JP2014163300A - Gas turbine plant - Google Patents

Gas turbine plant Download PDF

Info

Publication number
JP2014163300A
JP2014163300A JP2013035290A JP2013035290A JP2014163300A JP 2014163300 A JP2014163300 A JP 2014163300A JP 2013035290 A JP2013035290 A JP 2013035290A JP 2013035290 A JP2013035290 A JP 2013035290A JP 2014163300 A JP2014163300 A JP 2014163300A
Authority
JP
Japan
Prior art keywords
fuel
gas
air
combustor
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013035290A
Other languages
Japanese (ja)
Other versions
JP6057775B2 (en
Inventor
Tatsuya Sekiguchi
達也 関口
Hiromi Koizumi
浩美 小泉
Akinori Hayashi
明典 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013035290A priority Critical patent/JP6057775B2/en
Publication of JP2014163300A publication Critical patent/JP2014163300A/en
Application granted granted Critical
Publication of JP6057775B2 publication Critical patent/JP6057775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas turbine power plant using a fuel gas containing water and a hydrocarbon content of a large molecular weight, to suppress the condensation of water and the hydrocarbon content of a large molecular weight in the fuel pipe while suppressing the reduction of a plant thermal efficiency, thereby to reduce the discharge of nitrogen oxides.SOLUTION: A gas turbine power plant, in which a fuel gas containing water and hydrocarbons having a heavy molecular weight is used as a fuel gas, comprises: a heat exchanging air system for supplying a portion of compressor discharge air is fed as heat exchanging air; a heat exchanger for heat-exchanging the heat exchanging air and the fuel gas to heat the fuel gas; and a low-temperature air line for feeding the cold air having passed the heat exchanger, to a combustor. The fuel gas is heated by the heat exchanging air, and the cold air lowered in temperature by the heat exchange is fed to the combustor.

Description

本発明は、ガスタービンプラントに係り、特に、水分や分子量の大きい炭化水素分を含んだ燃料ガスを燃料として発電を行なうガスタービン発電プラントに関する。   The present invention relates to a gas turbine plant, and more particularly, to a gas turbine power plant that generates power using a fuel gas containing a hydrocarbon having a high moisture content or molecular weight as a fuel.

近年、ガスタービン発電プラントにおいては天然ガスや軽油などの化石燃料に加えて、多様な燃料を使用するニーズが増えている。その中で、地球温暖化抑制、二酸化炭素排出量低減の観点から、植物を原料としたバイオマス燃料を利用する動きが活発化している。バイオマス燃料のひとつとして、 除間伐材や林地残材などの木質バイオマスを熱分解して生成するバイオマスガス化ガスがある。バイオマスガス化ガスは、成分中に可燃成分である水素、メタン、一酸化炭素に加え、不活性成分である水蒸気や二酸化炭素、窒素分を含む燃料である。   In recent years, in gas turbine power plants, in addition to fossil fuels such as natural gas and light oil, needs for using various fuels are increasing. Among them, from the viewpoint of global warming suppression and carbon dioxide emission reduction, there is an active movement to use biomass fuel made from plants. As one of the biomass fuels, there is biomass gasification gas that is generated by pyrolyzing woody biomass such as thinned thinned wood and residual forest land. Biomass gasification gas is a fuel containing, in addition to hydrogen, methane and carbon monoxide as combustible components, water vapor, carbon dioxide and nitrogen as inactive components.

一方、ガスタービン発電プラントやコンバインドサイクル発電プラントにおいては、熱効率の向上は重要な課題である。熱効率を向上する手段として、燃料ガスをガスタービン燃焼器に供給する前に加熱するための燃料加熱装置を備えたガスタービンプラントが提案されている。燃料を加熱すると燃料の保有する熱量が増加し、少量の燃料でより多くの仕事を発生することが可能となる。特許文献1においては、燃料を加熱するための熱交換媒体として排熱回収ボイラの給水や蒸気、電気ヒータなどが例示されている。   On the other hand, in gas turbine power plants and combined cycle power plants, improving thermal efficiency is an important issue. As a means for improving thermal efficiency, a gas turbine plant having a fuel heating device for heating fuel gas before being supplied to the gas turbine combustor has been proposed. When the fuel is heated, the amount of heat held by the fuel increases, and it becomes possible to generate more work with a small amount of fuel. Patent Document 1 exemplifies water supply and steam of an exhaust heat recovery boiler, an electric heater, and the like as a heat exchange medium for heating fuel.

特許第4458648号公報Japanese Patent No. 4458648

本発明の目的は、例えばバイオマスガス化ガスのような水分や分子量の大きい炭化水素分を含む燃料をガスタービンの発電プラントに用いる場合において、プラント熱効率の低下を抑制しながら、燃料ガスを加温することで燃料配管に水や分子量の大きい炭化水素分の凝縮を抑制し、かつ窒素酸化物の排出量を低減可能なガスタービン発電プラントを提供することにある。   The object of the present invention is to warm a fuel gas while suppressing a decrease in plant thermal efficiency when a fuel containing moisture or a hydrocarbon having a high molecular weight such as biomass gasification gas is used in a power plant of a gas turbine. Accordingly, an object of the present invention is to provide a gas turbine power plant capable of suppressing condensation of water and hydrocarbons having a large molecular weight in the fuel pipe and reducing the emission amount of nitrogen oxides.

本発明は、空気を圧縮する圧縮機と、前記圧縮機で圧縮された空気と燃料とを燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼器で生成された燃焼ガスによって駆動されるタービンとを備えた、水分や分子量の大きい炭化水素分を含んだ燃料ガスを前記燃料とするガスタービンプラントにおいて、前記圧縮機の吐出空気の一部を熱交換用空気として供給する熱交換用空気系統と、前記熱交換用空気と前記燃料ガスとを熱交換して前記燃料ガスを加温する熱交換器と、熱交換器を通過した低温空気を前記燃焼器に供給するための低温空気系統とを備えたことを特徴とする。   The present invention includes a compressor that compresses air, a combustor that generates combustion gas by combusting air and fuel compressed by the compressor, and a turbine that is driven by the combustion gas generated by the combustor. And a heat exchange air system for supplying a part of the discharge air of the compressor as heat exchange air in a gas turbine plant using a fuel gas containing water and a hydrocarbon having a high molecular weight as the fuel. A heat exchanger that exchanges heat between the heat exchange air and the fuel gas to heat the fuel gas, and a low-temperature air system for supplying low-temperature air that has passed through the heat exchanger to the combustor It is provided with.

本発明によれば、例えばバイオマスガス化ガスのような水分や分子量の大きい炭化水素分を含む燃料をガスタービンの発電プラントに用いる場合において、プラント熱効率の低下を抑制しながら、燃料ガスを加温することで燃料配管に水や分子量の大きい炭化水素分の凝縮を抑制し、かつ窒素酸化物の排出量を低減可能なガスタービン発電プラントを提供することができる。   According to the present invention, for example, in the case of using a fuel containing moisture or a hydrocarbon having a high molecular weight such as biomass gasification gas for a gas turbine power plant, the fuel gas is heated while suppressing a decrease in plant thermal efficiency. By doing so, it is possible to provide a gas turbine power plant that can suppress the condensation of water and hydrocarbons having a large molecular weight in the fuel pipe and can reduce the emission amount of nitrogen oxides.

