JP2014163215A - Oil film slider base isolation method and oil film slider base isolation foundation structure - Google Patents

Oil film slider base isolation method and oil film slider base isolation foundation structure Download PDF

Info

Publication number
JP2014163215A
JP2014163215A JP2013055632A JP2013055632A JP2014163215A JP 2014163215 A JP2014163215 A JP 2014163215A JP 2013055632 A JP2013055632 A JP 2013055632A JP 2013055632 A JP2013055632 A JP 2013055632A JP 2014163215 A JP2014163215 A JP 2014163215A
Authority
JP
Japan
Prior art keywords
building
steel plate
slider
seismic isolation
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013055632A
Other languages
Japanese (ja)
Other versions
JP5834222B2 (en
Inventor
Chikashi Kamimura
親士 上村
Takashi Uemura
隆 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JOHO KAGAKU KENKYUSHO KK
Information Science Research Institute
Original Assignee
JOHO KAGAKU KENKYUSHO KK
Information Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JOHO KAGAKU KENKYUSHO KK, Information Science Research Institute filed Critical JOHO KAGAKU KENKYUSHO KK
Priority to JP2013055632A priority Critical patent/JP5834222B2/en
Publication of JP2014163215A publication Critical patent/JP2014163215A/en
Application granted granted Critical
Publication of JP5834222B2 publication Critical patent/JP5834222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a base isolation structure having the function for resting a structure, by absorbing its energy even to a giant earthquake of reciprocating 1 m or more of long-period amplitude.SOLUTION: A structure seismically isolated by an independent suspension system is provided so that lubricating oil is pressurized and injected between upper-lower two steel sheet plates 1 and 2, the steel sheet plates 1 and 2 are push-opened, a fine oil film is formed between the steel sheet plates 1 and 2, and sliding of the oil film absorbs lateral swinging as a slider. A building structure is a structure for supporting weight by a surface of a bottom surface concrete board, and to a pitching earthquake wave, energy is absorbed with every one pile even to a longitudinal wave earthquake wave of attacking in the irregular action by vertical vibration different with every position, by installing a pitching base-isolation device by respective pile caps and cushion dampers installed on a plurality of piles.

Description

本発明は、油膜スライダー免震方法と油膜スライダー免震基盤構造体に関する。  The present invention relates to an oil film slider seismic isolation method and an oil film slider base isolation structure.

超高層ビルでは地震の揺れや風圧にある程度建物の柔軟性に任せる「柔構造」の建築がほとんどである。さらに、昨今建設される超高層ビルでは、基礎部分に油圧装置(油圧ダンパー)を取り付ける、柱の中に低降伏点鋼を挟む(制震柱)、建物の上部にダンパーと呼ばれる錘(おもり)を取りつけたりして揺れを軽減する、などの方法(いずれも制震構造)を採用している。
また、基礎と上部建築物を切り離し、構造物の間に積層ゴムやベアリングを媒介して、横揺れそのものを逃す方法(免震構造)も開発されている。
しかし、振れの幅が広く50cm以上の移動が起こる長周期の巨大地震に対しては揺れを免れないものも少なくない。また、免震構造そのものが複雑で、設置コストも極めて高価である。さらに長期的には、免震装置自体の錆防止など、メンテナンスにも問題があるのが現状である。
鋼製球体の転がりによる滑り機能を活用した免震構造の提案には、先に本発明者が「免震スライドボックス」として出願し、特許第5013295号として認定されている。
Most high-rise buildings have a “soft structure” that leaves the building with some degree of flexibility depending on the shaking of the earthquake and wind pressure. Furthermore, in high-rise buildings constructed recently, a hydraulic device (hydraulic damper) is attached to the foundation, a low-yield point steel is sandwiched between the columns (damping columns), and a weight called a damper is placed on the top of the building. The method (all are seismic control structures) such as mounting or reducing the shaking is adopted.
In addition, a method (seismic isolation structure) has been developed in which the foundation and the upper building are separated and a roll of rubber or a bearing is interposed between the structures to release the roll itself.
However, there are not a few things that cannot be shaken for a long-period giant earthquake with a wide swing and a movement of 50 cm or more. In addition, the seismic isolation structure itself is complicated and the installation cost is extremely expensive. In the long term, there are also problems with maintenance, such as preventing rusting of the seismic isolation device itself.
In order to propose a seismic isolation structure that utilizes a sliding function by rolling a steel sphere, the present inventor has previously filed an application as a “seismic isolation slide box” and has been certified as Japanese Patent No. 501295.

特許文献1の免震構造は、自在な方向へ移動する多数の鋼製の球体を纏めるプレートによる多方向可動スライダーを上下2枚の鋼盤で挟み、球体が平面上を地震波の変位距離以上に移動することを可能とする構造で、堅固なボックス内に免震部を収め、免震ボックスの移動によって地震振動を吸収し、建物を静止させる装置である。欠点は鋼製球体一個に懸かる重量には限界があり、コンクリートへの高層建造物には使用上に重量支持の限界があることである。
本件出願では、横揺れの免震構造を二枚のプレートの間へ潤滑油を油圧で侵入させ、潤滑油膜で極めて僅か建物を浮かせ、潤滑油の滑り機能を発揮させて、上面プレートと下面プレート間にスライダーを形成する方法で面と面で重量を支え、スライドさせることを提案している。
In the seismic isolation structure of Patent Document 1, a multi-directional movable slider with a plate that collects a large number of steel spheres moving in any direction is sandwiched between two upper and lower steel plates, and the spheres exceed the displacement distance of the seismic wave on the plane It is a device that can move, with the seismic isolation part housed in a solid box, the seismic vibration is absorbed by the movement of the seismic isolation box, and the building is stationary. The disadvantage is that there is a limit to the weight that can be hung on a single steel sphere, and a high-rise building on concrete has a limit of weight support for use.
In this application, the top and bottom plates are separated by rolling the seismic isolation structure between the two plates by hydraulically injecting the lubricating oil, floating the building very slightly with the lubricating oil film, and demonstrating the sliding function of the lubricating oil. It proposes to support and slide the weight by the method of forming a slider in between.

特許公開2010−270581(特許第5013295号)Patent Publication 2010-270581 (Patent No. 5013295)

