JP2014162703A - Perovskite type compound oxide and method for producing the same - Google Patents

Perovskite type compound oxide and method for producing the same Download PDF

Info

Publication number
JP2014162703A
JP2014162703A JP2013037456A JP2013037456A JP2014162703A JP 2014162703 A JP2014162703 A JP 2014162703A JP 2013037456 A JP2013037456 A JP 2013037456A JP 2013037456 A JP2013037456 A JP 2013037456A JP 2014162703 A JP2014162703 A JP 2014162703A
Authority
JP
Japan
Prior art keywords
perovskite
complex oxide
precursor
perovskite complex
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013037456A
Other languages
Japanese (ja)
Other versions
JP6181940B2 (en
Inventor
Shin Hamada
心 濱田
Takuma Honda
琢磨 本田
Akira Nagatomi
晶 永富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2013037456A priority Critical patent/JP6181940B2/en
Publication of JP2014162703A publication Critical patent/JP2014162703A/en
Application granted granted Critical
Publication of JP6181940B2 publication Critical patent/JP6181940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a perovskite type compound oxide of uniform composition and a method for producing the same.SOLUTION: The method for producing a perovskite type compound oxide represented by a composition formula of LaSrCoFeO(0<x<1,0<y<1,0<z<1) is provided. The method includes: wet blending the respective nitrates of lanthanum (La), strontium (Sr), cobalt (Co) and iron (Fe) as the starting material to obtain mixed solution; followed by neutralizing the obtained mixed solution to precipitate a precursor of perovskite type compound oxide and obtain a wet cake of the precursor of perovskite type compound oxide; molding the wet cake into a pellet-form; drying the pellet-form molded product of this wet cake at 200 to 400°C for 1 to 3 hours to obtain an amorphous perovskite type compound oxide precursor that does not exhibit peaks of impurities on diffraction lines according to powder X-ray diffraction method; and calcinating the dried powder of the amorphous perovskite type compound oxide precursor at 600 to 1,000°C.

Description

本発明は、ペロブスカイト型複合酸化物およびその製造方法に関し、特に、固体酸化物型燃料電池の空気極の材料に適したペロブスカイト型複合酸化物およびその製造方法に関する。   The present invention relates to a perovskite complex oxide and a method for producing the same, and more particularly to a perovskite complex oxide suitable for a material for an air electrode of a solid oxide fuel cell and a method for producing the same.

固体酸化物型燃料電池(SOFC(Solid Oxide Fuel Cell))は、一般に、酸化物からなる空気極と固体電解質と燃料極とからなる単セルをインターコネクタによって接続したスタック構造を採っている。このような固体酸化物型燃料電池の動作温度は、通常1000℃程度である。近年、固体酸化物型燃料電池の動作温度が低温化されているが、実用化されている固体酸化物型燃料電池の最低温度は600℃以上と依然として高温である。   2. Description of the Related Art A solid oxide fuel cell (SOFC) generally has a stack structure in which single cells made of an oxide air electrode, a solid electrolyte, and a fuel electrode are connected by an interconnector. The operating temperature of such a solid oxide fuel cell is usually about 1000 ° C. In recent years, the operating temperature of solid oxide fuel cells has been lowered, but the minimum temperature of solid oxide fuel cells in practical use is still as high as 600 ° C. or higher.

このようなセル構造と高い動作温度のため、固体酸化物型燃料電池の空気極の材料は、基本的に、酸素イオン導電性が高く、電子伝導性が高く、熱膨張が電解質と同等あるいは近似し、化学的な安定性が高く、他の構成材料との適合性が良好であり、焼結体が多孔質であり、一定の強度を有することなどの特性が要求される。   Because of this cell structure and high operating temperature, the material of the air electrode of the solid oxide fuel cell basically has high oxygen ion conductivity, high electron conductivity, and thermal expansion is equivalent or close to that of the electrolyte. However, characteristics such as high chemical stability, good compatibility with other constituent materials, a porous sintered body, and a certain strength are required.

このような固体酸化物型燃料電池の空気極の材料として、組成式(L1−xAE1−y(Fe1−z)O3+δで表され、Lはスカンジウム(Sc)、イットリウム(Y)および希土類元素からなる群より選ばれた一種または二種以上の元素であり、AEはカルシウム(Ca)およびストロンチウム(Sr)の群からなる一種または二種の元素であり、Mはマグネシウム(Mg)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、コバルト(Co)およびニッケル(Ni)からなる群より選ばれた一種または二種以上の元素であり、0<x<0.5、0<y≦0.04、0≦z<1であるランタンフェライト系ペロブスカイト酸化物を主成分とするセラミックス粉体が提案されている(例えば、特許文献1参照)。 As a material of the air electrode of such a solid oxide fuel cell, it is represented by a composition formula (L 1-x AE x ) 1-y (Fe z M 1-z ) O 3 + δ , and L is scandium (Sc), One or more elements selected from the group consisting of yttrium (Y) and rare earth elements, AE is one or two elements selected from the group of calcium (Ca) and strontium (Sr), and M is One or more elements selected from the group consisting of magnesium (Mg), scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), cobalt (Co) and nickel (Ni) , 0 <x <0.5, 0 <y ≦ 0.04, 0 ≦ z <1, ceramic powders mainly composed of lanthanum ferrite-based perovskite oxides have been proposed (for example, Patent Document 1).

また、固体電解質型燃料電池の空気極の材料として、一般式ABOで表され、AがLaおよび希土類元素の群から選ばれる1つ以上の元素と、Sr、CaおよびBaの群から選ばれる1つ以上の元素からなり、BがMn、Co、Fe、NiおよびCuの群から選ばれる1つ以上の元素からなるペロブスカイト複合酸化物粉体であって、平均粒子径が1μm以下であり、且つ粒度分布の所定範囲内に制限された固体電解質型燃料電池の空気極原料粉体が提案されている(例えば、特許文献2参照)。 Further, the material of the air electrode of the solid oxide fuel cell is represented by the general formula ABO 3 , and A is selected from one or more elements selected from the group of La and rare earth elements, and from the group of Sr, Ca and Ba. A perovskite composite oxide powder comprising one or more elements and B comprising one or more elements selected from the group consisting of Mn, Co, Fe, Ni and Cu, having an average particle size of 1 μm or less; In addition, an air electrode raw material powder for a solid oxide fuel cell limited to a predetermined range of particle size distribution has been proposed (see, for example, Patent Document 2).