本発明の第1実施例におけるガスタービンガスタービン発電システムの系統図1 is a system diagram of a gas turbine gas turbine power generation system according to a first embodiment of the present invention. 本発明の第1実施例におけるガスタービン燃焼器の断面図1 is a cross-sectional view of a gas turbine combustor according to a first embodiment of the present invention. 本発明の第1実施例におけるガスタービン燃焼器の拡大断面図The expanded sectional view of the gas turbine combustor in the 1st example of the present invention. 本発明の第1実施例におけるガスタービン負荷と燃料流量、空気流量比率の関係を示す図The figure which shows the relationship between the gas turbine load in 1st Example of this invention, a fuel flow volume, and an air flow rate ratio. 従来のガスタービン発電プラントにおける燃料切替時のバイオマスガス化ガスおよびバイオマスガス化ガス系統の温度の時間変化を示す図The figure which shows the time change of the temperature of biomass gasification gas and biomass gasification gas system at the time of fuel change in the conventional gas turbine power plant 本発明の第1実施例におけるガスタービン発電プラントにおける燃料切替時のバイオマスガス化ガスおよびバイオマスガス化ガス系統の温度の時間変化を示す図The figure which shows the time change of the temperature of the biomass gasification gas at the time of fuel switching in the gas turbine power plant in 1st Example of this invention, and a biomass gasification gas system | strain 本発明の第1実施例における熱交換用空気比率とバイオマスガス化ガス温度、低温空気温度およびバーナ近傍の酸素濃度の関係を示す図The figure which shows the relationship between the air ratio for heat exchange in 1st Example of this invention, biomass gasification gas temperature, low temperature air temperature, and the oxygen concentration of the burner vicinity. 本発明の第2実施例におけるガスタービンガスタービン発電システムの系統図System diagram of a gas turbine gas turbine power generation system in a second embodiment of the present invention 本発明の第2実施例におけるガスタービン負荷と燃料流量、空気流量比率の関係を示す図The figure which shows the relationship between the gas turbine load in 2nd Example of this invention, a fuel flow volume, and an air flow rate ratio. 本発明の第2実施例における天然ガス温度と燃料圧力比の関係を示す図The figure which shows the relationship between the natural gas temperature and fuel pressure ratio in 2nd Example of this invention

バイオマスガス化ガスは成分中に不活性成分である水蒸気や二酸化炭素、窒素分を含む燃料である。このため、ガスタービン燃焼器に供給する前にバイオマスガス化ガスの燃料温度が低下した場合、燃料配管中に水分が凝縮する可能性がある。凝縮した水が配管中に溜まり、燃焼器に多量に供給された場合、燃焼温度の低下や燃焼不安定、火炎喪失を引き起こす可能性がある。   Biomass gasification gas is a fuel containing water vapor, carbon dioxide, and nitrogen as inert components. For this reason, when the fuel temperature of biomass gasification gas falls before supplying to a gas turbine combustor, a water | moisture content may condense in fuel piping. If condensed water accumulates in the pipe and is supplied to the combustor in a large amount, it may cause a decrease in combustion temperature, combustion instability, and loss of flame.

また、バイオマスガス化ガスの可燃成分中に含まれる炭化水素のうち、分子量の大きい成分は燃料ガス温度が低下した場合に凝縮し、燃料配管中に固着する可能性がある。このため、バイオマスガス化ガスの燃料温度が低下した場合、分子量の大きい炭化水素分が燃料配管に固着し燃焼器に供給される燃料が不均一となることで燃焼器出口の燃焼ガス温度分布に偏差が生じ、また局所的な温度低下による火炎喪失を引き起こす可能性がある。   In addition, among the hydrocarbons contained in the combustible component of the biomass gasification gas, a component having a high molecular weight may be condensed when the fuel gas temperature is lowered, and may be fixed in the fuel pipe. For this reason, when the fuel temperature of the biomass gasification gas decreases, the hydrocarbon component with a large molecular weight adheres to the fuel pipe, and the fuel supplied to the combustor becomes uneven, resulting in a combustion gas temperature distribution at the combustor outlet. Deviations can occur and can cause flame loss due to local temperature drop.

これらの課題を解決するため、バイオマスガス化ガスの燃料ガス温度を高く保つ必要がある。この時、特許文献1に記載の燃料加熱装置を用いた場合、熱交換媒体として排熱回収ボイラの給水や蒸気を利用した場合においては、ガスタービンの低負荷条件などにおいては熱交換量が不足してバイオマスガス化ガスの燃料温度を十分に高く保つことができない可能性がある。   In order to solve these problems, it is necessary to keep the fuel gas temperature of the biomass gasification gas high. At this time, when the fuel heating device described in Patent Document 1 is used, when the water supply or steam of the exhaust heat recovery boiler is used as the heat exchange medium, the heat exchange amount is insufficient under the low load conditions of the gas turbine. Therefore, there is a possibility that the fuel temperature of the biomass gasification gas cannot be kept sufficiently high.

また、熱交換媒体として電気ヒータなどを用いた場合においては、燃料ガスを加熱するための追加の動力が必要となるためプラントの熱効率が低下するという課題がある。特に、バイオマスガス化ガスは天然ガスなどと比べて燃料発熱量が低い低カロリーガスであり、天然ガスなどの高カロリーガスと比較して燃料流量が増加するため、これらの問題は顕著である。   In addition, when an electric heater or the like is used as a heat exchange medium, there is a problem that the thermal efficiency of the plant is lowered because additional power for heating the fuel gas is required. In particular, biomass gasification gas is a low calorie gas with a low calorific value of fuel as compared with natural gas, and the fuel flow rate is increased as compared with high calorie gas such as natural gas, so these problems are remarkable.

また、バイオマスガス化ガスのような低カロリーガスは、天然ガスなどの高カロリー燃料に比べて火炎温度が低く燃焼速度が遅いため、燃えにくい燃料である。このような難燃性ガスを安定に燃焼するため、燃焼器においては燃料と空気を別々の流路から供給する拡散燃焼方式を採用するのが一般的である。拡散燃焼方式は、燃料と空気を予め混合してから供給する予混合燃焼方式と比べて局所的な燃焼温度が高くなる。さらに、バイオマスガス化ガスを加熱した場合、燃料ガスのエンタルピー増加分だけ燃焼器の局所的な最高温度が増大する。窒素酸化物(NOx)の排出量は燃焼温度が高くなるほど指数関数的に増加するため、バイオマスガス化ガスを加温するほど窒素酸化物(NOx)の排出量が増大するという課題がある。   In addition, a low calorie gas such as biomass gasification gas is a fuel that is difficult to burn because it has a lower flame temperature and a slower combustion speed than a high calorie fuel such as natural gas. In order to stably burn such a flame-retardant gas, it is common to adopt a diffusion combustion system in which the fuel and air are supplied from separate flow paths in the combustor. The diffusion combustion method has a higher local combustion temperature than the premixed combustion method in which fuel and air are mixed in advance and then supplied. Further, when the biomass gasification gas is heated, the local maximum temperature of the combustor increases by the amount of increase in the enthalpy of the fuel gas. Since the emission amount of nitrogen oxide (NOx) increases exponentially as the combustion temperature increases, there is a problem that the emission amount of nitrogen oxide (NOx) increases as the biomass gasification gas is heated.