近年、中国四川省の地震、スマトラ沖地震、トルコの地震、東日本大震災に見られるように、地震に伴う建造物の崩壊が凄まじいこと、倒壊しないまでも建造物の亀裂で使用が不可能になるという経済的損失が大きいことを経験している。
さらに、今後も東海、東南海、南海地震の災害が高い確率で起こることも予測されており、いかに低コストで確実な重量建造物の免震施設の普及を急ぐのかが現状の課題である。
免震装置が最大に機能するのは、建物の倒壊を起こし易い巨大地震の横揺れに対する免震である。阪神淡路大震災では、直下型地震による規模はマグニチュード7.3、震度7、横揺れの変位の距離は片側27cm、往復54cmであった。
東日本大震災による規模は、震源地でマグニチュード9.0、震度7以上、変位の距離は片側1m、往復2mであったが、陸地では最も揺れた宮城県栗原市築館町で最大震度7、変位は片側11.8cm、往復23.6cmであった。即ち、巨大地震に対応するには瞬間的に地面が移動する距離が片側最低50cm、往復1mと考えられ、片側50cmまでは建物が静止状態でこれ以上になったら、ダンパー、クッションによる制震作用が必要と判断する必要がある。これに対する免震装置はまだ存在していない。
従って、本発明ではこれに対応するに当たって、以上の条件を満たし、且つ今後の重量建造物の建設に際し、極めてシンプルで、且つ堅牢で故障がなく、低コストで工事現場での作業がし易く、建造後もメンテナンスのし易い免震構造の提供を行うことが目的である。
In recent years, as seen in the earthquakes in Sichuan, China, off Sumatra, Turkey, and the Great East Japan Earthquake, the collapse of buildings due to the earthquake is tremendous, and even if it does not collapse, it can not be used due to cracks in the building I have experienced a large economic loss.
Furthermore, it is predicted that disasters of the Tokai, Tonankai, and Nankai earthquakes will occur with a high probability in the future, and the current issue is how to urgently disseminate heavy-weight seismic isolation facilities at low cost.
The seismic isolation device functions to its greatest extent in seismic isolation against the roll of a massive earthquake that tends to cause building collapse. In the Great Hanshin Awaji Earthquake, the magnitude of the direct earthquake was 7.3 magnitude, seismic intensity 7, and the distance of roll displacement was 27 cm on one side and 54 cm on both sides.
The magnitude of the Great East Japan Earthquake was magnitude 9.0 at the epicenter, seismic intensity 7 or more, the distance of displacement was 1 m on one side, and 2 m round trip, but the maximum seismic intensity 7 and displacement in Tsukidate-cho, Kurihara City, Miyagi Prefecture, was the most shaken on land. One side was 11.8 cm and the round trip was 23.6 cm. In other words, to cope with a huge earthquake, the distance that the ground moves instantaneously is considered to be at least 50 cm on one side and 1 m on both sides, and if the building is stationary up to 50 cm on one side, the damping action by dampers and cushions It is necessary to judge that is necessary. There is no seismic isolation device for this yet.
Therefore, in the present invention, in order to cope with this, the above conditions are satisfied, and in the construction of a heavy building in the future, it is very simple, robust, free from failure, and easy to work on the construction site at a low cost. The purpose is to provide a seismic isolation structure that is easy to maintain after construction.

重量建造物の建設時の免震装置の設置は、基盤の水平性、建造物重量と地盤強度の均平性を基礎に、建造物の底面全体で重量を支え、重量の偏重、地盤強度の偏向を克服して、建造物を垂直に保ち、上下前後左右の地震による地盤の揺れに対しても柔軟に対応できるシステムでなければならない。
縦揺れに対しては、地盤の強度に合わせ、打ち込むパイルの数と、パイルのキャップに設置するスプリングでパイル毎に独立懸架する。
パイルのキャップに設置する鋼製のスプリングはゴム質中に埋め込まれており、スプリングは空気と触れることが無いので永続的に酸化されない。
横揺れは、上下二枚の研磨した鏡面を有する鋼盤プレートを全面又は一部に、鏡面を合わせて重ね配置し、下側の移動受け面鋼盤は上側の鋼盤より前後左右に1m以上広くなるように設置する。
鋼板と鋼板の間に油圧で潤滑油を浸潤させ、油圧により2枚の鉄板をエキスパンドさせて微細な間隙をつくり、この間隙の薄い油膜で建造物の支持を図り、薄い油膜による滑走性のスライダーにより、地震の横揺れを吸収するメカニズムを採用している。
具体的には、軽量建造物と重量建造物の間には重量の相違から、メカニズムに若干の相違があり、建造物の免震を支持脚で行うのか、建造物底面全体で行うのか、支持方式を選択する必要がある。
The installation of seismic isolation devices during the construction of heavy buildings is based on the levelness of the foundation and the equality of the weight of the building and the strength of the ground. The system must be able to overcome the deflection, keep the building vertical, and flexibly cope with ground shaking caused by earthquakes in the vertical and horizontal directions.
For pitching, depending on the strength of the ground, the number of piles to be driven and the springs installed on the pile caps are suspended independently for each pile.
The steel springs installed in the pile caps are embedded in the rubber, and the springs are not permanently oxidized because they do not come into contact with air.
Rolling is done by placing a steel plate with two polished upper and lower polished mirror surfaces over the entire surface or part of the plate so that the mirror surfaces are aligned and the lower moving receiving surface steel plate is 1 m or more from front to back and left and right of the upper steel plate. Install to be wide.
Lubricating oil is infiltrated hydraulically between steel plates, and two steel plates are expanded by hydraulic pressure to create fine gaps, and the structure is supported by a thin oil film of this gap, and a sliding slider with a thin oil film Therefore, the mechanism that absorbs the roll of the earthquake is adopted.
Specifically, due to the difference in weight between light and heavy buildings, there is a slight difference in the mechanism, whether the building is to be isolated from the support legs or the entire bottom of the building, It is necessary to select a method.

軽量建造物の場合は、建物の下部に支持脚を設け、支持脚の底部に鋼板の擦り合わせ部に、脚部側から潤滑油を加圧注入して僅かな油膜を形成して、スライダー機能を創出して横揺れの免震を行う。また、縦揺れの減震は建物の支持脚接続部に設けた鋼製のスプリングを有するゴム製クッションによって行う。
このように、軽量建造物の免震装置は建造物脚を受け入れるボックスタイプの装置となる。
In the case of a lightweight building, a support leg is provided at the bottom of the building, and a small oil film is formed by pressurizing lubricating oil from the leg side to the rubbing part of the steel plate at the bottom of the support leg to form a slider function. To create seismic isolation. In addition, the vertical vibration reduction is performed by a rubber cushion having a steel spring provided at the support leg connecting portion of the building.
Thus, the seismic isolation device for a lightweight building is a box-type device that accepts a building leg.