特開2009−35447号公報(段落番号0007)JP 2009-35447 A (paragraph number 0007) 特開2006−32132号公報(段落番号0009)JP 2006-32132 A (paragraph number 0009)

しかし、特許文献1のランタンフェライト系ペロブスカイト酸化物を主成分とするセラミックス粉体は、ランタンフェライト系ペロブスカイト酸化物の組成式の組成比で出発原料として構成元素の酸化物、炭酸塩、硝酸塩などをエタノールなどの有機溶媒を用いて湿式混合などにより混合し、乾燥して溶媒を揮発させた後、空気中において800〜1200℃で5〜20時間仮焼して得られるが、焼結後の複合酸化物の組成の均一性が不十分で、酸素イオン導電性が高い空気極材料として不十分な場合があった。特に、特許文献1の実施例のように、原料として酸化ランタン、炭酸ストロンチウム、酸化コバルトおよび酸化鉄を乳鉢で混合し、加圧成形した後、仮焼する方法(乾式混合による固相法)では、原料を均一に混合するのが難しく、焼結後の複合酸化物の組成の均一性が不十分で、酸素イオン導電性が高い空気極材料として不十分であった。   However, the ceramic powder containing lanthanum ferrite-based perovskite oxide as a main component in Patent Document 1 contains oxides, carbonates, nitrates, and the like as constituent elements as starting materials at the composition ratio of the composition formula of lanthanum ferrite-based perovskite oxide. After mixing by wet mixing using an organic solvent such as ethanol, drying and volatilizing the solvent, it is obtained by calcining in air at 800 to 1200 ° C. for 5 to 20 hours. In some cases, the uniformity of the oxide composition is insufficient and the air electrode material has high oxygen ion conductivity. In particular, as in the example of Patent Document 1, lanthanum oxide, strontium carbonate, cobalt oxide and iron oxide as raw materials are mixed in a mortar, pressed and then calcined (solid phase method by dry mixing) It was difficult to uniformly mix the raw materials, the uniformity of the composite oxide composition after sintering was insufficient, and it was insufficient as an air electrode material having high oxygen ion conductivity.

また、特許文献2の固体電解質型燃料電池の空気極原料粉体は、La、Sr、CoおよびFeの硝酸塩を出発原料として所定の割合で水に溶解させ、この溶液に中和剤としてNHOHを添加して各元素を含む塩を共沈させ、得られた共沈塩を水洗し、乾燥し、仮焼して得られるが、この湿式混合による共沈法でも、中和や乾燥の条件によって、焼結後の複合酸化物の組成の均一性が不十分で、酸素イオン導電性が高い空気極材料として不十分であった。 Further, the air electrode raw material powder of the solid oxide fuel cell of Patent Document 2 is dissolved in water at a predetermined ratio using nitrates of La, Sr, Co and Fe as starting materials, and NH 4 as a neutralizing agent is added to this solution. OH is added to coprecipitate the salt containing each element, and the resulting coprecipitated salt is washed with water, dried, and calcined. Depending on the conditions, the composition uniformity of the composite oxide after sintering was insufficient, and it was insufficient as an air electrode material having high oxygen ion conductivity.

したがって、本発明は、このような従来の問題点に鑑み、均一な組成のペロブスカイト型複合酸化物およびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a perovskite complex oxide having a uniform composition and a method for producing the same, in view of such conventional problems.

本発明者らは、上記課題を解決するために鋭意研究した結果、ペロブスカイト型複合酸化物の出発原料を湿式混合した後、ペロブスカイト型複合酸化物の前駆体を析出させ、この前駆体を乾燥させて得られた粉末X線回折法による回折線上に不純物のピークを含まない非晶質のペロブスカイト型複合酸化物の前駆体の乾燥粉末を焼成することにより、均一な組成のペロブスカイト型複合酸化物を製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have wet-mixed the perovskite-type composite oxide starting material, and then precipitated the perovskite-type composite oxide precursor, and dried the precursor. The amorphous perovskite complex oxide precursor powder containing no impurity peak on the diffraction line obtained by the powder X-ray diffraction method is calcined to obtain a uniform composition of the perovskite complex oxide. The inventors have found that it can be manufactured and have completed the present invention.

すなわち、本発明によるペロブスカイト型複合酸化物の製造方法は、ペロブスカイト型複合酸化物の出発原料を湿式混合した後、ペロブスカイト型複合酸化物の前駆体を析出させ、この前駆体を乾燥させて得られた粉末X線回折法による回折線上に不純物のピークを含まない非晶質のペロブスカイト型複合酸化物の前駆体の乾燥粉末を焼成することを特徴とする。   That is, the method for producing a perovskite complex oxide according to the present invention is obtained by wet-mixing a perovskite complex oxide starting material, then precipitating a perovskite complex oxide precursor, and drying the precursor. A dry powder of an amorphous perovskite complex oxide precursor that does not contain an impurity peak on a diffraction line obtained by powder X-ray diffraction is calcined.

このペロブスカイト型複合酸化物の製造方法において、ペロブスカイト型複合酸化物が、組成式La1−xSrCo1−yFe3−z(0<x<1、0<y<1、0<z<1)で示されるペロブスカイト型複合酸化物であるのが好ましい。この場合、出発原料が、ランタン(La)とストロンチウム(Sr)とコバルト(Co)と鉄(Fe)の各々の硝酸塩であるのが好ましい。この場合、ペロブスカイト型複合酸化物の前駆体の析出が、ペロブスカイト型複合酸化物の出発原料を湿式混合して得られた混合溶液を中和することによって行われるのが好ましい。 In the method for producing the perovskite complex oxide, the perovskite complex oxide has a composition formula La 1-x Sr x Co 1-y Fe y O 3-z (0 <x <1, 0 <y <1, 0 A perovskite complex oxide represented by <z <1) is preferred. In this case, the starting material is preferably a nitrate of each of lanthanum (La), strontium (Sr), cobalt (Co), and iron (Fe). In this case, the precipitation of the perovskite complex oxide precursor is preferably carried out by neutralizing a mixed solution obtained by wet mixing the starting materials of the perovskite complex oxide.

また、ペロブスカイト型複合酸化物の前駆体を析出させた後、乾燥させる前に、ペロブスカイト型複合酸化物の前駆体のウエットケーキを得て、このウエットケーキをペレット状に成形するのが好ましい。この場合、ペロブスカイト型複合酸化物の前駆体の乾燥が、ペロブスカイト型複合酸化物の前駆体のウエットケーキのペレット状の成形体を200〜400℃で1〜3時間乾燥させることによって行われるのが好ましい。   In addition, it is preferable to obtain a wet cake of the perovskite-type composite oxide precursor after forming the perovskite-type composite oxide precursor and then form the wet cake into pellets before drying. In this case, drying of the perovskite complex oxide precursor is performed by drying a pellet-shaped compact of the wet cake of the perovskite complex oxide precursor at 200 to 400 ° C. for 1 to 3 hours. preferable.

