A bearing test apparatus comprising restraining means for restricting movement of two inner bearings or two outer bearings of the four bearings in a direction perpendicular to the main shaft and perpendicular to the rod.
請求項1又は2に記載の軸受試験装置において、
前記荷重付与手段と前記第1保持部及び前記第2保持部を連結する連結伝達機構を備え、
前記荷重付与手段が、前記連結伝達機構を介して前記第1保持部と前記第2保持部の離間距離を変更することを特徴とする軸受試験装置。
In the bearing test apparatus according to claim 1 or 2,
A connection transmission mechanism for connecting the load applying means to the first holding portion and the second holding portion;
The load applying means changes a separation distance between the first holding part and the second holding part via the connection transmission mechanism.
請求項3に記載の軸受試験装置において、
前記荷重付与手段が荷重軸を備え、
前記連結伝達機構を前記荷重軸に取り付ける締結手段を備え、
前記荷重付与手段は、前記締結手段の距離変化に基づき前記軸受に荷重を付与することを特徴とする軸受試験装置。
The bearing test apparatus according to claim 3,
The load applying means comprises a load shaft;
Fastening means for attaching the connection transmission mechanism to the load shaft;
The bearing test apparatus, wherein the load applying means applies a load to the bearing based on a change in distance of the fastening means.
請求項3に記載の軸受試験装置において、
前記荷重付与手段が、前記連結伝達機構を介して前記第1保持部と前記第2保持部の離間距離を変更する加圧ピストンを備えることを特徴とする軸受試験装置。
The bearing test apparatus according to claim 3,
It said load applying means, a bearing testing apparatus, characterized in that it comprises a pressure piston for changing the distance of the second holding portion and the first holding portion via the coupling transmission mechanism.
請求項3に記載の軸受試験装置において、
前記荷重付与手段が、前記第1保持部と前記第2保持部の離間距離が近接する方向或いは離間する方向に前記連結伝達機構を介して付勢する付勢手段を備えることを特徴とする軸受試験装置。
The bearing test apparatus according to claim 3,
The load applying means includes a biasing means that biases the first holding part and the second holding part in a direction in which the separation distance is close or in a direction in which the first holding part and the second holding part are close to each other via the connection transmission mechanism. Test equipment.
請求項1〜6のいずれかに記載の軸受試験装置において、
前記荷重付与手段が、前記第1保持部及び前記第2保持部を連結する一対の両ねじ軸と、該両ねじ軸を正逆方向に回転操作する操作手段とを備え、該操作手段によって前記両ねじ軸を正逆方向に回転することにより前記第1保持部及び前記第2保持部が近接或いは離間することを特徴とする軸受試験装置。
In the bearing test device according to any one of claims 1 to 6,
The load applying means includes a pair of both screw shafts connecting the first holding portion and the second holding portion, and operating means for rotating the screw shafts in forward and reverse directions. bearing test device the first holding portion and the second holding portion by rotating the two screw shafts in the forward and reverse directions, characterized in that the proximity or separated.
請求項3〜7のいずれかに記載の軸受試験装置において、
前記連結伝達機構が、前記第1保持部に挿通される1本または複数の第1保持軸と、前記第2保持部に挿通される1本または複数の第2保持軸とを備えることを特徴とする軸受試験装置。
In the bearing test apparatus according to any one of claims 3 to 7,
The connection transmission mechanism includes one or a plurality of first holding shafts inserted through the first holding unit, and one or a plurality of second holding shafts inserted through the second holding unit. Bearing test equipment.
JP2014018030A 2013-02-01 2014-01-31 Bearing test equipment Active JP6148992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014018030A JP6148992B2 (en) 2013-02-01 2014-01-31 Bearing test equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013018218 2013-02-01
JP2013018218 2013-02-01
JP2014018030A JP6148992B2 (en) 2013-02-01 2014-01-31 Bearing test equipment

Publications (3)

Publication Number Publication Date
JP2014167471A JP2014167471A (en) 2014-09-11
JP2014167471A5 true JP2014167471A5 (en) 2016-10-06
JP6148992B2 JP6148992B2 (en) 2017-06-14

Family

ID=51617219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014018030A Active JP6148992B2 (en) 2013-02-01 2014-01-31 Bearing test equipment

Country Status (1)