重量建造物の場合は、建物の底部全面に鋼板の擦り合わせ部を設け、底部全体の面で重量を支え、底部側から潤滑油を加圧注入して僅かな油膜を形成して、スライダー機能を創出して免震を行う。
重量建造物の重量を支える地盤は、パイルを打ち込み、地盤の固化資材を注入して強固な地耐力を造成し、その上にスライダー構造を形成する。
建造物を支持する免震基盤はこのスライダーの上に設置し、周囲を建造物の側面を支持する枡構造体と建物の距離を約2m離し、ダンパークッションを介して配置し、建造物と地面の間にスライダーを配置して建造物と地面の直接の接続を断っている。
建造物の周辺には、鋼製スプリングを内蔵したゴム製のダンパークッションで包囲し、地面の横揺れを50cm〜1m程度滑らせてスライダーで吸収すると共に、これ以上の横揺れはダンパークッションで建造物の側面を支持する枡構造体と免震基盤の衝突破損の防止を行う。
(通常、直下型巨大地震の場合の変位は東日本大震災の場合で約1mである。)
縦揺れは、地震震動が浪状にうねって建造物の局部毎に巨大な偏圧を懸けるので、建造物を支える地盤に、パイルを打ち込み、パイル1本1本に懸る重圧を各パイル毎に独立懸架させ、パイル頂部に鋼製のスプリングを内蔵したゴム製のクッションを有するパイルキャップを被せ、パイルキャップ上に地震震動でパイルが左右に傾斜してもパイルや基盤の破損を防止する首振り構造の免震パネルを装着して、震動によるコンクリートの破損を防止する。
縦揺れ震動の吸収は、パイルキャップに装置したスプリングを内蔵したゴム製のクッションで行う。
For heavy-duty buildings, a steel plate rubbing section is provided on the entire bottom surface of the building, supporting the weight on the entire bottom surface, and lubricating oil is injected under pressure from the bottom side to form a slight oil film, slider function Create seismic isolation.
The ground that supports the weight of a heavy building is driven by piles and injected with solidified material of the ground to create strong ground strength, and a slider structure is formed thereon.
The seismic isolation base that supports the building is installed on this slider, and the surrounding structure that supports the side of the building is separated from the building by about 2m, placed via a damper cushion, and the building and the ground. A slider is placed between them to cut off the direct connection between the building and the ground.
Surrounded by a rubber damper cushion with a built-in steel spring around the building, the roll of the ground is slid by 50 cm to 1 m and absorbed by the slider. Prevents collision damage between the base structure that supports the side of the object and the seismic isolation base.
(Normally, the displacement in the case of a direct giant earthquake is about 1 m in the case of the Great East Japan Earthquake.)
Pitching causes a large amount of bias pressure to be applied to each part of the building due to the undulation of the ground motion, so piles are driven into the ground that supports the building, and the heavy pressure applied to each pile is applied to each pile. A pile cap with a rubber cushion with a built-in steel spring mounted on the top of the pile, which is suspended independently, and swinging on the pile cap to prevent damage to the pile or foundation even if the pile tilts to the left or right due to seismic vibration Install seismic isolation panels to prevent damage to concrete due to vibration.
Absorption of longitudinal vibration is performed by a rubber cushion with a built-in spring mounted on a pile cap.

<軽量建造物の免震技術>
請求項1に対応して、図1〜図2には、通常住宅等軽重量の建造物の油膜免震構造の基本的構造を示した。
通常住宅等建造物の油膜免震構造は、図1に見られるように、下側の鋼板プレート1上に、上側の鋼板プレート2を載せ、上側の鋼板プレート2に設置している油圧供給口4から、下側の鋼板プレート1と上側の鋼板プレート2の間に常時潤滑油を加圧注入し、両板間を潤滑油の薄い膜の油膜で満たし、両板間に極めて微細な離層空間を生じさせ、滑走し易い条件を創出する。
図1では、7は上面側の鋼板プレート2の末端エッジの下面裾上部で、スライダーのスライド中に金属同士の引っ掛かりや物理的なトラブルを防止する安定滑り装置である。
滑り面上部3は表面を潤滑油で覆い、滑り面の防錆を兼ねている。8は潤滑油を保持する周縁のフェンスで、滑り面の潤滑油を常時一定の深さに保つ役割を有している。
<Seismic isolation technology for lightweight buildings>
Corresponding to claim 1, FIGS. 1 to 2 show a basic structure of an oil film seismic isolation structure for a light building such as a normal house.
As shown in FIG. 1, the oil film seismic isolation structure of a normal building such as a house is a hydraulic supply port in which an upper steel plate 2 is placed on a lower steel plate 1 and installed on the upper steel plate 2. 4. Lubricating oil is constantly injected under pressure between the lower steel plate 1 and the upper steel plate 2 and the space between both plates is filled with a thin film of lubricating oil, and a very fine delamination between the two plates. Create space and create conditions that make it easy to run.
In FIG. 1, reference numeral 7 denotes an upper bottom hem of the end edge of the steel plate 2 on the upper surface side, which is a stable sliding device that prevents metal from being caught and physical troubles during sliding of the slider.
The upper surface 3 of the sliding surface covers the surface with lubricating oil, and also serves as rust prevention for the sliding surface. Reference numeral 8 denotes a peripheral fence that holds the lubricating oil, and has a role of constantly maintaining the lubricating oil on the sliding surface at a constant depth.

図2には、通常住宅等建造物の油膜免震装置の横断面図を示した。
通常住宅等建造物の油圧免震装置では、建物の下部に建物重量を支える基盤梁16を設置し、梁16を建造物脚15で支え、建造物脚15にボックス型の免震装置を取り付ける構造を有している。これは当発明者が既に提案している免震スライダーボックス(特許第5013295号)と類似するが、スライダーの部分が油圧スライダー免震装置になっているので相違する。
図2を説明すると、1はスライダーの下に位置する下側の鋼板プレートであり、その上に上側の鋼板プレート2を載せている。
上側の鋼板プレート2は、上に建造物支持梁16と接続する支持脚15を積載している。上側の鋼板プレート2は、鋼板の上に鋼製スプリングを内蔵したゴムクッション14を有し、周囲を堅牢で支持脚15を収納可能な外殻鋼板ケース13で取り囲んでいる。支持脚15はこの外殻鋼板ケース13に収納する。
免震部は、上部スライダー鋼板2内に設けた潤滑油供給パイプ4を通じて、油圧装置11の加圧装置12で加圧された潤滑油が矢印の方向へ送られ、スライダー部潤滑油供給口5から潤滑油が加圧供給される。供給された潤滑油は、スライダーの下に位置する下側の鋼板プレート1とスライダーの上に位置する上側の鋼板プレート2の間に侵入し、鋼板間を引き離し、僅かに浮上させて微細な空間を作り、油膜6となって地面が矢印の方向18へ移動しても滑り面となり、建造物は静止状態を保つメカニズムである。
軽量住宅等建造物の油圧免震装置は、上記スライダーを内蔵するボックスタイプであって、周縁のフェンス8で囲い、内に潤滑油10を溜め、防錆スライダーオイル貯留室を形成している。防錆スライダーオイル貯留室は、上部を防錆スライダーオイル貯留室の保護可動蛇腹天蓋17で覆っている。
In FIG. 2, the cross-sectional view of the oil film seismic isolation apparatus of buildings, such as a normal house, was shown.
Normally, in a hydraulic seismic isolation device for a building such as a house, a base beam 16 that supports the weight of the building is installed at the bottom of the building, the beam 16 is supported by the building leg 15, and a box-type seismic isolation device is attached to the building leg 15. It has a structure. This is similar to the seismic isolation slider box (Japanese Patent No. 5013295) already proposed by the present inventor, but differs because the slider part is a hydraulic slider seismic isolation device.
Referring to FIG. 2, reference numeral 1 denotes a lower steel plate located below the slider, and an upper steel plate 2 is placed thereon.
The upper steel plate 2 is loaded with support legs 15 connected to the building support beams 16. The upper steel plate 2 has a rubber cushion 14 with a built-in steel spring on the steel plate, and is surrounded by a shell steel plate case 13 that is solid and can accommodate the support legs 15. The support legs 15 are accommodated in the outer steel plate case 13.
In the seismic isolation part, the lubricating oil pressurized by the pressurizing device 12 of the hydraulic device 11 is sent in the direction of the arrow through the lubricating oil supply pipe 4 provided in the upper slider steel plate 2, and the slider lubricating oil supply port 5 The lubricating oil is supplied under pressure. The supplied lubricating oil enters between the lower steel plate 1 positioned below the slider and the upper steel plate 2 positioned above the slider, pulls the steel plates apart, and slightly floats to form a fine space. This is a mechanism that keeps the building stationary as the oil film 6 becomes a sliding surface even if the ground moves in the direction 18 of the arrow.
A hydraulic seismic isolation device for a light-weight house or the like is a box type that incorporates the slider described above, and is enclosed by a fence 8 at the periphery and stores lubricating oil 10 therein to form a rust-proof slider oil storage chamber. The upper part of the antirust slider oil storage chamber is covered with a protective movable bellows canopy 17 of the antirust slider oil storage chamber.