そこで、以下に説明する本発明の実施例は、水分や分子量の大きい炭化水素分を含んだ燃料ガスを燃料とするガスタービン発電プラントにおいて、圧縮機吐出空気の一部を熱交換用空気として供給する熱交換用空気系統と、前記熱交換用空気と燃料ガスを熱交換し燃料ガスを加温するための熱交換器と、熱交換器を通過した低温空気を燃焼器に供給するための低温空気系統を備えたことを基本構成としている。   Therefore, in the embodiment of the present invention described below, a part of the compressor discharge air is supplied as heat exchange air in a gas turbine power plant that uses fuel gas containing water and hydrocarbons having a large molecular weight as fuel. A heat exchanging air system, a heat exchanger for exchanging heat between the heat exchanging air and the fuel gas and heating the fuel gas, and a low temperature for supplying the combustor with the low-temperature air that has passed through the heat exchanger The basic structure is that an air system is provided.

このような構成を備えることにより、燃料を加温するための動力が不要となりプラント熱効率の低下を抑制できる。また、燃料ガスを加温することで配管中に水や分子量の大きい炭化水素分が凝縮することを抑制でき、ガスタービン発電プラントの信頼性を向上することができる。また、熱交換により温度が低下した低温空気を燃焼器に供給することで燃焼器内部に形成される局所的な高温領域の温度を低減し、NOx排出量を低減することができる。   By providing such a configuration, power for heating the fuel becomes unnecessary, and a decrease in plant thermal efficiency can be suppressed. Further, by heating the fuel gas, it is possible to suppress the condensation of water and hydrocarbons having a large molecular weight in the pipe, and the reliability of the gas turbine power plant can be improved. In addition, by supplying low-temperature air whose temperature has been reduced by heat exchange to the combustor, the temperature in the local high-temperature region formed inside the combustor can be reduced, and the amount of NOx emissions can be reduced.

以下、本発明の実施例を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明の第1実施例におけるガスタービン発電システムを示す。ガスタービンは、圧縮機1、燃焼器2、タービン3、発電機4等で構成される。   FIG. 1 shows a gas turbine power generation system according to a first embodiment of the present invention. The gas turbine includes a compressor 1, a combustor 2, a turbine 3, a generator 4, and the like.

ガスタービンは、圧縮機1が大気より吸込んだ圧縮空気101を圧縮し、燃焼空気102として燃焼器2へと供給する。燃焼器2では、圧縮機1による燃焼空気102と天然ガス201(着火から定格負荷運転時に供給)またはバイオマスガス化ガス202(部分負荷から定格負荷運転時で供給)を混合し、燃焼ガスを発生させてタービン3に供給する。タービン3は燃焼ガスの供給により回転動力が与えられ、タービン3の回転動力が圧縮機1及び発電機4に伝達される。圧縮機1に伝えられた回転動力は圧縮動力に用いられ、発電機4伝えられた回転動力は電気エネルギーに変換される。   The gas turbine compresses compressed air 101 taken from the atmosphere by the compressor 1 and supplies the compressed air 101 to the combustor 2 as combustion air 102. Combustor 2 generates combustion gas by mixing combustion air 102 from compressor 1 with natural gas 201 (supplied during ignition and rated load operation) or biomass gasification gas 202 (supplied during partial load operation from partial load) To supply to the turbine 3. The turbine 3 is given rotational power by supplying combustion gas, and the rotational power of the turbine 3 is transmitted to the compressor 1 and the generator 4. The rotational power transmitted to the compressor 1 is used as compression power, and the rotational power transmitted to the generator 4 is converted into electric energy.

天然ガス燃料系統301は遮断弁51、流量調節弁52を備え、着火から部分負荷条件において天然ガス201を燃焼器2に供給する。バイオマスガス化ガス系統302は、遮断弁51、流量調節弁52、熱交換器5を備え、部分負荷条件から定格負荷条件においてバイオマスガス化ガス202を燃焼器2に供給する。熱交換空気系統303は遮断弁51、流量調節弁52を備え、圧縮空気101の一部を熱交換用空気103として熱交換器5に供給する。熱交換用空気103は圧縮機1での圧縮過程により高温となっており、熱交換器5においてバイオマスガス化ガス202を加熱する。バイオマスガス化ガス202との熱交換によって低温となった熱交換用空気103は、低温空気104として低温空気系統304を通じて燃焼器2に供給する。   The natural gas fuel system 301 includes a shut-off valve 51 and a flow rate control valve 52, and supplies natural gas 201 to the combustor 2 under partial load conditions from ignition. The biomass gasification gas system 302 includes a shutoff valve 51, a flow rate control valve 52, and a heat exchanger 5, and supplies the biomass gasification gas 202 to the combustor 2 from a partial load condition to a rated load condition. The heat exchange air system 303 includes a shut-off valve 51 and a flow rate adjustment valve 52, and supplies a part of the compressed air 101 to the heat exchanger 5 as heat exchange air 103. The heat exchange air 103 is heated to a high temperature due to the compression process in the compressor 1, and the biomass gasification gas 202 is heated in the heat exchanger 5. The heat exchange air 103 that has become low temperature by heat exchange with the biomass gasification gas 202 is supplied to the combustor 2 through the low temperature air system 304 as low temperature air 104.

図2に本実施例における燃焼器2の断面図を示す。燃焼器2は、圧力容器である外筒10と、内部に燃焼室12を形成する円筒状のライナ13と、外筒10とライナ13の間にあって燃焼室を冷却するためのフロースリーブ11と、外筒10と低温空気系統304を接続して低温空気104を供給するための空気配管14を備える。フロースリーブ11およびライナ13には、空気配管14の同軸上に空気孔15、16を設け、低温空気104が燃焼室12に流入するように構成している。   FIG. 2 shows a cross-sectional view of the combustor 2 in the present embodiment. The combustor 2 includes an outer cylinder 10 that is a pressure vessel, a cylindrical liner 13 that forms a combustion chamber 12 therein, a flow sleeve 11 that is between the outer cylinder 10 and the liner 13 and cools the combustion chamber, An air pipe 14 for connecting the outer cylinder 10 and the low temperature air system 304 to supply the low temperature air 104 is provided. The flow sleeve 11 and the liner 13 are provided with air holes 15 and 16 coaxially with the air pipe 14 so that the low-temperature air 104 flows into the combustion chamber 12.