さらに、ペロブスカイト型複合酸化物の前駆体の乾燥粉末の水分値が5%以下であるのが好ましい。また、ペロブスカイト型複合酸化物の前駆体の乾燥粉末の焼成が、ペロブスカイト型複合酸化物の前駆体の乾燥粉末を600〜1000℃で焼成することによって行われるのが好ましい。   Further, the moisture value of the dry powder of the perovskite complex oxide precursor is preferably 5% or less. Moreover, it is preferable that the dry powder of the perovskite-type composite oxide precursor is fired by baking the dry powder of the perovskite-type composite oxide precursor at 600 to 1000 ° C.

また、本発明によるペロブスカイト型複合酸化物は、酸素放出速度が0.05μmol/g・分以上であることを特徴とする。このペロブスカイト型複合酸化物が、組成式La1−xSrCo1−yFe3−z(0<x<1、0<y<1、0<z<1)で示されるペロブスカイト型複合酸化物であるのが好ましい。 The perovskite complex oxide according to the present invention is characterized in that the oxygen release rate is 0.05 μmol / g · min or more. The perovskite-type composite oxide, a perovskite type represented by the composition formula La 1-x Sr x Co 1 -y Fe y O 3-z (0 <x <1,0 <y <1,0 <z <1) A composite oxide is preferred.

本発明によれば、固体酸化物型燃料電池の空気極の材料に適した均一な組成で酸素放出速度が高いペロブスカイト型複合酸化物およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the perovskite type complex oxide with a uniform composition suitable for the material of the air electrode of a solid oxide fuel cell and a high oxygen release rate and its manufacturing method can be provided.

実施例1〜3および比較例1〜6で得られたペロブスカイト型複合酸化物の前駆体の乾燥粉末についての粉末X線回折法(XRD)による測定結果を示す図である。It is a figure which shows the measurement result by the powder X-ray-diffraction method (XRD) about the dry powder of the precursor of the perovskite type complex oxide obtained in Examples 1-3 and Comparative Examples 1-6. 実施例3および比較例3で得られた焼成後のペロブスカイト型複合酸化物についてのXRDによる測定結果を示す図である。It is a figure which shows the measurement result by XRD about the perovskite type complex oxide after baking obtained in Example 3 and Comparative Example 3. 図2の一部を拡大して示す図である。It is a figure which expands and shows a part of FIG.

本発明によるペロブスカイト型複合酸化物の製造方法の実施の形態では、ペロブスカイト型複合酸化物の出発原料を湿式混合した後、ペロブスカイト型複合酸化物の前駆体を析出させ、この前駆体を乾燥させて得られた粉末X線回折法による回折線上に不純物のピークを含まない非晶質のペロブスカイト型複合酸化物の前駆体の乾燥粉末を焼成する。   In the embodiment of the method for producing a perovskite complex oxide according to the present invention, the starting material of the perovskite complex oxide is wet mixed, and then the precursor of the perovskite complex oxide is precipitated, and the precursor is dried. The obtained dry powder of the amorphous perovskite complex oxide precursor containing no impurity peak on the diffraction line by the powder X-ray diffraction method is fired.

このペロブスカイト型複合酸化物の製造方法の実施の形態において、ペロブスカイト型複合酸化物は、組成式La1−xSrCo1−yFe3−z(0<x<1、0<y<1、0<z<1)で示されるペロブスカイト型複合酸化物(LSCF)であるのが好ましい。この場合、出発原料として、ランタン(La)とストロンチウム(Sr)とコバルト(Co)と鉄(Fe)の各々の硝酸塩、炭酸塩または酸化物を使用することができるが、ランタン(La)とストロンチウム(Sr)とコバルト(Co)と鉄(Fe)の各々の硝酸塩を使用するのが好ましい。この場合、ペロブスカイト型複合酸化物の前駆体の析出が、ペロブスカイト型複合酸化物の出発原料を湿式混合して得られた混合溶液に炭酸アンモニウムなどのアルカリを添加して、混合溶液を中和することによって行われるのが好ましい。 In the embodiment of the method for producing the perovskite complex oxide, the perovskite complex oxide has a composition formula La 1-x Sr x Co 1-y Fe y O 3-z (0 <x <1, 0 <y A perovskite complex oxide (LSCF) represented by <1, 0 <z <1) is preferable. In this case, as starting materials, nitrates, carbonates or oxides of lanthanum (La), strontium (Sr), cobalt (Co) and iron (Fe) can be used, but lanthanum (La) and strontium. It is preferable to use nitrates of (Sr), cobalt (Co) and iron (Fe). In this case, the precipitation of the perovskite complex oxide precursor is performed by adding an alkali such as ammonium carbonate to the mixed solution obtained by wet mixing the starting material of the perovskite complex oxide to neutralize the mixed solution. Is preferably carried out.

ペロブスカイト型複合酸化物の前駆体を析出させた後、ペロブスカイト型複合酸化物の前駆体のウエットケーキを得て、このウエットケーキを素早く乾燥させるのが好ましく、ウエットケーキを乾燥させ易くするために、例えば、ウエットケーキを円柱形または角柱形のペレット状(棒状)に成形するのが好ましく、直径2〜10mmのペレット状に形成するのが好ましい。この場合、ペロブスカイト型複合酸化物の前駆体の乾燥が、ペロブスカイト型複合酸化物の前駆体のウエットケーキのペレット状の成形体を200〜400℃で1〜3時間乾燥させることによって行われるのが好ましい。   After precipitating the perovskite-type composite oxide precursor, it is preferable to obtain a wet cake of the perovskite-type composite oxide precursor, and to quickly dry this wet cake, in order to facilitate the drying of the wet cake, For example, the wet cake is preferably formed into a cylindrical or prismatic pellet (bar shape), and preferably formed into a pellet having a diameter of 2 to 10 mm. In this case, drying of the perovskite complex oxide precursor is performed by drying a pellet-shaped compact of the wet cake of the perovskite complex oxide precursor at 200 to 400 ° C. for 1 to 3 hours. preferable.

この乾燥後のペロブスカイト型複合酸化物の前駆体の乾燥粉末の水分値は5%以下であるのが好ましい。また、ペロブスカイト型複合酸化物の前駆体の乾燥粉末は、600〜1300℃で焼成するのが好ましく、600〜1000℃で焼成するのがさらに好ましい。   The moisture value of the dried dry powder of the perovskite complex oxide precursor after drying is preferably 5% or less. The dry powder of the perovskite complex oxide precursor is preferably fired at 600 to 1300 ° C., more preferably 600 to 1000 ° C.