<重量構造物の免震構技術>
請求項2及び請求項3に対応して、図3及び図4に免震装置の免震の原理とその構造を示した。
免震の基本構造は、図3及び図4に示す通り、軽重量の建造物の場合と同様、下側の鋼板プレート上に、上側の鋼板プレート2を載せ、上側の鋼板プレート2に設置している油圧供給口4から、下側の鋼板プレート1と上側の鋼板プレート2の間に常時潤滑油を加圧注入し、両板間を潤滑油で満たし、油膜によって両板間を押し開いて極めて微細な離層空間を生じさせ、滑走面3上に滑走し易い条件を創出する。
すなわち、免震の原理は、鏡面を有する上下2枚の鋼板の間に高圧注入した潤滑油が、2枚の鋼板を押し広げて侵入し、僅かに浸潤した薄い油膜6をスライダーとして、地震の横揺れエネルギーを逃がす方法である。
<Seismic isolation technology for heavy structures>
Corresponding to Claims 2 and 3, FIGS. 3 and 4 show the principle and structure of the seismic isolation device.
As shown in FIGS. 3 and 4, the basic structure of seismic isolation is the same as in the case of a light building, with the upper steel plate 2 placed on the lower steel plate and installed on the upper steel plate 2. The hydraulic oil supply port 4 constantly injects pressurized lubricating oil between the lower steel plate 1 and the upper steel plate 2, fills the space between both plates with the lubricating oil, and pushes between the two plates with an oil film. An extremely fine delamination space is generated, and conditions for easy sliding on the sliding surface 3 are created.
In other words, the principle of seismic isolation is that the lubricating oil injected at high pressure between the two upper and lower steel plates with mirror surfaces spreads and penetrates the two steel plates, and the thin oil film 6 slightly infiltrated into the slider as a slider. This is a way to release the rolling energy.

図3を説明すれば、下側の鋼板プレート1上に、上側の鋼板プレート2を積載し、上側のスライド板2(鋼板)の上に重量建造物を構築する構造である。
潤滑油は、油圧供給口4から加圧供給される。
地震波による横揺れは、滑走面3で下側の鋼板プレート1と上側の鋼板プレート2の間に滑り面6、7が形成され、建物と地面は滑り面で切り離され、図2に示す地震振動方向18の動きと同様、地面に連なる下側の鋼板プレート1は地面と共に移動するが、上側の鋼板プレート2とこれに連なる建造物は静止した状態を保つ。重量建造物の免震部分は、下側の鋼板プレート1の面と上側の鋼板プレート2の面との、面と面の接触によって、重量を建物底面全体で支持する構造である。
If FIG. 3 is demonstrated, it will be the structure where the upper steel plate 2 is loaded on the lower steel plate 1 and a heavy building is constructed on the upper slide plate 2 (steel plate).
Lubricating oil is pressurized and supplied from the hydraulic pressure supply port 4.
Rolling due to seismic waves is caused by sliding surfaces 6, 7 formed between the lower steel plate 1 and the upper steel plate 2 on the sliding surface 3, and the building and the ground are separated by the sliding surface. Similar to the movement in the direction 18, the lower steel plate 1 connected to the ground moves together with the ground, but the upper steel plate 2 and the building connected thereto remain stationary. The seismic isolation portion of the heavy building has a structure in which the weight is supported on the entire bottom surface of the building by the surface-to-surface contact between the surface of the lower steel plate 1 and the surface of the upper steel plate 2.

図4を説明すれば、重量構造物を支える場合は、下側の鋼板プレート1を建造物基盤全面に、多数の下側の鋼板プレート群を敷き詰めて設置し、プレート群周縁のサイズは、建物底及び上側の鋼板プレート2群の面積より周縁を約1m以上広くして、下側の鋼板プレート1群を連結し設置する。
上側のスライド板(鋼板)群は下側の鋼板プレート1群の上に鋼板プレート2同士を連結して、上側のプレート群を作り、下側の鋼板プレート1群より周縁両端を約1m以上狭くして設置する。
スライダーの形成は、上側の鋼板プレート2上に建造する構造物28床面内に張り巡らせるスライダーオイル供給パイプ9を通して、潤滑油加圧注入器11から潤滑油加圧装置12を作動させて、スライダーオイル加圧注入4へ送り、スライダーオイル加圧吐出口5から、潤滑油を加圧浸潤させ、下側の鋼板プレート1と上側の鋼板プレート2の間に浸潤滑り油膜6を形成して、スライダーの機能を発揮する。
上側の鋼板プレート2の末端エッジは丸みのあるカーブ7を形成し、鋼板同士の引っ掛かりによるトラブルを防止している。
Referring to FIG. 4, when supporting a heavy structure, the lower steel plate 1 is installed on the entire surface of the building with a number of lower steel plate groups laid down. The lower steel plate plate 1 group is connected and installed with the periphery wider than the area of the bottom and upper steel plate plates 2 by about 1 m or more.
The upper slide plate (steel plate) group is formed by connecting the steel plate plates 2 to each other on the lower steel plate plate group to form an upper plate group, and both peripheral edges are narrower by about 1 m or more than the lower steel plate plate group. And install.
The slider is formed by operating the lubricant pressurizing device 12 from the lubricant pressurizing injector 11 through the slider oil supply pipe 9 extending around the floor surface of the structure 28 constructed on the upper steel plate 2 and moving the slider. The oil is supplied to the oil pressurizing injection 4, and the lubricating oil is pressurized and infiltrated from the slider oil pressurizing discharge port 5, and the infiltrating sliding oil film 6 is formed between the lower steel plate 1 and the upper steel plate 2, and the slider Demonstrate the function.
The end edge of the upper steel plate 2 forms a rounded curve 7 to prevent troubles due to catching between the steel plates.

図5上部Aには、施工に当たって使用する下側の鋼板プレート1を示した。
鋼板は、重量建造物基盤の上に、これと固定して設置する部材でもあり、建造物底面全体へ連結して施設する。そのため下側の鋼板プレート1の部位の2辺は上側に張り出し19、あとの部位2辺は下側に張り出す20構造をとっている。
図5下部Bには、下側の鋼板プレート1の隣接プレートとの接合部を示した。
鋼板プレート1の連結は、上側の張り出し19と下側に張り出し20の各位置に整合するネジ穴上側21、下側22を設け、ネジ23で固定する。
下側の鋼板プレート11枚の大きさは、縦2m、横2m程度が施工上扱い易いと考えられる。
The upper part A of FIG. 5 shows a lower steel plate 1 used for construction.
The steel plate is also a member that is fixedly installed on the heavy building base and is connected to the entire bottom of the building. For this reason, the two sides of the lower steel plate 1 have a structure 19 projecting upward, and the remaining two parts 20 have a structure projecting downward.
In the lower part B of FIG. 5, a joint portion between the lower steel plate 1 and the adjacent plate is shown.
The steel plate 1 is connected by providing an upper overhang 19 and a screw hole upper side 21 and a lower side 22 aligned with the positions of the overhang 20 on the lower side and fixing them with screws 23.
As for the size of the 11 steel plate plates on the lower side, it is considered that about 2 m in length and about 2 m in width are easy to handle in construction.

