JP2014167422A - Hall electromotive force signal detection circuit and current sensor thereof - Google Patents

Hall electromotive force signal detection circuit and current sensor thereof Download PDF

Info

Publication number
JP2014167422A
JP2014167422A JP2013039190A JP2013039190A JP2014167422A JP 2014167422 A JP2014167422 A JP 2014167422A JP 2013039190 A JP2013039190 A JP 2013039190A JP 2013039190 A JP2013039190 A JP 2013039190A JP 2014167422 A JP2014167422 A JP 2014167422A
Authority
JP
Japan
Prior art keywords
hall
electromotive force
switch circuit
hall element
force signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013039190A
Other languages
Japanese (ja)
Other versions
JP6297782B2 (en
Inventor
Yoshiyasu Nishimura
好康 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2013039190A priority Critical patent/JP6297782B2/en
Publication of JP2014167422A publication Critical patent/JP2014167422A/en
Application granted granted Critical
Publication of JP6297782B2 publication Critical patent/JP6297782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Hall electromotive force signal detection circuit in which offset canceling means using a spinning current technique of a Hall element is combined with a continuous time signal processing circuit.SOLUTION: A first Hall element 13 including first to fourth terminals generates one Hall electromotive force signal voltage Vhall1, and a third Hall element 15 generates another Hall electromotive force signal voltage Vhall3. A first switching circuit 14 selects a position of a terminal conducting a drive current out of four terminals of the first Hall element 13, and a third switching circuit 16 selects a position of a terminal conducting a drive current different from that selected by the first switching circuit 14 out of four terminals of the third Hall element 15. A chopper clock generation circuit 11 supplies chopper clock signals having two different phases to switching circuits 14 and 16.

Description

本発明は、ホール起電力信号検出回路及びその電流センサに関し、より詳細には、連続時間信号処理回路に好適に用いることが可能なホール起電力信号検出回路及びその電流センサに関する。   The present invention relates to a Hall electromotive force signal detection circuit and a current sensor thereof, and more particularly to a Hall electromotive force signal detection circuit and a current sensor thereof that can be suitably used for a continuous time signal processing circuit.

従来からホール素子を使った磁気センサは、磁石の位置情報の検出を行うセンサとして近接センサ、リニア位置センサ、回転角度センサなどに用いられているだけでなく、電流導体を流れる電流によって誘起される磁界を検出することによって電流導体を流れる電流量を非接触で測定する電流センサの用途においても広く利用されている。
特に、モータのインバータ電流を検出するために利用される電流センサにおいては、モータ制御を効率化する目的で、高い周波数でスイッチングするインバータの電流を高精度に検出することが要求されている。
Conventionally, magnetic sensors using Hall elements are not only used for proximity sensors, linear position sensors, rotation angle sensors, etc., as sensors for detecting magnet position information, but also induced by current flowing through a current conductor. It is also widely used in applications of current sensors that measure the amount of current flowing through a current conductor in a non-contact manner by detecting a magnetic field.
In particular, in a current sensor used for detecting an inverter current of a motor, it is required to detect an inverter current switching at a high frequency with high accuracy for the purpose of improving the efficiency of motor control.

この種のホール素子は、入力された磁界の強度に応じたホール起電力信号を発生する磁電変換機能を有するため、磁気センサとして広く用いられている。しかしながら、ホール素子には、磁場が零である状態、すなわち無磁場の状態でも、零でない有限の電圧が出力されてしまうというオフセット電圧(不平衡電圧)が存在する。
そこで、ホール素子を利用した磁気センサにおいては、ホール素子が持つオフセット電圧をキャンセルする目的で、スピニングカレント(Spinning current)法又はConnection commutation法といった名称で一般的に知られているホール素子の駆動方法が存在する。この方法とは、ホール素子に駆動電流を流すための端子対の位置と、ホール起電力信号を検出するための端子対の位置との間で、チョッパークロックと呼ばれるクロックにしたがって周期的に入れ替える操作を行うものである(例えば、非特許文献1,特許文献2参照)。
This type of Hall element is widely used as a magnetic sensor because it has a magnetoelectric conversion function for generating a Hall electromotive force signal corresponding to the intensity of an input magnetic field. However, the Hall element has an offset voltage (unbalanced voltage) in which a finite voltage that is not zero is output even when the magnetic field is zero, that is, when there is no magnetic field.
Therefore, in a magnetic sensor using a Hall element, for the purpose of canceling an offset voltage possessed by the Hall element, a Hall element driving method generally known by a name such as a spinning current method or a Connection comment method is used. Exists. This method is an operation of periodically switching between the position of a terminal pair for flowing a drive current to the Hall element and the position of a terminal pair for detecting a Hall electromotive force signal according to a clock called a chopper clock. (For example, see Non-Patent Document 1 and Patent Document 2).

このオフセット電圧のキャンセルを目的としたSpinning current法は、CMOS半導体回路においてもスイッチ回路を用いて構成できるものであるため、高精度な磁気センサを実現するためのホール起電力信号検出回路は、一般的に、Spinning current法を実現するためのスイッチ回路を備えたものとなる。
また、インバータの電流を測定する用途にホール素子を利用した磁気センサが使用される場合には、信号帯域に関する広帯域特性、信号処理遅延時間に関する高速応答特性、信号品質に関する低ノイズ特性などが磁気センサに要求される。このため、こうした場合には、ホール素子において発生するホール起電力信号を信号処理する回路方式として、離散時間化(サンプリング)を行う離散時間信号処理回路に対して、連続時間で信号処理を行う連続時間信号処理回路が有利となる。この連続時間信号処理回路は、離散時間化(サンプリング)によるノイズの折り返す現象が無いため、インバータのスイッチングによる高周波ノイズの多い環境で使用する場合においては、特に好適な回路構成である。
Since the Spinning current method for canceling the offset voltage can be configured using a switch circuit even in a CMOS semiconductor circuit, a Hall electromotive force signal detection circuit for realizing a highly accurate magnetic sensor is generally used. In particular, a switch circuit for realizing the spinning current method is provided.
In addition, when a magnetic sensor using a Hall element is used for measuring the current of an inverter, the magnetic sensor has such characteristics as a wide band characteristic related to a signal band, a high-speed response characteristic related to a signal processing delay time, and a low noise characteristic related to signal quality. As required. For this reason, in such a case, as a circuit system for signal processing of the Hall electromotive force signal generated in the Hall element, continuous signal processing is performed in continuous time for a discrete time signal processing circuit that performs discrete time (sampling). A time signal processing circuit is advantageous. Since this continuous-time signal processing circuit does not have a phenomenon of noise folding due to discrete time (sampling), it is a particularly suitable circuit configuration when used in an environment with a lot of high-frequency noise due to switching of an inverter.

以下に、図1(a),(b)に基づいてホール素子のSpinning current法について説明する。
図1(a),(b)は、チョッパークロックの位相がφ1、φ2の2値の間で切り替わるたびに、ホール素子をバイアスする駆動電流の向きを、それぞれ、0度と90度と切り替えるときのホール起電力検出を説明した図である。図中のホール素子は、4つの抵抗(R1、R2、R3、R4)からなる4端子の素子としてモデル化されており、定電流駆動されている。
Hereinafter, the spinning current method of the Hall element will be described with reference to FIGS.
FIGS. 1A and 1B show a case where the direction of the drive current for biasing the Hall element is switched between 0 degree and 90 degrees each time the phase of the chopper clock is switched between two values of φ1 and φ2. It is a figure explaining the Hall electromotive force detection of. The Hall element in the figure is modeled as a four-terminal element composed of four resistors (R1, R2, R3, R4), and is driven at a constant current.

図1(a),(b)に示したホール素子のモデルにおいて、これらの4つの抵抗(R1、R2、R3、R4)の抵抗値は、固定値でないことに注意が必要である。ホール素子が半導体基板の中のNウェルとして形成される場合、一般に半導体製造時のプロセス勾配によって、各ホール素子の内部に不純物濃度の濃淡分布が発生する。このため、4つの端子(端子1、端子2、端子3、端子4)のどの端子から駆動電流が注入されるかによって、ホール素子(Nウェル)内部での電位分布が変わり、ホール素子(Nウェル)内部での空乏層の発生状況も変わる。したがって、ホール素子のモデルにおける4つの抵抗R1、R2、R3、R4の抵抗値は、ホール素子の4つの端子(端子1、端子2、端子3、端子4)のどの端子から駆動電流が注入されるかに依存して、それぞれの値が変化することになる。   In the Hall element model shown in FIGS. 1A and 1B, it should be noted that the resistance values of these four resistors (R1, R2, R3, R4) are not fixed values. When the Hall element is formed as an N-well in a semiconductor substrate, an impurity concentration distribution is generally generated inside each Hall element due to a process gradient during semiconductor manufacturing. For this reason, the potential distribution in the Hall element (N well) varies depending on which of the four terminals (terminal 1, terminal 2, terminal 3, and terminal 4) the drive current is injected into, so that the Hall element (N The occurrence of depletion layers inside the wells also changes. Accordingly, the resistance values of the four resistors R1, R2, R3, and R4 in the Hall element model are such that the driving current is injected from any of the four terminals (terminal 1, terminal 2, terminal 3, and terminal 4) of the Hall element. Depending on whether or not, each value will change.

図1(a),(b)において、チョッパークロックの位相がφ1(ホール素子の駆動方向は0度)のときと、チョッパークロックの位相がφ2(ホール素子の駆動方向は90度)の時に測定される電圧信号 Vhall(φ1)とVhall(φ2)は、数式1のように、ホール素子を使った磁気センサの検出対象となる磁場Bに対応したホール起電力信号Vsig(B)とホール素子のオフセット電圧Vos(Hall)の和として表される。   1A and 1B, measurement is performed when the phase of the chopper clock is φ1 (the driving direction of the Hall element is 0 degrees) and when the phase of the chopper clock is φ2 (the driving direction of the Hall element is 90 degrees). The voltage signals Vhall (φ1) and Vhall (φ2) to be generated are, as shown in Equation 1, the Hall electromotive force signal Vsig (B) corresponding to the magnetic field B to be detected by the magnetic sensor using the Hall element and the Hall element It is expressed as the sum of the offset voltage Vos (Hall).

ここで、チョッパークロックの位相にしたがって、ホール素子のバイアス電流の方向を0度と90度の間で周期的に切替えることによって、検出対象の磁場に対応したホール起電力信号Vsig(B)の極性を反転することができるため、Vsig(B)をチョッパークロックの周波数f_chopに周波数変調することが出来る。一方で、ホール素子のDCオフセット電圧Vos(Hall)に関しては、ホール素子の駆動方向を0度と90度の間で切替えても同じ極性の値となるため、Vos(Hall)はチョッパークロックによる周波数変調を受けない。   Here, the polarity of the Hall electromotive force signal Vsig (B) corresponding to the magnetic field to be detected by periodically switching the bias current direction of the Hall element between 0 degree and 90 degrees according to the phase of the chopper clock. Since Vsig (B) can be frequency-modulated to the frequency f_chop of the chopper clock. On the other hand, the DC offset voltage Vos (Hall) of the Hall element has the same polarity value even if the driving direction of the Hall element is switched between 0 degrees and 90 degrees, so Vos (Hall) is the frequency of the chopper clock. Not modulated.

Figure 2014167422
Figure 2014167422

以上のことから、チョッパークロックの位相にしたがって、ホール素子の駆動電流の方向を0度と90度の間で切替える操作を行う場合、ホール素子において発生される信号Vhallは、図2(a)乃至(d)に示すような波形となる。また、ホール素子において発生される信号のスペクトルは、図3に示すようなスペクトルとなることから、検出対象の磁界に対応したホール起電力信号Vsig(B)とホール素子のオフセット電圧Vos(Hall)は、周波数領域において分離されることが解る。これが、Spinning current法によるホール素子のオフセットキャンセルの原理である。   From the above, when the operation of switching the direction of the driving current of the Hall element between 0 degree and 90 degrees according to the phase of the chopper clock is performed, the signal Vhall generated in the Hall element is as shown in FIG. The waveform is as shown in (d). Since the spectrum of the signal generated in the Hall element is a spectrum as shown in FIG. 3, the Hall electromotive force signal Vsig (B) corresponding to the magnetic field to be detected and the offset voltage Vos (Hall) of the Hall element. Are separated in the frequency domain. This is the principle of the offset cancellation of the Hall element by the spinning current method.

また、例えば、特許文献1に記載のものは、このSpinning current法での順序シーケンスについて、2つのホール素子のうち一方のホール素子では駆動電流の向きを時計回りに切り替え、もう一方のホール素子では駆動電流の向きを反時計回りに切り替えることが開示されている。
また、特許文献3に記載のものは、ホール素子励磁電流を1つの方向の流れから別の方向の流れに交互に切換えるチョップホールセンサに関するもので、特に、チョップサンプルアンドホールドホール電圧回路をスイッチされるホールセンサに同期的にクロックさせるようなホールセンサが開示されている。
また、非特許文献2には、ホール素子のSpinning current法を実現する回路構成として、サンプル&ホールドといった離散時間化(サンプリング)を行う回路方式が開示されている。
Further, for example, the one disclosed in Patent Document 1 switches the direction of the driving current clockwise in one Hall element of the two Hall elements, and the other Hall element in the order sequence in the Spinning current method. It is disclosed that the direction of the drive current is switched counterclockwise.
Further, the one described in Patent Document 3 relates to a chop Hall sensor that alternately switches the Hall element excitation current from the flow in one direction to the flow in another direction. In particular, the chop sample and hold Hall voltage circuit is switched. A hall sensor is disclosed that allows a hall sensor to be clocked synchronously.
Non-Patent Document 2 discloses a circuit system for performing discrete time sampling (sampling) such as sample and hold as a circuit configuration for realizing the spinning current method of the Hall element.

米国特許第6927572号明細書(B2)US Pat. No. 6,927,572 (B2) 特開2008−309626号公報JP 2008-309626 A 特開平09-196699号公報JP 09-196699 A

R S Popovic著 Hall Effect Devices (ISBN-10:0750300965) Inst of Physics Pub,Inc., (1991/05)刊R S Popovic, Hall Effect Devices (ISBN-10: 0750300965) Inst of Physics Pub, Inc., (1991/05) IEEE Journal of Solid-State Circuits, Vol.32, No.6, 1997, Page829~836 Bilotti他著“Monolithic Magnetic Hall Sensor Using Dynamic Quadrature Offset Cancellation”IEEE Journal of Solid-State Circuits, Vol.32, No.6, 1997, Page829 ~ 836 Bilotti et al. “Monolithic Magnetic Hall Sensor Using Dynamic Quadrature Offset Cancellation”

しかしながら、ホール素子のSpinning current法を実現する回路構成として、サンプル&ホールドといった離散時間化(サンプリング)を行う回路方式があるものの、上述したように、インバータの電流を検出する電流センサといった用途では連続時間信号で処理回路を行う回路方式が望まれている。
この連続時間信号処理方式では、Spinning current法においてホール素子の駆動電流を通電する端子を選択、切替を行う順序、シーケンスによって、切り替え時に発生するスパイク状の誤差信号の発生度合いが変わってくる。
However, as a circuit configuration that realizes the spinning current method of the Hall element, there is a circuit system that performs discrete time (sampling) such as sampling and holding, but as described above, it is continuously used in applications such as a current sensor that detects an inverter current. A circuit system that performs a processing circuit with a time signal is desired.
In this continuous-time signal processing method, the degree of occurrence of spike-like error signals generated at the time of switching varies depending on the order and sequence for selecting and switching the terminals through which the Hall element drive current is passed in the Spinning current method.

上述した特許文献1に開示された方法においては、ホール素子の駆動電流を通電する端子対の位置とホール起電力信号を検出する端子対の位置を選択する動作に関して、ひとつのホール素子(ホール素子1)においては、これらの端子対の位置の選択を時計回りの回転方向に順次、選択し、もうひとつのホール素子(ホール素子2)においては、これらの端子対の位置の選択を反時計回りの回転方向に順次、選択する。したがって、4つの端子を持つホール素子に対して、この演算を行うためにチョッパークロックに関して4つの期間分の時間が必要となる。
本発明は、このような状況に鑑みてなされたもので、その目的とするところは、連続時間信号処理回路に好適に用いることが可能なホール起電力信号検出回路及びその電流センサを提供することにある。
In the method disclosed in Patent Document 1 described above, one Hall element (Hall element) is selected with respect to the operation of selecting the position of the terminal pair through which the drive current of the Hall element is passed and the position of the terminal pair at which the Hall electromotive force signal is detected. In 1), the selection of the positions of these terminal pairs is sequentially selected in the clockwise direction, and in the other Hall element (Hall element 2), the selection of the positions of these terminal pairs is counterclockwise. Select sequentially in the direction of rotation. Therefore, for the Hall element having four terminals, four periods are required for the chopper clock in order to perform this calculation.
The present invention has been made in view of such circumstances, and an object thereof is to provide a Hall electromotive force signal detection circuit and a current sensor thereof that can be suitably used for a continuous-time signal processing circuit. It is in.