また、燃焼室12の上流には、燃焼室12に燃料と空気を噴出し火炎を形成するためのバーナ401を配置している。燃焼器2に供給された燃焼空気102は、フロースリーブ11とライナ13との空間内を流れ、ライナ13を冷却しながらライナ13の側壁に設けた冷却孔およびバーナ401に設けた空気噴孔402から燃焼室12内に供給される。   In addition, a burner 401 is formed upstream of the combustion chamber 12 for injecting fuel and air into the combustion chamber 12 to form a flame. Combustion air 102 supplied to the combustor 2 flows in the space between the flow sleeve 11 and the liner 13, and cools the liner 13 while cooling the liner 13 and an air injection hole 402 provided in the burner 401. To the combustion chamber 12.

図3にバーナ401の拡大断面図および正面図を示す。バーナ401は、内周スワラ403、外周スワラ404、パイロットバーナ405を備えた2重旋回構造としている。パイロットバーナ405はパイロットガス噴孔406を備え、着火から定格負荷運転時において天然ガス201を供給する。内周スワラ403には内周スワラガス噴孔407と空気噴孔402を交互に配置し、その外側に設けた外周スワラ404には、外周スワラガス噴孔408を配置し、部分負荷から定格負荷運転時においてバイオマスガス化ガス202を供給する。内周スワラガス噴孔407および外周スワラガス噴孔408は旋回角を設けることで循環ガス領域をバーナの半径方向中心部近傍に形成し、燃焼安定性を強化するように構成している。   FIG. 3 shows an enlarged sectional view and a front view of the burner 401. The burner 401 has a double swivel structure including an inner swirler 403, an outer swirler 404, and a pilot burner 405. The pilot burner 405 includes a pilot gas injection hole 406 and supplies natural gas 201 during ignition and rated load operation. The inner swirler 403 and the air nozzle 402 are alternately arranged in the inner swirler 403, and the outer swirler gas nozzle 408 is arranged in the outer swirler 404 provided outside the inner swirler 403. The biomass gasification gas 202 is supplied. The inner swirler gas nozzle hole 407 and the outer swirler gas nozzle hole 408 are configured to form a circulation gas region in the vicinity of the center portion in the radial direction of the burner by providing a turning angle, thereby enhancing combustion stability.

また、内周スワラ403において、内周スワラガス噴孔407と空気噴孔402を交互に配置することで、燃料と空気を別々の流路より供給する拡散燃焼により、安定燃焼することができる。一方、外周スワラガス噴孔408から供給されるバイオマスガス化ガス202は空気噴孔402から供給される燃焼空気102やライナ13に供給される燃焼空気と混合し、内周スワラ403の下流に形成される内周火炎501を基点として、外周スワラ404下流に外周火炎502が形成される。外周火炎502の形成によって、内周火炎501周囲の温度が高くなるため、保炎を強化できる。   In the inner swirler 403, by arranging the inner swirler gas injection holes 407 and the air injection holes 402 alternately, stable combustion can be achieved by diffusion combustion in which fuel and air are supplied from separate flow paths. On the other hand, the biomass gasification gas 202 supplied from the outer swirler gas injection hole 408 is mixed with the combustion air 102 supplied from the air injection hole 402 and the combustion air supplied to the liner 13 and formed downstream of the inner swirler 403. An outer peripheral flame 502 is formed downstream of the outer swirler 404 with the inner peripheral flame 501 as a base point. The formation of the outer peripheral flame 502 increases the temperature around the inner peripheral flame 501, so flame holding can be strengthened.

以上述べてきた燃焼器2の運転方法について、図1、2、3および図4に示すガスタービン負荷と燃料流量、空気流量比率の関係をもとに説明する。まず、図1、2に示すように、ガスタービンの起動時には起動用モータなどの外部動力によってガスタービンを駆動し、燃焼器2の着火に必要な燃焼空気102および天然ガス101をパイロットバーナ405に供給し、点火栓により着火して燃焼器2内に火炎を形成する。燃焼器2の着火後、燃焼ガス105がタービン3に供給され、天然ガス101の流量増加とともにタービン3が昇速し、起動用モータの離脱によりガスタービンが自立運転に入り、無負荷定格回転数に到達する。   The operation method of the combustor 2 described above will be described based on the relationship between the gas turbine load, the fuel flow rate, and the air flow rate ratio shown in FIGS. First, as shown in FIGS. 1 and 2, when starting the gas turbine, the gas turbine is driven by external power such as a starter motor, and the combustion air 102 and natural gas 101 necessary for ignition of the combustor 2 are supplied to the pilot burner 405. It is supplied and ignited by a spark plug to form a flame in the combustor 2. After the combustor 2 is ignited, the combustion gas 105 is supplied to the turbine 3, the turbine 3 speeds up as the flow rate of the natural gas 101 increases, and the gas turbine enters a self-sustained operation by the release of the starting motor, and the no-load rated speed To reach.

ガスタービンが無負荷定格回転数に到達後は、発電機4の併入、さらには天然ガス201の流量増加によりタービン3の入口ガス温度が上昇し、負荷が上昇する。負荷が上昇し、燃焼器出口の燃焼ガス温度が上昇し燃焼安定性が高くなることで、バイオマスガス化ガス202への燃料切替が可能となる。燃料切替が可能となったら、熱交換空気系統303の遮断弁51および流量調節弁52を開き、熱交換空気系統303および熱交換器5に熱交換用空気103を供給する。   After the gas turbine reaches the no-load rated rotation speed, the inlet gas temperature of the turbine 3 rises due to the addition of the generator 4 and the increase in the flow rate of the natural gas 201, and the load rises. The load is increased, the combustion gas temperature at the combustor outlet is increased, and the combustion stability is increased, so that the fuel can be switched to the biomass gasification gas 202. When the fuel can be switched, the shutoff valve 51 and the flow rate adjustment valve 52 of the heat exchange air system 303 are opened, and the heat exchange air 103 is supplied to the heat exchange air system 303 and the heat exchanger 5.

熱交換用空気103は圧縮機1の圧縮工程により高温であるため熱交換用空気103の流通により熱交換器5の温度が上昇する。熱交換器5の温度が所定の温度まで上昇したことを確認後、図4に示すように天然ガス201の流量を低減しながらバイオマスガス化ガス202の流量を増加し、燃料切替を実施する。図3に示すようにバイオマスガス化ガス202の専焼条件であっても内周スワラ403に形成される内周火炎501と外周スワラ404に形成される外周火炎502の相互作用によって、火炎を安定に保持できる。燃料切替後は熱交換器5において熱交換用空気103とバイオマスガス化ガス202の熱交換をし、バイオマスガス化ガス202の温度が低下することを抑制する。   Since the heat exchange air 103 is at a high temperature due to the compression process of the compressor 1, the temperature of the heat exchanger 5 rises due to the circulation of the heat exchange air 103. After confirming that the temperature of the heat exchanger 5 has risen to a predetermined temperature, the flow rate of the biomass gasification gas 202 is increased while reducing the flow rate of the natural gas 201 as shown in FIG. As shown in FIG. 3, the flame is stabilized by the interaction between the inner flame 501 formed on the inner swirler 403 and the outer flame 502 formed on the outer swirler 404 even under the exclusive combustion conditions of the biomass gasified gas 202. Can hold. After the fuel is switched, heat exchange between the heat exchange air 103 and the biomass gasification gas 202 is performed in the heat exchanger 5 to suppress a decrease in the temperature of the biomass gasification gas 202.