図6上部Cには、施工に当たって使用する上側の鋼板プレート2を示した。
鋼板は、上部に重量建造物底支持基盤を載せ、これと固定して設置する部材でもあり、建造物底全体へ連結して施設する。
上側の鋼板プレート2は、プレートにスライダーオイル供給パイプと接続する加圧注入パイプ4を設け、下面に加圧注入口5を設ける。
図6下部Dには、上側の鋼板プレート2の隣接プレートとの接合部を示した。
上側の鋼板プレート2の連結は、上をコンクリートの重量建造物底支持基盤で固めるので、周縁をボックス型に立て板で底部と接続し、連結側壁24を設ける。
連結側壁24には、隣接する上側の鋼板プレート2と整合する連結ネジ穴25を設け、ネジ穴25同士をボルト26とナット27で固定する。(図6下側図参照)
上側の鋼板プレート2の大きさも、下側の鋼板プレート1の大きさに合わせ、縦2m、横2m程度が施工上扱い易いと考えられる。また、加圧注入パイプ4の設置数も多い程効果的であるが、9本ないし16本の縦横同数の設置が望ましいと考えられる。
An upper steel plate 2 used for construction is shown in the upper part C of FIG.
The steel plate is also a member that is installed on the upper part of the heavy building bottom support base and fixed to this, and is connected to the entire building bottom for installation.
The upper steel plate 2 has a pressure injection pipe 4 connected to the slider oil supply pipe on the plate, and a pressure injection port 5 on the lower surface.
In the lower part D of FIG. 6, a joint portion between the upper steel plate 2 and the adjacent plate is shown.
The upper steel plate 2 is connected to the top by a heavy concrete bottom support base made of concrete, so that the peripheral edge is connected to the bottom with a standing plate in a box shape, and a connecting side wall 24 is provided.
The connecting side wall 24 is provided with a connecting screw hole 25 aligned with the adjacent upper steel plate 2, and the screw holes 25 are fixed with bolts 26 and nuts 27. (Refer to the lower side of Fig. 6)
The size of the upper steel plate 2 is also considered to be easy to handle in terms of construction with a length of about 2 m and a width of about 2 m in accordance with the size of the lower steel plate 1. Further, the larger the number of pressurized injection pipes 4 installed, the more effective. However, it is considered desirable to install 9 to 16 pipes in the same length and breadth.

図7には、重量建造物底面のスライダーと免震装置の平面図を示した。
スライダーは上側の鋼板プレートと連結している重量建造物支持基盤である。
重量建造物支持基盤28の周囲は、周囲を巨大地震振動による移動が起こっても衝突しない空間をもって、ストッパーとなる堅牢な重量建造物の地下側壁枡構造体30で囲っている。枡構造体30と重量建造物支持基盤28の間には、強力な鋼製のスプリングを内蔵するゴムまたは積層ゴムのクッションダンパー31を枡構造体30と重量建造物支持基盤28の両者に連結する。
枡構造体30と重量建造物支持基盤28の間の空間は、クッションダンパー31の伸び縮みに必要な広さ、約2mが必要である。
また、枡構造体30と重量建造物支持基盤28の間には、他に地震振動によって移動した、位置の修正を行う油圧装置32が設置されている。
FIG. 7 shows a plan view of the slider and the seismic isolation device on the bottom of the heavy building.
The slider is a heavy building support base connected to the upper steel plate.
The periphery of the heavy building support base 28 is surrounded by a strong heavy building underground side wall structure 30 serving as a stopper, with a space that does not collide even if movement due to a large earthquake vibration occurs. Between the heel structure 30 and the heavy building support base 28, a rubber or laminated rubber cushion damper 31 containing a strong steel spring is connected to both the heel structure 30 and the heavy structure support base 28. .
The space between the eaves structure 30 and the heavy-duty building support base 28 needs to be about 2 m wide enough for the cushion damper 31 to expand and contract.
In addition, a hydraulic device 32 that is moved by earthquake vibration and corrects the position is installed between the eaves structure 30 and the heavy building support base 28.