本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、複数の端子を備えたホール素子に駆動電流を通電する端子位置を選択してホール起電力信号電圧を検出するように構成したホール起電力信号検出回路において、第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方のホール素子と、第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方のホール素子と、前記一方のホール素子の4つの端子のなかから駆動電流を通電する端子位置を選択する一方のスイッチ回路と、前記他方のホール素子の4つの端子のなかから駆動電流を通電する端子位置を、前記一方のスイッチ回路と異なる端子位置を選択する他方のスイッチ回路と、前記一方のスイッチ回路と前記他方のスイッチ回路にチョッパークロック信号を供給するチョッパークロック生成回路と、前記一方のホール起電力信号電圧と前記他方のホール起電力信号電圧とを同時に加算するホール起電力信号処理回路とを備え、前記一方のスイッチ回路の出力と前記他方のスイッチ回路の出力が短絡され、前記一方及び他方のスイッチ回路が、前記チョッパークロック生成回路により発生された前記チョッパークロック信号に基づいて、前記一方及び他方のホール素子における駆動電流を注入する端子位置を、互いに逆極性のスパイクを発生させるように、前記各端子間で切り替えを行うことを特徴とする。   The present invention has been made to achieve such an object, and the invention according to claim 1 is to select a terminal position for supplying a driving current to a Hall element having a plurality of terminals, thereby generating a Hall electromotive force. A Hall electromotive force signal detection circuit configured to detect a signal voltage includes first to fourth terminals, one Hall element for generating one Hall electromotive force signal voltage, and first to fourth terminals. The other Hall element that generates the other Hall electromotive force signal voltage, one switch circuit that selects a terminal position through which the drive current is passed among the four terminals of the one Hall element, and the other The other switch circuit for selecting a terminal position different from the one switch circuit as the terminal position through which the drive current is passed among the four terminals of the Hall element, the one switch circuit, and the other switch A chopper clock generation circuit for supplying a chopper clock signal to the switch circuit, and a Hall electromotive force signal processing circuit for simultaneously adding the one Hall electromotive force signal voltage and the other Hall electromotive force signal voltage, The output of the switch circuit and the output of the other switch circuit are short-circuited, and the one and the other switch circuit are connected to each other in the one and the other Hall elements based on the chopper clock signal generated by the chopper clock generation circuit. The terminal position where the drive current is injected is switched between the terminals so as to generate spikes having opposite polarities.

また、請求項2に記載の発明は、複数の端子を備えたホール素子に駆動電流を通電する端子位置を選択してホール起電力信号電圧を検出するように構成したホール起電力信号検出回路において、第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方のホール素子と、第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方のホール素子と、前記一方のホール素子の4つの端子のなかから駆動電流を通電する端子位置を選択する一方のスイッチ回路と、前記他方のホール素子の4つの端子のなかから駆動電流を通電する端子位置を、前記一方のスイッチ回路と異なる端子位置を選択する他方のスイッチ回路と、前記一方のスイッチ回路と前記他方のスイッチ回路にチョッパークロック信号を供給するチョッパークロック生成回路とを備え、前記一方のスイッチ回路の出力と前記他方のスイッチ回路の出力が短絡され、前記一方のスイッチ回路が、前記チョッパークロック生成回路により発生された前記チョッパークロック信号に基づいて、前記一方のホール素子における駆動電流を注入する端子位置を前記ホール素子の第1の端子と第2の端子との間で切り替えを行い、前記他方のスイッチ回路が、前記チョッパークロック生成回路により発生された前記チョッパークロック信号に基づいて、前記他方のホール素子における駆動電流を注入する端子位置を前記ホール素子の第4の端子と第3の端子との間で切り替えを行うことを特徴とする。(図12)   According to a second aspect of the present invention, there is provided a Hall electromotive force signal detection circuit configured to detect a Hall electromotive force signal voltage by selecting a terminal position through which a drive current is supplied to a Hall element having a plurality of terminals. , One Hall element including first to fourth terminals and generating one Hall electromotive force signal voltage, and the other Hall including first to fourth terminals and generating the other Hall electromotive force signal voltage. A switch circuit for selecting a terminal position through which the drive current is supplied from the element, the four terminals of the one Hall element, and a terminal position through which the drive current is supplied from the four terminals of the other Hall element. A switch circuit for selecting a terminal position different from the one switch circuit, and a chopper clock signal for supplying the chopper clock signal to the one switch circuit and the other switch circuit. A first clock circuit, the output of the one switch circuit and the output of the second switch circuit are short-circuited, the one switch circuit is based on the chopper clock signal generated by the chopper clock generation circuit, The terminal position for injecting the drive current in the one hall element is switched between the first terminal and the second terminal of the hall element, and the other switch circuit is generated by the chopper clock generation circuit. Further, the terminal position for injecting the drive current in the other Hall element is switched between the fourth terminal and the third terminal of the Hall element based on the chopper clock signal. (Fig. 12)

また、請求項3に記載の発明は、請求項2に記載の発明において、前記チョッパークロック生成回路は、前記一方のスイッチ回路と前記他方のスイッチ回路に異なる2つの位相のチョッパークロック信号を供給する回路であり、前記一方のスイッチ回路において、前記チョッパークロック信号の一方の位相のときに前記第1の端子から前記駆動電流を注入し、前記チョッパークロック信号の他方の位相のときに前記第2の端子から駆動電流を注入するとともに、前記他方のスイッチ回路において、前記チョッパークロック信号の一方の位相のときに前記第4の端子から前記駆動電流を注入し、前記チョッパークロック信号の他方の位相のときに前記第3の端子から駆動電流を注入することを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the chopper clock generation circuit supplies chopper clock signals having two different phases to the one switch circuit and the other switch circuit. The one switch circuit injecting the driving current from the first terminal when the phase of the chopper clock signal is one phase and the second phase when the phase of the chopper clock signal is the other phase. Injecting drive current from the terminal, and in the other switch circuit, injecting the drive current from the fourth terminal when the phase of the chopper clock signal is one phase, and when the phase of the chopper clock signal is the other phase A drive current is injected from the third terminal.

また、請求項4に記載の発明は、請求項2又は3に記載の発明において、前記一方のホール素子と前記他方のホール素子とを隣接して並列させたレイアウト配置であることを特徴とする。
また、請求項5に記載の発明は、請求項2,3又は4に記載の発明において、前記一方及び他方のホール素子は、複数のホール素子を並列接続して構成されたホール素子であることを特徴とする。
The invention according to claim 4 is the invention according to claim 2 or 3, wherein the one hall element and the other hall element are adjacently arranged in parallel. .
The invention according to claim 5 is the invention according to claim 2, 3 or 4, wherein the one and the other hall elements are hall elements configured by connecting a plurality of hall elements in parallel. It is characterized by.

また、請求項6に記載の発明は、請求項5に記載の発明において、前記並列接続されたホール素子の数が、2個であることを特徴とする。
また、請求項7に記載の発明は、請求項2乃至6のいずれかに記載の発明において、前記駆動電流の向きの異なる4個のホール素子を互いに隣接して並列させたレイアウト配置であることを特徴とする。
The invention according to claim 6 is the invention according to claim 5, wherein the number of the hall elements connected in parallel is two.
The invention according to claim 7 is the layout arrangement according to the invention according to any one of claims 2 to 6, wherein the four Hall elements having different drive current directions are arranged adjacent to each other in parallel. It is characterized by.

また、請求項8に記載の発明は、請求項2乃至7のいずれかに記載の発明において、第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方の別のホール素子と、第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方の別のホール素子と、前記一方の別のホール素子の4つの端子のなかから駆動電流を通電する端子位置を選択する一方の別のスイッチ回路と、前記他方の別のホール素子の4つの端子のなかから駆動電流を通電する端子位置を、前記一方の別のスイッチ回路と異なる端子位置を選択する他方の別のスイッチ回路とをさらに備え、前記一方のスイッチ回路の出力と前記他方のスイッチ回路の出力と前記一方の別のスイッチ回路の出力と前記他方の別のスイッチ回路の出力とが短絡されることを特徴とする。(図18)   The invention according to claim 8 is the invention according to any one of claims 2 to 7, wherein the other hall that includes the first to fourth terminals and generates one hall electromotive force signal voltage is provided. A drive current is supplied from the other terminal of the other hall element that includes the element and the first to fourth terminals and generates the other Hall electromotive force signal voltage, and the other one of the other hall elements. A terminal position for supplying a driving current is selected from one of the other switch circuits for selecting the terminal position and the other four terminals of the other Hall element, and a terminal position different from that of the one other switch circuit is selected. The other switch circuit, the output of the one switch circuit, the output of the other switch circuit, the output of the one other switch circuit, and the output of the other switch circuit are short-circuited. Ru And wherein the door. (Fig. 18)

また、請求項9に記載の発明は、請求項2乃至7のいずれかに記載の発明において、第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方の別のホール素子と、第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方の別のホール素子と、前記一方の別のホール素子の4つの端子のなかから駆動電流を通電する端子位置を選択する一方の別のスイッチ回路と、出力が前記一方の別のスイッチ回路の出力と短絡され、前記他方の別のホール素子の4つの端子のなかから駆動電流を通電する端子位置を、前記一方の別のスイッチ回路と異なる端子位置を選択する他方の別のスイッチ回路と、前記一方のスイッチ回路及び他方のスイッチ回路の出力と前記一方の別のスイッチ回路及び他方の別のスイッチ回路の出力とを同時に加算するホール起電力信号処理回路とをさらに備えることを特徴とする。(図19)   The invention according to claim 9 is the invention according to any one of claims 2 to 7, and includes the first to fourth terminals, and one of the other holes that generates one of the Hall electromotive force signal voltages. A drive current is supplied from the other terminal of the other hall element that includes the element and the first to fourth terminals and generates the other Hall electromotive force signal voltage, and the other one of the other hall elements. Another switch circuit for selecting a terminal position, and a terminal position where an output is short-circuited with an output of the other switch circuit and the drive current is supplied from the four terminals of the other Hall element. The other switch circuit selecting a different terminal position from the one other switch circuit, the output of the one switch circuit and the other switch circuit, and the other switch circuit and the other switch circuit. Wherein the further comprising a Hall electromotive force signal processing circuit for adding output and at the same time. (Fig. 19)

また、請求項10に記載の発明は、複数の端子を備えたホール素子に駆動電流を通電する端子位置を選択してホール起電力信号電圧を検出するように構成したホール起電力信号検出回路において、第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方のホール素子と、第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方のホール素子と、前記一方のホール素子の4つの端子のなかから駆動電流を通電する端子位置を選択する一方のスイッチ回路と、前記他方のホール素子の4つの端子のなかから駆動電流を通電する端子位置を、前記一方のスイッチ回路と異なる端子位置を選択する他方のスイッチ回路と、前記一方のスイッチ回路と前記他方のスイッチ回路にチョッパークロック信号を供給するチョッパークロック生成回路と、前記一方のホール起電力信号電圧と前記他方のホール起電力信号電圧とを同時に加算するホール起電力信号処理回路とを備え、前記一方のスイッチ回路の出力と前記他方のスイッチ回路の出力が短絡され、前記一方のスイッチ回路が、前記チョッパークロック生成回路により発生された前記チョッパークロック信号に基づいて、前記一方のホール素子における駆動電流を注入する端子位置を前記ホール素子の第1乃至第4の端子の間で一方向回りで切り替えを行い、前記他方のスイッチ回路が、前記チョッパークロック生成回路により発生された前記チョッパークロック信号に基づいて、前記他方のホール素子における駆動電流を注入する端子位置を前記ホール素子の第1乃至4の端子の間で前記一方向回りとは逆の他方向まわりで切り替えを行うことを特徴とする。(図20)
また、請求項11に記載の発明は、請求項1乃至10のいずれかに記載のホール起電力信号検出回路を用いたことを特徴とする電流センサ。
According to a tenth aspect of the present invention, there is provided a Hall electromotive force signal detection circuit configured to detect a Hall electromotive force signal voltage by selecting a terminal position through which a driving current is supplied to a Hall element having a plurality of terminals. , One Hall element including first to fourth terminals and generating one Hall electromotive force signal voltage, and the other Hall including first to fourth terminals and generating the other Hall electromotive force signal voltage. A switch circuit for selecting a terminal position through which the drive current is supplied from the element, the four terminals of the one Hall element, and a terminal position through which the drive current is supplied from the four terminals of the other Hall element. The chopper clock signal is supplied to the other switch circuit that selects a different terminal position from the one switch circuit, and to the one switch circuit and the other switch circuit. And a Hall electromotive force signal processing circuit for simultaneously adding the one Hall electromotive force signal voltage and the other Hall electromotive force signal voltage, and an output of the one switch circuit and the other switch circuit. And the one switch circuit determines a terminal position for injecting a drive current in the one hall element based on the chopper clock signal generated by the chopper clock generation circuit. To the fourth terminal, and the other switch circuit injects drive current in the other Hall element based on the chopper clock signal generated by the chopper clock generation circuit. The terminal position to be rotated around the one direction between the first to fourth terminals of the Hall element And performs switching in the other direction around the opposite. (Fig. 20)
The invention according to claim 11 is a current sensor using the Hall electromotive force signal detection circuit according to any one of claims 1 to 10.

本発明によれば、ホール起電力信号検出の高精度化の障害となるスパイク状の誤差信号の発生を著しく低減することが可能となる。また、各ホール素子の内部での不純物濃度の濃淡分布(半導体製造時のプロセス勾配に起因して発生する)の影響を含めた高精度なオフセットキャンセルを短い期間に高速実行することが可能となるため、本発明のホール起電力信号検出回路は、電流センサといった高速応答性が要求される磁気センサを、ホール素子を使って実現するうえで有効なものである。また、連続時間信号処理回路に好適に用いることができる。   According to the present invention, it is possible to remarkably reduce the occurrence of spike-like error signals that hinder the improvement in accuracy of Hall electromotive force signal detection. In addition, it is possible to execute high-precision offset cancellation at high speed in a short period of time, including the influence of the concentration distribution of the impurity concentration inside each Hall element (generated due to the process gradient during semiconductor manufacturing). Therefore, the Hall electromotive force signal detection circuit of the present invention is effective in realizing a magnetic sensor such as a current sensor that requires high-speed response using a Hall element. Further, it can be suitably used for a continuous time signal processing circuit.