図5に、従来のガスタービン発電プラントにおける燃料切替時のバイオマスガス化ガス202およびバイオマスガス化ガス系統302の温度の時間変化の一例を示す。バイオマスガス化ガスが流れ始める前においては、バイオマスガス化ガス系統302の温度は大気温度であり、バイオマスガス化ガス202の温度と同等以下となっている。このため、従来のガスタービン発電プラントにおいては、燃料切替時においてバイオマスガス化ガス202がバイオマスガス化ガス系統302に流れ始めると、低温のバイオマスガス化ガス系統302に熱を奪われて過渡的に温度が低下し、バイオマスガス化ガス202中の水分が凝縮する露点以下となる可能性があった。   FIG. 5 shows an example of a temporal change in temperature of the biomass gasification gas 202 and the biomass gasification gas system 302 at the time of fuel switching in a conventional gas turbine power plant. Before the biomass gasification gas begins to flow, the temperature of the biomass gasification gas system 302 is the atmospheric temperature, which is equal to or less than the temperature of the biomass gasification gas 202. For this reason, in the conventional gas turbine power plant, when the biomass gasification gas 202 starts to flow into the biomass gasification gas system 302 at the time of fuel switching, the low-temperature biomass gasification gas system 302 is deprived of heat and becomes transient. There was a possibility that the temperature would fall and be below the dew point where the water in the biomass gasification gas 202 is condensed.

特に、発熱量が低く燃料流量の多いバイオマスガス化ガス202のような燃料は、それを流通するためのバイオマスガス化ガス系統302の配管径も大型化する。配管系の大型化にともない配管の熱容量も増大するため、天然ガス201と比べてバイオマスガス化ガス202の過渡的な温度低下は顕著である。   In particular, a fuel such as the biomass gasification gas 202 having a low calorific value and a high fuel flow rate also increases the pipe diameter of the biomass gasification gas system 302 for distributing the fuel. Since the heat capacity of the piping increases with an increase in the size of the piping system, the transient temperature decrease of the biomass gasification gas 202 is significant compared to the natural gas 201.

これに対して、図6に本実施例のガスタービン発電プラントにおける燃料切替時のバイオマスガス化ガス202およびバイオマスガス化ガス系統302の温度の時間変化の一例を示す。本実施例においては、熱交換器5においてバイオマスガス化ガス202の温度を加温しているため、燃料切替時に一時的な温度降下が生じてもバイオマスガス化ガス202の温度を露点以上に保ち、水や分子量の大きい炭化水素分の凝縮を防ぐことができる。   On the other hand, FIG. 6 shows an example of a temporal change in temperature of the biomass gasification gas 202 and the biomass gasification gas system 302 at the time of fuel switching in the gas turbine power plant of the present embodiment. In the present embodiment, since the temperature of the biomass gasification gas 202 is heated in the heat exchanger 5, the temperature of the biomass gasification gas 202 is kept above the dew point even if a temporary temperature drop occurs during fuel switching. Condensation of water and hydrocarbons with large molecular weight can be prevented.

図7に圧縮空気101に対する熱交換用空気103の比率とバイオマスガス化ガス202の温度、低温空気104の温度およびバーナ401近傍の酸素濃度の関係を示す。熱交換用空気103の比率を高くすることで、バイオマスガス化ガス202と熱交換用空気103との熱交換が促進されるため、バイオマスガス化ガス202の温度が高くなり、熱交換器5出口における低温空気104の温度は低下する。このため、バイオマスガス化ガス系統302に水や分子量の大きい炭化水素分の凝縮を防止するためには、熱交換用空気103の比率をφ1以上とする必要がある。 FIG. 7 shows the relationship between the ratio of the heat exchange air 103 to the compressed air 101, the temperature of the biomass gasification gas 202, the temperature of the low temperature air 104, and the oxygen concentration in the vicinity of the burner 401. Since the heat exchange between the biomass gasification gas 202 and the heat exchange air 103 is promoted by increasing the ratio of the heat exchange air 103, the temperature of the biomass gasification gas 202 becomes high, and the heat exchanger 5 outlet The temperature of the low-temperature air 104 decreases. For this reason, in order to prevent the biomass gasification gas system 302 from condensing water and a hydrocarbon component having a large molecular weight, the ratio of the heat exchange air 103 needs to be φ 1 or more.

一方、熱交換用空気103の比率が高くなると、空気配管14から燃焼器2に供給される空気の割合が増加する。このため、バーナ401に設けた空気噴孔402から供給される空気の割合が低下し、バーナ401近傍の酸素濃度が低下する。酸素濃度が低下し、バイオマスガス化ガス202を燃焼するために必要な酸素が不足すると、火炎温度が低下して火炎の安定性が低下し、バーナ401近傍で内周火炎501、外周火炎502を保持できなくなって火炎を喪失する可能性がある。このため、熱交換用空気103の比率をφ2以下とする必要がある。 On the other hand, when the ratio of the heat exchange air 103 increases, the ratio of the air supplied from the air pipe 14 to the combustor 2 increases. For this reason, the ratio of the air supplied from the air injection hole 402 provided in the burner 401 is reduced, and the oxygen concentration in the vicinity of the burner 401 is reduced. If the oxygen concentration decreases and the oxygen required to burn the biomass gasification gas 202 is insufficient, the flame temperature decreases and the flame stability decreases, and the inner flame 501 and outer flame 502 are Can no longer hold and may lose flame. For this reason, the ratio of the heat exchange air 103 needs to be φ 2 or less.

すなわち、熱交換用空気比率をφとした時、式1の条件を満たすことにより、水や分子量の大きい炭化水素分の凝縮を防止すると共に、火炎の安定性を確保する事ができる。
(式1)・・・φ1≦φ≦φ2
熱交換用空気103は熱交換器5やバイオマスガス化ガス202の加温により温度が低下し、低温空気104として燃焼器2に供給される。燃焼器2に供給された低温空気104はフロースリーブ11およびライナ13に設けた空気孔15、16を通じて燃焼室2に流入する。このとき、空気配管14および空気孔15、16を適切な位置および大きさとし、低温空気104が内周火炎501まで到達するようにすることが望ましい。内周火炎501は、内周スワラ403において内周スワラ403のガス噴孔407と空気噴孔402を交互に配置して燃料と空気が拡散燃焼するように構成しており、火炎温度が高く燃焼安定性が高い。
That is, when the air ratio for heat exchange is φ, by satisfying the condition of Formula 1, it is possible to prevent condensation of water and hydrocarbons having a large molecular weight and to ensure the stability of the flame.
(Formula 1) ... φ 1 ≦ φ ≦ φ 2
The temperature of the heat exchanging air 103 is lowered by heating the heat exchanger 5 and the biomass gasification gas 202, and is supplied to the combustor 2 as low temperature air 104. The low-temperature air 104 supplied to the combustor 2 flows into the combustion chamber 2 through the air holes 15 and 16 provided in the flow sleeve 11 and the liner 13. At this time, it is desirable that the air piping 14 and the air holes 15 and 16 have appropriate positions and sizes so that the low temperature air 104 reaches the inner flame 501. The inner peripheral flame 501 is configured such that the gas injection holes 407 and the air injection holes 402 of the inner peripheral swirler 403 are alternately arranged in the inner peripheral swirler 403 so that the fuel and air diffuse and burn, and the combustion temperature is high. High stability.