図8には、重量建造物底面のスライダーと免震制御装置の横断面図を示した。
基本構造は、四方を堅牢な重量建造物の地下側壁枡構造体30で囲み、その内側に重量建造物を支える堅牢な地下基盤を設置する。免震装置は地下基盤の上に建造物を支える重量建造物支持基盤28との間に設置する。
堅牢な地下基盤は、必要な深さに掘り下げ、掘削土層底面に安定した地盤に達する深さまで、パイル41を打ち込み、浅層の土層が若干沈降しても重量をパイル41で支える構造にする。
掘削土層底を鎮圧し均平にならす。その上に栗石40を全面に敷き詰め鎮圧する。
パイル41の上には、周縁にゴムクッション38を有し、内部に強力な鋼製スプリング37を有するパイルキャップ35を載せる。
パイルキャップ周縁のゴムクッション38の高さに栗石40上に鉄筋コンクリートのベタ打ちによりコンクリート基礎39で周囲を埋める。(コンクリート埋設)
パイルキャップ周縁に強力な鋼製スプリングを内蔵するゴムクッションまたは積層ゴムクッションを設置し、パイルキャップ頂部の高さよりやや高くする。
高くする理由は、浅層の土層が若干沈降してもコンクリート基礎39とパイルキャップで協力して建造物全重を支えるクッション機能を発揮させるためである。
パイルキャップ頂部35の上に免震パネル34を設置する。免震パネルは地震の縦揺れが波状にうねりを打つので、力が一カ所に集中しないように独立懸架方式で、パイル毎に架かる上下の力変動に対応し、パイルキャップ35と免震パネル34でエネルギーを吸収する目的である。
パイルキャップ頂部35が半球形で免震パネル34の接合部が半球形の凹孔になっているのは、地震の横揺れによって、パイル頂部35が若干斜めになって擦れても、半球形部分で力を逃し、接合部の破損を防止するためである。
免震パネル34の上は、破損防止のゴムシートを被せ、上に重量建造物基盤29を設置する。建造物の全重量は重量建造物基盤29上で均平化され、局部への重量の偏重を防止する。
重量建造物基盤29上に下側の鋼板プレート1を設置する。次に、下側の鋼板プレート1上に上側の鋼板プレート2を設置する。
さらに、上側の鋼板プレート2上に重量建造物支持基盤28を設置する。
重量建造物支持基盤28は四方を囲む堅牢な重量建造物の地下側壁枡構造体30とクッションダンパー31で連結し、枡構造体30に架かる前後左右の動きと上下振動のエネルギーを吸収させて重量建造物支持基盤28への力の影響を減衰させる。
重量建造物支持基盤28には、前述の通り、構造物支持基盤28床面内に張り巡らせるスライダーオイル供給パイプ9を通して、潤滑油加圧注入器11から潤滑油加圧装置12を作動させて、スライダーオイル加圧注入4へ送り、スライダーオイル加圧吐出口5から、潤滑油を加圧浸潤させ、下側の鋼板プレートと上側の鋼板プレート2の間に浸潤滑り油膜6を形成して、スライダー機能を発揮する。
以上説明したように、当油面免震スライダーと油圧免震基盤構造体は、堅牢な地下基盤上に、独立懸架方式による縦揺れの免震構造と、四方を堅牢な重量建造物の地下側壁枡構造体30で囲み、その内側に重量建造物支持基盤28との間に油圧免震スライダーと衝撃を和らげるクッションダンパーを設置する免震構造で、瞬間的に地面が前後左右へ1m以上移動しても、そのエネルギーを逸らし、建造物が揺れない重量建造物の免震機構を提供する。
FIG. 8 shows a cross-sectional view of the slider on the bottom of the heavy building and the seismic isolation control device.
As for the basic structure, the basement side wall structure 30 of a heavy heavy building is surrounded on all sides, and a solid underground base that supports the heavy building is installed on the inside. The seismic isolation device is installed between the heavy building support base 28 that supports the building on the underground base.
The solid underground base is dug down to the required depth, and pile 41 is driven to the depth that reaches the stable ground at the bottom of the excavated soil layer, so that the weight is supported by the pile 41 even if the shallow soil layer sinks slightly. To do.
Suppress the bottom of the excavated soil layer and level it. On top of that, Kuriishi 40 is spread all over and pressed down.
On top of the pile 41, a pile cap 35 having a rubber cushion 38 at the periphery and having a strong steel spring 37 inside is placed.
The circumference is filled with a concrete foundation 39 by solid reinforced concrete on the chestnut 40 at the height of the rubber cushion 38 at the periphery of the pile cap. (Concrete burial)
Install a rubber cushion or laminated rubber cushion with a strong steel spring around the periphery of the pile cap so that it is slightly higher than the top of the pile cap.
The reason for making it high is to exhibit a cushion function that supports the full weight of the building in cooperation with the concrete foundation 39 and a pile cap even if the shallow soil layer sinks slightly.
A seismic isolation panel 34 is installed on the top 35 of the pile cap. The seismic isolation panel has an independent suspension system so that the vertical pitch of the earthquake swells in a wavy manner, so that the force does not concentrate in one place, and responds to fluctuations in the vertical force of each pile. The pile cap 35 and the seismic isolation panel 34 The purpose is to absorb energy.
The pile cap top 35 is hemispherical and the joint of the seismic isolation panel 34 is a hemispherical concave hole. Even if the pile top 35 is slightly slanted and rubbed due to the rolling of the earthquake, the hemispherical portion This is to release the force and prevent the joint from being damaged.
The seismic isolation panel 34 is covered with a rubber sheet for preventing damage, and the heavy building base 29 is installed thereon. The total weight of the building is leveled on the heavy building base 29 to prevent the weight from being biased locally.
The lower steel plate 1 is installed on the heavy building base 29. Next, the upper steel plate 2 is installed on the lower steel plate 1.
Further, a heavy building support base 28 is installed on the upper steel plate 2.
The heavy-weight building support base 28 is connected to the basement side wall ク ッ シ ョ ン structure 30 and the cushion damper 31 of a heavy-weight building that surrounds the four sides, and absorbs the energy of the front and rear, left and right movements and the vertical vibration that hangs over the heel structure 30 and weights. The influence of the force on the building support base 28 is attenuated.
As described above, the heavy building support base 28 is operated by operating the lubricating oil pressurizing device 12 from the lubricating oil pressurizing injector 11 through the slider oil supply pipe 9 extending around the floor surface of the structural support base 28. It is fed to the slider oil pressurization injection 4 and the lubricant oil is pressurized and infiltrated from the slider oil pressurization discharge port 5 to form an infiltrating sliding oil film 6 between the lower steel plate and the upper steel plate 2, and the slider Demonstrate the function.
As explained above, the oil-isolated slider and hydraulic base isolation structure are constructed on a solid underground base, with a vertical base isolation structure using an independent suspension system, and on the four sides of a heavy building basement side wall. It is a seismic isolation structure that is surrounded by a fence structure 30 and a hydraulic isolation slider and cushion damper that softens the impact between it and the heavy building support base 28. However, it provides a seismic isolation mechanism for heavy buildings that dissipates its energy and does not shake the building.

産業上利用の可能性Industrial applicability

本発明は、建造物全体が、往復50cm以上の免震構造になっているので、巨大な長周期の地震の発生があっても、建物自体には震動が伝わらず、静止している。建物内にある調度品の倒壊や人身事故が起こらず、メンテナンスもし易いシステムである。建設費用も相対的に低コストである。
従って、住宅、ホテル、商業施設、学校、病院、工場など何れの施設でも、確実な免震機能で安全性を一段と向上させることが可能である。
In the present invention, since the entire building has a seismic isolation structure with a round trip of 50 cm or more, even if a huge long-period earthquake occurs, the building itself is stationary and no vibration is transmitted. It is a system that is easy to maintain without causing collapse of furniture in the building and accidents. Construction costs are also relatively low.
Therefore, in any facility such as a house, a hotel, a commercial facility, a school, a hospital, or a factory, it is possible to further improve the safety with a reliable seismic isolation function.

軽量建造物の油膜免震スライダーのスライダー部分俯瞰図Slider overhead view of oil film seismic isolation slider for lightweight buildings 軽量建造物の油膜免震スライダーの側断面図Side cross-sectional view of oil film isolation slider for lightweight building 重量建造物の免震機能部俯瞰図Overhead view of seismic isolation function section of heavy building 重量建造物の免震機能部横断面図Seismic isolation function cross section of heavy building 重量建造物の油膜免震スライダー下部鋼盤俯瞰図Overhead view of lower steel board of oil-isolated slider of heavy building 重量建造物の油膜免震スライダー下部鋼盤連結接続部横断面図Oil film seismic isolation slider lower steel board connection cross section of heavy building 重量建造物の油膜免震スライダー上部鋼盤俯瞰図Overhead view of upper steel board of oil-isolated slider of heavy building 重量建造物の油膜免震スライダー上部鋼盤連結接続部横断面図Oil film seismic isolation slider upper steel board connection cross section of heavy building 重量建造物底面のスライダーと免震制御装置の平面図Top view of slider and seismic isolation controller on bottom of heavy building 重量建造物底面のスライダーと免震制御装置の横断面図Cross section of heavy building bottom slider and seismic isolation controller