なお、ペロブスカイト型複合酸化物の前駆体を析出させた後に前駆体のウエットケーキを乾燥させるまでの経過時間が長く、乾燥が不十分であると、前駆体に含まれるストロンチウムが水分中または空気中の炭酸ガスと反応して炭酸ストロンチウムが結晶化して析出し、不均一な状態の前駆体になり易い。この不均一な状態の前駆体を焼成してペロブスカイト型複合酸化物を得ても、ペロブスカイト型複合酸化物の組成の均一性が不十分であるため、酸素放出速度が低く、酸素イオン導電性が低くなる。   It should be noted that the elapsed time until the wet cake of the precursor is dried after the perovskite-type composite oxide precursor is deposited is insufficient, and if the drying is insufficient, the strontium contained in the precursor is contained in moisture or in the air. It reacts with the carbon dioxide gas and strontium carbonate crystallizes and precipitates, and tends to be a non-uniform precursor. Even if the perovskite-type composite oxide is obtained by firing this non-uniform precursor, the composition of the perovskite-type composite oxide is insufficiently uniform, so the oxygen release rate is low and the oxygen ion conductivity is low. Lower.

また、本発明によるペロブスカイト型複合酸化物の実施の形態は、酸素放出速度が0.05μmol/g・分以上であり、好ましくは0.1μmol/g・分以上である。このペロブスカイト型複合酸化物が、組成式La1−xSrCo1−yFe3−z(0<x<1、0<y<1、0<z<1)で示されるペロブスカイト型複合酸化物であるのが好ましい。 In the embodiment of the perovskite complex oxide according to the present invention, the oxygen release rate is 0.05 μmol / g · min or more, preferably 0.1 μmol / g · min or more. The perovskite-type composite oxide, a perovskite type represented by the composition formula La 1-x Sr x Co 1 -y Fe y O 3-z (0 <x <1,0 <y <1,0 <z <1) A composite oxide is preferred.

以下、本発明によるペロブスカイト型複合酸化物およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the perovskite complex oxide and the manufacturing method thereof according to the present invention will be described in detail.

[実施例1〜3]
硝酸ランタン六水和物(La(NO・6HO)4.47kgと、硝酸ストロンチウム(Sr(NO)1.61kgと、硝酸鉄九水和物(Fe(NO・9HO)5.58kgと、硝酸コバルト六水和物(Co(NO・6HO)1.12kgをそれぞれイオン交換水102.2kgに溶解させ、これらの溶液の濃度を溶解種の合計で約0.20mol/Lとして混合し、硝酸塩の混合溶液Aを作成した。
[Examples 1 to 3]
Lanthanum nitrate hexahydrate (La (NO 3) 3 · 6H 2 O) 4.47kg and strontium nitrate (Sr (NO 3) 2) and 1.61 kg, iron nitrate nonahydrate (Fe (NO 3) and 3 · 9H 2 O) 5.58kg, cobalt nitrate hexahydrate (Co (NO 3) 2 · 6H 2 O) 1.12kg each dissolved in deionized water 102.2Kg, the concentration of these solutions The total dissolved species was mixed as about 0.20 mol / L to prepare a mixed solution A of nitrate.

また、イオン交換水36.6kgと炭酸アンモニウム8.33kgを溶解槽に入れ、攪拌しながら水温を15℃になるよう調整した。この炭酸アンモニウム溶液を、硝酸塩の混合溶液Aに徐々に加えて中和反応を行い、ペロブスカイト型複合酸化物の前駆体を析出させた後、この前駆体を30分間熟成させて反応を完了させた。   Moreover, 36.6 kg of ion-exchanged water and 8.33 kg of ammonium carbonate were placed in a dissolution tank, and the water temperature was adjusted to 15 ° C. while stirring. The ammonium carbonate solution was gradually added to the mixed solution A of nitrate to carry out a neutralization reaction to precipitate a perovskite complex oxide precursor, and then the precursor was aged for 30 minutes to complete the reaction. .

このようにして得られた前駆体を濾過した後に水洗し、得られたウエットケーキを直径5mmの細長い円柱形のペレット状に成形した。この成形後直ぐにペレット状の成形体に空気を通風しながら250℃で2時間加熱して乾燥させ、黒色の乾燥粉末を得た。このようにして得られたペロブスカイト型複合酸化物の前駆体の乾燥粉末について、粉末X線回折法(XRD)による測定を行ったところ、図1の下側の回折線に示すように、非晶質(アモルファス)の結晶構造であった。また、前駆体の乾燥粉末中の水分値をJIS K0068(2001年)のカールフィッシャー滴定法に準拠して測定したところ、4%であった。   The precursor thus obtained was filtered and then washed with water, and the resulting wet cake was formed into an elongated cylindrical pellet having a diameter of 5 mm. Immediately after this molding, the pellet-shaped molded body was dried by heating at 250 ° C. for 2 hours while ventilating air to obtain a black dry powder. The dry powder of the perovskite complex oxide precursor thus obtained was measured by powder X-ray diffraction (XRD). As shown in the lower diffraction line of FIG. It was a quality (amorphous) crystal structure. The moisture value in the dry powder of the precursor was measured according to the Karl Fischer titration method of JIS K0068 (2001) and found to be 4%.

次に、このペロブスカイト型複合酸化物の前駆体の乾燥粉末を大気中においてそれぞれ600℃(実施例1)、800℃(実施例2)、1000℃(実施例3)で2時間焼成した後、乾式粉砕処理を行って、結晶性のペロブスカイト型複合酸化物であるLa0.6Sr0.4Co0.2Fe0.8粉末を得た。なお、実施例3で得られた焼成後のペロブスカイト型複合酸化物について、XRDによる測定を行ったところ、図2および図3の下側の回折線に示すように、LSCFの単一相であった。 Next, the perovskite complex oxide precursor dry powder was calcined at 600 ° C. (Example 1), 800 ° C. (Example 2), and 1000 ° C. (Example 3) for 2 hours in the air, respectively. Dry pulverization treatment was performed to obtain a La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 powder which is a crystalline perovskite complex oxide. The perovskite composite oxide after firing obtained in Example 3 was measured by XRD. As shown in the lower diffraction lines of FIGS. 2 and 3, it was a single phase of LSCF. It was.