Country Link
JP (1) JP6148992B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813959B1 (en) * 2016-11-29 2018-01-02 한양대학교 산학협력단 Experimental device of fluid dynamic bearing
CN107560854B (en) * 2017-09-30 2024-03-19 无锡双益精密机械有限公司 Durability testing device and method for needle bearing
CN107884193B (en) * 2017-12-15 2024-04-05 宁波慈兴精密传动科技有限公司 Bearing circulation transformation hydrostatic testing machine
CN109374272B (en) * 2018-10-10 2019-09-10 中国矿业大学 The load-carrying properties detection device and method of vertical shaft hoisting main shaft device
CN109855779A (en) * 2018-12-20 2019-06-07 佛山市罗斯特传动设备有限公司 A kind of planetary reducer Torque Measuring System and test method
CN109470479B (en) * 2018-12-26 2023-09-26 吉林大学重庆研究院 Friction performance test bed for large-shaft-diameter sliding bearing group with adjustable distance under dynamic load
CN110044617B (en) * 2019-04-23 2021-02-09 宁波梦创信息科技有限公司 Be used for sample bearing capability test equipment
CN110617963B (en) * 2019-11-13 2021-02-02 浙江省机电产品质量检测所有限公司 Wide-temperature-range four-dimensional driving joint bearing testing machine
CN111397898B (en) * 2020-03-26 2021-06-11 武汉理工大学 Bearing friction resistance moment detection device
CN112461525B (en) * 2020-11-20 2022-11-04 中国直升机设计研究所 Unmanned helicopter engine mounting bracket test device
CN112461464A (en) * 2020-11-20 2021-03-09 中国直升机设计研究所 Torsion rigidity test loading device for central elastic bearing
CN112629856A (en) * 2020-12-14 2021-04-09 中国航发哈尔滨轴承有限公司 Large-scale aeroengine bearing testing machine bed body with expanded function
CN114646467B (en) * 2020-12-21 2023-08-18 宇通客车股份有限公司 Driving motor bearing detection method suitable for whole vehicle environment
CN112834219B (en) * 2021-04-07 2023-05-09 中浙高铁轴承有限公司 Loading tool assembly for bearing testing machine and method for loading test bearings
CN113340546B (en) * 2021-04-28 2023-04-21 重庆大学 Bearing disassembly and stiffness testing integrated device
CN113310623B (en) * 2021-06-08 2023-03-17 洛阳Lyc汽车轴承科技有限公司 Hub bearing friction torque measurement equipment calibration device and calibration method
DE102021117298B3 (en) 2021-07-05 2022-07-28 Dirk-Olaf Leimann Device and method for testing rolling bearings
CN114001942B (en) * 2021-11-02 2024-02-23 中国航发沈阳发动机研究所 Radial load loading device of inner pivot structure of aero-engine casing
CN114112393B (en) * 2021-11-25 2024-05-31 重庆江增船舶重工有限公司 Full-floating thrust bearing test bed control system
CN114088396A (en) * 2021-11-29 2022-02-25 中国航发哈尔滨轴承有限公司 Axial loading device for bearing test
CN114674559B (en) * 2022-03-25 2023-04-18 北京理工大学 Friction torque measurement test bed for paired rolling bearings
CN114659788B (en) * 2022-05-23 2022-08-09 哈尔滨科锐同创机模制造有限公司 Friction testing device of bearing tester
CN114964775B (en) * 2022-07-27 2022-09-30 中国航发沈阳发动机研究所 Fatigue test device for pivot bearing of aero-engine case
CN115144178B (en) * 2022-09-01 2022-11-22 杭叉集团股份有限公司 Device and method for testing comprehensive performance of half shaft
CN116358867A (en) * 2023-05-09 2023-06-30 南京工大数控科技有限公司 Ultra-large heavy-duty bearing test bed
CN117213852B (en) * 2023-09-13 2024-03-26 临清市康氏轴承有限公司 Bearing performance detection equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311763A (en) * 1992-02-27 1994-05-17 Conner Peripherals, Inc. Method and apparatus for measuring bearing friction
JP4160058B2 (en) * 2005-04-28 2008-10-01 大同メタル工業株式会社 Cross head bearings
JP5244883B2 (en) * 2010-10-12 2013-07-24 神鋼造機株式会社 Sliding bearing test equipment
JP2012093323A (en) * 2010-10-29 2012-05-17 Ntn Corp Testing device of bearing around crank of engine

Similar Documents

Publication Publication Date Title
JP2014167471A5 (en)
JP6148992B2 (en) Bearing test equipment
JP6374220B2 (en) Apparatus and method for performing a coupon load test
EP3055660B1 (en) Precision force applicator for force transducer calibration
JP5093159B2 (en) Biaxial tensile testing device
JP5430947B2 (en) Positioning device
CN100562682C (en) Turntable supporting arm
US9470613B2 (en) Apparatus for detecting spring stiffness
KR20100002764A (en) Robot for inspecting pipe line
KR101207810B1 (en) Apparatus for applying tension and compression load
JP2011153868A (en) Jig for equipment for testing characteristics of rubber bush
TW201140016A (en) Moment calibrating apparatus for multi-component force gauge and method of moment calibration
US4517843A (en) Material and component testing machine
CN104990694B (en) Motor turning rod assembly and ball stud experimental rig
CN105372127A (en) Tension-compression and torsion composite loading testing machine
US20080276728A1 (en) Device for measuring reaction moments and forces on a lever
JP2011089862A (en) Bending fatigue testing device
KR100917265B1 (en) Apparatus for testing bi-axial load
JP6299633B2 (en) Axis adjusting device and material testing machine
KR101015863B1 (en) Apparatus for testing reliability of toque meter
CN204008309U (en) A kind of tension and compression-torsion combined loading test machine
JP5375772B2 (en) Axis adjuster for material testing machine
CN201497632U (en) Hub bearing simulated test machine
JP5375771B2 (en) Axis adjuster for material testing machine
JP2014502924A (en) Powder press machine