記号の説明Explanation of symbols

1 免震スライダー下側の鋼板プレート
2 免震スライダー上側の鋼板プレート
3 免震スライダー滑走面
4 スライダーオイル加圧注入パイプと注入方向
5 スライダーオイルの加圧吐出口
6 浸潤滑りオイル膜7 上側の滑り鋼盤の末端エッジの丸みのあるカーブ
8 防錆スライダーオイル貯留室側壁
9 スライダーオイル供給パイプ
10 防錆スライダーオイル貯留室
11 潤滑油加圧注入器
12 潤滑油加圧装置
13 軽量建造物脚挿入固定装置
14 軽量建造物脚の鋼製スプリングを有する建造物支持クッション
15 軽量建造物支持脚
16 軽量建造物支持主梁
17 防錆スライダーオイル貯留室保護可動蛇腹天蓋
18 地震による地面の振動方向
19 重量建造物スライダー下部鋼盤の連結上位張り出し部
20 重量建造物スライダー下部鋼盤の連結下位張り出し部
21 重量建造物スライダー下部鋼盤の連結上位張り出し部連結ネジ穴
22 重量建造物スライダー下部鋼盤の連結下位張り出し部連結ネジ穴
23 重量建造物スライダー下部鋼盤の連結ネジ
24 重量建造物スライダー上部鋼盤の連結側壁
25 重量建造物スライダー上部鋼盤の連結側壁の連結ネジ穴
26 重量建造物スライダー上部鋼盤の連結側壁の連結ボルト
27 重量建造物スライダー上部鋼盤の連結側壁の連結ナット
28 重量建造物支持基盤(建造物スライダー)
29 重量建造物基盤
30 重量建造物地下側壁枡構造体
31 鋼製スプリングを有する重量建造物横揺れクッション
32 建造物位置修正油圧装置
33 免震パネル上のゴムクッション
34 免震パネル
35 パイルキャップの頂部
36 免震パネル下面保護ゴムシート
37 鋼製スプリングを有する建造物支持クッション
38 パイルキャップ周縁のゴムクッション
39 コンクリート基礎
40 栗石
41 パイル
1. Steel plate plate below the seismic isolation slider 2 Steel plate plate above the seismic isolation slider 3 Sliding surface of the seismic isolation slider 4 Slider oil pressurization injection pipe and injection direction 5 Slider oil pressurization outlet 6 Infiltrating sliding oil film 7 Upper slipping Curve with round edge of steel board edge 8 Antirust slider oil storage chamber side wall 9 Slider oil supply pipe 10 Antirust slider oil storage chamber 11 Lubricating oil pressurizer 12 Lubricating oil pressurizer 13 Lightweight building leg insertion fixing Device 14 Lightweight building leg steel support cushion with steel spring 15 Lightweight building support leg 16 Lightweight building support main beam 17 Antirust slider oil reservoir protection movable bellows canopy 18 Ground vibration direction due to earthquake 19 Heavyweight construction Connection of steel slider lower steel board Upper overhanging section 20 Connection of steel slider lower steel board Overhanging portion 21 Heavy construction slider lower steel plate connection Upper overhanging portion connection screw hole 22 Heavy building slider lower steel plate connection Lower overhanging portion connection screw hole 23 Heavy building slider lower steel plate connection screw 24 Heavy building Connection side wall 25 of the slider upper steel plate Connection screw hole 26 of the connection side wall of the heavy building slider upper steel plate Connection bolt 27 of the connection side wall of the heavy building slider upper steel plate Connection nut of the connection side wall of the heavy building slider upper steel plate 28 Heavy Building Support Base (Building Slider)
29 Heavy Building Base 30 Heavy Building Basement Wall Structure 31 Heavy Building Rolling Cushion with Steel Spring 32 Building Position Correcting Hydraulic Device 33 Rubber Cushion on Seismic Isolation Panel 34 Seismic Isolation Panel 35 Top of Pile Cap 36 Seismic isolation panel lower surface protection rubber sheet 37 Building support cushion with steel spring 38 Rubber cushion 39 around pile cap 39 Concrete foundation 40 Kuriishi 41 Pile

Claims (3)

軽量建造物の免震機能を付与する段階で、建物地盤を堅牢なコンクリート底盤で固め、その上に滑り板の基盤鋼盤プレートを設置し、この鋼盤上に底部に建造物を支える滑り鋼盤プレートを有する建造物脚を積載し、この建造物脚の鋼盤底に潤滑油を加圧注入する小孔を有し、小孔から加圧注入する潤滑油で、基盤鋼盤と建造物脚の鋼盤の上下2枚の鋼盤プレートの間を押し開いて、形成される微細な鋼板間隙に浸潤する油溜まり面をスライダーとすることを特徴とする軽量建造物の油膜スライダー免震方法。At the stage of providing a seismic isolation function for a lightweight building, the building ground is hardened with a solid concrete bottom, and a base steel plate of a sliding plate is installed on top of this, and a sliding steel that supports the building on the bottom on this steel plate A building leg having a board plate is loaded, and a steel hole and a building are constructed with a lubricating hole that has a small hole for injecting lubricating oil into the bottom of the steel board. An oil film slider seismic isolation method for a lightweight building, characterized in that a slider is formed by pushing between the upper and lower steel plate of the leg steel plate to infiltrate the fine steel plate gap formed. . 重量建造物の基盤設置の段階で、周囲に矢板を打ち込み、地下階層の必要な深さまで土層を掘り、低下した地面の底部に建造物の重量を支持するパイルを複数打ち込み、矢板内側の周囲に地下側面を保護するコンクリート枡構造物を作り、底部地面に土層固化剤を打ち込み、パイル頂部にクッションを内蔵するパイルキャップを設置し、パイルキャップ上に免震パネルを設置し、その上にゴムクッションを配して、ゴムクッション上に建造物支持盤を設置して各パイル毎に独立懸架させる地震の縦揺れ方向の免震を行う手段と、
さらに、その上に建物の重量を面で支える地面側の移動受け面プレートと建物側底盤に設ける移動プレートの2枚の上下に接する鋼盤プレートを設置し、
上下プレート間に油圧による間隙の発生で免震するシステムの横揺れ油圧スライダーを構成する給油孔を建造物の底盤移動プレートに設置する手段と、
建造物地下周縁に空間を開けて強固な枡構造物を設け、建物の横滑り振動を受ける壁を設置する手段と、
建造物と枡構造壁との間にダンパークッションを設置し、
油圧で上下2枚の鋼盤の間に形成される油面のスライダーによる滑りを、枡構造物とスライダーに結着したダンパークッションによる横揺れ衝撃吸収の手段によって免震構造とすることを特徴とする重量建造物の油膜スライダー免震方法。
At the stage of heavy building foundation installation, sheet piles are driven around, the soil layer is dug to the required depth of the underground level, and multiple piles that support the weight of the building are driven into the bottom of the lowered ground. Make a concrete fence structure to protect the underground side surface, lay a soil solidifying agent on the bottom ground, install a pile cap with built-in cushion on the top of the pile, install a seismic isolation panel on the pile cap, and above it A means for performing seismic isolation in the longitudinal direction of an earthquake in which a rubber cushion is arranged, a building support board is installed on the rubber cushion, and each pile is suspended independently;
Furthermore, the steel plate which touches the upper and lower sides of the movement receiving surface plate on the ground side which supports the weight of the building on the surface and the moving plate provided on the building side bottom plate is installed thereon,
Means for installing a lubrication hole in the bottom plate moving plate of the building, which constitutes a rolling hydraulic slider of a system that is seismically isolated by the occurrence of a hydraulic gap between the upper and lower plates;
Means to open a space in the basement of the building, provide a solid fence structure, and install a wall that receives side-slip vibration of the building;
Install a damper cushion between the building and the wall
It is characterized in that the oil level slide formed between two upper and lower steel plates by hydraulic pressure is made a seismic isolation structure by means of side impact absorption by a damper cushion bound to the saddle structure and slider. Oil film slider seismic isolation method for heavy building.
請求項2の免震方法において、横方向の地震揺れに対する免震装置は、建造物支持基盤の下に、2枚の鏡面を有する均平な鋼板プレートを設置し、上部の移動鋼盤プレートに潤滑油を加圧シリンダーから挿入する小孔を設置し、鋼盤と鋼盤の間に潤滑油を加圧注入して下部の移動受け鋼盤プレートとの間に油膜の滑り面を形成し、
滑り面へは、常時高圧で潤滑油を加圧注入して建物を油膜の厚さに微細に浮き上がらせるスライダーを常時形成し、
地震に伴うエネルギーを油圧による上下鋼盤間のオイル間隙の滑りで解消する行程と、建物と請求項2の枡構造物の間に、建造物と枡構造物とを結着するスプリングを内蔵するゴム製のクッション・ダンパーを設けて、建造物底基盤に懸る地震振動の横への荷重衝撃を前記枡構造物で吸収する行程とからなり、
建造物に対する地面の前後左右の移動荷重はストッパーをクッションとダンパーで受け、前記潤滑油のシリンダー加圧注入により、油圧で上部鋼板に開口している微孔から高圧の潤滑油を供給し、スライダーが潤滑油でを常に濡れている状態に保ち、滑りを高め、地面が動いても地面側の下部鋼板が、建造物と切り離されて、最大片側1m以上横方向へ地面と共に滑走するが、過剰な移動はクッション・ダンパーによって吸収し、上部鋼板上には、堅牢な建造物底基盤を載せ、建造物と建造物支持基盤の間に設置したスライダーシステムにより、建造物へは横揺れの地震震動が伝わらないことを特徴とする横揺れの油膜スライダー免震基盤構造体。
3. The seismic isolation method according to claim 2, wherein the seismic isolation device for lateral seismic vibration is provided with a flat steel plate having two mirror surfaces under the building support base, and an upper moving steel plate. Install a small hole to insert the lubricating oil from the pressure cylinder, pressurize the lubricating oil between the steel plate and form a sliding surface of the oil film between the lower moving receiving steel plate,
On the sliding surface, lubricant is constantly injected under high pressure, and a slider that constantly raises the building to the thickness of the oil film is formed constantly.
There is a built-in spring between the building and the fence structure between the building and the fence structure between the building and the fence structure to eliminate the energy associated with the earthquake by the oil gap sliding between the upper and lower steel plates by hydraulic pressure. It is a process of providing a rubber cushion damper and absorbing the load impact to the side of the seismic vibration that hangs on the base of the building with the above structure.
The moving load on the front, back, left and right of the building against the ground is received by stoppers with cushions and dampers, high pressure lubricating oil is supplied from the microholes opened in the upper steel plate by hydraulic pressure by cylinder injection of the lubricating oil, and the slider Keeps the oil wet with the oil constantly, enhances the slip, and even if the ground moves, the lower steel plate on the ground side is separated from the building and slides with the ground in the lateral direction more than 1m on one side, but excessive The movement is absorbed by the cushion damper, and a solid base of the building is placed on the upper steel plate. The slider system installed between the building and the building support base causes the structure to roll to a seismic vibration. Rolling oil film slider base isolation structure, characterized in that
JP2013055632A 2013-02-27 2013-02-27 Oil film slider isolation method and oil film slider base isolation structure Active JP5834222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055632A JP5834222B2 (en) 2013-02-27 2013-02-27 Oil film slider isolation method and oil film slider base isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055632A JP5834222B2 (en) 2013-02-27 2013-02-27 Oil film slider isolation method and oil film slider base isolation structure