(a),(b)は、チョッパークロックの位相がφ1、φ2の2値の間で切り替わるたびに、ホール素子をバイアスする駆動電流の向きを、それぞれ、0度と90度と切り替えるときのホール起電力検出を説明した図である。(A) and (b) show the holes when the direction of the drive current for biasing the Hall element is switched between 0 degrees and 90 degrees each time the phase of the chopper clock is switched between two values of φ1 and φ2. It is a figure explaining electromotive force detection. (a)乃至(d)は、図1に示したホール素子において発生する信号波形を示す図である。(A) thru | or (d) is a figure which shows the signal waveform which generate | occur | produces in the Hall element shown in FIG. ホール素子において発生する信号Vhallの信号スペクトルを示す図である。It is a figure which shows the signal spectrum of signal Vhall which generate | occur | produces in a Hall element. 本発明の前提となるホール起電力信号検出回路を説明するための回路構成図である。It is a circuit block diagram for demonstrating the Hall electromotive force signal detection circuit used as the premise of this invention. (a),(b)は、上述した第1のホール素子及び第2のホール素子において、チョッパークロックの位相φがφ1、φ2の間で切り替わる際に、ホール素子の駆動電流を通電する2つの端子と、ホール起電力信号を検出する2つの端子について示した図である。(A), (b) shows two cases in which the driving current of the Hall element is energized when the phase φ of the chopper clock is switched between φ1 and φ2 in the first Hall element and the second Hall element described above. It is the figure shown about two terminals which detect a terminal and a Hall electromotive force signal. 図4に示したホール起電力信号検出回路の具体的な一例を示した回路構成図である。FIG. 5 is a circuit configuration diagram showing a specific example of the Hall electromotive force signal detection circuit shown in FIG. 4. 図6の回路動作を概念的に説明した図である。FIG. 7 is a diagram conceptually illustrating the circuit operation of FIG. 6. (a)乃至(f)は、図6に示したホール起電力信号検出回路において、第1のホール素子及び第2のホール素子の4つの端子の電圧変化と、第1のホール素子及び第2のホール素子とのそれぞれにおいて検出されるホール起電力信号Vhall1、Vhall2の信号波形を示した図である。(A) to (f) in the Hall electromotive force signal detection circuit shown in FIG. 6, the voltage change of the four terminals of the first Hall element and the second Hall element, the first Hall element and the second Hall element. It is the figure which showed the signal waveform of Hall electromotive force signals Vhall1 and Vhall2 detected in each of the Hall elements. (a)乃至(c)は、ホール起電力信号Vhall1、Vhall2の信号波形を同時加算して得られる出力信号波形を示す図である。(A) thru | or (c) is a figure which shows the output signal waveform obtained by adding the signal waveform of Hall electromotive force signal Vhall1 and Vhall2 simultaneously. 本発明に係るホール起電力信号検出回路の一実施例を説明するための回路構成図である。It is a circuit block diagram for demonstrating one Example of the Hall electromotive force signal detection circuit based on this invention. 図10に示した回路構成図のなかの第3のホール素子に関して、その駆動電流の通電方向を決める端子対の位置及びホール起電力信号を検出する端子対の位置を示した図である。FIG. 11 is a diagram illustrating a position of a terminal pair for determining a direction in which a drive current is applied and a position of a terminal pair for detecting a Hall electromotive force signal with respect to the third Hall element in the circuit configuration diagram illustrated in FIG. 10. 図10に示したホール起電力信号検出回路の具体的な一例を示す回路構成図である。It is a circuit block diagram which shows a specific example of the Hall electromotive force signal detection circuit shown in FIG. 図12の回路動作を概念的に説明した図である。FIG. 13 is a diagram conceptually illustrating the circuit operation of FIG. 12. (a)乃至(g)は、図12に示したホール起電力信号検出回路において、第3のホール素子における各端子の電位及び第3のホール素子から検出されるホール起電力信号Vhall3及び第1のホール素子から検出されるホール起電力信号Vhall1の信号波形を示した図である。(A) to (g) in the Hall electromotive force signal detection circuit shown in FIG. 12, the potential of each terminal in the third Hall element, the Hall electromotive force signal Vhall3 detected from the third Hall element, and the first It is the figure which showed the signal waveform of Hall electromotive force signal Vhall1 detected from this Hall element. ホール起電力信号Vhall1、Vhall3の信号波形を同時短絡して得られる出力信号波形を示す図である。It is a figure which shows the output signal waveform obtained by simultaneously short-circuiting the signal waveform of Hall electromotive force signal Vhall1 and Vhall3. IC回路を製造する際の半導体製造時のプロセス勾配によるホール素子内部での不純物濃度の濃淡分布があるときの、本発明のホール起電力信号検出回路での2つのホール素子のICレイアウト及びそれら2つのホール素子でのSpinning current法を図示した図である。IC layout of two Hall elements in the Hall electromotive force signal detection circuit of the present invention when there is a concentration distribution of the impurity concentration inside the Hall element due to a process gradient at the time of manufacturing a semiconductor when manufacturing an IC circuit, and those 2 It is the figure which illustrated the Spinning current method in one Hall element. 本発明のホール起電力信号検出回路において、4つのホール素子を使う場合のICレイアウトの例を示した図である。It is the figure which showed the example of IC layout in the case of using four Hall elements in the Hall electromotive force signal detection circuit of this invention. 図10に示したホール起電力信号検出回路の具体的な他の例を示す回路構成図である。It is a circuit block diagram which shows the other specific example of the Hall electromotive force signal detection circuit shown in FIG. 図10に示したホール起電力信号検出回路の具体的な他の例を示す回路構成図である。It is a circuit block diagram which shows the other specific example of the Hall electromotive force signal detection circuit shown in FIG. 図10に示したホール起電力信号検出回路の具体的な他の例を示す回路構成図である。It is a circuit block diagram which shows the other specific example of the Hall electromotive force signal detection circuit shown in FIG. (a),(b)は、図18のホール起電力信号検出回路におけるスパイク状の誤差信号(実線)と図12のホール起電力信号検出回路におけるスパイク状の誤差信号(点線)の様子を表した図である。(A), (b) represents the state of the spike error signal (solid line) in the Hall electromotive force signal detection circuit of FIG. 18 and the spike error signal (dotted line) in the Hall electromotive force signal detection circuit of FIG. FIG.

まず、本発明の前提となるホール起電力信号検出回路の構成について図4に基づいて以下に説明する。
図4は、本発明の前提となるホール起電力信号検出回路を説明するための回路構成図で、連続時間信号処理回路の例を示している。図中符号1はチョッパークロック生成回路、2は駆動電流生成回路、3は第1のホール素子、4は第1のスイッチ回路、5は第2のホール素子、6は第2のスイッチ回路、7はホール起電力信号処理回路を示している。
図4に示したホール起電力信号検出回路は、2つのホール素子である第1のホール素子3と第2のホール素子5において発生させるホール起電力信号Vhall1、Vhall2をホール起電力信号処理回路7によって連続時間で同時加算して、出力信号Vhall_sum12を生成する回路である。
First, the configuration of the Hall electromotive force signal detection circuit as a premise of the present invention will be described below with reference to FIG.
FIG. 4 is a circuit configuration diagram for explaining a Hall electromotive force signal detection circuit which is a premise of the present invention, and shows an example of a continuous time signal processing circuit. In the figure, reference numeral 1 denotes a chopper clock generation circuit, 2 denotes a drive current generation circuit, 3 denotes a first Hall element, 4 denotes a first switch circuit, 5 denotes a second Hall element, 6 denotes a second switch circuit, 7 Indicates a Hall electromotive force signal processing circuit.
The Hall electromotive force signal detection circuit shown in FIG. 4 generates Hall electromotive force signals Vhall1 and Vhall2 generated in the first Hall element 3 and the second Hall element 5 which are two Hall elements. Are simultaneously added in continuous time to generate an output signal Vhall_sum12.

第1のホール素子3及び第2のホール素子5のそれぞれは、4つの端子(端子1、端子2、端子3、端子4)を備えており、第1のホール素子3及び第2のホール素子5のそれぞれに接続された第1のスイッチ回路4及び第2のスイッチ回路6においては、チョッパークロック生成回路1において生成される2相のチョッパークロック信号の位相φ(φ1、φ2)にしたがって、ホール素子を駆動する駆動電流を注入する端子対及びホール起電力信号を検出する端子対を切替えて、第1のホール素子3及び第2のホール素子5のそれぞれにおいて発生するホール起電力信号Vhall1、Vhall2を検出する。すなわち、第1のホール素子3及び第2のホール素子5については、それぞれ、Spinning current法によるオフセットキャンセルを行うものとする。   Each of the first Hall element 3 and the second Hall element 5 includes four terminals (terminal 1, terminal 2, terminal 3, and terminal 4), and the first Hall element 3 and the second Hall element. In the first switch circuit 4 and the second switch circuit 6 connected to each of the circuit 5, according to the phase φ (φ1, φ2) of the two-phase chopper clock signal generated in the chopper clock generation circuit 1, By switching between a terminal pair for injecting a drive current for driving the element and a terminal pair for detecting the Hall electromotive force signal, Hall electromotive force signals Vhall1 and Vhall2 generated in the first Hall element 3 and the second Hall element 5, respectively. Is detected. In other words, the first Hall element 3 and the second Hall element 5 are each subjected to offset cancellation by the spinning current method.

上述したホール起電力信号Vhall1、Vhall2は、ホール起電力信号処理回路7によって同時加算され、出力信号Vhall_sum12が得られる。
図5(a),(b)は、上述した第1のホール素子及び第2のホール素子において、チョッパークロックの位相φがφ1、φ2の間で切り替わる際に、ホール素子の駆動電流を通電する2つの端子と、ホール起電力信号を検出する2つの端子について示した図である。
The Hall electromotive force signals Vhall1 and Vhall2 described above are simultaneously added by the Hall electromotive force signal processing circuit 7 to obtain an output signal Vhall_sum12.
5 (a) and 5 (b) show that when the phase φ of the chopper clock is switched between φ1 and φ2 in the first Hall element and the second Hall element described above, the drive current of the Hall element is energized. It is the figure shown about two terminals and two terminals which detect a Hall electromotive force signal.

図5(a),(b)において、チョッパークロック位相がφ1のとき、第1のホール素子3及び第2のホール素子5の駆動電流は、端子1から端子3に向けて注入され、ホール起電力信号は、端子2と端子4の間の電圧信号として検出される。
したがって、第1のホール素子3及び第2のホール素子5において、チョッパークロック位相がφ1のとき、端子1の電位は高い側のバイアス電圧Vbias+となり、端子3の電位は低い側のバイアス電圧Vbias−となることが解る。同様に考えると、チョッパークロック位相がφ2のとき、端子2の電位は高い側のバイアス電圧Vbias+となり、端子4の電位は低い側のバイアス電圧Vbias−となることが解る。
5A and 5B, when the chopper clock phase is φ1, the drive currents of the first Hall element 3 and the second Hall element 5 are injected from the terminal 1 to the terminal 3 to cause the Hall occurrence. The power signal is detected as a voltage signal between the terminal 2 and the terminal 4.
Therefore, in the first Hall element 3 and the second Hall element 5, when the chopper clock phase is φ1, the potential of the terminal 1 becomes the higher bias voltage Vbias +, and the potential of the terminal 3 becomes the lower bias voltage Vbias−. I understand that Similarly, it can be seen that when the chopper clock phase is φ2, the potential of the terminal 2 becomes the higher bias voltage Vbias + and the potential of the terminal 4 becomes the lower bias voltage Vbias−.

実際に、ホール素子をシリコンモノリシックホール素子として、IC回路のなかで形成する場合には、Vbias+は3Vといった電圧に設定される。また、シリコンモノリシックホール素子の抵抗値が2kΩで、駆動電流の大きさが0.5mAの場合、バイアス電位Vbias−は、Vbias+と比べて1Vだけ低くなるため、Vbias−=2Vとなる。   Actually, when the Hall element is formed as a silicon monolithic Hall element in an IC circuit, Vbias + is set to a voltage of 3V. When the resistance value of the silicon monolithic Hall element is 2 kΩ and the magnitude of the drive current is 0.5 mA, the bias potential Vbias− is lower by 1 V than Vbias +, and thus Vbias− = 2V.

ここで、ホール素子がN型半導体として形成されており、第1のホール素子3及び第2のホール素子5に印加される磁界Bの向きが、紙面の裏側面から表側面に向けて垂直な向きである場合、端子2と端子4の間に発生するホール起電力信号は、端子2に+側の電位+Vsig(B)を持ち、端子4に−側の電位−Vsig(B)を持つ電圧信号として発生する。そこで、ホール起電力信号Vhall1、Vhall2は、端子4を基準として測定される端子2の電位として定義されるため、チョッパークロック信号がφ1のときのホール素子1、ホール素子2において発生されるホール起電力信号Vhall1、Vhall2は、+2Vsig(B)として検出されることになる。
同様に考えると、チョッパークロック位相がφ2のとき、第1のホール素子3及び第2のホール素子5において発生されるホール起電力信号Vhall1、Vhall2は、−2Vsig(B)として検出されることになる。
Here, the Hall element is formed as an N-type semiconductor, and the direction of the magnetic field B applied to the first Hall element 3 and the second Hall element 5 is vertical from the back side to the front side of the page. In the case of the direction, the Hall electromotive force signal generated between the terminal 2 and the terminal 4 has a voltage having a positive potential + Vsig (B) at the terminal 2 and a negative potential −Vsig (B) at the terminal 4. Generated as a signal. Therefore, since the Hall electromotive force signals Vhall1 and Vhall2 are defined as the potential of the terminal 2 measured with respect to the terminal 4, the Hall electromotive force generated in the Hall elements 1 and 2 when the chopper clock signal is φ1. The power signals Vhall1 and Vhall2 are detected as + 2Vsig (B).
Similarly, when the chopper clock phase is φ2, the Hall electromotive force signals Vhall1 and Vhall2 generated in the first Hall element 3 and the second Hall element 5 are detected as −2Vsig (B). Become.

表1は、第1のホール素子及び第2のホール素子において駆動電流を通電する端子対についてまとめたものである。また、表2は、第1のホール素子及び第2のホール素子においてホール起電力信号を検出する端子対についてまとめたものである。
表1にしたがって、第1のホール素子及び第2のホール素子の駆動電流を通電し、表2にしたがって、ホール起電力信号の検出を行うと、第1のホール素子及び第2のホール素子におけるホール起電力信号Vhall1、Vhall2は、表3のように検出される。
Table 1 summarizes terminal pairs through which a drive current is passed in the first Hall element and the second Hall element. Table 2 summarizes terminal pairs that detect Hall electromotive force signals in the first Hall element and the second Hall element.
When the drive currents of the first Hall element and the second Hall element are applied according to Table 1 and the Hall electromotive force signal is detected according to Table 2, the first Hall element and the second Hall element are detected. Hall electromotive force signals Vhall1 and Vhall2 are detected as shown in Table 3.

Figure 2014167422
Figure 2014167422

Figure 2014167422
Figure 2014167422

Figure 2014167422
Figure 2014167422

ここで、第1のホール素子と第2のホール素子は、異なる2つのホール素子であるが、第1のホール素子第2とホール素子との間では、磁気感度の値が揃っていると仮定して、第1のホール素子と第2のホール素子との間で共通な値Vsig(B)を用いている。この仮定に関し、第1のホール素子と第2のホール素子が半導体ICプロセスを使って形成され、IC内で互いに近接して配置される場合には、第1のホール素子と第2のホール素子に対して、半導体製造時のプロセス勾配が一様に及ぶことになるため、この仮定は妥当な仮定である。   Here, the first Hall element and the second Hall element are two different Hall elements, but it is assumed that the magnetic sensitivity values are uniform between the first Hall element second and the Hall element. Thus, the common value Vsig (B) is used between the first Hall element and the second Hall element. With respect to this assumption, if the first Hall element and the second Hall element are formed using a semiconductor IC process and are arranged close to each other in the IC, the first Hall element and the second Hall element On the other hand, this assumption is a reasonable assumption because the process gradient at the time of manufacturing the semiconductor uniformly extends.

一方、オフセットに関しては、上述したように、各ホール素子の内部で半導体製造時のプロセス勾配による不純物濃度の濃淡分布があるため、駆動電流が端子1から端子3に通電(0度方向に通電)されるときのオフセット電圧値はVos(Hall,0°)であり、駆動電流が端子2から端子4に通電(90度方向に通電)されるときのオフセット電圧値はVos(Hall,90°)と、駆動電流の通電方向によって、オフセット電圧値は僅かに異なる値となる。一般に、CMOS半導体プロセスを使って製造されたホール素子においては、Vos(Hall,0°)とVos(Hall,90°)の差は、10μV程度となる。   On the other hand, regarding the offset, as described above, since there is a concentration distribution of the impurity concentration due to the process gradient at the time of semiconductor manufacturing inside each Hall element, the drive current is passed from the terminal 1 to the terminal 3 (energized in the 0 degree direction). The offset voltage value is Vos (Hall, 0 °), and the offset voltage value when the drive current is supplied from the terminal 2 to the terminal 4 (energized in the direction of 90 degrees) is Vos (Hall, 90 °). The offset voltage value is slightly different depending on the direction in which the drive current is applied. In general, in a Hall element manufactured using a CMOS semiconductor process, the difference between Vos (Hall, 0 °) and Vos (Hall, 90 °) is about 10 μV.

このように、Vos(Hall,0°)とVos(Hall,90°)との間に、10μV程度の差異があるため、図4及び図5(a),(b)に示したホール起電力信号検出回路では、オフセットキャンセル後にも10μV程度のオフセットが残留することになる。つまり、図4及び図5(a),(b)には、スパイク状の誤差信号という問題点だけでなく、オフセットキャンセルの精度に関する問題点がある。   As described above, since there is a difference of about 10 μV between Vos (Hall, 0 °) and Vos (Hall, 90 °), the Hall electromotive force shown in FIGS. 4 and 5A and 5B is used. In the signal detection circuit, an offset of about 10 μV remains even after offset cancellation. That is, FIG. 4 and FIGS. 5A and 5B have not only a problem of spike-like error signals but also a problem regarding the accuracy of offset cancellation.

図6は、図4に示したホール起電力信号検出回路の具体的な一例を示した回路構成図で、チョッパーアンプと電流帰還型アンプとをホール素子のSpinning current法と組み合わせたものである。この図6に示された回路構成は、離散時間化(サンプリング)を行っていないことから、連続時間信号処理方式によるホール起電力信号処理回路の一例である。   FIG. 6 is a circuit configuration diagram showing a specific example of the Hall electromotive force signal detection circuit shown in FIG. 4, in which a chopper amplifier and a current feedback amplifier are combined with the Spinning current method of the Hall element. The circuit configuration shown in FIG. 6 is an example of a Hall electromotive force signal processing circuit based on a continuous time signal processing system because discrete time (sampling) is not performed.