また、実施例3で得られたペロブスカイト型複合酸化物20mgを採取して、アルミナ製の測定セル中に装填した後、このセルを示差熱熱重量同時測定装置(TG/DTA測定装置)(セイコーインスツルメンツ株式会社製)にセットして、Nを500mL/分の流量で流しながらN雰囲気中において600℃まで昇温した。温度が安定した後、Nを流すのを止めて600℃に保持したまま、1体積%のHと9体積%のHeと90体積%のNの混合ガスを500mL/分の流量で流しながら複合酸化物の重量減少がなくなるまで還元処理を行った。この還元処理による複合酸化物の重量減少を測定して、重量減少曲線の傾きから酸素放出速度を算出したところ、0.20μmol/g・分であった。 Further, 20 mg of the perovskite complex oxide obtained in Example 3 was collected and loaded into an alumina measurement cell, and this cell was then subjected to a differential thermothermal gravimetric simultaneous measurement device (TG / DTA measurement device) (Seiko). is set to Instruments Co., Ltd.), the temperature was raised to 600 ° C. in N 2 atmosphere under a stream of N 2 at 500 mL / min flow rate. After the temperature is stabilized, the flow of N 2 is stopped and kept at 600 ° C. A mixed gas of 1% by volume H 2 , 9% by volume He and 90% by volume N 2 at a flow rate of 500 mL / min. While flowing, reduction treatment was performed until the weight loss of the composite oxide disappeared. The reduction in the weight of the composite oxide due to this reduction treatment was measured, and the oxygen release rate was calculated from the slope of the weight reduction curve, which was 0.20 μmol / g · min.

また、実施例1〜3で得られたペロブスカイト型複合酸化物について、BET測定装置(カンタクロム社製のMONOSORB)を用いてBET比表面積を測定したところ、それぞれ31.1m/g(実施例1)、16.1m/g(実施例2)、3.6m/g(実施例3)であった。 Moreover, when the BET specific surface area was measured about the perovskite type complex oxide obtained in Examples 1 to 3 using a BET measuring apparatus (MONOSORB manufactured by Cantachrome), 31.1 m 2 / g (Example 1) was obtained. ), 16.1 m 2 / g (Example 2), 3.6 m 2 / g (Example 3).

[比較例1〜3]
ペロブスカイト型複合酸化物の前駆体のウエットケーキを厚さ5mm、幅2〜3cmのブロック状に形成し、150℃で2時間加熱して乾燥した以外は、実施例1と同様の方法により、ペロブスカイト型複合酸化物の前駆体の乾燥粉末を得た。このようにして得られたペロブスカイト型複合酸化物の前駆体の乾燥粉末について、XRDによる測定を行ったところ、アモルファスの回折線(図1の上側の回折線)上に僅かに炭酸Sr(SrCO)のピークが確認された。また、前駆体の乾燥粉末中の水分値を実施例1と同様の方法により測定したところ、5%であった。
[Comparative Examples 1-3]
A perovskite compound oxide was prepared in the same manner as in Example 1 except that the wet cake of the precursor of the perovskite complex oxide was formed into a block shape having a thickness of 5 mm and a width of 2 to 3 cm, and dried by heating at 150 ° C. for 2 hours. A dry powder of a precursor of type complex oxide was obtained. When the dried powder of the perovskite complex oxide precursor obtained in this way was measured by XRD, Sr carbonate (SrCO 3 ) was slightly present on the amorphous diffraction line (the upper diffraction line in FIG. 1). ) Was confirmed. The moisture value in the dry powder of the precursor was measured by the same method as in Example 1 and found to be 5%.

次に、このペロブスカイト型複合酸化物の前駆体の乾燥粉末を大気中においてそれぞれ600℃(比較例1)、800℃(比較例2)、1000℃(比較例3)で2時間焼成した後、乾式粉砕処理を行って、結晶性のペロブスカイト型複合酸化物であるLa0.6Sr0.4Co0.2Fe0.8粉末を得た。なお、比較例3で得られた焼成後のペロブスカイト型複合酸化物について、XRDによる測定を行ったところ、図2および図3の上側の回折線に示すように、LSCFのピークと共に僅かにSrFeOのピークが確認された。 Next, after the dried powder of the perovskite complex oxide precursor was baked at 600 ° C. (Comparative Example 1), 800 ° C. (Comparative Example 2), and 1000 ° C. (Comparative Example 3) for 2 hours in the air, Dry pulverization treatment was performed to obtain a La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 powder which is a crystalline perovskite complex oxide. The perovskite composite oxide after firing obtained in Comparative Example 3 was measured by XRD. As shown in the upper diffraction lines of FIGS. 2 and 3, SrFeO 3 was slightly added together with the LSCF peak. The peak of was confirmed.

また、比較例3で得られたペロブスカイト型複合酸化物について、実施例1と同様の方法により酸素放出速度を算出したところ、0.03μmol/g・分であった。   Further, the oxygen release rate of the perovskite complex oxide obtained in Comparative Example 3 was calculated by the same method as in Example 1. As a result, it was 0.03 μmol / g · min.

また、比較例1〜3で得られたペロブスカイト型複合酸化物について、実施例1と同様の方法によりBET比表面積を測定したところ、それぞれ39.7m/g(比較例1)、16.2m/g(比較例2)、3.6m/g(比較例3)であった。 Moreover, when the BET specific surface area was measured by the method similar to Example 1 about the perovskite type complex oxide obtained in Comparative Examples 1-3, it was 39.7 m < 2 > / g (Comparative Example 1) and 16.2 m, respectively. 2 / g (Comparative Example 2) and 3.6 m 2 / g (Comparative Example 3).

[比較例4〜6]
ペロブスカイト型複合酸化物の前駆体のウエットケーキを80℃で24時間加熱して乾燥した以外は、実施例1と同様の方法により、ペロブスカイト型複合酸化物の前駆体の薄赤色の乾燥粉末を得た。このようにして得られたペロブスカイト型複合酸化物の前駆体の乾燥粉末について、XRDによる測定を行ったところ、アモルファスの回折線(図1の上側の回折線)上に僅かに炭酸Sr(SrCO)のピークが確認された。また、前駆体の乾燥粉末中の水分値を実施例1と同様の方法により測定したところ、4%であった。
[Comparative Examples 4 to 6]
A pale red dry powder of the perovskite complex oxide precursor was obtained in the same manner as in Example 1 except that the wet cake of the perovskite complex oxide precursor was dried by heating at 80 ° C. for 24 hours. It was. When the dried powder of the perovskite complex oxide precursor obtained in this way was measured by XRD, Sr carbonate (SrCO 3 ) was slightly present on the amorphous diffraction line (the upper diffraction line in FIG. 1). ) Was confirmed. The moisture value in the precursor dry powder was measured by the same method as in Example 1 and found to be 4%.

次に、このペロブスカイト型複合酸化物の前駆体の乾燥粉末を大気中においてそれぞれ600℃(比較例4)、800℃(比較例5)、1000℃(比較例6)で2時間焼成した後、乾式粉砕処理を行って、結晶性のペロブスカイト型複合酸化物であるLa0.6Sr0.4Co0.2Fe0.8粉末を得た。 Next, after the dried powder of the perovskite complex oxide precursor was baked at 600 ° C. (Comparative Example 4), 800 ° C. (Comparative Example 5), and 1000 ° C. (Comparative Example 6) for 2 hours in the air, Dry pulverization treatment was performed to obtain a La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 powder which is a crystalline perovskite complex oxide.