Publications (2)

Publication Number Publication Date
JP2014163215A true JP2014163215A (en) 2014-09-08
JP5834222B2 JP5834222B2 (en) 2015-12-16

Family

ID=51614081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055632A Active JP5834222B2 (en) 2013-02-27 2013-02-27 Oil film slider isolation method and oil film slider base isolation structure

Country Status (1)

Country Link
JP (1) JP5834222B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110554A (en) * 1996-10-07 1998-04-28 Mitsubishi Heavy Ind Ltd Base isolation device of building or the like
JP2003155838A (en) * 2001-11-19 2003-05-30 Shimizu Corp Vibration-isolated structure of building
JP2010024792A (en) * 2008-07-24 2010-02-04 Teruo Igarashi Interlocked rolling type base isolation device
JP2010112163A (en) * 2008-10-10 2010-05-20 Joho Kagaku Kenkyusho:Kk Earthquake-resisting water-storage levee and installation construction method for the same
JP2010270581A (en) * 2009-05-25 2010-12-02 Joho Kagaku Kenkyusho:Kk Around-slide board and base-isolation slider box
JP2011241602A (en) * 2010-05-18 2011-12-01 Kihara Corp Wind-resistant ground base isolation structure using bearings and construction method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110554A (en) * 1996-10-07 1998-04-28 Mitsubishi Heavy Ind Ltd Base isolation device of building or the like
JP2003155838A (en) * 2001-11-19 2003-05-30 Shimizu Corp Vibration-isolated structure of building
JP2010024792A (en) * 2008-07-24 2010-02-04 Teruo Igarashi Interlocked rolling type base isolation device
JP2010112163A (en) * 2008-10-10 2010-05-20 Joho Kagaku Kenkyusho:Kk Earthquake-resisting water-storage levee and installation construction method for the same
JP2010270581A (en) * 2009-05-25 2010-12-02 Joho Kagaku Kenkyusho:Kk Around-slide board and base-isolation slider box
JP2011241602A (en) * 2010-05-18 2011-12-01 Kihara Corp Wind-resistant ground base isolation structure using bearings and construction method thereof

Also Published As

Publication number Publication date
JP5834222B2 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
CN103147394B (en) Pulling-resistant bidirectional sliding friction bearing
US8291650B2 (en) Pylon attachment device and flooring system utilizing same
Nanda et al. Suitable friction sliding materials for base isolation of masonry buildings
SK286842B6 (en) Method of protecting buildings and objects from dynamic forces caused by acceleration foundation plate, for instance due to earthquake and apparatus for making the same
US8359793B2 (en) Earthquake force absorption system
CN209194766U (en) A kind of building isolation structure
JP5834223B2 (en) Seismic isolation structure and material with plastic colloid of heavy structure
WO2014092662A1 (en) Anti-earthquake building system
US9222276B2 (en) Seismic isolation system
Nakamura et al. Report on the effects of seismic isolation methods from the 2011 Tohoku–Pacific earthquake
JP5713508B2 (en) Isolation device
JP2014163215A (en) Oil film slider base isolation method and oil film slider base isolation foundation structure
JP6201089B1 (en) Seismic isolation structure that can adjust the inclination of the building
KR101011162B1 (en) The structure aseismic reinforcement structure and the method of construction for which aseismic reinforcement equipment and this were used
Shah et al. Comparative study of base isolation in multistoried RC irregular building
JP4439694B2 (en) High-damping frame of high-rise building
JP7055984B2 (en) Lifting suppression structure
JP5697004B1 (en) Isolation device
JP2023007269A (en) Base isolation device combining sliding, lubricating and friction bearing and tension spring expansion/contraction action
JP5192851B2 (en) Seismic reduction structure
CN102454235A (en) Design scheme of tunnel and underground building combined type earthquake resistant structure
JPH09177372A (en) Seismic isolator of building
WO2015133979A1 (en) Moving mechanism minimizing the destructive impacts of an earthquake
RU2545569C2 (en) Planar anti-friction bearing and method of its application in seismic foundations for protection of buildings and structures against horizontal vibrations of earth crust in case of earthquakes
Gilani et al. Base isolation retrofit challenges in a historical monumental building in Romania

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150603

R150 Certificate of patent or registration of utility model

Ref document number: 5834222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150