図中符号70は第1のホール素子において発生するホール起電力信号Vhall1と第2のホール素子において発生するホール起電力信号Vhall2を同時加算して増幅する信号増幅回路、71は第1のトランジスタ差動対(Gm,1,1)、72は第2のトランジスタ差動対(Gm,1,2)、73は第4のスイッチ回路、74は第4のトランジスタ差動対(Gm,2)、75は第5のスイッチ回路、76はホール起電力信号処理回路の出力段を示している。なお、図4と同じ機能を有する構成要素には同一の符号を付してある。第3のホール素子及び第3のスイッチ回路については、図10に示した本発明の説明の中で記載してある。   In the figure, reference numeral 70 denotes a signal amplifying circuit for simultaneously adding and amplifying the Hall electromotive force signal Vhall1 generated in the first Hall element and the Hall electromotive force signal Vhall2 generated in the second Hall element, and 71 denotes a difference between the first transistors. The moving pair (Gm, 1,1), 72 is the second transistor differential pair (Gm, 1,2), 73 is the fourth switch circuit, 74 is the fourth transistor differential pair (Gm, 2), 75 denotes a fifth switch circuit, and 76 denotes an output stage of the Hall electromotive force signal processing circuit. In addition, the same code | symbol is attached | subjected to the component which has the same function as FIG. The third Hall element and the third switch circuit are described in the description of the present invention shown in FIG.

図6において、第1のホール素子3及び第2のホール素子5において発生するホール起電力信号Vhall1、Vhall2は、それぞれ、第1のトランジスタ差動対71及び第2のトランジスタ差動対72によって、電圧信号から電流信号へと変換されて、それぞれ第1及び第2のトランジスタ差動対71,72の出力電流I1,1、I1,2となる。これらの電流I1,1、I1,2は、電流信号として同時加算され、同時加算された結果の電流信号と、数式2で表されるフィードバック電圧Vfbによって駆動される第4のトランジスタ差動対74の出力電流信号との電流信号の和が0となるように回路が機能するため、数式3に示されるように、図6に示した回路の出力信号としては、第1のホール素子3及び第2のホール素子5において発生するホール起電力信号Vhall1、Vhall2を同時加算して、信号増幅した信号Vhall_sum12を得ることができる。   In FIG. 6, Hall electromotive force signals Vhall1 and Vhall2 generated in the first Hall element 3 and the second Hall element 5 are respectively represented by a first transistor differential pair 71 and a second transistor differential pair 72, respectively. It is converted from a voltage signal to a current signal to become output currents I1, 1, I1, and 2 of the first and second transistor differential pairs 71 and 72, respectively. These currents I 1, 1, I 1, 2 are added together as current signals, and a fourth transistor differential pair 74 driven by the current signal resulting from the simultaneous addition and the feedback voltage Vfb expressed by Equation 2 Since the circuit functions so that the sum of the current signal and the output current signal of the circuit becomes zero, the output signal of the circuit shown in FIG. The Hall electromotive force signals Vhall1 and Vhall2 generated in the two Hall elements 5 can be added at the same time to obtain a signal amplified signal Vhall_sum12.

図7は、図6の回路動作を概念的に説明した図である。第1のホール素子3及び第2のホール素子5において発生するホール起電力信号Vhall1、Vhall2は、第1のスイッチ回路4及び第2のスイッチ回路6のところでは、磁界Bに対応した信号成分Vsig(B)がチョッパークロックによって変調された形で検出されるが、Vhall1、Vhall2が同時加算された後で、チョッパークロックによって復調される。   FIG. 7 conceptually illustrates the circuit operation of FIG. Hall electromotive force signals Vhall1 and Vhall2 generated in the first Hall element 3 and the second Hall element 5 are signal components Vsig corresponding to the magnetic field B at the first switch circuit 4 and the second switch circuit 6, respectively. (B) is detected in a form modulated by the chopper clock, but after Vhall1 and Vhall2 are added simultaneously, they are demodulated by the chopper clock.

Figure 2014167422
Figure 2014167422

Figure 2014167422
Figure 2014167422

図8(a)乃至(f)は、図6に示したホール起電力信号検出回路において、第1のホール素子及び第2のホール素子の4つの端子の電圧変化と、第1のホール素子及び第2のホール素子とのそれぞれにおいて検出されるホール起電力信号Vhall1、Vhall2の信号波形を示した図である。なお、図8(a)乃至(f)及び図6と同様にホール起電力信号検出の信号波形を示した図は、チョッパークロックに応じて変化する信号波形の時間的変化を説明する目的の図であるため、ホール素子のオフセットについては、これをゼロと仮定して描かれている。   FIGS. 8A to 8F show the voltage change at the four terminals of the first Hall element and the second Hall element in the Hall electromotive force signal detection circuit shown in FIG. It is the figure which showed the signal waveform of Hall electromotive force signal Vhall1, Vhall2 detected in each with a 2nd Hall element. In addition, the figure which showed the signal waveform of Hall electromotive force signal detection similarly to FIG. 8 (a) thru | or (f) and FIG. 6 is a figure for the purpose of explaining the time change of the signal waveform which changes according to a chopper clock. Therefore, the offset of the Hall element is drawn assuming that this is zero.

図8(a)乃至(f)に示したように、ホール起電力信号Vhall1、Vhall2はチョッパークロック信号によって変調される形で検出されるが、ホール起電力信号Vhall1、Vhall2は電圧信号から電流信号への変換を経た後、図6に示したホール起電力信号検出回路に示した第3のスイッチ回路75によって復調されるため、図6に示したホール起電力信号検出回路の出力信号Vhall_sum12の波形は、図9(c)に示した信号波形となる。   As shown in FIGS. 8A to 8F, the Hall electromotive force signals Vhall1 and Vhall2 are detected by being modulated by the chopper clock signal, but the Hall electromotive force signals Vhall1 and Vhall2 are detected from the voltage signal to the current signal. 6, the waveform of the output signal Vhall_sum12 of the Hall electromotive force signal detection circuit shown in FIG. 6 is demodulated by the third switch circuit 75 shown in the Hall electromotive force signal detection circuit shown in FIG. Is the signal waveform shown in FIG.

図9(a)乃至(c)は、ホール起電力信号Vhall1、Vhall2の信号波形を同時加算して得られる出力信号波形を示す図である。図9に示した信号波形から解るように、図6に示したホール起電力信号検出回路においては、チョッパークロック信号の切り替えの際、ホール素子(第1のホール素子3及び第2のホール素子5)において、駆動電流を通電するために使われる2端子とホール起電力信号を検出するために使われる2端子の間で端子を入れ替えるスイッチ動作が行われるため、出力信号Vhall_sum12においては、駆動電流の通電によって決まるバイアス電圧Vbias+、Vbias−からホール起電力信号の電圧に移行する際の時間的な遷移がスパイク状の誤差信号として出現する。   FIGS. 9A to 9C are diagrams showing output signal waveforms obtained by simultaneously adding the signal waveforms of the Hall electromotive force signals Vhall1 and Vhall2. As can be seen from the signal waveform shown in FIG. 9, in the Hall electromotive force signal detection circuit shown in FIG. 6, when the chopper clock signal is switched, the Hall elements (the first Hall element 3 and the second Hall element 5 are switched). ), A switching operation is performed in which the terminal is switched between the two terminals used for energizing the driving current and the two terminals used for detecting the Hall electromotive force signal. Therefore, in the output signal Vhall_sum12, A temporal transition at the time of transition from the bias voltages Vbias + and Vbias− determined by energization to the voltage of the Hall electromotive force signal appears as a spike-like error signal.

上述したように、図6に示したホール起電力信号検出回路は、離散時間化(サンプリング)を行わない連続時間信号処理方式である。このため、このスパイク状の誤差信号が、そのまま出力信号として出力されてしまい、この結果、ホール起電力信号検出回路としての精度が劣化することになる。
以上のように、ホール素子において、Spinning current法によるオフセットキャンセルを行う場合においては、チョッパークロック信号が切り替わるタイミングにおいて、スパイク状の誤差信号が発生してしまうことが、ホール起電力信号検出の高精度化を実現するうえでの障害となる。この障害は、離散時間化(サンプリング)を行わない連続時間信号処理方式においては、特に深刻な障害である。
As described above, the Hall electromotive force signal detection circuit shown in FIG. 6 is a continuous time signal processing system that does not perform discrete time (sampling). For this reason, the spike-like error signal is output as an output signal as it is, and as a result, the accuracy as the Hall electromotive force signal detection circuit is deteriorated.
As described above, when offset cancellation is performed in the Hall element by the spinning current method, a spike-like error signal is generated at the timing when the chopper clock signal is switched. It becomes an obstacle to realizing. This failure is a particularly serious failure in a continuous-time signal processing system that does not perform discrete time (sampling).

以下、図面を参照して本発明の実施例について説明する。
図10は、本発明に係るホール起電力信号検出回路の実施例を説明するための回路構成図である。図中符号11はチョッパークロック生成回路、12は駆動電流生成回路、13は第1のホール素子、14は第1のスイッチ回路、15は第3のホール素子、16は第3のスイッチ回路、17はホール起電力信号処理回路を示している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 10 is a circuit configuration diagram for explaining an embodiment of the Hall electromotive force signal detection circuit according to the present invention. In the figure, reference numeral 11 denotes a chopper clock generation circuit, 12 denotes a drive current generation circuit, 13 denotes a first Hall element, 14 denotes a first switch circuit, 15 denotes a third Hall element, 16 denotes a third switch circuit, 17 Indicates a Hall electromotive force signal processing circuit.

本発明に係るホール起電力信号検出回路は、第1及び第3のホール素子13,15の4つの端子(端子1乃至端子4)に駆動電流を通電する端子位置を選択してホール起電力信号電圧を検出するように構成したものである。
第1のホール素子(一方のホール素子)13は、第1乃至第4の端子を備えて一方のホール起電力信号電圧Vhall1を発生させるものである。第3のホール素子(他方のホール素子)15は、第1乃至第4の端子を備え、他方のホール起電力信号電圧Vhall3を発生させるものである。
In the Hall electromotive force signal detection circuit according to the present invention, a Hall electromotive force signal is selected by selecting a terminal position through which a drive current is supplied to the four terminals (terminal 1 to terminal 4) of the first and third Hall elements 13 and 15. It is configured to detect the voltage.
The first Hall element (one Hall element) 13 includes first to fourth terminals and generates one Hall electromotive force signal voltage Vhall1. The third Hall element (the other Hall element) 15 includes first to fourth terminals, and generates the other Hall electromotive force signal voltage Vhall3.

第1のスイッチ回路(一方のスイッチ回路)14は、第1のホール素子13の4つの端子のなかから駆動電流を通電する端子位置を選択するものである。第3のスイッチ回路(他方のスイッチ回路)16は、第3のホール素子15の4つの端子のなかから駆動電流を通電する端子位置として、第1のスイッチ回路14と異なる端子位置を選択するものである。   The first switch circuit (one switch circuit) 14 selects a terminal position through which the drive current is supplied from the four terminals of the first Hall element 13. The third switch circuit (the other switch circuit) 16 selects a terminal position different from that of the first switch circuit 14 as a terminal position through which the drive current is supplied from the four terminals of the third Hall element 15. It is.

チョッパークロック生成回路11は、第1のスイッチ回路14に異なる2つの位相のチョッパークロック信号φ1,φ2を供給するとともに、第3のスイッチ回路16に異なる2つの位相のチョッパークロック信号φ1,φ2を供給するものである。ホール起電力信号処理回路17は、一方のホール起電力信号電圧Vhall1と他方のホール起電力信号電圧Vhall3とが短絡された信号を処理するものである。   The chopper clock generation circuit 11 supplies chopper clock signals φ1 and φ2 having two different phases to the first switch circuit 14, and also supplies chopper clock signals φ1 and φ2 having two phases different to the third switch circuit 16. To do. The Hall electromotive force signal processing circuit 17 processes a signal in which one Hall electromotive force signal voltage Vhall1 and the other Hall electromotive force signal voltage Vhall3 are short-circuited.

また、第1のスイッチ回路14は、チョッパークロック生成回路11により発生されたチョッパークロック信号φ1,φ2に基づいて、第1のホール素子13における駆動電流を注入する端子位置をホール素子の第1の端子と第2の端子との間で切り替えを行い、第3のスイッチ回路16は、チョッパークロック生成回路11により発生されたチョッパークロック信号φ1,φ2に基づいて、第3のホール素子15における駆動電流を注入する端子位置をホール素子の第4の端子と第3の端子との間で切り替えを行うものである。   Further, the first switch circuit 14 determines the terminal position for injecting the drive current in the first Hall element 13 based on the chopper clock signals φ1 and φ2 generated by the chopper clock generation circuit 11 to the first element of the Hall element. The third switch circuit 16 switches between the terminal and the second terminal, and the third switch circuit 16 drives the drive current in the third Hall element 15 based on the chopper clock signals φ1 and φ2 generated by the chopper clock generation circuit 11. Is switched between the fourth terminal and the third terminal of the Hall element.

また、第1のスイッチ回路14において、チョッパークロック信号の一方の位相φ1のときに端子1から駆動電流を注入し、チョッパークロック信号の他方の位相φ2のときに端子2から駆動電流を注入するとともに、第3のスイッチ回路16において、チョッパークロック信号の一方の位相φ1のときに端子4から駆動電流を注入し、チョッパークロック信号の他方の位相φ2のときに端子3から駆動電流を注入するものである。   In the first switch circuit 14, the drive current is injected from the terminal 1 when the phase of the chopper clock signal is one φ1, and the drive current is injected from the terminal 2 when the phase of the chopper clock signal is φ2. In the third switch circuit 16, the drive current is injected from the terminal 4 when one phase of the chopper clock signal is φ1, and the drive current is injected from the terminal 3 when the other phase φ2 of the chopper clock signal. is there.

また、ホール起電力信号処理回路17は、一方のホール起電力信号電圧と他方のホール起電力信号電圧とを同時に処理するものである。一方のスイッチ回路14の出力と他方のスイッチ回路16の出力が短絡され、一方及び他方のスイッチ回路14,16が、チョッパークロック生成回路11により発生されたチョッパークロック信号に基づいて、一方及び他方のホール素子13,15における駆動電流を注入する端子位置を、互いに逆極性のスパイクを発生させるように、各端子間で切り替えを行う。   The Hall electromotive force signal processing circuit 17 simultaneously processes one Hall electromotive force signal voltage and the other Hall electromotive force signal voltage. The output of one switch circuit 14 and the output of the other switch circuit 16 are short-circuited, and the one and other switch circuits 14 and 16 are connected to each other based on the chopper clock signal generated by the chopper clock generation circuit 11. The terminal positions for injecting drive currents in the Hall elements 13 and 15 are switched between the terminals so as to generate spikes having opposite polarities.

図10に示した回路構成図は、図4に示した本発明の前提となる回路構成図とスイッチ回路の出力を短絡している点が異なるが、他は同様で、2つのホール素子である第1のホール素子13及び第3のホール素子15において発生されるホール起電力信号Vhall1、Vhall3を同時短絡して連続時間において信号検出するホール起電力検出回路であり、回路構成として、2つのスイッチ回路(第1のスイッチ回路14及び第3のスイッチ回路16)とチョッパークロック生成回路11と駆動電流生成回路12とホール起電力信号処理回路17から構成されるという点において、図4に示した回路構成図と共通している。   The circuit configuration shown in FIG. 10 is different from the circuit configuration shown in FIG. 4 in that the output of the switch circuit is short-circuited. The Hall electromotive force detection circuit detects a signal in continuous time by simultaneously short-circuiting the Hall electromotive force signals Vhall1 and Vhall3 generated in the first Hall element 13 and the third Hall element 15, and includes two switches as a circuit configuration. The circuit shown in FIG. 4 is composed of a circuit (first switch circuit 14 and third switch circuit 16), a chopper clock generation circuit 11, a drive current generation circuit 12, and a Hall electromotive force signal processing circuit 17. It is common with the configuration diagram.