また、比較例5〜6で得られたペロブスカイト型複合酸化物について、実施例1と同様の方法によりBET比表面積を測定したところ、それぞれ17.1m/g(比較例5)、3.9m/g(比較例6)であった。 Moreover, when the BET specific surface area was measured by the method similar to Example 1 about the perovskite type complex oxide obtained in Comparative Examples 5-6, it was 17.1 m < 2 > / g (Comparative Example 5) and 3.9 m, respectively. 2 / g (Comparative Example 6).

[比較例7〜8]
酸化ランタン(La)2.13kgと、四酸化三コバルト(Co)0.36kgと、三酸化二鉄(Fe)1.41gと、炭酸ストロンチウム(SrCO)1.44gとを原料としてサンプルミルで2分間粉砕して混合し、混合粉末を得た。この混合粉末についてXRD測定したところ、各原料の結晶構造が重なった回折線が得られた。
[Comparative Examples 7-8]
Lanthanum oxide (La 2 O 3 ) 2.13 kg, tricobalt tetroxide (Co 3 O 4 ) 0.36 kg, diiron trioxide (Fe 2 O 3 ) 1.41 g, strontium carbonate (SrCO 3 ) 1 .44 g as a raw material was pulverized for 2 minutes in a sample mill and mixed to obtain a mixed powder. When this mixed powder was measured by XRD, diffraction lines in which the crystal structures of the respective raw materials overlapped were obtained.

次に、この混合粉末を大気中においてそれぞれ800℃(比較例7)、1000℃(比較例8)で2時間焼成した後、乾式粉砕処理を行って、複合酸化物を得た。この複合酸化物について、XRDによる測定を行ったところ、不純物ピークと共に結晶性のペロブスカイト型複合酸化物La0.6Sr0.4Co0.2Fe0.8のピークが確認された。 Next, this mixed powder was fired at 800 ° C. (Comparative Example 7) and 1000 ° C. (Comparative Example 8) for 2 hours in the air, and then subjected to dry pulverization treatment to obtain a composite oxide. When this composite oxide was measured by XRD, the peak of the crystalline perovskite complex oxide La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 was confirmed together with the impurity peak.

また、比較例8で得られたペロブスカイト型複合酸化物について、実施例1と同様の方法により酸素放出速度を算出したところ、0.02μmol/g・分であった。   Further, with respect to the perovskite complex oxide obtained in Comparative Example 8, the oxygen release rate was calculated by the same method as in Example 1. As a result, it was 0.02 μmol / g · min.

また、比較例7〜8で得られたペロブスカイト型複合酸化物について、実施例1と同様の方法によりBET比表面積を測定したところ、それぞれ4.5m/g(比較例7)、1.8m/g(比較例8)であった。 Moreover, when the BET specific surface area was measured by the method similar to Example 1 about the perovskite type complex oxide obtained in Comparative Examples 7-8, it was 4.5 m < 2 > / g (Comparative Example 7) and 1.8 m, respectively. 2 / g (Comparative Example 8).

これらの実施例および比較例のペロブスカイト型複合酸化物の製造条件および特性を表1および表2に示す。   Tables 1 and 2 show the production conditions and characteristics of the perovskite complex oxides of these examples and comparative examples.

Figure 2014162703
Figure 2014162703

Figure 2014162703
Figure 2014162703

ペロブスカイト型複合酸化物の前駆体を1000℃より高い温度で焼成すると、ペロブスカイト型複合酸化物のXRD測定において単一相になる。表1および表2からわかるように、比較例1〜8のペロブスカイト型複合酸化物の前駆体を600〜1000℃の低い温度で焼成すると、複数相になるか、ほぼ単一相になっても(図2および図3の上側の回折線に示すようにペロブスカイト型複合酸化物La0.6Sr0.4Co0.2Fe0.8の主相ピークに対して2%以上の強度比のSrFeO相のピークが不純物相として確認され、)僅かにSrFeOを含んでいるが、実施例1〜3のペロブスカイト型複合酸化物の前駆体のように、粉末X線回折法による回折線上に不純物のピークを含まない非晶質(アモルファス)の結晶構造の前駆体を600〜1000℃の低い温度で焼成すると(ペロブスカイト型複合酸化物La0.6Sr0.4Co0.2Fe0.8の主相ピークに対する不純物相のピークの強度比が2%未満の)単一相になる。 When the precursor of the perovskite complex oxide is fired at a temperature higher than 1000 ° C., a single phase is obtained in the XRD measurement of the perovskite complex oxide. As can be seen from Tables 1 and 2, when the precursors of the perovskite complex oxides of Comparative Examples 1 to 8 are fired at a low temperature of 600 to 1000 ° C., even if they become multiple phases or almost single phases (Intensity of 2% or more with respect to the main phase peak of the perovskite complex oxide La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 as shown by the upper diffraction lines in FIGS. The SrFeO 3 phase peak of the ratio is confirmed as an impurity phase), and slightly contains SrFeO 3 , but diffraction by the powder X-ray diffraction method like the perovskite complex oxide precursors of Examples 1 to 3 When a precursor having an amorphous crystal structure that does not contain an impurity peak on a line is fired at a low temperature of 600 to 1000 ° C. (perovskite complex oxide La 0.6 Sr 0.4 Co 0.2 Fe 0. Peak intensity ratio of the impurity phase to the main phase peak of O 3 is less than 2%) into a single phase.

表2からわかるように、実施例3のペロブスカイト型複合酸化物は、比較例3および8のペロブスカイト型複合酸化物に比べて、酸素放出速度が極めて速く(Oのモビリティーが高く)、固体酸化物型燃料電池の空気極に使用する酸化物イオン伝導物質として有効である。 As can be seen from Table 2, the perovskite complex oxide of Example 3 has an extremely high oxygen release rate (higher O 2 mobility) than the perovskite complex oxides of Comparative Examples 3 and 8, and solid oxidation. It is effective as an oxide ion conductive material used in the air electrode of a physical fuel cell.