一方、窒素酸化物 (NOx)の排出量は火炎温度が高くなるほど指数関数的に増加するため、NOx排出量低減のためには内周火炎501の温度を低減することが有効である。燃焼空気102よりも温度の低い低温空気104を内周火炎501積極的に供給することで内周火炎501の火炎温度を低減しNOx排出量を低減できる。   On the other hand, since the emission amount of nitrogen oxide (NOx) increases exponentially as the flame temperature increases, it is effective to reduce the temperature of the inner flame 501 in order to reduce the NOx emission amount. By actively supplying the low temperature air 104 having a temperature lower than that of the combustion air 102 to the inner peripheral flame 501, the flame temperature of the inner peripheral flame 501 can be reduced and the NOx emission amount can be reduced.

本実施例において、熱交換器5は圧縮機1および燃焼器2の近傍に配置することが望ましい。これにより熱交換用空気103が圧縮機1、熱交換器5、燃焼器2と流れる過程における圧力損失の増加を抑えることができる。また、熱交換器5において加熱したバイオマスガス化ガス202の温度が燃焼器2に到達するまでに周囲との熱交換により温度が低減することを抑制することができる。   In the present embodiment, the heat exchanger 5 is preferably disposed in the vicinity of the compressor 1 and the combustor 2. Accordingly, it is possible to suppress an increase in pressure loss in the process in which the heat exchange air 103 flows through the compressor 1, the heat exchanger 5, and the combustor 2. Further, it is possible to suppress the temperature from being reduced by heat exchange with the surroundings until the temperature of the biomass gasification gas 202 heated in the heat exchanger 5 reaches the combustor 2.

本実施例の特徴は、圧縮機吐出空気の一部を熱交換用空気として供給する熱交換用空気系統と、熱交換用空気と燃料ガスを熱交換し燃料ガスを加温するための熱交換器と、熱交換器を通過した低温空気を燃焼器に供給するための低温空気系統を備えたことを特徴とする。加熱するための熱媒体として圧縮機吐出空気を利用するため、燃料を加温するための動力が不要となりプラント熱効率の低下を抑制できる。   The features of this embodiment are a heat exchange air system for supplying a part of the compressor discharge air as heat exchange air, and heat exchange for heat exchange between the heat exchange air and the fuel gas to heat the fuel gas. And a low-temperature air system for supplying low-temperature air that has passed through the heat exchanger to the combustor. Since compressor discharge air is used as a heat medium for heating, power for heating the fuel is not required, and a decrease in plant thermal efficiency can be suppressed.

また、バイオマスガス化ガスのように組成中に水分や分子量の大きい炭化水素分を含んだ燃料ガスを加温することで、配管中に水や分子量の大きい炭化水素分が凝縮することを抑制でき、ガスタービン発電プラントの信頼性を向上することができる。また、熱交換により温度が低下した低温空気を燃焼器に供給することで燃焼器内部に形成される局所的な高温領域の温度を低減し、NOx排出量を低減することができる。   In addition, by heating a fuel gas that contains hydrocarbons with high moisture and molecular weight in the composition, such as biomass gasification gas, it is possible to prevent water and hydrocarbons with high molecular weight from condensing in the piping. The reliability of the gas turbine power plant can be improved. In addition, by supplying low-temperature air whose temperature has been reduced by heat exchange to the combustor, the temperature in the local high-temperature region formed inside the combustor can be reduced, and the amount of NOx emissions can be reduced.

なお、本実施例では燃料ガスとしてバイオマスガス化ガスを例に説明したが、バイオマスガス化ガス以外に高炉ガスなどの低カロリー燃料や燃料組成中に水分を含んだ燃料ガスを用いた場合も同様の効果が得られる。   In this embodiment, the biomass gasification gas is described as an example of the fuel gas, but the same applies when a low-calorie fuel such as a blast furnace gas or a fuel gas containing moisture in the fuel composition is used in addition to the biomass gasification gas. The effect is obtained.

図8に本発明の第2実施例におけるガスタービン発電システムの系統図を示す。本実施例では第1実施例の構成に加え、天然ガス燃料系統301から分岐して熱交換器5により補助燃料である天然ガス201を加熱する第2の天然ガス燃料系統305を設置したことを特徴とする。本実施例は第1の実施例よりも水分や不活性成分の比率が高く発熱量の低い燃料ガスを燃料とするガスタービン発電プラントに適する。   FIG. 8 shows a system diagram of a gas turbine power generation system according to the second embodiment of the present invention. In this embodiment, in addition to the configuration of the first embodiment, a second natural gas fuel system 305 is installed that branches from the natural gas fuel system 301 and heats the natural gas 201 as auxiliary fuel by the heat exchanger 5. Features. This embodiment is suitable for a gas turbine power plant that uses fuel gas having a higher ratio of moisture and inert components and a lower calorific value than that of the first embodiment.

図9に本発明の第2実施例におけるガスタービン負荷と燃料流量、空気流量比率の関係を示す。バイオマスガス化ガス202の組成中の水分や不活性成分の比率が高く発熱量が低い場合、燃料の燃焼速度が低下しより燃えにくい難燃性の燃料となる。このため、燃料をバイオマスガス化ガス202専焼に切り替えた場合、燃焼安定性が低下して燃焼器2において火炎が不安定となる可能性がある。そこで、本実施例においては、バイオマスガス化ガス202の組成に応じて、燃料切替後にも天然ガス201をパイロットバーナ405に供給する。発熱量が高く天然ガス201をパイロットバーナ405から補助的に供給することで、内周火炎501の火炎温度を高くし、燃焼安定性を向上できる。   FIG. 9 shows the relationship between the gas turbine load, the fuel flow rate, and the air flow rate ratio in the second embodiment of the present invention. When the ratio of moisture and inactive components in the composition of the biomass gasification gas 202 is high and the calorific value is low, the combustion rate of the fuel is reduced and the flame retardant fuel becomes more difficult to burn. For this reason, when the fuel is switched to the biomass gasification gas 202 exclusive combustion, the combustion stability may be lowered and the flame may become unstable in the combustor 2. Therefore, in this embodiment, the natural gas 201 is supplied to the pilot burner 405 even after the fuel is switched according to the composition of the biomass gasification gas 202. By supplying the natural gas 201 with a high calorific value from the pilot burner 405, the flame temperature of the inner flame 501 can be increased and the combustion stability can be improved.