本発明の実施例である図10に示した回路構成図と、図4に示した回路構成図との間の相違点は、図10に示した回路構成図では、2つのホール素子に関して、ホール素子の駆動電流を通電する端子対の位置とホール起電力信号を検出する端子対の位置が、第1のホール素子13と第3のホール素子15との間で異なるということである。
図11(a),(b)は、図10に示した回路構成図のなかの第3のホール素子に関して、その駆動電流の通電方向を決める端子対の位置及びホール起電力信号を検出する端子対の位置を示した図である。なお、表4は、第3のホール素子15の駆動電流の通電方向を決める端子対の位置を示し、表5は、第3のホール素子15のホール起電力信号を検出する端子対の位置を示している。
第3のホール素子15において、このようにホール起電力信号を検出する場合、第3のホール素子15において検出されるホール起電力信号Vhall3は、表6のようになる。
The difference between the circuit configuration diagram shown in FIG. 10 which is an embodiment of the present invention and the circuit configuration diagram shown in FIG. 4 is that the circuit configuration diagram shown in FIG. That is, the position of the terminal pair for supplying the drive current of the element and the position of the terminal pair for detecting the Hall electromotive force signal are different between the first Hall element 13 and the third Hall element 15.
FIGS. 11A and 11B show the position of the terminal pair that determines the energization direction of the drive current and the terminal that detects the Hall electromotive force signal with respect to the third Hall element in the circuit configuration diagram shown in FIG. It is the figure which showed the position of a pair. Table 4 shows the position of the terminal pair that determines the energization direction of the drive current of the third Hall element 15, and Table 5 shows the position of the terminal pair that detects the Hall electromotive force signal of the third Hall element 15. Show.
When the Hall electromotive force signal is detected in this manner in the third Hall element 15, the Hall electromotive force signal Vhall3 detected in the third Hall element 15 is as shown in Table 6.

Figure 2014167422
Figure 2014167422

Figure 2014167422
Figure 2014167422

Figure 2014167422
Figure 2014167422

ここで、第1のホール素子13と第3のホール素子15との間で、磁気感度は揃っているものと仮定して、磁界Bに対応した信号成分としては、第1のホール素子13と第3のホール素子15との間で共通の値Vsig(B)を用いた。
一方、第3のホール素子のオフセット成分については、第1のホール素子に対する値Vos(Hall, 0°)、Vos(Hall,90°)とは異なる値Vos(Hall,270°)、Vos(Hall,180°)を仮定している。これは、上述したように、各ホール素子内部で、半導体製造時のプロセス勾配に起因する不純物濃度の濃淡分布があるため、ホール素子の4つの端子(端子1、端子2、端子3、端子4)のうち、どの端子から駆動電流が注入されるかによって、ホール素子内部での空乏層の発生状態が変わるためである。
Here, assuming that the magnetic sensitivities are uniform between the first Hall element 13 and the third Hall element 15, the signal components corresponding to the magnetic field B are as follows: A value Vsig (B) common to the third Hall element 15 was used.
On the other hand, for the offset component of the third Hall element, values Vos (Hall, 270 °) and Vos (Hall) that are different from the values Vos (Hall, 0 °) and Vos (Hall, 90 °) for the first Hall element. , 180 °). This is because, as described above, since there is a light and shade distribution of the impurity concentration caused by the process gradient at the time of manufacturing the semiconductor, each Hall element has four terminals (terminal 1, terminal 2, terminal 3, and terminal 4). This is because the state of occurrence of the depletion layer in the Hall element changes depending on from which terminal the drive current is injected.

図12は、図10に示したホール起電力信号検出回路の具体的な一例を示す回路構成図で、チョッパーアンプと電流帰還型アンプとを、ホール素子のSpinning current法と組み合わせたものである。この図12に示された回路構成は、離散時間化(サンプリング)を行っていないことから、連続時間信号処理方式によるホール起電力信号処理回路の一例である。   FIG. 12 is a circuit configuration diagram showing a specific example of the Hall electromotive force signal detection circuit shown in FIG. 10, in which a chopper amplifier and a current feedback amplifier are combined with the Spinning current method of the Hall element. The circuit configuration shown in FIG. 12 is an example of a Hall electromotive force signal processing circuit based on a continuous time signal processing system because discrete time (sampling) is not performed.

図中符号80は第1のホール素子において発生するホール起電力信号Vhall1と第3のホール素子において発生するホール起電力信号Vhall3を同時加算して増幅する信号増幅回路、81は第1のトランジスタ差動対(Gm,1,1)、83は第4のスイッチ回路、84は第4のトランジスタ差動対(Gm,2)、85は第5のスイッチ回路、86はホール起電力信号処理回路の出力段を示している。なお、図10と同じ機能を有する構成要素には同一の符号を付してある。   In the figure, reference numeral 80 denotes a signal amplifying circuit for simultaneously adding and amplifying the Hall electromotive force signal Vhall1 generated in the first Hall element and the Hall electromotive force signal Vhall3 generated in the third Hall element, and 81 is a difference between the first transistors. The dynamic pair (Gm, 1,1), 83 is a fourth switch circuit, 84 is a fourth transistor differential pair (Gm, 2), 85 is a fifth switch circuit, and 86 is a Hall electromotive force signal processing circuit. The output stage is shown. In addition, the same code | symbol is attached | subjected to the component which has the same function as FIG.

本発明のホール起電力信号検出回路は、複数の端子を備えたホール素子に駆動電流を通電する端子位置を選択してホール起電力信号電圧を検出するように構成したホール起電力信号検出回路である。第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方のホール素子13と、第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方のホール素子15と、一方のホール素子13の4つの端子のなかから駆動電流を通電する端子位置を選択する一方のスイッチ回路14と、他方のホール素子15の4つの端子のなかから駆動電流を通電する端子位置を、一方のスイッチ回路14と異なる端子位置を選択する他方のスイッチ回路16と、一方のスイッチ回路14と他方のスイッチ回路16にチョッパークロック信号を供給するチョッパークロック生成回路11とを備えている。   The Hall electromotive force signal detection circuit of the present invention is a Hall electromotive force signal detection circuit configured to detect a Hall electromotive force signal voltage by selecting a terminal position through which a driving current is passed to a Hall element having a plurality of terminals. is there. One Hall element 13 having first to fourth terminals and generating one Hall electromotive force signal voltage, and the other Hall element having first to fourth terminals and generating the other Hall electromotive force signal voltage A drive current is passed from one of the four terminals of the element 15 and the four terminals of one hall element 13 to select a terminal position through which the drive current is passed. The other switch circuit 16 that selects a terminal position different from the one switch circuit 14 and the chopper clock generation circuit 11 that supplies the chopper clock signal to the one switch circuit 14 and the other switch circuit 16 are provided. Yes.

一方のスイッチ回路14の出力と他方のスイッチ回路16の出力が短絡され、一方のスイッチ回路14が、チョッパークロック生成回路11により発生されたチョッパークロック信号に基づいて、一方のホール素子13における駆動電流を注入する端子位置をホール素子13の第1の端子と第2の端子との間で切り替えを行い、他方のスイッチ回路16が、チョッパークロック生成回路11により発生されたチョッパークロック信号に基づいて、他方のホール素子15における駆動電流を注入する端子位置をホール素子15の第4の端子と第3の端子との間で切り替えを行う。   The output of one switch circuit 14 and the output of the other switch circuit 16 are short-circuited, and one switch circuit 14 drives the drive current in one Hall element 13 based on the chopper clock signal generated by the chopper clock generation circuit 11. Is switched between the first terminal and the second terminal of the Hall element 13, and the other switch circuit 16 is based on the chopper clock signal generated by the chopper clock generation circuit 11. The terminal position for injecting the drive current in the other Hall element 15 is switched between the fourth terminal and the third terminal of the Hall element 15.

つまり、図12においては、第1のホール素子13において発生するホール起電力信号Vhall1と第3のホール素子15において発生するホール起電力信号Vhall3が、連続時間において同時短絡されて、数式4にしたがって、出力電圧信号Vhall_sum13が得られる。ここで、ホール素子13,15の間で磁気感度は揃っているものと仮定して、磁界Bに対応した信号成分としては、第1のホール素子13と第3のホール素子15との間で共通の値Vsig(B)を用いた。   That is, in FIG. 12, the Hall electromotive force signal Vhall1 generated in the first Hall element 13 and the Hall electromotive force signal Vhall3 generated in the third Hall element 15 are simultaneously short-circuited in continuous time, and according to Equation 4. The output voltage signal Vhall_sum13 is obtained. Here, assuming that the magnetic sensitivities are uniform between the Hall elements 13 and 15, the signal component corresponding to the magnetic field B is between the first Hall element 13 and the third Hall element 15. A common value Vsig (B) was used.

Figure 2014167422
Figure 2014167422

図12においては、2つのホール素子(第1のホール素子と第3のホール素子)に関して、チョッパークロック信号の位相にしたがって、ホール素子の駆動電流を通電する端子対の位置を選択切り替えし、ホール起電力信号を取り出す端子対を選択切り替えする2つのスイッチ回路(第1のスイッチ回路と第3のスイッチ回路)の間でスイッチ動作が異なることに注意が必要である。   In FIG. 12, with respect to two Hall elements (first Hall element and third Hall element), the position of the terminal pair through which the drive current of the Hall element is energized is selectively switched according to the phase of the chopper clock signal. It should be noted that the switch operation differs between the two switch circuits (the first switch circuit and the third switch circuit) that selectively switch the terminal pair from which the electromotive force signal is extracted.

図13は、図12の回路動作を概念的に説明した図である。第1のホール素子13及び第3のホール素子15において発生するホール起電力信号Vhall1、Vhall3は、第1のスイッチ回路14及び第3のスイッチ回路16のところでは、磁界Bに対応した信号成分Vsig(B)がチョッパークロックによって変調された形で検出されるが、Vhall1、Vhall3が同時短絡された後で、チョッパークロックによって復調される。
図14(a)乃至(g)は、図12に示したホール起電力信号検出回路において、第3のホール素子における各端子の電位及び第3のホール素子から検出されるホール起電力信号Vhall3及び第1のホール素子から検出されるホール起電力信号Vhall1の信号波形を示した図である。
FIG. 13 is a diagram conceptually illustrating the circuit operation of FIG. The Hall electromotive force signals Vhall1 and Vhall3 generated in the first Hall element 13 and the third Hall element 15 are signal components Vsig corresponding to the magnetic field B at the first switch circuit 14 and the third switch circuit 16, respectively. (B) is detected in a form modulated by a chopper clock. After Vhall1 and Vhall3 are short-circuited simultaneously, they are demodulated by the chopper clock.
14A to 14G show the Hall electromotive force signal detection circuit shown in FIG. 12, and the potentials of the terminals of the third Hall element and the Hall electromotive force signal Vhall3 detected from the third Hall element. It is the figure which showed the signal waveform of Hall electromotive force signal Vhall1 detected from a 1st Hall element.

これに対して、第1のホール素子13における各端子の電位及び第1のホール素子13から検出されるホール起電力信号Vhall1の信号波形は、図8(a)乃至(d)に示した信号波形と同じである。本発明のホール起電力信号検出回路においては、これらの第1のホール素子13において発生されるホール起電力信号Vhall1(図8(e)又は図14(f))と第3のホール素子15において発生されるホール起電力信号Vhall3(図14(e))を連続時間で同時短絡するものである。そのような、Vhall1とVhall3を連続時間で同時短絡した結果として、図14(g)に示すホール起電力信号Vhall_shortや、図15(a)乃至(c)に示す出力信号波形が得られる。   On the other hand, the potential of each terminal in the first Hall element 13 and the signal waveform of the Hall electromotive force signal Vhall1 detected from the first Hall element 13 are the signals shown in FIGS. 8A to 8D. Same as waveform. In the Hall electromotive force signal detection circuit of the present invention, in the Hall electromotive force signal Vhall1 (FIG. 8 (e) or FIG. 14 (f)) generated in these first Hall elements 13 and the third Hall element 15. The generated Hall electromotive force signal Vhall3 (FIG. 14 (e)) is simultaneously short-circuited in continuous time. As a result of simultaneously short-circuiting Vhall1 and Vhall3 in continuous time, the Hall electromotive force signal Vhall_short shown in FIG. 14G and the output signal waveforms shown in FIGS. 15A to 15C are obtained.

図14(g)の波形において重要な結果を以下に2点示す。
まず、図14(e)及び(f)では、第1のホール素子と第3のホール素子のスイッチ動作が異なっているため、互いに逆極性となるようスパイクが発生している((e)が−側、(f)が+側)。そして、それぞれの信号が短絡されることにより図14(g)ではスパイクが打ち消されていること、かつホール起電力信号は消滅していないことである。
Two important results in the waveform of FIG.
First, in FIGS. 14 (e) and 14 (f), the first Hall element and the third Hall element have different switching operations, so that spikes are generated so as to have opposite polarities ((e) -Side, (f) is + side). Then, by short-circuiting each signal, the spike is canceled in FIG. 14G, and the Hall electromotive force signal is not extinguished.

次に、図12の構成においてスイッチ回路の切り替えによりスパイクが発生した瞬間に第1のホール素子と第3のホール素子がスイッチを介して並列に接続されており、後段のホール起電力信号処理回路から見た出力インピーダンスは低減される。そのため、ホール起電力信号処理回路の入力端子における時定数が低減されるため、スパイクのキャンセルや消滅速度が速くなる効果もある。
このように本発明において、ホール起電力信号に重畳されるスパイクのキャンセル効果とスパイクの消滅速度向上の2つの効果を同時に達成でき、第1のホール素子と第3のホール素子のようなスイッチ動作の異なる2つのホール素子とそれぞれのスイッチ回路の出力を短絡することにより実現される。
Next, in the configuration of FIG. 12, the first Hall element and the third Hall element are connected in parallel through the switch at the moment when the spike is generated by switching the switch circuit, and the Hall electromotive force signal processing circuit in the subsequent stage is connected. As a result, the output impedance is reduced. For this reason, the time constant at the input terminal of the Hall electromotive force signal processing circuit is reduced, so that there is an effect that the spike cancellation and extinction speed is increased.
As described above, in the present invention, two effects of canceling the spike superimposed on the Hall electromotive force signal and improving the extinction speed of the spike can be achieved at the same time, and the switch operation like the first Hall element and the third Hall element This is realized by short-circuiting the two Hall elements having different values and the outputs of the respective switch circuits.

図15(a)乃至(c)は、ホール起電力信号Vhall1、Vhall3の信号波形を同時短絡して得られる出力信号波形を示す図である。図15(a)乃至(c)から理解されるように、本発明のホール起電力信号検出回路によれば、2個のホール起電力信号を同時短絡することにより、チョッパークロック信号の切り替え時に発生するスパイク状の誤差信号の発生を著しく低減することが可能となる。したがって、本発明のホール起電力信号検出回路は、連続時間信号処理方式の回路構成によって、高精度なホール起電力信号検出を実現するうえで、非常に有効なものである。   FIGS. 15A to 15C are diagrams showing output signal waveforms obtained by simultaneously short-circuiting the signal waveforms of the Hall electromotive force signals Vhall1 and Vhall3. As can be understood from FIGS. 15A to 15C, according to the Hall electromotive force signal detection circuit of the present invention, the two Hall electromotive force signals are simultaneously short-circuited to generate the switching of the chopper clock signal. It is possible to significantly reduce the occurrence of spike-like error signals. Therefore, the Hall electromotive force signal detection circuit of the present invention is very effective in realizing highly accurate Hall electromotive force signal detection by the circuit configuration of the continuous time signal processing system.

本発明のホール起電力信号検出回路においては、第1のホール素子13と第3のホール素子15との間で、ホール素子の駆動電流を通電する向きが、表7にまとめたように、互いに180度だけ異なっていることが特長である。つまり、本発明のホール起電力信号検出回路においては、第1のホール素子13においては、0度及び90度の向きに駆動電流を通電し、第3のホール素子15においては、270度及び180度の向きに駆動電流を通電している。
このようにして、第1のホール素子13と第3のホール素子15との間で、駆動電流の通電方向を互いに180度だけ異なる方向に設定することによって、チョッパークロックによる信号復調後の出力信号Vhall_sum13に含まれるオフセット成分は、表8に示したようになる。
In the Hall electromotive force signal detection circuit of the present invention, the direction in which the drive current of the Hall element is energized between the first Hall element 13 and the third Hall element 15 is The feature is that it is different by 180 degrees. That is, in the Hall electromotive force signal detection circuit of the present invention, the first Hall element 13 is supplied with a drive current in the directions of 0 degrees and 90 degrees, and the third Hall element 15 is 270 degrees and 180 degrees. The drive current is applied in the direction of the degree.
In this manner, by setting the energization directions of the drive currents to be different from each other by 180 degrees between the first Hall element 13 and the third Hall element 15, the output signal after signal demodulation by the chopper clock The offset components included in Vhall_sum13 are as shown in Table 8.