また、固体酸素の放出は粒子表面で進行するため、粒子内部(バルク)の酸素は、結晶構造の欠陥を通って表面まで移動する必要があるが、実施例1〜3のLa1−xSrCo1−yFe3−zの(LSCF)系のペロブスカイト型複合酸化物は、完全酸素放出時間が短いため、バルク内の酸化物イオンの移動がスムーズに進行できる材料であると考えられる。 Further, since the release of solid oxygen proceeds on the particle surface, oxygen inside the particle (bulk) needs to move to the surface through defects in the crystal structure, but La 1-x Sr in Examples 1-3. The (LSCF) -based perovskite complex oxide of x Co 1-y Fe y O 3-z is considered to be a material in which the movement of oxide ions in the bulk can proceed smoothly because the complete oxygen release time is short. It is done.

また、バルク内の酸化物イオンの移動は、ペロブスカイト構造の組成の均一性に影響を受けると考えられるため、実施例1〜3のLSCFは、組成の均一性が高いと考えられる。   Moreover, since the movement of oxide ions in the bulk is considered to be influenced by the uniformity of the composition of the perovskite structure, the LSCFs of Examples 1 to 3 are considered to have high composition uniformity.

さらに、実施例3のペロブスカイト型複合酸化物は、比較例3および8のペロブスカイト型複合酸化物と比較すると、同程度の比表面積でも酸素放出速度が非常に高くなっているので、より均一な組成によって酸素移動度が高くなると考えられる。   Furthermore, the perovskite complex oxide of Example 3 has a more uniform composition because the oxygen release rate is very high even at a specific surface area comparable to that of Comparative Examples 3 and 8, compared with the perovskite complex oxides of Comparative Examples 3 and 8. It is considered that the oxygen mobility increases.

本発明によるペロブスカイト型複合酸化物は、均一な組成で酸素放出速度が極めて速く、固体酸化物型燃料電池の空気極の材料として使用することができる。   The perovskite complex oxide according to the present invention has a uniform composition and an extremely high oxygen release rate, and can be used as a material for an air electrode of a solid oxide fuel cell.

Claims (10)

ペロブスカイト型複合酸化物の出発原料を湿式混合した後、ペロブスカイト型複合酸化物の前駆体を析出させ、この前駆体を乾燥させて得られた粉末X線回折法による回折線上に不純物のピークを含まない非晶質のペロブスカイト型複合酸化物の前駆体の乾燥粉末を焼成することを特徴とする、ペロブスカイト型複合酸化物の製造方法。 After wet mixing the starting material of the perovskite type complex oxide, the precursor of the perovskite type complex oxide is precipitated, and the precursor is dried, and the impurity peak is included on the diffraction line obtained by the powder X-ray diffraction method. A method for producing a perovskite complex oxide, comprising firing a dry powder of a non-amorphous perovskite complex oxide precursor. 前記ペロブスカイト型複合酸化物が、組成式La1−xSrCo1−yFe3−z(0<x<1、0<y<1、0<z<1)で示されるペロブスカイト型複合酸化物であることを特徴とする、請求項1に記載のペロブスカイト型複合酸化物の製造方法。 The perovskite-type composite oxide, a perovskite type represented by the composition formula La 1-x Sr x Co 1 -y Fe y O 3-z (0 <x <1,0 <y <1,0 <z <1) 2. The method for producing a perovskite complex oxide according to claim 1, wherein the perovskite complex oxide is a complex oxide. 前記出発原料が、ランタン(La)とストロンチウム(Sr)とコバルト(Co)と鉄(Fe)の各々の硝酸塩であることを特徴とする、請求項2に記載のペロブスカイト型複合酸化物の製造方法。 3. The method for producing a perovskite complex oxide according to claim 2, wherein the starting material is a nitrate of each of lanthanum (La), strontium (Sr), cobalt (Co), and iron (Fe). . 前記ペロブスカイト型複合酸化物の前駆体の析出が、前記ペロブスカイト型複合酸化物の出発原料を湿式混合して得られた混合溶液を中和することによって行われることを特徴とする、請求項3に記載のペロブスカイト型複合酸化物の製造方法。 The precipitation of the perovskite complex oxide precursor is performed by neutralizing a mixed solution obtained by wet mixing the starting material of the perovskite complex oxide. The manufacturing method of perovskite type complex oxide as described. 前記ペロブスカイト型複合酸化物の前駆体を析出させた後、乾燥させる前に、前記ペロブスカイト型複合酸化物の前駆体のウエットケーキを得て、このウエットケーキをペレット状に成形することを特徴とする、請求項1乃至4のいずれかに記載のペロブスカイト型複合酸化物の製造方法。 After depositing the perovskite-type composite oxide precursor and before drying, obtain a wet cake of the perovskite-type composite oxide precursor, and shape the wet cake into pellets. A method for producing a perovskite complex oxide according to any one of claims 1 to 4. 前記ペロブスカイト型複合酸化物の前駆体の乾燥が、前記ペロブスカイト型複合酸化物の前駆体のウエットケーキのペレット状の成形体を200〜400℃で1〜3時間乾燥させることによって行われることを特徴とする、請求項5に記載のペロブスカイト型複合酸化物の製造方法。 The drying of the perovskite complex oxide precursor is performed by drying the pellet-shaped compact of the perovskite complex oxide precursor at 200 to 400 ° C. for 1 to 3 hours. The method for producing a perovskite complex oxide according to claim 5. 前記ペロブスカイト型複合酸化物の前駆体の乾燥粉末の水分値が5%以下であることを特徴とする、請求項1乃至6のいずれかに記載のペロブスカイト型複合酸化物の製造方法。 The method for producing a perovskite complex oxide according to any one of claims 1 to 6, wherein the moisture value of the dry powder of the precursor of the perovskite complex oxide is 5% or less. 前記ペロブスカイト型複合酸化物の前駆体の乾燥粉末の焼成が、前記ペロブスカイト型複合酸化物の前駆体の乾燥粉末を600〜1000℃で焼成することによって行われることを特徴とする、請求項1乃至7のいずれかに記載のペロブスカイト型複合酸化物の製造方法。 The dry powder of the perovskite-type composite oxide precursor is fired by baking the dry powder of the perovskite-type composite oxide precursor at 600 to 1000 ° C. 8. A method for producing a perovskite complex oxide according to any one of 7 above. 酸素放出速度が0.05μmol/g・分以上であることを特徴とする、ペロブスカイト型複合酸化物。 A perovskite complex oxide characterized by having an oxygen release rate of 0.05 μmol / g · min or more. 前記ペロブスカイト型複合酸化物が、組成式La1−xSrCo1−yFe3−z(0<x<1、0<y<1、0<z<1)で示されるペロブスカイト型複合酸化物であることを特徴とする、請求項9に記載のペロブスカイト型複合酸化物。 The perovskite-type composite oxide, a perovskite type represented by the composition formula La 1-x Sr x Co 1 -y Fe y O 3-z (0 <x <1,0 <y <1,0 <z <1) The perovskite complex oxide according to claim 9, which is a complex oxide.
JP2013037456A 2013-02-27 2013-02-27 Perovskite complex oxide and method for producing the same Active JP6181940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013037456A JP6181940B2 (en) 2013-02-27 2013-02-27 Perovskite complex oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037456A JP6181940B2 (en) 2013-02-27 2013-02-27 Perovskite complex oxide and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017106095A Division JP6353122B2 (en) 2017-05-30 2017-05-30 Perovskite complex oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014162703A true JP2014162703A (en) 2014-09-08
JP6181940B2 JP6181940B2 (en) 2017-08-16

Family

ID=51613643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037456A Active JP6181940B2 (en) 2013-02-27 2013-02-27 Perovskite complex oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP6181940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661144A (en) * 2019-03-25 2021-11-16 堺化学工业株式会社 Metal composite oxide, method for producing same, and electrode for solid oxide fuel cell

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502180A (en) * 1987-11-17 1990-07-19 フェバ・エール・アクチェンゲゼルシャフト Metal oxide powders, mixtures thereof, metal mixed oxide powders, mixtures thereof and their use in the catalytic dehydrogenation of hydrocarbons
JPH054044A (en) * 1990-10-29 1993-01-14 Osaka Gas Co Ltd Treatment of oxygen-containing gas and treating material for oxygen-containing gas used for this method
JP2000302445A (en) * 1999-04-19 2000-10-31 Toda Kogyo Corp Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JP2003117362A (en) * 2001-10-16 2003-04-22 Taiheiyo Cement Corp Oxygen separating apparatus
US20040247511A1 (en) * 2003-03-28 2004-12-09 Shuichi Mafune Method of producing perovskite complex oxide and precursor substance used in the method
JP2005187311A (en) * 2003-03-28 2005-07-14 Dowa Mining Co Ltd Method of producing perovskite compound oxide and precursor substance used in the method
JP2005216774A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Hydrogen supplying device of fuel cell for working machine
JP2012138256A (en) * 2010-12-27 2012-07-19 Agc Seimi Chemical Co Ltd Air electrode material powder for solid oxide type fuel battery, and method of manufacturing the same
WO2013094516A1 (en) * 2011-12-19 2013-06-27 日本碍子株式会社 Solid oxide fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502180A (en) * 1987-11-17 1990-07-19 フェバ・エール・アクチェンゲゼルシャフト Metal oxide powders, mixtures thereof, metal mixed oxide powders, mixtures thereof and their use in the catalytic dehydrogenation of hydrocarbons
JPH054044A (en) * 1990-10-29 1993-01-14 Osaka Gas Co Ltd Treatment of oxygen-containing gas and treating material for oxygen-containing gas used for this method
JP2000302445A (en) * 1999-04-19 2000-10-31 Toda Kogyo Corp Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JP2003117362A (en) * 2001-10-16 2003-04-22 Taiheiyo Cement Corp Oxygen separating apparatus
US20040247511A1 (en) * 2003-03-28 2004-12-09 Shuichi Mafune Method of producing perovskite complex oxide and precursor substance used in the method
JP2005187311A (en) * 2003-03-28 2005-07-14 Dowa Mining Co Ltd Method of producing perovskite compound oxide and precursor substance used in the method
JP2005216774A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Hydrogen supplying device of fuel cell for working machine
JP2012138256A (en) * 2010-12-27 2012-07-19 Agc Seimi Chemical Co Ltd Air electrode material powder for solid oxide type fuel battery, and method of manufacturing the same
WO2013094516A1 (en) * 2011-12-19 2013-06-27 日本碍子株式会社 Solid oxide fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661144A (en) * 2019-03-25 2021-11-16 堺化学工业株式会社 Metal composite oxide, method for producing same, and electrode for solid oxide fuel cell
CN113661144B (en) * 2019-03-25 2023-11-07 堺化学工业株式会社 Metal composite oxide, method for producing same, and electrode for solid oxide fuel cell

Also Published As

Publication number Publication date
JP6181940B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
Patra et al. Effect of process parameters on combined EDTA–citrate synthesis of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ perovskite
Spiridigliozzi et al. Engineered co-precipitation chemistry with ammonium carbonate for scalable synthesis and sintering of improved Sm0. 2Ce0. 8O1. 90 and Gd0. 16Pr0. 04Ce0. 8O1. 90 electrolytes for IT-SOFCs
JP6181941B2 (en) Perovskite complex oxide precursor powder and method for producing the same
JP6161467B2 (en) Composite oxide powder for solid oxide fuel cell and method for producing the same
AU2006201026B2 (en) An improved process for the manufacture of strontium doped lanthanum manganite (LSM) ceramic powder suitable for solid oxide fuel cell (SOFC) applications
JP6916398B2 (en) Ceramic powder material, manufacturing method of ceramic powder material, and battery
JP2012138256A (en) Air electrode material powder for solid oxide type fuel battery, and method of manufacturing the same
Nityanand et al. Synthesis and physicochemical characterization of nanocrystalline cobalt doped lanthanum strontium ferrite
JP7201446B2 (en) composite oxide powder
Radhika et al. Chemical precipitation and characterization of multicomponent Perovskite oxide nanoparticles-possible cathode materials for low temperature solid oxide fuel cell
JP2003530291A (en) Compounds derived from La2Mo2O9 and their use as ionic conductors
JP2011190148A (en) Composite ceramic powder and method for producing the same, and solid oxide fuel cell
JP6181940B2 (en) Perovskite complex oxide and method for producing the same
da Silva et al. Synthesis of Sr-doped LaCrO 3 powders by combustion method: Influence of the fuel agent
JP5543297B2 (en) Air electrode material powder for solid oxide fuel cell and method for producing the same
JP6353122B2 (en) Perovskite complex oxide and method for producing the same
da Côrte et al. Structural and electrical properties of La0. 7Sr0. 3Co0. 5Fe0. 5O3 powders synthesized by solid state reaction
Arias-Serrano et al. Oxygen-Deficient Nd0. 8Sr1. 2Ni0. 8M0. 2O4-δ (M= Ni, Co, Fe) nickelates as oxygen electrode materials for SOFC/SOEC
JP2020155270A (en) Powder for solid oxide fuel cell air electrode, and method for manufacturing the same
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics
KR102494705B1 (en) complex oxide powder
Augustin et al. Combustion synthesis of ABO3 and AB2O4 compounds-an overview
JP2018162176A (en) Perovskite composite oxide powder and manufacturing method therefor
JP2006012764A (en) Material for electrode of solid electrolyte type fuel cell and electrode
JP4873291B2 (en) Method for producing high-strength oxide ion conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170721

R150 Certificate of patent or registration of utility model

Ref document number: 6181940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250