このとき、バイオマスガス化ガス202を主燃料とするガスタービン発電プラントにおいて、補助燃料として供給する天然ガス201の流量を低減することが求められる。しかし、天然ガス201の流量を低減した場合、パイロットバーナ405において天然ガス201の供給圧力と燃焼器2内部の圧力との間に十分な差圧を確保できなくなる。この場合、天然ガス201の流量に偏差が生じたり、燃焼振動や燃焼不安定を引き起こしたりする可能性がある。   At this time, in the gas turbine power plant using the biomass gasification gas 202 as the main fuel, it is required to reduce the flow rate of the natural gas 201 supplied as the auxiliary fuel. However, when the flow rate of the natural gas 201 is reduced, a sufficient differential pressure cannot be secured between the supply pressure of the natural gas 201 and the pressure inside the combustor 2 in the pilot burner 405. In this case, there is a possibility that a deviation occurs in the flow rate of the natural gas 201, or that combustion vibration or combustion instability is caused.

この課題を解決するため、本実施例においては第2の天然ガス燃料系統305を設置し、熱交換器5により天然ガス201を加熱することを特徴とする。図10に天然ガス温度と燃料供給圧力比の関係を示す。燃料圧力比は天然ガス温度の増加にともない上昇する。このため、第2の天然ガス燃料系統305から供給した天然ガスは熱交換器5において熱交換用空気103により加熱され、パイロットバーナ405における圧力比を燃焼振動や燃焼不安定を引き起こす圧力比の下限値よりも高く保つことができる。   In order to solve this problem, the present embodiment is characterized in that the second natural gas fuel system 305 is installed and the natural gas 201 is heated by the heat exchanger 5. FIG. 10 shows the relationship between the natural gas temperature and the fuel supply pressure ratio. The fuel pressure ratio increases as the natural gas temperature increases. For this reason, the natural gas supplied from the second natural gas fuel system 305 is heated by the heat exchange air 103 in the heat exchanger 5, and the pressure ratio in the pilot burner 405 is reduced to the lower limit of the pressure ratio that causes combustion oscillation and combustion instability. Can be kept higher than the value.

なお、本実施例ではバイオマスガス化ガス202を加温する熱交換器と天然ガス201を加温する熱交換器を一つの熱交換器5として集約させた構成としているが、バイオマスガス化ガス202を加温する熱交換器と天然ガス201を加温する熱交換器とを別の熱交換器としてそれぞれ設けても良い。   In this embodiment, the heat exchanger for heating the biomass gasification gas 202 and the heat exchanger for heating the natural gas 201 are integrated as one heat exchanger 5, but the biomass gasification gas 202 is used. A heat exchanger that heats the gas and a heat exchanger that heats the natural gas 201 may be provided as separate heat exchangers.

1…圧縮機、2…燃焼器、3…タービン、4…発電機、5…熱交換器、10…外筒、11…フロースリーブ、12…燃焼室、13…ライナ、14…空気配管、15…空気孔(フロースリーブ)、16…空気孔(ライナ)、51…遮断弁、52…流量調節弁、101…圧縮空気、102…燃焼空気、103…熱交換用空気、104…低温空気、105…燃焼ガス、201…天然ガス、202…バイオマスガス化ガス、301…天然ガス燃料系統、302…バイオマスガス化ガス系統、303…熱交換空気系統、304…低温空気系統、305…第2の天然ガス燃料系統、401…バーナ、402…空気噴孔、403…内周スワラ、404…外周スワラ、405…パイロットバーナ、406…パイロットガス噴孔、407…内周スワラガス噴孔、408…外周スワラガス噴孔、501…内周火炎、502…外周火炎 DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Combustor, 3 ... Turbine, 4 ... Generator, 5 ... Heat exchanger, 10 ... Outer cylinder, 11 ... Flow sleeve, 12 ... Combustion chamber, 13 ... Liner, 14 ... Air piping, 15 DESCRIPTION OF SYMBOLS ... Air hole (flow sleeve), 16 ... Air hole (liner), 51 ... Shut-off valve, 52 ... Flow control valve, 101 ... Compressed air, 102 ... Combustion air, 103 ... Heat exchange air, 104 ... Low temperature air, 105 ... Combustion gas, 201 ... Natural gas, 202 ... Biomass gasification gas, 301 ... Natural gas fuel system, 302 ... Biomass gasification gas system, 303 ... Heat exchange air system, 304 ... Low temperature air system, 305 ... Second natural gas Gas fuel system, 401 ... burner, 402 ... air injection hole, 403 ... inner periphery swirler, 404 ... outer periphery swirler, 405 ... pilot burner, 406 ... pilot gas injection hole, 407 ... inner periphery swirler gas injection hole, 408 Periphery Suwaragasu injection hole, 501 ... inner circumferential flame, 502 ... outer circumferential flame

Claims (5)

空気を圧縮する圧縮機と、前記圧縮機で圧縮された空気と燃料とを燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼器で生成された燃焼ガスによって駆動されるタービンとを備えた、水分や分子量の大きい炭化水素分を含んだ燃料ガスを前記燃料とするガスタービンプラントにおいて、
前記圧縮機の吐出空気の一部を熱交換用空気として供給する熱交換用空気系統と、前記熱交換用空気と前記燃料ガスとを熱交換して前記燃料ガスを加温する熱交換器と、熱交換器を通過した低温空気を前記燃焼器に供給するための低温空気系統とを備えたことを特徴とするガスタービンプラント。
A compressor that compresses air; a combustor that combusts air and fuel compressed by the compressor to generate combustion gas; and a turbine that is driven by the combustion gas generated by the combustor. In a gas turbine plant that uses a fuel gas containing a hydrocarbon having a high water content or molecular weight as the fuel,
A heat exchange air system for supplying a part of the discharge air of the compressor as heat exchange air, and a heat exchanger for exchanging heat between the heat exchange air and the fuel gas to heat the fuel gas. A gas turbine plant comprising: a low-temperature air system for supplying low-temperature air that has passed through a heat exchanger to the combustor.
請求項1に記載のガスタービンプラントにおいて、
前記燃料ガス以外の燃料を補助燃料として前記燃焼器に供給する補助燃料系統と、前記補助燃料系統から分岐した第二の補助燃料系統と、前記第二の補助燃料系統を流下する前記補助燃料と前記熱交換用空気とを熱交換して前記補助燃料を加温する第二の熱交換器とを備えたことを特徴とするガスタービンプラント。
The gas turbine plant according to claim 1,
An auxiliary fuel system that supplies fuel other than the fuel gas as an auxiliary fuel to the combustor; a second auxiliary fuel system that branches off from the auxiliary fuel system; and the auxiliary fuel that flows down the second auxiliary fuel system; A gas turbine plant comprising: a second heat exchanger that heats the auxiliary fuel by exchanging heat with the heat exchange air.
請求項1または2に記載のガスタービンプラントにおいて、
前記第一の熱交換器または前記第二の熱交換器のうち、少なくともいずれか一方に流入する前記熱交換用空気の流量を制御する手段を備えたことを特徴とするガスタービンプラント。
In the gas turbine plant according to claim 1 or 2,
A gas turbine plant comprising: means for controlling a flow rate of the heat exchange air flowing into at least one of the first heat exchanger and the second heat exchanger.
請求項1乃至3に記載のガスタービンプラントの制御方法において、
前記熱交換用空気と燃料ガスを熱交換させて燃料ガスを加温して燃焼器に供給するとともに、熱交換器を通過した低温空気を燃焼器に供給することを特徴とするガスタービン発電プラントの制御方法。
In the control method of the gas turbine plant according to claim 1 to 3,
A gas turbine power plant characterized in that heat exchange is performed between the heat exchange air and the fuel gas, the fuel gas is heated and supplied to the combustor, and low-temperature air that has passed through the heat exchanger is supplied to the combustor. Control method.
請求項2に記載のガスタービン発電プラントの制御方法において、
前記補助燃料の燃料流量が少ない条件で前記熱交換用空気と前記補助燃料とを熱交換させて前記補助燃料を加温して燃焼器に供給することを特徴とするガスタービン発電プラントの制御方法。
In the control method of the gas turbine power plant according to claim 2,
A control method for a gas turbine power plant, wherein the heat exchange air and the auxiliary fuel are subjected to heat exchange under a condition where the fuel flow rate of the auxiliary fuel is small, and the auxiliary fuel is heated and supplied to a combustor. .
JP2013035290A 2013-02-26 2013-02-26 Gas turbine plant and control method thereof Active JP6057775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013035290A JP6057775B2 (en) 2013-02-26 2013-02-26 Gas turbine plant and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035290A JP6057775B2 (en) 2013-02-26 2013-02-26 Gas turbine plant and control method thereof