Figure 2014167422
Figure 2014167422

Figure 2014167422
Figure 2014167422

表8から理解されるように、本発明のホール起電力信号検出回路においては、チョッパークロック信号がφ1とφ2という2つの位相を切替える間に、ホール素子が取りうる4つのオフセット電圧値Vos(Hall,0°)、Vos(Hall,90°)、Vos(Hall,180°)、Vos(Hall,270°)を加減算してキャンセルすることが出来る。   As can be seen from Table 8, in the Hall electromotive force signal detection circuit of the present invention, the four offset voltage values Vos (Hall) that the Hall element can take while the chopper clock signal switches between the two phases φ1 and φ2. , 0 °), Vos (Hall, 90 °), Vos (Hall, 180 °), Vos (Hall, 270 °) can be canceled by addition / subtraction.

つまり、位相φ1、φ2という短時間の時間内に、各ホール素子の内部における不純物濃度の濃淡分布の影響を平均化し、高精度なオフセットキャンセルを高速応答性と両立させることが出来る。
図16は、IC回路を製造する際の半導体製造時のプロセス勾配によるホール素子内部での不純物濃度の濃淡分布があるときの、本発明のホール起電力信号検出回路での2つのホール素子のICレイアウト及びそれら2つのホール素子でのSpinning current法を示した図である。
That is, within a short time period of phases φ1 and φ2, it is possible to average the influence of the density distribution of the impurity concentration inside each Hall element, and to achieve both high-accuracy offset cancellation and high-speed response.
FIG. 16 shows the IC of two Hall elements in the Hall electromotive force signal detection circuit of the present invention when there is a concentration distribution of the impurity concentration inside the Hall element due to the process gradient at the time of manufacturing the IC circuit. It is the figure which showed the layout and the Spinning current method in those two Hall elements.

また、ホール素子の配置は、2つのホール素子を隣接して並列させたレイアウト配置である。この配置により、本発明のホール起電力信号検出回路においては、IC回路を製造する際の半導体製造時のプロセス勾配によるホール素子内部での不純物濃度の濃淡分布に起因したオフセットへの影響までも効果的にキャンセルすることが出来る。
上述した特許文献1に開示された方法では、上述した4つのオフセット電圧値Vos(Hall,0°)、Vos(Hall,90°)、Vos(Hall,180°)、Vos(Hall,270°)を平均化処理する処理が、φ1、φ2の2つの期間では完了せず、更に、φ3、φ4という2つの期間を加えた合計4つの期間を要することになる。
The arrangement of the Hall elements is a layout arrangement in which two Hall elements are adjacently arranged in parallel. With this arrangement, in the Hall electromotive force signal detection circuit of the present invention, the effect to offset caused by the concentration distribution of the impurity concentration inside the Hall element due to the process gradient at the time of manufacturing the IC circuit is also effective. Can be canceled.
In the method disclosed in Patent Document 1 described above, the four offset voltage values Vos (Hall, 0 °), Vos (Hall, 90 °), Vos (Hall, 180 °), Vos (Hall, 270 °) described above. The averaging process is not completed in the two periods φ1 and φ2, and further, a total of four periods including two periods φ3 and φ4 are required.

また、第1のホール素子と第3のホール素子との間で、駆動電流の通電方向を互いに180度だけ異なる方向に設定することによって、ホール素子内部の不純物濃度の濃淡分布の影響も含めた高精度なオフセットキャンセルを高速に実行することが可能となる。
以上に説明した本発明のホール起電力信号検出回路においては、ホール素子の数が2個の例を用いて説明を行ったが、これまでの説明から理解されるように、本発明において、ホール素子の数は2個に限らず、任意の偶数でよい。一般に、ホール素子の数を増やすことは、ホール起電力信号の検出において、磁気感度を向上させ、高感度な磁気センサを実現するうえで有効な手段である。
Further, by setting the energization direction of the drive current to be different from each other by 180 degrees between the first Hall element and the third Hall element, the influence of the density distribution of the impurity concentration inside the Hall element is also included. It becomes possible to execute highly accurate offset cancellation at high speed.
In the Hall electromotive force signal detection circuit of the present invention described above, description has been made using an example in which the number of Hall elements is two. As understood from the above description, in the present invention, The number of elements is not limited to two and may be any even number. In general, increasing the number of Hall elements is an effective means for improving the magnetic sensitivity and realizing a highly sensitive magnetic sensor in detecting the Hall electromotive force signal.

図17は、本発明のホール起電力信号検出回路において、4つのホール素子を使う場合のICレイアウトの例を示した図である。また、ホール素子の配置は、4個のホール素子を互いに隣接して並列させたレイアウト配置であることも可能である。このような4つのホール素子を使用する場合には、4つのホール素子を正方形の頂点に配置することにより、2つのホール素子を使用する場合と比較して、半導体製造時のプロセス勾配の影響をキャンセルする効果も向上することがわかる。   FIG. 17 is a diagram showing an example of an IC layout when four Hall elements are used in the Hall electromotive force signal detection circuit of the present invention. Further, the arrangement of the Hall elements can be a layout arrangement in which four Hall elements are arranged adjacent to each other in parallel. When using such four Hall elements, the effect of the process gradient during semiconductor manufacturing is reduced by arranging the four Hall elements at the vertices of a square as compared to using two Hall elements. It can be seen that the canceling effect is also improved.

図18は、図10に示したホール起電力信号検出回路の具体的な他の例を示す回路構成図である。図中符号13は第1のホール素子、15は第3のホール素子、18は第4のホール素子、20は第5のホール素子を示している。また、図中符号14,16,19,21はそれぞれ第1乃至第5のスイッチ回路を示している。なお、図12と同じ機能を有する構成要素には同一の符号を付してある。   18 is a circuit configuration diagram showing another specific example of the Hall electromotive force signal detection circuit shown in FIG. In the figure, reference numeral 13 denotes a first Hall element, 15 denotes a third Hall element, 18 denotes a fourth Hall element, and 20 denotes a fifth Hall element. Reference numerals 14, 16, 19, and 21 in the figure denote first to fifth switch circuits, respectively. Components having the same functions as those in FIG. 12 are denoted by the same reference numerals.

第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方の別のホール素子と、第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方の別のホール素子と、一方の別のホール素子の4つの端子のなかから駆動電流を通電する端子位置を選択する一方の別のスイッチ回路と、他方の別のホール素子の4つの端子のなかから駆動電流を通電する端子位置を、一方の別のスイッチ回路と異なる端子位置を選択する他方の別のスイッチ回路とを備え、一方のスイッチ回路の出力と他方のスイッチ回路の出力と一方の別のスイッチ回路の出力と他方の別のスイッチ回路の出力とが短絡される。   Another Hall element having first to fourth terminals and generating one Hall electromotive force signal voltage and the other Hall element having first to fourth terminals and generating the other Hall electromotive force signal voltage From another Hall element, from one of the four terminals of one other Hall element, another switch circuit for selecting a terminal position through which a drive current is passed, and from the other four Hall elements A terminal position through which a drive current is passed is provided with another switch circuit that selects a different terminal position from the other switch circuit, and the output of one switch circuit, the output of the other switch circuit, and the other of the other switch circuit The output of the switch circuit is short-circuited with the output of the other switch circuit.

図18に示したホール起電力検出回路は、図12と比較して、第4のスイッチ回路19に接続されるホール素子18及び第5のスイッチ回路21に接続されるホール素子20が追加されたホール起電力検出回路である。追加されたスイッチ回路19及び21の出力は既存のスイッチ回路14,6の出力と同局性の出力同士すべて短絡されている。第1345の駆動方法の一例をまとめると表9のようになり、その時のオフセット成分は表10のようになる。   In the Hall electromotive force detection circuit shown in FIG. 18, a Hall element 18 connected to the fourth switch circuit 19 and a Hall element 20 connected to the fifth switch circuit 21 are added as compared with FIG. It is a Hall electromotive force detection circuit. The outputs of the added switch circuits 19 and 21 are all short-circuited with the outputs of the existing switch circuits 14 and 6. An example of the 1345th driving method is summarized as shown in Table 9, and the offset component at that time is as shown in Table 10.

Figure 2014167422
Figure 2014167422

Figure 2014167422
Figure 2014167422

表10からわかるように、φ1,φ2各相において全駆動方向のオフセットを短絡することによりオフセットがキャンセルできる。図17ようにホール素子を配置することにより、2つのホール素子を使用する場合と比較して、半導体製造時のプロセス勾配の影響をキャンセルする効果も向上することがわかる。
図19は、図10に示したホール起電力信号検出回路の具体的な他の例を示す回路構成図である。図12と同じ機能を有する構成要素には同一の符号を付してある。82はトランジスタ差動対Gm(1,3)を示している。図18と同じ機能を有する構成要素には同一の符号を付してある。
As can be seen from Table 10, the offset can be canceled by short-circuiting the offsets in all driving directions in each of the φ1 and φ2 phases. It can be seen that by arranging the Hall elements as shown in FIG. 17, the effect of canceling the influence of the process gradient at the time of manufacturing the semiconductor is improved as compared with the case of using two Hall elements.
FIG. 19 is a circuit configuration diagram showing another specific example of the Hall electromotive force signal detection circuit shown in FIG. Constituent elements having the same functions as those in FIG. Reference numeral 82 denotes a transistor differential pair Gm (1, 3). Components having the same functions as those in FIG. 18 are denoted by the same reference numerals.

第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方の別のホール素子と、第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方の別のホール素子と、一方の別のホール素子の4つの端子のなかから駆動電流を通電する端子位置を選択する一方の別のスイッチ回路と、出力が一方の別のスイッチ回路の出力と短絡され、他方の別のホール素子の4つの端子のなかから駆動電流を通電する端子位置を、一方の別のスイッチ回路と異なる端子位置を選択する他方の別のスイッチ回路と、一方のスイッチ回路及び他方のスイッチ回路の出力と一方の別のスイッチ回路及び他方の別のスイッチ回路の出力とを同時に加算するホール起電力信号処理回路17とを備えている。   Another Hall element having first to fourth terminals and generating one Hall electromotive force signal voltage and the other Hall element having first to fourth terminals and generating the other Hall electromotive force signal voltage Another Hall element, one other switch circuit that selects a terminal position through which a drive current is passed among four terminals of the other Hall element, and the output is short-circuited with the output of the other switch circuit A terminal position through which a drive current is passed from among the four terminals of the other Hall element, another switch circuit that selects a different terminal position from the other switch circuit, one switch circuit, and the other And a Hall electromotive force signal processing circuit 17 for simultaneously adding the output of one of the switch circuits and the output of one of the other switch circuits and the other of the other switch circuits.

つまり、2つのホール素子13,15の出力がスイッチ回路14,16を介して短絡され、トランジスタ差動対Gm(1,1)に接続されている。他方2つのホール素子18,20の出力がスイッチ回路19,21を介して短絡され、トランジスタ差動対Gm(1,3)に接続されている。このようにホール起電力信号処理回路の入力を複数にすることも可能であり2つに限らずそれ以上でも構わない。
図20は、図10に示したホール起電力信号検出回路の具体的な他の例を示す回路構成図である。図中符号22は第6のホール素子、23は第6のスイッチ回路、24は第7のホール素子、25は第7のスイッチ回路を示している。なお、図12と同じ機能を有する構成要素には同一の符号を付してある。
That is, the outputs of the two Hall elements 13 and 15 are short-circuited via the switch circuits 14 and 16 and connected to the transistor differential pair Gm (1, 1). The outputs of the other two Hall elements 18 and 20 are short-circuited via the switch circuits 19 and 21 and connected to the transistor differential pair Gm (1, 3). In this way, the Hall electromotive force signal processing circuit can have a plurality of inputs, and the number of inputs is not limited to two and may be more.
FIG. 20 is a circuit configuration diagram showing another specific example of the Hall electromotive force signal detection circuit shown in FIG. In the figure, reference numeral 22 denotes a sixth Hall element, 23 denotes a sixth switch circuit, 24 denotes a seventh Hall element, and 25 denotes a seventh switch circuit. Components having the same functions as those in FIG. 12 are denoted by the same reference numerals.

本発明のホール起電力信号検出回路は、複数の端子を備えたホール素子に駆動電流を通電する端子位置を選択してホール起電力信号電圧を検出するように構成したホール起電力信号検出回路である。第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方のホール素子22と、第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方のホール素子24と、一方のホール素子22の4つの端子のなかから駆動電流を通電する端子位置を選択する一方のスイッチ回路23と、他方のホール素子24の4つの端子のなかから駆動電流を通電する端子位置を、一方のスイッチ回路23と異なる端子位置を選択する他方のスイッチ回路25と、一方のスイッチ回路23と他方のスイッチ回路25にチョッパークロック信号を供給するチョッパークロック生成回路11と、一方のホール起電力信号電圧と他方のホール起電力信号電圧とを同時に加算するホール起電力信号処理回路17とを備えている。   The Hall electromotive force signal detection circuit of the present invention is a Hall electromotive force signal detection circuit configured to detect a Hall electromotive force signal voltage by selecting a terminal position through which a driving current is passed to a Hall element having a plurality of terminals. is there. One Hall element 22 having first to fourth terminals and generating one Hall electromotive force signal voltage, and the other Hall element having first to fourth terminals and generating the other Hall electromotive force signal voltage The drive current is supplied from one switch circuit 23 for selecting a terminal position through which the drive current is supplied from the element 24 and the four terminals of the one hall element 22, and the four terminals of the other hall element 24. The other switch circuit 25 that selects a terminal position different from the one switch circuit 23, the chopper clock generation circuit 11 that supplies the chopper clock signal to the one switch circuit 23 and the other switch circuit 25, A Hall electromotive force signal processing circuit 17 that simultaneously adds the Hall electromotive force signal voltage and the other Hall electromotive force signal voltage is provided.

一方のスイッチ回路23の出力と他方のスイッチ回路25の出力が短絡され、一方のスイッチ回路23が、チョッパークロック生成回路11により発生されたチョッパークロック信号に基づいて、一方のホール素子22における駆動電流を注入する端子位置をホール素子22の第1乃至第4の端子の間で一方向回りで切り替えを行い、他方のスイッチ回路25が、チョッパークロック生成回路11により発生されたチョッパークロック信号に基づいて、他方のホール素子24における駆動電流を注入する端子位置をホール素子24の第1乃至4の端子の間で一方向回りとは逆の他方向まわりで切り替えを行う。   The output of one switch circuit 23 and the output of the other switch circuit 25 are short-circuited, and one switch circuit 23 drives the drive current in one Hall element 22 based on the chopper clock signal generated by the chopper clock generation circuit 11. Is switched in one direction between the first to fourth terminals of the Hall element 22, and the other switch circuit 25 is based on the chopper clock signal generated by the chopper clock generation circuit 11. The terminal position for injecting the drive current in the other hall element 24 is switched between the first to fourth terminals of the hall element 24 in the other direction opposite to the one direction.

つまり、図12と異なる点はホール素子の駆動方法であり、図12ではチョッパークロックの位相がφ1とφ2の二相であり、一方と他方が異なる位相で動作することによりスパイクをキャンセルしているが、図20の場合、駆動電流の方向によりφ1乃至φ4の4つの位相が存在し、隣り合う位相では駆動方法が90°異なるため、ホール素子の一方が時計回りで駆動電流の方向を変化させ、他方を反時計回りにするとスパイクをキャンセルすることができる。
なお、本発明は、異なる2つのホール素子のチョッパー駆動時に発生する逆極性のスパイクをそれぞれの出力同士を短絡することによりキャンセルすることが目的であるので、逆極性のスパイクを発生させるような駆動方法であればどのような駆動方法でも構わない。
That is, the difference from FIG. 12 is the Hall element driving method. In FIG. 12, the phase of the chopper clock is two phases of φ1 and φ2, and the spike is canceled by operating one and the other in different phases. However, in the case of FIG. 20, there are four phases φ1 to φ4 depending on the direction of the driving current, and the driving method differs by 90 ° in the adjacent phases, so one of the Hall elements changes the direction of the driving current clockwise. The spike can be canceled by turning the other counterclockwise.
It is to be noted that the present invention aims to cancel reverse polarity spikes generated when chopper driving of two different Hall elements by short-circuiting their outputs, so that drive that generates reverse polarity spikes is performed. Any driving method may be used as long as it is a method.

本発明のホール起電力信号検出回路は、複数の端子を備えたホール素子に駆動電流を通電する端子位置を選択してホール起電力信号電圧を検出するように構成したホール起電力信号検出回路である。一方のホール素子13は、それぞれ第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させ、一つまたは複数のホール素子を並列接続して構成されている。また、他方のホール素子15は、それぞれ第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させ、一つまたは複数のホール素子を並列接続して構成されている。   The Hall electromotive force signal detection circuit of the present invention is a Hall electromotive force signal detection circuit configured to detect a Hall electromotive force signal voltage by selecting a terminal position through which a driving current is passed to a Hall element having a plurality of terminals. is there. One Hall element 13 includes first to fourth terminals, generates one Hall electromotive force signal voltage, and is configured by connecting one or a plurality of Hall elements in parallel. The other Hall element 15 includes first to fourth terminals, generates the other Hall electromotive force signal voltage, and is configured by connecting one or a plurality of Hall elements in parallel.