Publications (2)

Publication Number Publication Date
JP2014163300A true JP2014163300A (en) 2014-09-08
JP6057775B2 JP6057775B2 (en) 2017-01-11

Family

ID=51614143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035290A Active JP6057775B2 (en) 2013-02-26 2013-02-26 Gas turbine plant and control method thereof

Country Status (1)

Country Link
JP (1) JP6057775B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145529A (en) * 2015-02-06 2016-08-12 ヤンマー株式会社 Biogas engine
WO2019138709A1 (en) * 2018-01-12 2019-07-18 三菱日立パワーシステムズ株式会社 Fuel supply system, gas turbine, electricity generation plant, control method, and program

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259803U (en) * 1975-10-29 1977-04-30
JPS5268608A (en) * 1975-12-05 1977-06-07 Hitachi Ltd Power generator
JPH0610698A (en) * 1992-03-31 1994-01-18 Asea Brown Boveri Ag Gas turbine equipment
JPH07208200A (en) * 1994-01-11 1995-08-08 Ishikawajima Harima Heavy Ind Co Ltd Combustion equipment for turbine compressor and method thereof
JPH11173160A (en) * 1997-12-15 1999-06-29 Hitachi Ltd Gas turbine power generation system and control method thereof
JP2002221047A (en) * 2001-01-22 2002-08-09 Kawasaki Heavy Ind Ltd Gas turbine
JP2006161634A (en) * 2004-12-06 2006-06-22 Nishishiba Electric Co Ltd High humidity combustible gas power generation system
JP2008014203A (en) * 2006-07-05 2008-01-24 Central Res Inst Of Electric Power Ind Gas turbine engine
JP2009167909A (en) * 2008-01-16 2009-07-30 Takuma Co Ltd Biomass gasification gas power generating system and its power generating method
JP2013502526A (en) * 2009-08-21 2013-01-24 クロネス アーゲー Method and apparatus for using biomass
JP2013019378A (en) * 2011-07-13 2013-01-31 Mitsubishi Heavy Ind Ltd Gas turbine facility, and method for managing fuel temperature thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259803U (en) * 1975-10-29 1977-04-30
JPS5268608A (en) * 1975-12-05 1977-06-07 Hitachi Ltd Power generator
JPH0610698A (en) * 1992-03-31 1994-01-18 Asea Brown Boveri Ag Gas turbine equipment
JPH07208200A (en) * 1994-01-11 1995-08-08 Ishikawajima Harima Heavy Ind Co Ltd Combustion equipment for turbine compressor and method thereof
JPH11173160A (en) * 1997-12-15 1999-06-29 Hitachi Ltd Gas turbine power generation system and control method thereof
JP2002221047A (en) * 2001-01-22 2002-08-09 Kawasaki Heavy Ind Ltd Gas turbine
JP2006161634A (en) * 2004-12-06 2006-06-22 Nishishiba Electric Co Ltd High humidity combustible gas power generation system
JP2008014203A (en) * 2006-07-05 2008-01-24 Central Res Inst Of Electric Power Ind Gas turbine engine
JP2009167909A (en) * 2008-01-16 2009-07-30 Takuma Co Ltd Biomass gasification gas power generating system and its power generating method
JP2013502526A (en) * 2009-08-21 2013-01-24 クロネス アーゲー Method and apparatus for using biomass
JP2013019378A (en) * 2011-07-13 2013-01-31 Mitsubishi Heavy Ind Ltd Gas turbine facility, and method for managing fuel temperature thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145529A (en) * 2015-02-06 2016-08-12 ヤンマー株式会社 Biogas engine
WO2019138709A1 (en) * 2018-01-12 2019-07-18 三菱日立パワーシステムズ株式会社 Fuel supply system, gas turbine, electricity generation plant, control method, and program
JP2019124134A (en) * 2018-01-12 2019-07-25 三菱日立パワーシステムズ株式会社 Fuel supply system, gas turbine, power plant, control method, and program
US11181047B2 (en) 2018-01-12 2021-11-23 Mitsubishi Power, Ltd. Fuel supply system, gas turbine, electricity generation plant, control method, and program

Also Published As

Publication number Publication date
JP6057775B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
RU2471082C2 (en) Operation control system of gas turbine engine, and thermal power plant containing such system
JP5319018B2 (en) Operation method of mixed firing system
US9523311B2 (en) Method of operating a gas turbine, and gas turbine with water injection
US7882704B2 (en) Flame stability enhancement
US9739488B2 (en) Gas turbine combustor with two kinds of gas fuel supply systems
JP2015190466A (en) Combustion device, gas turbine and power generation device
JP4963406B2 (en) Gas turbine combustor and operation method thereof
JP4939179B2 (en) Gas turbine combustor and operation method thereof
US20120285175A1 (en) Steam injected gas turbine engine
JP6057775B2 (en) Gas turbine plant and control method thereof
WO2016056180A1 (en) Gas turbine engine combustor and operating method for same
US8720179B2 (en) Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine
JP6148133B2 (en) Gas turbine combustor and gas turbine system
EP3336330B1 (en) Methods for startup and operation of gas turbine combined cycle power plants using nmhc fuels
JP5555724B2 (en) Power generation system
JP5013414B2 (en) Gas turbine system and power generation system
JP6004920B2 (en) Gas turbine combustor and gas turbine combustor control method
JP2003056364A (en) Gas-fired gas turbine power generating facility
JP2004308596A (en) Output control method of steam jet gas turbine
JP2006046282A (en) Device and method for combustion of low-quality oil
JP2016070126A (en) gas turbine
JP2005113897A (en) Gas turbine and its operating method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6057775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250