また、一方のスイッチ回路は、一方のホール素子群の4つの端子のなかから駆動電流を通電する端子位置を選択するものである。また、他方のスイッチ回路は、他方のホール素子群の4つの端子のなかから駆動電流を通電する端子位置を、一方のスイッチ回路と異なる端子位置を選択するものである。
また、チョッパークロック生成回路は、一方のスイッチ回路に異なる2つの位相のチョッパークロック信号を供給するとともに、他方のスイッチ回路に異なる2つの位相のチョッパークロック信号を供給するものである。一方のスイッチ回路の出力と他方のスイッチ回路の出力は同極性の出力同士が短絡されておりホール起電力信号処理回路の入力となっている。ホール起電力信号処理回路は、信号の同時加算、平均、補正、増幅、復調などの信号処理を行うものであり、その方式はアナログでもデジタルでも構わない。
One switch circuit selects a terminal position through which a drive current is supplied from four terminals of one Hall element group. The other switch circuit selects a terminal position through which the drive current is supplied from the four terminals of the other Hall element group, and a terminal position different from the one switch circuit.
The chopper clock generation circuit supplies a chopper clock signal having two different phases to one switch circuit, and supplies a chopper clock signal having two phases different to the other switch circuit. The output of one switch circuit and the output of the other switch circuit are short-circuited with each other, and are input to the Hall electromotive force signal processing circuit. The Hall electromotive force signal processing circuit performs signal processing such as simultaneous addition, averaging, correction, amplification, and demodulation of signals, and the method may be analog or digital.

本発明では、一例として複数入力が可能な電流帰還型の計装アンプを上げたが、例えば3アンプ構成の計装アンプのような単入力の回路でも実施可能である。
なお、図12においては、ホール素子の数が2個である場合について説明してあるが、ホール素子の数は2個に限定されるものではなく、図18に示したように4個でも、それ以上でも必要に応じて所望の数を設けることができ、ホール素子の各端子同士を接続して並列接続とすることはもちろん、直列に接続するような構成においても実施可能である。
In the present invention, a current feedback type instrumentation amplifier capable of a plurality of inputs is exemplified as an example. However, for example, a single input circuit such as an instrumentation amplifier having a three-amplifier configuration can be implemented.
Note that FIG. 12 illustrates the case where the number of Hall elements is two, but the number of Hall elements is not limited to two, and as shown in FIG. Even more than that, a desired number can be provided as necessary, and the terminals of the Hall elements can be connected in parallel to form a parallel connection as well as a configuration in which the terminals are connected in series.

図12において、第1のスイッチ回路14と第3のスイッチ回路16に接続された2つのホール素子13,15について、トランジスタ差動対(Gm,1,1)から、スイッチ回路を介してこれら2つのホール素子を見たときの、これら2つのホール素子の出力インピーダンスは、図6におけるホール素子の出力インピーダンスと比較して、約半分に低減される。図18のトランジスタ差動対(Gm,1,1)からスイッチを介して4つのホール素子を見たときの出力インピーダンスはさらに約半分に低減される。   In FIG. 12, two Hall elements 13 and 15 connected to the first switch circuit 14 and the third switch circuit 16 are transferred from the transistor differential pair (Gm, 1, 1) through the switch circuit. When the two Hall elements are viewed, the output impedances of these two Hall elements are reduced to about half compared to the output impedance of the Hall elements in FIG. When the four Hall elements are viewed from the transistor differential pair (Gm, 1, 1) of FIG. 18 via the switch, the output impedance is further reduced to about half.

チョッパークロックの切り替えが行われた直後は、それまでのホール素子への駆動電流の通電に使用されていた2つの端子がホール起電力信号を取り出すための端子に切り替わる。この2つの端子の電位がバイアス電圧Vbias+、Vbias−から、ホール起電力信号の電位に移行するまでの電荷の放電現象がスパイク状の誤差信号が発生する原因である。この電荷の放電現象の時定数τは、トランジスタ差動対(Gm,1,1)、トランジスタ差動対(Gm,1,3)から、これら2つのホール素子を見たときの、これら2つのホール素子の出力インピーダンスRとこの信号ノードにおける浮遊容量Cの積、即ち、τ=RCで表すことができる。そして、ホール素子を並列に接続し、ホール素子の出力インピーダンスRを低減させることで、電荷の放電現象の時定数τを小さくすることが可能となり、チョッパークロック信号の切替え時に発生するスパイク状の誤差信号を短時間で消滅させることが可能となる。以上の理由により、図18に示したホール起電力検出回路は、図12のホール起電力信号検出回路の場合と比較して、チョッパークロック信号の切替え時に発生するスパイク状の誤差信号が短時間で消滅させることが可能になる。   Immediately after the chopper clock is switched, the two terminals used for energizing the drive current to the Hall element so far are switched to terminals for extracting the Hall electromotive force signal. The discharge phenomenon of charges until the potentials of these two terminals shift from the bias voltages Vbias + and Vbias− to the potential of the Hall electromotive force signal is the cause of the spike-like error signal. The time constant τ of the discharge phenomenon of this charge is the two differential values when the two Hall elements are viewed from the transistor differential pair (Gm, 1,1) and the transistor differential pair (Gm, 1,3). It can be expressed by the product of the output impedance R of the Hall element and the stray capacitance C at this signal node, that is, τ = RC. By connecting the Hall elements in parallel and reducing the output impedance R of the Hall elements, it becomes possible to reduce the time constant τ of the discharge phenomenon of charges, and spike-like errors that occur when switching the chopper clock signal The signal can be extinguished in a short time. For the reasons described above, the Hall electromotive force detection circuit shown in FIG. 18 has a shorter spike-like error signal generated when switching the chopper clock signal than the Hall electromotive force signal detection circuit shown in FIG. It can be extinguished.

図21(a),(b)は、図18のホール起電力信号検出回路におけるスパイク状の誤差信号(実線)と図12のホール起電力信号検出回路におけるスパイク状の誤差信号(点線)の様子を表した図である。
図21(a),(b)から理解されるように、図18のホール起電力信号検出回路においては、チョッパークロック切り替え時に発生するスパイク状の誤差信号が短時間で消滅するため、図18のホール起電力信号検出回路の後段の位置にローパスフィルタを配置することにより、効果的にスパイク状の誤差信号の影響を低減することが可能となる。図18では、互いに並列接続されたホール素子の数は2個であるが、互いに並列接続されたホール素子の数を増やすにつれて、並列接続されたホール素子の出力インピーダンスを低下させることが可能となるため、スパイク状の誤差信号の影響を低下させることが可能となる。したがって、図18に例示したホール起電力信号検出回路が有するこの特長は、広帯域特性と高速応答特性が要求されるインバータ電流検出用途の電流センサにおいて好適なものである。
FIGS. 21A and 21B show a spike-like error signal (solid line) in the Hall electromotive force signal detection circuit of FIG. 18 and a spike-like error signal (dotted line) in the Hall electromotive force signal detection circuit of FIG. FIG.
As understood from FIGS. 21A and 21B, in the Hall electromotive force signal detection circuit of FIG. 18, the spike-like error signal generated at the time of switching the chopper clock disappears in a short time. By disposing the low-pass filter at a position subsequent to the Hall electromotive force signal detection circuit, it is possible to effectively reduce the influence of the spike-like error signal. In FIG. 18, the number of Hall elements connected in parallel to each other is two. However, as the number of Hall elements connected in parallel to each other is increased, the output impedance of the Hall elements connected in parallel can be reduced. For this reason, it is possible to reduce the influence of the spike-like error signal. Therefore, this feature of the Hall electromotive force signal detection circuit illustrated in FIG. 18 is suitable for a current sensor for inverter current detection that requires wideband characteristics and high-speed response characteristics.

以上のように、本発明のホール起電力信号検出回路によれば、ホール起電力信号検出の高精度化の障害となるスパイク状の誤差信号の発生を著しく低減することが可能となる。そして本発明のホール起電力信号検出回路は、連続時間信号処理回路に好適に用いることができる。また、本発明のホール起電力信号検出回路を電流センサとして用いることも可能である。   As described above, according to the Hall electromotive force signal detection circuit of the present invention, it is possible to remarkably reduce the occurrence of spike-like error signals that hinder the high accuracy of Hall electromotive force signal detection. The Hall electromotive force signal detection circuit of the present invention can be suitably used for a continuous time signal processing circuit. It is also possible to use the Hall electromotive force signal detection circuit of the present invention as a current sensor.

1,11 チョッパークロック生成回路
2,12 駆動電流生成回路
3,13 第1のホール素子
4,14 第1のスイッチ回路
5 第2のホール素子
6 第2のスイッチ回路
7,17 ホール起電力信号処理回路
15 第3のホール素子
16 第3のスイッチ回路
18 第4のホール素子
19 第4のスイッチ回路
20 第5のホール素子
21 第5のスイッチ回路
22 第6のホール素子
23 第6のスイッチ回路
24 第7のホール素子
25 第7のスイッチ回路
70,80 信号増幅回路
71,81 第1のトランジスタ差動対(Gm,1,1)
72 第2のトランジスタ差動対(Gm,1,2)
73,83 第4のスイッチ回路
74,84 第4のトランジスタ差動対(Gm,2)
75,85 第5のスイッチ回路
76,86 ホール起電力信号処理回路の出力段
82 第3のトランジスタ差動対(Gm,1,3)
DESCRIPTION OF SYMBOLS 1,11 Chopper clock generation circuit 2,12 Drive current generation circuit 3,13 1st Hall element 4,14 1st switch circuit 5 2nd Hall element 6 2nd switch circuit 7,17 Hall electromotive force signal processing Circuit 15 3rd Hall element 16 3rd switch circuit 18 4th Hall element 19 4th switch circuit 20 5th Hall element 21 5th switch circuit 22 6th Hall element 23 6th switch circuit 24 Seventh Hall element 25 Seventh switch circuit 70, 80 Signal amplification circuit 71, 81 First transistor differential pair (Gm, 1, 1)
72 Second transistor differential pair (Gm, 1, 2)
73, 83 Fourth switch circuit 74, 84 Fourth transistor differential pair (Gm, 2)
75, 85 Fifth switch circuit 76, 86 Output stage 82 of Hall electromotive force signal processing circuit Third transistor differential pair (Gm, 1, 3)

Claims (11)

複数の端子を備えたホール素子に駆動電流を通電する端子位置を選択してホール起電力信号電圧を検出するように構成したホール起電力信号検出回路において、
第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方のホール素子と、
第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方のホール素子と、
前記一方のホール素子の4つの端子のなかから駆動電流を通電する端子位置を選択する一方のスイッチ回路と、
前記他方のホール素子の4つの端子のなかから駆動電流を通電する端子位置を、前記一方のスイッチ回路と異なる端子位置を選択する他方のスイッチ回路と、
前記一方のスイッチ回路と前記他方のスイッチ回路にチョッパークロック信号を供給するチョッパークロック生成回路と、
前記一方のホール起電力信号電圧と前記他方のホール起電力信号電圧とを同時に加算するホール起電力信号処理回路とを備え、
前記一方のスイッチ回路の出力と前記他方のスイッチ回路の出力が短絡され、
前記一方及び他方のスイッチ回路が、前記チョッパークロック生成回路により発生された前記チョッパークロック信号に基づいて、前記一方及び他方のホール素子における駆動電流を注入する端子位置を、互いに逆極性のスパイクを発生させるように、前記各端子間で切り替えを行うことを特徴とするホール起電力信号検出回路。
In a Hall electromotive force signal detection circuit configured to detect a Hall electromotive force signal voltage by selecting a terminal position through which a drive current is supplied to a Hall element having a plurality of terminals,
One Hall element comprising first to fourth terminals and generating one Hall electromotive force signal voltage;
The other Hall element comprising first to fourth terminals and generating the other Hall electromotive force signal voltage;
One switch circuit for selecting a terminal position through which a drive current is passed among the four terminals of the one Hall element;
The other switch circuit for selecting a terminal position different from the one switch circuit as a terminal position for energizing a drive current among the four terminals of the other Hall element;
A chopper clock generation circuit for supplying a chopper clock signal to the one switch circuit and the other switch circuit;
A Hall electromotive force signal processing circuit for simultaneously adding the one Hall electromotive force signal voltage and the other Hall electromotive force signal voltage;
The output of the one switch circuit and the output of the other switch circuit are short-circuited,
Based on the chopper clock signal generated by the chopper clock generation circuit, the one and other switch circuits generate spikes having opposite polarities to the terminal positions for injecting drive currents in the one and other hall elements. The Hall electromotive force signal detection circuit is characterized by switching between the terminals.
複数の端子を備えたホール素子に駆動電流を通電する端子位置を選択してホール起電力信号電圧を検出するように構成したホール起電力信号検出回路において、
第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方のホール素子と、
第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方のホール素子と、
前記一方のホール素子の4つの端子のなかから駆動電流を通電する端子位置を選択する一方のスイッチ回路と、
前記他方のホール素子の4つの端子のなかから駆動電流を通電する端子位置を、前記一方のスイッチ回路と異なる端子位置を選択する他方のスイッチ回路と、
前記一方のスイッチ回路と前記他方のスイッチ回路にチョッパークロック信号を供給するチョッパークロック生成回路とを備え、
前記一方のスイッチ回路の出力と前記他方のスイッチ回路の出力が短絡され、
前記一方のスイッチ回路が、前記チョッパークロック生成回路により発生された前記チョッパークロック信号に基づいて、前記一方のホール素子における駆動電流を注入する端子位置を前記ホール素子の第1の端子と第2の端子との間で切り替えを行い、前記他方のスイッチ回路が、前記チョッパークロック生成回路により発生された前記チョッパークロック信号に基づいて、前記他方のホール素子における駆動電流を注入する端子位置を前記ホール素子の第4の端子と第3の端子との間で切り替えを行うことを特徴とするホール起電力信号検出回路。
In a Hall electromotive force signal detection circuit configured to detect a Hall electromotive force signal voltage by selecting a terminal position through which a drive current is supplied to a Hall element having a plurality of terminals,
One Hall element comprising first to fourth terminals and generating one Hall electromotive force signal voltage;
The other Hall element comprising first to fourth terminals and generating the other Hall electromotive force signal voltage;
One switch circuit for selecting a terminal position through which a drive current is passed among the four terminals of the one Hall element;
The other switch circuit for selecting a terminal position different from the one switch circuit as a terminal position for energizing a drive current among the four terminals of the other Hall element;
A chopper clock generation circuit for supplying a chopper clock signal to the one switch circuit and the other switch circuit;
The output of the one switch circuit and the output of the other switch circuit are short-circuited,
Based on the chopper clock signal generated by the chopper clock generation circuit, the one switch circuit determines a terminal position for injecting a drive current in the one hall element and a second terminal of the hall element. And the other switch circuit determines a terminal position for injecting a drive current in the other hall element based on the chopper clock signal generated by the chopper clock generation circuit. The Hall electromotive force signal detection circuit is characterized by switching between the fourth terminal and the third terminal.
前記チョッパークロック生成回路は、前記一方のスイッチ回路と前記他方のスイッチ回路に異なる2つの位相のチョッパークロック信号を供給する回路であり、
前記一方のスイッチ回路において、前記チョッパークロック信号の一方の位相のときに前記第1の端子から前記駆動電流を注入し、前記チョッパークロック信号の他方の位相のときに前記第2の端子から駆動電流を注入するとともに、前記他方のスイッチ回路において、前記チョッパークロック信号の一方の位相のときに前記第4の端子から前記駆動電流を注入し、前記チョッパークロック信号の他方の位相のときに前記第3の端子から駆動電流を注入することを特徴とする請求項2に記載のホール起電力信号検出回路。
The chopper clock generation circuit is a circuit that supplies chopper clock signals of two different phases to the one switch circuit and the other switch circuit,
In the one switch circuit, the drive current is injected from the first terminal when the chopper clock signal is in one phase, and from the second terminal when the chopper clock signal is in the other phase. In the other switch circuit, the drive current is injected from the fourth terminal when the chopper clock signal is in one phase, and the third switch circuit is injected in the third phase when the chopper clock signal is in the other phase. 3. The Hall electromotive force signal detection circuit according to claim 2, wherein a drive current is injected from a terminal of the Hall.
前記一方のホール素子と前記他方のホール素子とを隣接して並列させたレイアウト配置であることを特徴とする請求項2又は3に記載のホール起電力信号検出回路。   4. The Hall electromotive force signal detection circuit according to claim 2, wherein the one Hall element and the other Hall element are adjacently arranged in parallel. 前記一方及び他方のホール素子は、複数のホール素子を並列接続して構成されたホール素子であることを特徴とする請求項2,3又は4に記載のホール起電力信号検出回路。   5. The Hall electromotive force signal detection circuit according to claim 2, wherein the one and the other Hall elements are Hall elements configured by connecting a plurality of Hall elements in parallel. 前記並列接続されたホール素子の数が、2個であることを特徴とする請求項5に記載のホール起電力信号検出回路。   6. The Hall electromotive force signal detection circuit according to claim 5, wherein the number of Hall elements connected in parallel is two. 前記駆動電流の向きの異なる4個のホール素子を互いに隣接して並列させたレイアウト配置であることを特徴とする請求項2乃至6のいずれかに記載のホール起電力信号検出回路。   7. The Hall electromotive force signal detection circuit according to claim 2, wherein the Hall electromotive force signal detection circuit has a layout arrangement in which four Hall elements having different driving current directions are arranged adjacent to each other in parallel. 第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方の別のホール素子と、
第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方の別のホール素子と、
前記一方の別のホール素子の4つの端子のなかから駆動電流を通電する端子位置を選択する一方の別のスイッチ回路と、
前記他方の別のホール素子の4つの端子のなかから駆動電流を通電する端子位置を、前記一方の別のスイッチ回路と異なる端子位置を選択する他方の別のスイッチ回路とをさらに備え、
前記一方のスイッチ回路の出力と前記他方のスイッチ回路の出力と前記一方の別のスイッチ回路の出力と前記他方の別のスイッチ回路の出力とが短絡されることを特徴とする請求項2乃至7のいずれかに記載のホール起電力信号検出回路。
One other Hall element comprising first to fourth terminals and generating one Hall electromotive force signal voltage;
Another Hall element comprising first to fourth terminals and generating the other Hall electromotive force signal voltage;
Another switch circuit that selects a terminal position through which a drive current is passed among four terminals of the other Hall element;
A terminal position for passing a drive current from among the four terminals of the other Hall element, and another switch circuit for selecting a terminal position different from the one other switch circuit;
8. The output of the one switch circuit, the output of the other switch circuit, the output of the other switch circuit, and the output of the other switch circuit are short-circuited. The Hall electromotive force signal detection circuit according to any one of the above.
第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方の別のホール素子と、
第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方の別のホール素子と、
前記一方の別のホール素子の4つの端子のなかから駆動電流を通電する端子位置を選択する一方の別のスイッチ回路と、
出力が前記一方の別のスイッチ回路の出力と短絡され、前記他方の別のホール素子の4つの端子のなかから駆動電流を通電する端子位置を、前記一方の別のスイッチ回路と異なる端子位置を選択する他方の別のスイッチ回路と、
前記一方のスイッチ回路及び他方のスイッチ回路の出力と前記一方の別のスイッチ回路及び他方の別のスイッチ回路の出力とを同時に加算するホール起電力信号処理回路とをさらに備えることを特徴とする請求項2乃至7のいずれかに記載のホール起電力信号検出回路。
One other Hall element comprising first to fourth terminals and generating one Hall electromotive force signal voltage;
Another Hall element comprising first to fourth terminals and generating the other Hall electromotive force signal voltage;
Another switch circuit that selects a terminal position through which a drive current is passed among four terminals of the other Hall element;
The terminal position where the output is short-circuited with the output of the one other switch circuit and the drive current is supplied from the four terminals of the other another hall element is different from the one other switch circuit. Another switch circuit to select from,
And a Hall electromotive force signal processing circuit for simultaneously adding outputs of the one switch circuit and the other switch circuit and outputs of the one other switch circuit and the other switch circuit. Item 8. The Hall electromotive force signal detection circuit according to any one of Items 2 to 7.
複数の端子を備えたホール素子に駆動電流を通電する端子位置を選択してホール起電力信号電圧を検出するように構成したホール起電力信号検出回路において、
第1乃至第4の端子を備え、一方のホール起電力信号電圧を発生させる一方のホール素子と、
第1乃至第4の端子を備え、他方のホール起電力信号電圧を発生させる他方のホール素子と、
前記一方のホール素子の4つの端子のなかから駆動電流を通電する端子位置を選択する一方のスイッチ回路と、
前記他方のホール素子の4つの端子のなかから駆動電流を通電する端子位置を、前記一方のスイッチ回路と異なる端子位置を選択する他方のスイッチ回路と、
前記一方のスイッチ回路と前記他方のスイッチ回路にチョッパークロック信号を供給するチョッパークロック生成回路と、
前記一方のホール起電力信号電圧と前記他方のホール起電力信号電圧とを同時に加算するホール起電力信号処理回路とを備え、
前記一方のスイッチ回路の出力と前記他方のスイッチ回路の出力が短絡され、
前記一方のスイッチ回路が、前記チョッパークロック生成回路により発生された前記チョッパークロック信号に基づいて、前記一方のホール素子における駆動電流を注入する端子位置を前記ホール素子の第1乃至第4の端子の間で一方向回りで切り替えを行い、前記他方のスイッチ回路が、前記チョッパークロック生成回路により発生された前記チョッパークロック信号に基づいて、前記他方のホール素子における駆動電流を注入する端子位置を前記ホール素子の第1乃至4の端子の間で前記一方向回りとは逆の他方向まわりで切り替えを行うことを特徴とするホール起電力信号検出回路。
In a Hall electromotive force signal detection circuit configured to detect a Hall electromotive force signal voltage by selecting a terminal position through which a drive current is supplied to a Hall element having a plurality of terminals,
One Hall element comprising first to fourth terminals and generating one Hall electromotive force signal voltage;
The other Hall element comprising first to fourth terminals and generating the other Hall electromotive force signal voltage;
One switch circuit for selecting a terminal position through which a drive current is passed among the four terminals of the one Hall element;
The other switch circuit for selecting a terminal position different from the one switch circuit as a terminal position for energizing a drive current among the four terminals of the other Hall element;
A chopper clock generation circuit for supplying a chopper clock signal to the one switch circuit and the other switch circuit;
A Hall electromotive force signal processing circuit for simultaneously adding the one Hall electromotive force signal voltage and the other Hall electromotive force signal voltage;
The output of the one switch circuit and the output of the other switch circuit are short-circuited,
Based on the chopper clock signal generated by the chopper clock generation circuit, the one switch circuit determines a terminal position for injecting a drive current in the one hall element to the first to fourth terminals of the hall element. And the other switch circuit determines the terminal position for injecting the drive current in the other Hall element based on the chopper clock signal generated by the chopper clock generation circuit. A Hall electromotive force signal detection circuit, wherein switching is performed between the first to fourth terminals of the element in the other direction opposite to the one direction.
請求項2乃至10のいずれかに記載のホール起電力信号検出回路を用いたことを特徴とする電流センサ。   A current sensor using the Hall electromotive force signal detection circuit according to claim 2.
JP2013039190A 2013-02-28 2013-02-28 Hall electromotive force signal detection circuit and current sensor thereof Expired - Fee Related JP6297782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039190A JP6297782B2 (en) 2013-02-28 2013-02-28 Hall electromotive force signal detection circuit and current sensor thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039190A JP6297782B2 (en) 2013-02-28 2013-02-28 Hall electromotive force signal detection circuit and current sensor thereof

Publications (2)

Publication Number Publication Date
JP2014167422A true JP2014167422A (en) 2014-09-11
JP6297782B2 JP6297782B2 (en) 2018-03-20

Family

ID=51617182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039190A Expired - Fee Related JP6297782B2 (en) 2013-02-28 2013-02-28 Hall electromotive force signal detection circuit and current sensor thereof

Country Status (1)

Country Link
JP (1) JP6297782B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105022295A (en) * 2015-06-28 2015-11-04 芜湖莫森泰克汽车科技有限公司 Peripheral general circuit of Hall sensors
GB2531257A (en) * 2014-10-13 2016-04-20 Skf Ab Compass sensor based angle encoder for a magnetic target ring
CN105823918A (en) * 2015-01-28 2016-08-03 日置电机株式会社 Hall element driving circuit, sensor circuit, and current measuring apparatus
JP2017015402A (en) * 2015-06-26 2017-01-19 旭化成エレクトロニクス株式会社 Detection device and current sensor
KR20170043647A (en) * 2014-09-26 2017-04-21 아사히 가세이 일렉트로닉스 가부시끼가이샤 Hall electromotive force signal detection circuit and current sensor
CN106705392A (en) * 2017-01-05 2017-05-24 广东美的制冷设备有限公司 Air conditioner and motor stalling detection device and door panel control system thereof
JP2017142068A (en) * 2016-02-08 2017-08-17 株式会社ユー・アール・ディー Current sensor and filtering method thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259685A (en) * 1988-08-26 1990-02-28 Hinode Pawatoronikusu Kk Signal fetching circuit utilizing hall element
JPH0611556A (en) * 1991-12-21 1994-01-21 Deutsche Itt Ind Gmbh Hole sensor, whose offset is compensated
JPH09329460A (en) * 1996-03-02 1997-12-22 Deutsche Itt Ind Gmbh Monolithic integrated sensor circuit
JP2005274491A (en) * 2004-03-26 2005-10-06 Toko Inc Sensor circuit
JP2007502965A (en) * 2003-08-15 2007-02-15 システマティック デザイン ホールディング ベー.フェー. Method and apparatus for measuring magnetic fields by using Hall sensors
JP2008032431A (en) * 2006-07-26 2008-02-14 Rohm Co Ltd Magnetic sensor circuit, semiconductor device, magnetic sensor device
JP2008286695A (en) * 2007-05-18 2008-11-27 Asahi Kasei Electronics Co Ltd Magnetic detector
JP2008309626A (en) * 2007-06-14 2008-12-25 Oki Electric Ind Co Ltd Magnetic sensing output ic
JP2009229302A (en) * 2008-03-24 2009-10-08 Asahi Kasei Electronics Co Ltd Sensor circuit
JP2011099872A (en) * 2011-02-07 2011-05-19 Asahi Kasei Electronics Co Ltd Azimuth measuring device
JP2011516873A (en) * 2008-04-08 2011-05-26 エコール ポリテクニーク フェデラレ デ ローザンヌ (イーピーエフエル) Magnetic field sensor and current sensor for measuring magnetic field direction in plane
JP2011137716A (en) * 2009-12-28 2011-07-14 Asahi Kasei Electronics Co Ltd Magnetic detection apparatus
JP2011169698A (en) * 2010-02-17 2011-09-01 Asahi Kasei Electronics Co Ltd Hall electromotive force detector and rotation angle detector
WO2012015533A1 (en) * 2010-07-28 2012-02-02 Allegro Microsystems, Inc. Magnetic field sensor with improved differentiation between a sensed magnetic field signal and a noise signal
WO2012148646A1 (en) * 2011-04-27 2012-11-01 Allegro Microsystems, Inc. Circuits and methods for self-calibrating or self-testing a magnetic field sensor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259685A (en) * 1988-08-26 1990-02-28 Hinode Pawatoronikusu Kk Signal fetching circuit utilizing hall element
JPH0611556A (en) * 1991-12-21 1994-01-21 Deutsche Itt Ind Gmbh Hole sensor, whose offset is compensated
JPH09329460A (en) * 1996-03-02 1997-12-22 Deutsche Itt Ind Gmbh Monolithic integrated sensor circuit
JP2007502965A (en) * 2003-08-15 2007-02-15 システマティック デザイン ホールディング ベー.フェー. Method and apparatus for measuring magnetic fields by using Hall sensors
JP2005274491A (en) * 2004-03-26 2005-10-06 Toko Inc Sensor circuit
JP2008032431A (en) * 2006-07-26 2008-02-14 Rohm Co Ltd Magnetic sensor circuit, semiconductor device, magnetic sensor device
JP2008286695A (en) * 2007-05-18 2008-11-27 Asahi Kasei Electronics Co Ltd Magnetic detector
JP2008309626A (en) * 2007-06-14 2008-12-25 Oki Electric Ind Co Ltd Magnetic sensing output ic
JP2009229302A (en) * 2008-03-24 2009-10-08 Asahi Kasei Electronics Co Ltd Sensor circuit
JP2011516873A (en) * 2008-04-08 2011-05-26 エコール ポリテクニーク フェデラレ デ ローザンヌ (イーピーエフエル) Magnetic field sensor and current sensor for measuring magnetic field direction in plane
JP2011137716A (en) * 2009-12-28 2011-07-14 Asahi Kasei Electronics Co Ltd Magnetic detection apparatus
JP2011169698A (en) * 2010-02-17 2011-09-01 Asahi Kasei Electronics Co Ltd Hall electromotive force detector and rotation angle detector
WO2012015533A1 (en) * 2010-07-28 2012-02-02 Allegro Microsystems, Inc. Magnetic field sensor with improved differentiation between a sensed magnetic field signal and a noise signal
JP2011099872A (en) * 2011-02-07 2011-05-19 Asahi Kasei Electronics Co Ltd Azimuth measuring device
WO2012148646A1 (en) * 2011-04-27 2012-11-01 Allegro Microsystems, Inc. Circuits and methods for self-calibrating or self-testing a magnetic field sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716149A (en) * 2014-09-26 2017-05-24 旭化成微电子株式会社 Hall electromotive force signal detection circuit and current sensor
CN106716149B (en) * 2014-09-26 2020-10-30 旭化成微电子株式会社 Hall electromotive force signal detection circuit and current sensor
EP3176593A4 (en) * 2014-09-26 2018-01-03 Asahi Kasei Microdevices Corporation Hall electromotive force signal detection circuit and current sensor
KR20170043647A (en) * 2014-09-26 2017-04-21 아사히 가세이 일렉트로닉스 가부시끼가이샤 Hall electromotive force signal detection circuit and current sensor
GB2531257A (en) * 2014-10-13 2016-04-20 Skf Ab Compass sensor based angle encoder for a magnetic target ring
US10386392B2 (en) 2015-01-28 2019-08-20 Hioki Denki Kabushiki Kaisha Hall element driving circuit, sensor circuit, and current measuring apparatus
CN105823918B (en) * 2015-01-28 2019-11-19 日置电机株式会社 Hall element driving circuit, sensor circuit and current-flow test set
CN105823918A (en) * 2015-01-28 2016-08-03 日置电机株式会社 Hall element driving circuit, sensor circuit, and current measuring apparatus
JP2017015402A (en) * 2015-06-26 2017-01-19 旭化成エレクトロニクス株式会社 Detection device and current sensor
CN105022295A (en) * 2015-06-28 2015-11-04 芜湖莫森泰克汽车科技有限公司 Peripheral general circuit of Hall sensors
JP2017142068A (en) * 2016-02-08 2017-08-17 株式会社ユー・アール・ディー Current sensor and filtering method thereof
CN106705392A (en) * 2017-01-05 2017-05-24 广东美的制冷设备有限公司 Air conditioner and motor stalling detection device and door panel control system thereof
CN106705392B (en) * 2017-01-05 2022-03-25 广东美的制冷设备有限公司 Air conditioner and motor locked rotor detection device and door plant control system thereof

Also Published As

Publication number Publication date
JP6297782B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP5802187B2 (en) Hall electromotive force signal detection circuit and current sensor thereof
JP6297782B2 (en) Hall electromotive force signal detection circuit and current sensor thereof
JP6043424B2 (en) Hall electromotive force signal detection circuit, current sensor thereof, and hall element driving method
EP2848957B1 (en) Magnetism detection device and magnetism detection method
JP5385490B1 (en) Hall electromotive force signal detection circuit and current sensor thereof
CN205691141U (en) Hall element and electronic equipment
US7301353B2 (en) Sensor element for providing a sensor signal, and method for operating a sensor element
US9134349B2 (en) Amplifier circuits and methods
Jiang et al. A continuous-time ripple reduction technique for spinning-current Hall sensors
US9354279B2 (en) Magnetic sensor device for generating an output in accordance with a magnetic field intensity applied to a magnetoelectric conversion hall effect element
TWI586986B (en) Magnetic sensor device
TWI504915B (en) Magnetic sensing apparatus
TW201602606A (en) Sensor device
JP2015078949A (en) Hall electromotive force signal detection circuit
Chen et al. A novel Hall dynamic offset cancellation circuit based on four-phase spinning current technique
JP2024514390A (en) Electrical offset correction in magnetoresistive bridges.
Pappu A CMOS analog front-end circuit for micro-fluxgate sensors
JP2014044194A (en) Magnetism detection circuit using magnetism detection element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180222

R150 Certificate of patent or registration of utility model

Ref document number: 6297782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees