JP2014158373A - Vibration actuator - Google Patents

Vibration actuator Download PDF

Info

Publication number
JP2014158373A
JP2014158373A JP2013028298A JP2013028298A JP2014158373A JP 2014158373 A JP2014158373 A JP 2014158373A JP 2013028298 A JP2013028298 A JP 2013028298A JP 2013028298 A JP2013028298 A JP 2013028298A JP 2014158373 A JP2014158373 A JP 2014158373A
Authority
JP
Japan
Prior art keywords
vibration
movable shaft
vibration actuator
piezoelectric
cylindrical tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013028298A
Other languages
Japanese (ja)
Inventor
Tokukazu Sato
徳和 佐藤
Tomoyuki Kugo
智之 久郷
Takafumi Asada
隆文 淺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2013028298A priority Critical patent/JP2014158373A/en
Publication of JP2014158373A publication Critical patent/JP2014158373A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration actuator capable of obtaining a sufficient driving force.SOLUTION: In a vibration actuator, a movable shaft is moved by vibrations. The vibration actuator includes: the movable shaft 50; multiple oscillatory members 60 which are supported so as to contact with an outer peripheral surface of the movable shaft 50 and be separated in a circumferential direction; and piezoelectric elements 71 respectively fixed to outer surfaces of the oscillatory members 60. The movable shaft 50 is moved by vibrations of the oscillatory members 60 which are caused when the piezoelectric elements 71 are energized.

Description

本発明は、圧電素子(電歪素子を含む)の振動により可動軸に運動を与えるようにした振動アクチュエータに関するものである。   The present invention relates to a vibration actuator that imparts motion to a movable shaft by vibration of a piezoelectric element (including an electrostrictive element).

近年、医療機器の進歩は急速であり、特に内視鏡による低侵襲手術システム(例えば米国インテュイティヴ・サージカル社のda Vinci Surgical System)や各種内視鏡下治療器の先端に取り付けられるマイクロハンド等は、従来、ワイヤーを人手で引張る機構を用いていたが、近年では、機構的バックラッシュを抑制してより微細で高精度な動きを可能にする観点等から、電動式の機構に置き換えられようとしている。
そして、前記電動式の機構としては、電磁モータ式,圧電モータ式,形状記憶合金式等が提案されるが、特に内視鏡用としては、小径でも大きな駆動力が得られる等の点から、圧電素子(電歪素子を含む)の振動により可動軸を駆動する振動式アクチュエータが好ましい。
例えば、特許文献1には、内周面に雌ネジ部を有する一体環状の振動リング(1b)と、該振動リング内に螺合挿入された移動体(3)と、振動リング(1b)に固着された圧電セラミック(1a)とを備え、圧電セラミック(1a)への通電により、一体環状の振動リング(1b)を振動させ、この振動により前記移動体(3)を運動させるようにした発明が開示されている。
また、特許文献2には、一体ナット状の素子(37)と、該素子(37)にクリアランスを介して螺合挿入されたネジ付シャフト(12)と、前記一体ナット状の素子の外周面に固定された圧電層を有する部材(45)とを備え、前記圧電層に通電し、一体ナット状の素子(37)に回転振動を与えることで、ネジ付シャフト(12)を回転させると同時に軸方向に運動させるようにした発明が開示されている。
また、特許文献3には、Fig.6Bに示すように、C字状の可動ジョーエレメント(60,61)の内面(60a,61a)にねじを有し、これら可動ジョーエレメント(60,61)により保持される円筒状エレメントを、圧電エレメント(51’)の振動により回転させるようにした発明が開示されている。
In recent years, the progress of medical devices has been rapid, and in particular, minimally invasive surgery systems using endoscopes (for example, da Vinci Surgical System of Intuitive Surgical, USA) and microhands attached to the tips of various endoscopic treatment devices Conventionally, a mechanism for manually pulling the wire has been used, but in recent years, from the viewpoint of enabling finer and more accurate movement by suppressing mechanical backlash, etc., it is going to be replaced with an electric mechanism Yes.
And, as the electric mechanism, an electromagnetic motor type, a piezoelectric motor type, a shape memory alloy type, etc. are proposed. Especially for endoscopes, a large driving force can be obtained even with a small diameter. A vibration actuator that drives the movable shaft by vibration of a piezoelectric element (including an electrostrictive element) is preferable.
For example, Patent Document 1 discloses an integral annular vibration ring (1b) having an internal thread portion on an inner peripheral surface, a moving body (3) screwed into the vibration ring, and a vibration ring (1b). An invention comprising a fixed piezoelectric ceramic (1a), and energizing the piezoelectric ceramic (1a) to vibrate an integral annular vibrating ring (1b) and to move the movable body (3) by this vibration. Is disclosed.
Patent Document 2 discloses an integral nut-shaped element (37), a threaded shaft (12) screwed into the element (37) through a clearance, and an outer peripheral surface of the integral nut-shaped element. At the same time as rotating the threaded shaft (12) by energizing the piezoelectric layer and applying rotational vibration to the integral nut-like element (37). An invention is disclosed which is moved in the axial direction.
Further, in Patent Document 3, as shown in FIG. 6B, there are screws on the inner surfaces (60a, 61a) of the C-shaped movable jaw elements (60, 61), and these movable jaw elements (60, 61). An invention is disclosed in which the cylindrical element held by is rotated by the vibration of the piezoelectric element (51 ′).

しかしながら、特許文献1及び2に記載の発明では、前記圧電セラミック(又は圧電層)の振動を一体環状でナット状の振動リング等に伝達する構造や、前記振動リング等の内周面の雌ネジ部とネジ付シャフトの雄ネジ部との間に隙間を有する構造等に起因して、その振動の伝達効率が低く、十分な駆動力が得られないおそれがある。
また、特許文献3に記載の発明では、略C字状の可動ジョーエレメント(60,61)が基端側に接続された一体形状であるため、この可動ジョーエレメント(60,61)が十分に振動せずに、必要な駆動力が得られないおそれがある。また、可動ジョーエレメント(60,61)が径方向へ長尺に形成されているため、内視鏡チューブ内への装着性も懸念される。
However, in the inventions described in Patent Documents 1 and 2, a structure for transmitting the vibration of the piezoelectric ceramic (or piezoelectric layer) to an integral annular nut-shaped vibration ring or the like, or a female screw on the inner peripheral surface of the vibration ring or the like Due to the structure having a gap between the portion and the male thread portion of the threaded shaft, the vibration transmission efficiency is low, and a sufficient driving force may not be obtained.
Further, in the invention described in Patent Document 3, since the substantially C-shaped movable jaw element (60, 61) has an integral shape connected to the base end side, the movable jaw element (60, 61) is sufficiently provided. There is a possibility that a necessary driving force cannot be obtained without vibration. Moreover, since the movable jaw element (60, 61) is formed in a long shape in the radial direction, there is a concern about the mounting property in the endoscope tube.

特開昭62−225182号公報JP-A-62-225182 米国特許7309943 B2US Pat. No. 7,309,943 B2 米国特許5410206(A)US Pat. No. 5,410,206 (A)

本発明は上記従来事情に鑑みてなされたものであり、その課題とする処は、十分な駆動力を得ることができる振動アクチュエータを提供することにある。   The present invention has been made in view of the above-described conventional circumstances, and a problem to be solved by the invention is to provide a vibration actuator capable of obtaining a sufficient driving force.

上記課題を解決するための一手段は、振動により可動軸が運動する振動アクチュエータにおいて、前記可動軸と、前記可動軸の外周面に接触するとともに周方向に分離するように支持された複数の可振部材と、前記可振部材の外面に固定された圧電素子とを備え、前記圧電素子に通電した際の前記可振部材の振動により前記可動軸を運動させるようにしたことを特徴とする。   One means for solving the above problem is that in a vibration actuator in which a movable shaft moves by vibration, a plurality of possible actuators supported so as to be in contact with the movable shaft and an outer peripheral surface of the movable shaft and to be separated in a circumferential direction. It has a vibrating member and a piezoelectric element fixed to the outer surface of the vibrating member, and the movable shaft is moved by the vibration of the vibrating member when the piezoelectric element is energized.

本発明は、以上説明したように構成されているので、十分な駆動力を得ることができる。   Since the present invention is configured as described above, a sufficient driving force can be obtained.

振動アクチュエータの一例を示す斜視図である。It is a perspective view which shows an example of a vibration actuator. 同振動アクチュエータの内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the vibration actuator. 可振部材の一例を示す斜視図である。It is a perspective view which shows an example of a vibration member. 同振動アクチュエータの横断面図である。It is a cross-sectional view of the vibration actuator. 振動アクチュエータの他例を示す横断面図である。It is a cross-sectional view showing another example of the vibration actuator. 振動アクチュエータの他例を示す横断面図である。It is a cross-sectional view showing another example of the vibration actuator. 振動アクチュエータの他例を示す横断面図である。It is a cross-sectional view showing another example of the vibration actuator. 圧電素子の他の配設態様を示す斜視図である。It is a perspective view which shows the other arrangement | positioning aspect of a piezoelectric element. 可動軸の他例を示す斜視図である。It is a perspective view which shows the other example of a movable shaft. 可振部材の他例を示す斜視図である。It is a perspective view which shows the other example of a vibration member. 振動アクチュエータの他例を示す斜視図である。It is a perspective view which shows the other example of a vibration actuator. 図11の振動アクチュエータの内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the vibration actuator of FIG. 図11の振動アクチュエータの横断面図である。It is a cross-sectional view of the vibration actuator of FIG. 図11の振動アクチュエータについて、動作原理を示す模式図である。FIG. 12 is a schematic diagram illustrating an operation principle of the vibration actuator of FIG. 11. 図11の振動アクチュエータについて、動作原理を示す模式図である。FIG. 12 is a schematic diagram illustrating an operation principle of the vibration actuator of FIG. 11. 図11の振動アクチュエータを円筒状チューブ内に装着した状態を示す横断面図である。FIG. 12 is a transverse sectional view showing a state where the vibration actuator of FIG. 11 is mounted in a cylindrical tube. 振動アクチュエータの他例を円筒状チューブ内に装着した状態を示す横断面図である。It is a cross-sectional view which shows the state with which the other example of the vibration actuator was mounted | worn in the cylindrical tube. 振動アクチュエータの他例を円筒状チューブ内に装着した状態を示す横断面図である。It is a cross-sectional view which shows the state with which the other example of the vibration actuator was mounted | worn in the cylindrical tube. 振動アクチュエータの一応用例を示す内部構造図である。It is an internal structure figure which shows one application example of a vibration actuator. 振動アクチュエータの他の応用例を示す内部構造図であり、一端側を一方へ曲げた状態を示す。It is an internal structure figure which shows the other application example of a vibration actuator, and shows the state which bent the one end side to one side. 振動アクチュエータの他の応用例を示す内部構造図であり、一端側を他方へ曲げた状態を示す。It is an internal structure figure which shows the other application example of a vibration actuator, and shows the state which bent the one end side to the other.

本実施の形態の振動アクチュエータの第一の特徴は、振動により可動軸が運動する振動アクチュエータにおいて、前記可動軸と、前記可動軸の外周面に接触するとともに周方向に分離するように支持された複数の可振部材と、前記可振部材の外面に固定された圧電素子とを備え、前記圧電素子に通電した際の前記可振部材の振動により前記可動軸を運動させるようにした(図1〜図18参照)。
この構成によれば、可振部材と可動軸の間の隙間によって振動の伝達効率が低下するのを防ぐことができる上、複数の可振部材をそれぞれ独立して効率的に振動させることができる。よって、振動の伝達効率を向上することができ、その結果、例えば、内視鏡等のチューブに挿入できるように極細(例えば2mm以下)な構成とした場合でも、可動軸による駆動力を十分に得ることができる。
The first feature of the vibration actuator of the present embodiment is that the vibration actuator in which the movable shaft moves by vibration is supported so as to be in contact with the movable shaft and the outer peripheral surface of the movable shaft and to be separated in the circumferential direction. The movable shaft includes a plurality of vibration members and a piezoelectric element fixed to the outer surface of the vibration member, and the movable shaft is moved by the vibration of the vibration member when the piezoelectric element is energized (FIG. 1). To FIG. 18).
According to this configuration, it is possible to prevent the vibration transmission efficiency from being lowered due to the gap between the vibration member and the movable shaft, and it is possible to efficiently vibrate a plurality of vibration members independently. . Therefore, the transmission efficiency of vibration can be improved, and as a result, even when an extremely fine configuration (for example, 2 mm or less) is adopted so that it can be inserted into a tube such as an endoscope, the driving force by the movable shaft is sufficiently obtained. Can be obtained.

第二の特徴は、前記可振部材及び前記圧電素子を、周方向に三つ以上並べ設け、これら三つ以上の前記圧電素子に順次に通電した際の前記可振部材の振動により前記可動軸が回転するようにした(図5,図7及び図11〜18参照)。
この構成によれば、三つ以上の圧電素子に順次に通電することで、可動軸を効率的に回転運動させることができる。
The second feature is that the movable member and the piezoelectric element are arranged in three or more in the circumferential direction, and the movable shaft is vibrated by vibration of the vibrating member when the three or more piezoelectric elements are sequentially energized. Was rotated (see FIGS. 5, 7 and 11 to 18).
According to this configuration, the movable shaft can be efficiently rotated by energizing three or more piezoelectric elements sequentially.

第三の特徴は、前記可動軸の外周面に、雄ネジ部を形成し、前記可振部材の各々の内周面に、前記雄ネジ部に螺合する雌ネジ部を形成し、前記三つ以上の圧電素子に順次に通電した際の前記可振部材の振動により前記可動軸が回転しながら軸方向へ直進するようにした(図11〜18参照)。
この構成によれば、三組以上の圧電素子に順次に通電することで、可動軸を効率的に回転させながら直進させることができる。
A third feature is that a male screw portion is formed on the outer peripheral surface of the movable shaft, and a female screw portion that is screwed to the male screw portion is formed on each inner peripheral surface of the vibration member. The movable shaft rotates straightly in the axial direction due to the vibration of the vibrating member when one or more piezoelectric elements are sequentially energized (see FIGS. 11 to 18).
According to this configuration, by sequentially energizing three or more sets of piezoelectric elements, the movable shaft can be moved straight while being efficiently rotated.

第四の特徴は、円筒状チューブに挿入された場合に該円筒状チューブの内周面から離隔するように、前記可振部材の外周側に前記圧電素子を配置した(図4〜7及び図6〜8参照)。
この構成によれば、円筒状チューブに挿入された場合に、圧電素子が、円筒状チューブの内周面から離隔するため、圧電素子の振動が円筒状チューブにより抑制されてしまうのを防ぐことができる。
The fourth feature is that the piezoelectric element is arranged on the outer peripheral side of the vibration member so as to be separated from the inner peripheral surface of the cylindrical tube when inserted into the cylindrical tube (FIGS. 4 to 7 and FIG. 6-8).
According to this configuration, since the piezoelectric element is separated from the inner peripheral surface of the cylindrical tube when inserted into the cylindrical tube, it is possible to prevent the vibration of the piezoelectric element from being suppressed by the cylindrical tube. it can.

第五の特徴は、円筒状チューブに挿入された場合に前記円筒状チューブの内周面と前記可振部材の間に位置するように、前記圧電素子の給電配線を設けた(図4〜7及び図6〜8参照)。
この構成によれば、圧電素子の給電配線をコンパクトな構成にすることができ、当該振動アクチュエータを円筒状チューブに挿入した際の収納性が良好である。
A fifth feature is that the piezoelectric element power supply wiring is provided so as to be positioned between the inner peripheral surface of the cylindrical tube and the vibrating member when inserted into the cylindrical tube (FIGS. 4 to 7). And see FIGS.
According to this configuration, the power supply wiring of the piezoelectric element can be made compact, and the storage property when the vibration actuator is inserted into the cylindrical tube is good.

また、特に好ましい形態としては、前記可振部材を径内方向へ付勢して前記可動軸の外周面に押し付ける付勢部材を備える。
この構成によれば、可振部材と可動軸の間に隙間が生じて、振動の伝達効率が低下するのを効果的に防ぐことができる。
Further, as a particularly preferable form, a biasing member that biases the vibration member in a radially inward direction and presses it against the outer peripheral surface of the movable shaft is provided.
According to this structure, it can prevent effectively that a clearance gap produces between a vibrating member and a movable shaft, and the transmission efficiency of a vibration falls.

次に、上記特徴を有する本実施の形態の好ましい具体例を、図面に基づいて詳細に説明する。   Next, a preferred specific example of the present embodiment having the above features will be described in detail with reference to the drawings.

<振動アクチュエータ1について>
図1〜図4に示す振動アクチュエータ1は、可動軸10と、可動軸10の周囲で周方向に分離して配置された複数の可振部材20と、各可振部材20の外面に固定された圧電ユニット30と、付勢部材42(図2参照)によって可振部材20を径内方向へ付勢して可動軸10の外周面に押し付けるケース部材40とを備え、圧電ユニット30に通電した際の可振部材20の振動により可動軸10を所定方向へ直進運動させるように構成さている。
<About vibration actuator 1>
The vibration actuator 1 shown in FIGS. 1 to 4 is fixed to a movable shaft 10, a plurality of vibration members 20 arranged around the movable shaft 10 in the circumferential direction, and the outer surface of each vibration member 20. The piezoelectric unit 30 and a case member 40 that urges the vibrating member 20 radially inward by the urging member 42 (see FIG. 2) and presses the oscillating member 20 against the outer peripheral surface of the movable shaft 10. The movable shaft 10 is configured to linearly move in a predetermined direction by the vibration of the vibrating member 20 at the time.

なお、図1中の符号pは、必要に応じて当該振動アクチュエータ1が挿入される可撓性の円筒状チューブであり、弾性又は可撓性を有する合成樹脂材料(例えば、フッ素樹脂等)から形成されている。   In addition, the code | symbol p in FIG. 1 is a flexible cylindrical tube in which the said vibration actuator 1 is inserted as needed, and is from the synthetic resin material (for example, fluororesin etc.) which has elasticity or flexibility. Is formed.

可動軸10は、図示例によれば長尺であり、少なくともその外周面を円筒面に形成した円柱又は円筒状部材であり、例えば、金属等の剛性を有する材料から形成されている。   The movable shaft 10 is long according to the illustrated example, and is a column or a cylindrical member having at least an outer peripheral surface thereof formed into a cylindrical surface, and is made of a material having rigidity such as metal, for example.

可振部材20は、可動軸10を径方向に挟むようにして、周方向に分離して複数(図示例によれば二つ)配設される。
各可振部材20は、金属等の剛性材料から可動軸10の軸方向へわたる長尺片状に形成され、その内周側に凹曲面部21を有するとともに、外周面側には、圧電素子31を貼り付け易いように、該圧電素子31にならった形状の部位(図示例によれば、平坦面部22)を有する。
A plurality of (two in the illustrated example) vibration members 20 are arranged in the circumferential direction so as to sandwich the movable shaft 10 in the radial direction.
Each vibration member 20 is formed in a long piece shape extending from a rigid material such as metal in the axial direction of the movable shaft 10, and has a concave curved surface portion 21 on the inner peripheral side thereof, and a piezoelectric element on the outer peripheral surface side. In order to make it easy to affix 31, it has a portion (in accordance with the illustrated example, a flat surface portion 22) shaped like the piezoelectric element 31.

凹曲面部21は、可動軸10の外周面に沿って軸方向へ延設された断面略円弧状の曲面である。この凹曲面部21には、必要に応じて、可動軸10に交差(図示例によれば略直交)する方向の溝21aが、可動軸10の軸方向へ間隔を置いて複数設けられる。これらの溝21aは、後述する圧電ユニット30を構成する複数の電極32a,32b,32c,32dに対応するように設けられ、詳細に説明すれば、隣り合う溝21a,21aの間に一つの電極32a(32b,32c又は32d)が位置するように配置される。
そして、これら複数の溝21aは、可振部材20と可動軸10の間の摩擦力を適宜に調整して、可振部材20の振動波を効率良く可動軸10へ伝達するように作用する。なお、他例としては、これら溝21aの一部又は全部を省いたり、これら溝21aの一部又は全部を突起に置換したりすることも可能である。
The concave curved surface portion 21 is a curved surface having a substantially arc-shaped cross section that extends in the axial direction along the outer peripheral surface of the movable shaft 10. The concave curved surface portion 21 is provided with a plurality of grooves 21a in the direction intersecting the movable shaft 10 (substantially orthogonal according to the illustrated example) at intervals in the axial direction of the movable shaft 10 as necessary. These grooves 21a are provided so as to correspond to a plurality of electrodes 32a, 32b, 32c, 32d constituting the piezoelectric unit 30 described later, and in detail, one electrode is provided between the adjacent grooves 21a, 21a. It arrange | positions so that 32a (32b, 32c, or 32d) may be located.
The plurality of grooves 21 a act so as to appropriately adjust the frictional force between the vibration member 20 and the movable shaft 10 and efficiently transmit the vibration wave of the vibration member 20 to the movable shaft 10. As other examples, some or all of these grooves 21a can be omitted, or some or all of these grooves 21a can be replaced with protrusions.

平坦面部22は、可動軸10の軸方向及び接線方向に平行する平坦状の面であり、円筒状チューブpに挿入された場合に、該円筒状チューブpの内周面から離れて位置する(図4〜7参照)。そして、この平坦面部22の表面には、円筒状チューブpの内周面との間に位置するように、後述する圧電ユニット30が固定される。   The flat surface portion 22 is a flat surface parallel to the axial direction and the tangential direction of the movable shaft 10 and is positioned away from the inner peripheral surface of the cylindrical tube p when inserted into the cylindrical tube p ( (See FIGS. 4-7). And the piezoelectric unit 30 mentioned later is fixed to the surface of this flat surface part 22 so that it may be located between the inner peripheral surfaces of the cylindrical tube p.

圧電ユニット30は、図2に示すように、可振部材20の平坦面部22に密着して固定された圧電素子31と、圧電素子31に並べ設けられた複数組(図示例によれば四組)の電極32a,32b,32c,32dと、これらの各電極に電力を供給するように接続された給電配線33とを具備する。そして、この圧電ユニット30は、前記電極32a,32b,32c,32dに順次に通電した際に生じる圧電素子31の進行波により、可振部材20を振動させ、この振動を可動軸10にも伝達して、可動軸10を所定方向へ直進運動させる。   As shown in FIG. 2, the piezoelectric unit 30 includes a piezoelectric element 31 fixed in close contact with the flat surface portion 22 of the vibration member 20 and a plurality of groups (four groups according to the illustrated example). ) Electrodes 32a, 32b, 32c, and 32d, and a power supply wiring 33 connected to supply power to these electrodes. The piezoelectric unit 30 vibrates the vibrating member 20 by the traveling wave of the piezoelectric element 31 generated when the electrodes 32a, 32b, 32c, and 32d are sequentially energized, and transmits the vibration to the movable shaft 10. Then, the movable shaft 10 is caused to linearly move in a predetermined direction.

圧電素子31は、薄手の圧電素子(圧電セラミックや、ピエゾ素子、電歪素子等と称されるものを含む)と金属板を接着剤(例えば、導電性熱硬化型接着剤等)により張り合わせた構造(ユニモルフ等と称される)を有し、図示例によれば一枚の平板状に構成され、その表面に電極32a,32b,32c,32dがパターン状に形成される。   The piezoelectric element 31 is a thin piezoelectric element (including piezoelectric ceramics, piezo elements, electrostrictive elements, etc.) and a metal plate bonded together with an adhesive (for example, a conductive thermosetting adhesive). It has a structure (referred to as a unimorph) and is configured as a single flat plate according to the illustrated example, and electrodes 32a, 32b, 32c, 32d are formed in a pattern on the surface thereof.

なお、図2に示す好ましい一例では、小型化及び生産性向上等の観点から前記ようにユニモルフ構造の単一板状の圧電素子31に複数の電極32a,32b,32c,32dを設けるようにしたが、他例としては、軸方向に並ぶ複数枚の圧電素子を連結するとともにこれら複数枚の圧電素子のそれぞれに電極を設けた態様や、複数枚の圧電素子を所定間隔を置いて並べ設けるとともにこれら複数枚の圧電素子のそれぞれに電極を設けた態様とすることも可能である。
さらに、他例としては、前記圧電素子の構造としてユニモルフ構造以外の構造(例えばバイモルフ構造等)を採用することも可能である。
In a preferred example shown in FIG. 2, a plurality of electrodes 32a, 32b, 32c, and 32d are provided on the single plate-like piezoelectric element 31 having a unimorph structure as described above from the viewpoint of miniaturization and productivity improvement. However, as another example, a mode in which a plurality of piezoelectric elements arranged in the axial direction are connected and electrodes are provided on each of the plurality of piezoelectric elements, or a plurality of piezoelectric elements are arranged side by side at a predetermined interval. It is also possible to adopt an aspect in which an electrode is provided on each of the plurality of piezoelectric elements.
Furthermore, as another example, a structure other than a unimorph structure (for example, a bimorph structure) can be employed as the structure of the piezoelectric element.

電極32a,32b,32c,32dは、可動軸10の軸方向へ所定間隔を置いて並ぶようにして、圧電素子31の表面に固定される。
給電配線33は、電極32a,32b,32c,32dの各々に対し電力を供給するように電気的に接続され、可振部材20と円筒状チューブpの間の隙間(詳細には図4に示すように、可振部材20とケース部材40の間の隙間や、ケース部材40と円筒状チューブpの間の隙間等)を通って、可動軸10の軸方向へ導かれる。特に、可振部材20の振動に悪影響を及ぼさないようにする観点からは、図4に示すように、この給電配線33を、ケース部材40と円筒状チューブpの間の隙間であって、ケース部材40の角部分から離れた位置(換言すれば平坦部分寄り)に配置するのが好ましい。
これら電極32a,32b,32c,32dの数は、可動軸10の進行方向を容易に特定できるように三組以上とするのが好ましいが、制御方法等によっては二組とすることも可能である。
また、図2に示す一例では、一枚の圧電素子31に対し複数の電極32a,32b,32c,32dを固定するようにしているが、他例としては、複数枚の圧電素子に対しそれぞれ電極を設けた態様(例えば図8参照)とすることも可能である。
The electrodes 32 a, 32 b, 32 c, and 32 d are fixed to the surface of the piezoelectric element 31 so as to be arranged at a predetermined interval in the axial direction of the movable shaft 10.
The power supply wiring 33 is electrically connected so as to supply power to each of the electrodes 32a, 32b, 32c, and 32d, and a gap between the vibration member 20 and the cylindrical tube p (details are shown in FIG. 4). Thus, it is guided in the axial direction of the movable shaft 10 through a gap between the vibration member 20 and the case member 40, a gap between the case member 40 and the cylindrical tube p, or the like. In particular, from the viewpoint of not adversely affecting the vibration of the vibration member 20, as shown in FIG. 4, the power supply wiring 33 is a gap between the case member 40 and the cylindrical tube p, and the case. It is preferable to arrange at a position away from the corner portion of the member 40 (in other words, near the flat portion).
The number of the electrodes 32a, 32b, 32c, and 32d is preferably three or more so that the traveling direction of the movable shaft 10 can be easily specified, but may be two depending on the control method or the like. .
In the example shown in FIG. 2, the plurality of electrodes 32a, 32b, 32c, and 32d are fixed to one piezoelectric element 31, but as another example, the electrodes are respectively connected to the plurality of piezoelectric elements. It is also possible to adopt a mode provided with (for example, see FIG. 8).

ケース部材40は、可動軸10、可振部材20及び圧電ユニット30の周囲を環状に囲む角筒状のケース本体41と、該ケース本体41から内側へ突出する付勢部材42とから一体に構成される。このケース部材40は、付勢部材42を板バネ状に弾性変形させることが可能なように、弾性的に撓むことが可能な金属材料等から形成される。   The case member 40 is formed integrally with a rectangular tube-shaped case body 41 that annularly surrounds the movable shaft 10, the vibration member 20, and the piezoelectric unit 30, and a biasing member 42 that protrudes inward from the case body 41. Is done. The case member 40 is formed of a metal material or the like that can be elastically bent so that the biasing member 42 can be elastically deformed into a leaf spring shape.

ケース本体41は、図示例によれば、円筒状チューブpの内周面に角部分を接触させる角筒状(図示例によれば四角形筒状)に形成される。   According to the illustrated example, the case body 41 is formed in a rectangular tube shape (a rectangular tube shape according to the illustrated example) in which a corner portion is brought into contact with the inner peripheral surface of the cylindrical tube p.

付勢部材42は、図2及び図4に示すように、ケース本体41の周壁の一部を、軸方向に沿って径内方向へ突出させてなる。この付勢部材42は、可振部材20を可動軸10中心寄りで柔軟に保持するように、バネ乗数等が適宜に設定されている。   As shown in FIGS. 2 and 4, the urging member 42 is formed by projecting a part of the peripheral wall of the case body 41 in the radially inward direction along the axial direction. The biasing member 42 is appropriately set with a spring multiplier or the like so as to flexibly hold the vibration member 20 near the center of the movable shaft 10.

上記構成の振動アクチュエータ1は、図1及び図4等に示すように、円筒状チューブpの中に挿入されて用いられる。この挿入状態において、ケース部材40の四角部分41aが円筒状チューブpの内周面に当接し、隣り合う二つの角部分41a,41aの間の平坦面部41bが円筒状チューブpの内周面から離れて位置する。
そして、可振部材20とケース部材40の間の隙間や、ケース部材40と円筒状チューブpの間の隙間には、圧電素子31への給電配線33が挿通され、さらに、必要に応じて、当該振動アクチュエータ1以外の機器の電気配線34(例えば、内視鏡等の信号線等)もコンパクトに挿通される。なお、可動軸10は必ずしも円柱状でなくてもよく、他例としては、円筒状の中空軸とし、その中央の孔には必要に応じて前記電気配線34等を挿通する。
The vibration actuator 1 having the above configuration is used by being inserted into a cylindrical tube p as shown in FIGS. In this inserted state, the rectangular portion 41a of the case member 40 abuts on the inner peripheral surface of the cylindrical tube p, and the flat surface portion 41b between the two adjacent corner portions 41a, 41a extends from the inner peripheral surface of the cylindrical tube p. Located away.
And the electric supply wiring 33 to the piezoelectric element 31 is inserted in the gap between the vibration member 20 and the case member 40 and the gap between the case member 40 and the cylindrical tube p, and further, if necessary, Electrical wiring 34 (for example, a signal line of an endoscope or the like) of equipment other than the vibration actuator 1 is also inserted in a compact manner. The movable shaft 10 does not necessarily have a columnar shape. As another example, the movable shaft 10 is a cylindrical hollow shaft, and the electric wiring 34 or the like is inserted into the central hole as necessary.

次に、上記構成の振動アクチュエータ1の動作及び作用効果について詳細に説明する。
振動アクチュエータ1を動作させるためには、図示しない制御回路から圧電ユニット30に対し所定周波数の電力が供給され、電極32a,32b,32c,32dが順次に通電状態となる。詳細に説明すれば、例えば、先ず、一つの電極32aのみが通電され、圧電素子31における電極32aの近傍に振動を発生させる。次に、該電極32aへの通電が遮断されて、電極32aのみが通電されて、圧電素子31における電極32bの近傍に振動を発生させる。同様にして、電極32cのみへの通電、電極32dのみへの通電が順次に行われ、このような通電が無限ループ状に繰り返し行われる。すると、圧電素子31には、前記通電順序の方向へ向かう進行波状の振動が発生し、この進行波状の振動が、各可振部材20に伝達し、さらに可振部材20から可動軸10に伝達することで、可動軸10が前記通電順序の方向へ直進運動する(図2参照)
なお、他の通電方法としては、電極32a,32b、電極32b,32c、電極32c,32d、電極32d,32aの順番に二つずつ通電する方法や、あるいは、電極32a、電極32a,32b、電極32b、電極32b,32c、電極32c、電極32c,32d、電極32d、電極32d,32aのように、電極を移行する毎に通電数が切り替わるように通電する方法等としてもよい。
Next, the operation and effect of the vibration actuator 1 having the above configuration will be described in detail.
In order to operate the vibration actuator 1, power of a predetermined frequency is supplied to the piezoelectric unit 30 from a control circuit (not shown), and the electrodes 32a, 32b, 32c, and 32d are sequentially energized. More specifically, for example, first, only one electrode 32 a is energized, and vibration is generated in the vicinity of the electrode 32 a in the piezoelectric element 31. Next, the energization to the electrode 32 a is interrupted, and only the electrode 32 a is energized to generate vibration in the vicinity of the electrode 32 b in the piezoelectric element 31. Similarly, energization only to the electrode 32c and energization only to the electrode 32d are sequentially performed, and such energization is repeatedly performed in an infinite loop shape. Then, a traveling wave-like vibration is generated in the piezoelectric element 31 in the direction of the energization sequence, and this traveling wave-like vibration is transmitted to each vibration member 20 and further transmitted from the vibration member 20 to the movable shaft 10. As a result, the movable shaft 10 moves straight in the direction of the energization sequence (see FIG. 2).
As other energization methods, electrodes 32a and 32b, electrodes 32b and 32c, electrodes 32c and 32d, electrodes 32d and 32a are energized two at a time, or electrodes 32a, electrodes 32a and 32b, electrodes A method of energizing such that the number of energization is switched every time the electrode is moved, such as 32b, electrodes 32b and 32c, electrode 32c, electrodes 32c and 32d, electrode 32d, and electrodes 32d and 32a, may be used.

振動アクチュエータ1によれば、前記直進運動の際、複数の可振部材20が周方向において分離配置されているため、これら可振部材を一体環状の部材に構成した従来技術等と比較し、各可振部材20の可動性が良好であり、効果的に振動を伝達することができる。
さらに、各可振部材20を付勢部材42の付勢力によって可動軸10外周面に常に押圧するようにしているため、可振部材20から可動軸50へ伝達される振動の損失を軽減することができる。
また、特に図4に示されるように、比較的振動の少ない角部分41aを円筒状チューブp内周面に接触させるとともに、隣り合う角部分41a,41a間の平坦面部41bを円筒状チューブpの内周面から離隔させた状態で、可振部材20が円筒状チューブpの中心部寄りに付勢部材42によって柔軟に支持されるため、可振部材20及び圧電素子31の振動が円筒状チューブpに吸収されたり抑制されたりするのを効果的に軽減することができる。
よって、圧電素子31の振動を効率的に可動軸10に伝達して、可動軸10の駆動力を増大することができる。
また、ケース部材40と可振部材20の隙間や、円筒状チューブpとケース部材40の隙間に給電配線33や、他の機器の電気配線34を挿通して、コンパクトな収納態様にすることができる。
According to the vibration actuator 1, since the plurality of vibration members 20 are separately arranged in the circumferential direction during the linear movement, each of the vibration members 1 is compared with the prior art in which the vibration members are formed as an integral annular member. The movable member 20 has good mobility, and can effectively transmit vibration.
Furthermore, since each oscillating member 20 is always pressed against the outer peripheral surface of the movable shaft 10 by the urging force of the urging member 42, the loss of vibration transmitted from the oscillating member 20 to the movable shaft 50 can be reduced. Can do.
In particular, as shown in FIG. 4, the corner portion 41a with relatively little vibration is brought into contact with the inner peripheral surface of the cylindrical tube p, and the flat surface portion 41b between the adjacent corner portions 41a and 41a is connected to the cylindrical tube p. Since the oscillating member 20 is flexibly supported by the urging member 42 near the center of the cylindrical tube p in a state of being separated from the inner peripheral surface, vibrations of the oscillating member 20 and the piezoelectric element 31 are caused by the cylindrical tube. Absorption and suppression by p can be effectively reduced.
Therefore, the vibration of the piezoelectric element 31 can be efficiently transmitted to the movable shaft 10 and the driving force of the movable shaft 10 can be increased.
In addition, the power supply wiring 33 and the electrical wiring 34 of another device may be inserted into the gap between the case member 40 and the vibration member 20 or the gap between the cylindrical tube p and the case member 40 to form a compact storage mode. it can.

次に、他の形態の振動アクチュエータについて説明する。なお、以下に示す振動アクチュエータは、上記振動アクチュエータ1の一部を変更したものであるため、基本的に略同構成である部分については同一の符号を用いるとともに、主に変更部分について詳細に説明する。   Next, another form of vibration actuator will be described. In addition, since the vibration actuator shown below changes a part of the said vibration actuator 1, while using the same code | symbol about the part which is fundamentally substantially the same structure, it mainly demonstrates the change part in detail. To do.

<振動アクチュエータ2について>
図5に示す振動アクチュエータ2は、上記振動アクチュエータ1に対し、可振部材20及び圧電ユニット30を三つ以上の可振部材20’及び圧電ユニット30’に置換するとともに、ケース部材40をケース部材40’に置換したものである。
<About vibration actuator 2>
The vibration actuator 2 shown in FIG. 5 replaces the vibration member 1 and the piezoelectric unit 30 with three or more vibration members 20 ′ and piezoelectric units 30 ′ in the vibration actuator 1 and replaces the case member 40 with the case member. 40 'is substituted.

可振部材20’は、上記可振部材20(図3参照)と基本的に同構造であるが、周方向に略等間隔に三つ以上(図示例によれば四つ)並ぶように形成される。   The oscillating member 20 ′ has basically the same structure as the oscillating member 20 (see FIG. 3), but is formed so that three or more (four in the illustrated example) are arranged at substantially equal intervals in the circumferential direction. Is done.

圧電ユニット30’は、三つ以上の可振部材20’にそれぞれ対応して設けられる。各圧電ユニット30’は、単一の圧電素子31の外側面に、単一の電極32a1(32a2,32a3又は32a4)を固定している(図5参照)。各電極32a1(32a2,32a3又は32a4)には、上記振動アクチュエータ1と同様にして給電配線33が接続される。   The piezoelectric unit 30 'is provided corresponding to each of the three or more oscillating members 20'. Each piezoelectric unit 30 'has a single electrode 32a1 (32a2, 32a3 or 32a4) fixed to the outer surface of a single piezoelectric element 31 (see FIG. 5). The power supply wiring 33 is connected to each electrode 32a1 (32a2, 32a3 or 32a4) in the same manner as the vibration actuator 1.

ケース部材40’は、可動軸10、可振部材20’及び圧電ユニット30’の周囲を環状に囲む角筒状のケース本体41’と、該ケース本体41’から内側へ突出する三つ以上(図示例によれば四つ)の付勢部材42’とから一体に構成される。
各付勢部材42’は、ケース本体41’の周壁の一部を、板バネ状に切欠する等して、周方向に沿って径内方向へ突出しており、その突端側の部分によって各圧電ユニット30’を径内方向へ付勢して、圧電ユニット30’と一体の可振部材20’を可動軸10の外周面に押し付けている。
The case member 40 ′ includes a rectangular tube-shaped case body 41 ′ surrounding the movable shaft 10, the vibration member 20 ′, and the piezoelectric unit 30 ′ in an annular shape, and three or more cases projecting inwardly from the case body 41 ′ ( According to the illustrated example, the four biasing members 42 'are integrally formed.
Each urging member 42 ′ protrudes radially inward along the circumferential direction, for example, by notching a part of the peripheral wall of the case main body 41 ′ in a leaf spring shape, and each piezoelectric member is urged by the protruding end portion. The unit 30 ′ is urged in the radial direction, and the vibration member 20 ′ integrated with the piezoelectric unit 30 ′ is pressed against the outer peripheral surface of the movable shaft 10.

よって、図5に示す振動アクチュエータ2によれば、周方向に並ぶ三つ以上の圧電ユニット30’に順次に通電すれば、これら圧電ユニット30’及び可振部材20’の振動と停止が順次に繰り返され、可動軸10の周囲に周方向の進行波が発生し、この進行波によって可動軸10が回転運動をする。
この回転運動の際、周方向に分離した可振部材20’をそれぞれ可動軸10に押圧するようにしているため、上述した振動アクチュエータ1と同様に、振動の伝達効率が良好であり、可動軸10の回転方向の駆動力を向上させることができる。
Therefore, according to the vibration actuator 2 shown in FIG. 5, when three or more piezoelectric units 30 ′ arranged in the circumferential direction are sequentially energized, the vibration and stop of the piezoelectric units 30 ′ and the vibration member 20 ′ are sequentially performed. Repeatedly, a traveling wave in the circumferential direction is generated around the movable shaft 10, and the movable shaft 10 rotates by this traveling wave.
During this rotational movement, the vibrating members 20 ′ separated in the circumferential direction are pressed against the movable shaft 10, respectively. Therefore, like the vibration actuator 1 described above, vibration transmission efficiency is good, and the movable shaft The driving force in the 10 rotation direction can be improved.

なお、図5に示す振動アクチュエータ2においては、周方向に並ぶ電極32a1,32a2,32a3,32a4を、それぞれ軸方向にも三つ以上設けて、これら軸方向に並ぶ三つ以上の電極を順次に通電すれば、上記振動アクチュエータ1と同様に、可動軸10を軸方向へ直進させることも可能である。
また、図5に示す振動アクチュエータ2においては、周方向に並ぶ圧電ユニット30及び可振部材20’の数を、可動軸10の回転方向を容易に特定できるように三組以上としたが、制御方法等によってはこれらの数を二組とすることも可能である。
In the vibration actuator 2 shown in FIG. 5, three or more electrodes 32a1, 32a2, 32a3, 32a4 arranged in the circumferential direction are provided in the axial direction, and three or more electrodes arranged in the axial direction are sequentially provided. When energized, the movable shaft 10 can be moved straight in the axial direction as in the vibration actuator 1.
Further, in the vibration actuator 2 shown in FIG. 5, the number of the piezoelectric units 30 and the vibrating members 20 ′ arranged in the circumferential direction is set to three or more so that the rotation direction of the movable shaft 10 can be easily specified. Depending on the method or the like, it is possible to set these numbers to two.

<振動アクチュエータ3について>
図6に示す振動アクチュエータ3は、上記振動アクチュエータ1に対し、上記可動軸10,上記可振部材20,上記ケース部材40を、それぞれ、可動軸10’,可振部材20”,ケース部材40”に置換するとともに、圧電ユニット30とケース部材40”の間に独立した付勢部材42”を設けている。
<About vibration actuator 3>
The vibration actuator 3 shown in FIG. 6 is different from the vibration actuator 1 in that the movable shaft 10, the vibration member 20, and the case member 40 are respectively movable shaft 10 ′, vibration member 20 ″, and case member 40 ″. In addition, an independent urging member 42 "is provided between the piezoelectric unit 30 and the case member 40".

可動軸10’は、長尺な角柱状(図示例によれば四角柱状)の部材であり、例えば、金属等の剛性を有する材料から形成されている。   The movable shaft 10 ′ is a long prismatic member (in the illustrated example, a quadrangular prism shape), and is made of a material having rigidity such as metal, for example.

可振部材20”は、角柱状の可動軸10’を径方向(図6によれば上下方向)に挟むようにして複数(図示例によれば二つ)設けられる。
各可振部材20”は、金属等の剛性材料から可動軸10の軸方向へわたる略長尺状に形成され、その断面形状が可振部材20”の片半部側嵌り合う凹状である。
この可振部材20”の内面(詳細には可動軸10’が周面に接触する面)には、必要に応じて、可動軸10のものと同様の溝(図3の溝21a参照)が設けられる。
また、可振部材20”の外面は平坦状に形成され、この面上に圧電ユニット30が固定される。
A plurality (two in the illustrated example) of the vibrating members 20 ″ are provided so as to sandwich the prismatic movable shaft 10 ′ in the radial direction (the vertical direction in FIG. 6).
Each vibration member 20 ″ is formed in a substantially long shape extending from the rigid material such as metal in the axial direction of the movable shaft 10, and the cross-sectional shape thereof is a concave shape that fits on the half portion side of the vibration member 20 ″.
A groove similar to that of the movable shaft 10 (refer to a groove 21a in FIG. 3) is provided on the inner surface (specifically, the surface where the movable shaft 10 ′ contacts the circumferential surface) of the vibration member 20 ″. Provided.
The outer surface of the vibration member 20 ″ is formed in a flat shape, and the piezoelectric unit 30 is fixed on this surface.

ケース部材40”は、金属等の剛性材料によって、可動軸10’、可振部材20”,圧電ユニット30及び後述する付勢部材42”の周囲を環状に囲む角筒状(図6の一例では四角筒状)に形成される。   The case member 40 ″ is made of a rigid material such as a metal and has a rectangular tube shape (in the example of FIG. 6) surrounding the movable shaft 10 ′, the vibration member 20 ″, the piezoelectric unit 30 and a biasing member 42 ″ described later in an annular shape. A square cylinder).

付勢部材42”は、可振部材20”及びケース部材40”とは独立した板バネであり、可振部材20”とケース部材40”の間に設けられて、可振部材20”を径内方向へ付勢して可動軸10’に押し付ける。この付勢部材42”は、弾性的に撓むことが可能な金属材料から波板状に形成される。なお、他例としては、この付勢部材42”をコイルスプリングに置換することも可能である。   The urging member 42 ″ is a leaf spring independent of the vibration member 20 ″ and the case member 40 ″, and is provided between the vibration member 20 ″ and the case member 40 ″ so that the vibration member 20 ″ has a diameter. It is urged inward and pressed against the movable shaft 10 '. The biasing member 42 ″ is formed in a corrugated plate shape from a metal material that can be elastically bent. As another example, the biasing member 42 ″ can be replaced with a coil spring. It is.

そして、上記構成の振動アクチュエータ3は、上記振動アクチュエータ1と同様にして円筒状チューブp内へ挿通されて用いられる。
この振動アクチュエータ3によれば、上記振動アクチュエータ1と同様に、可振部材20”側の振動を効率的に可動軸10’に伝達できる。その上、可動軸10’を角柱状に形成しているため、当該振動アクチュエータ3の用途等により可動軸10’を回転させたくない場合に、該可動軸10’を回転させることなく軸方向へ直進運動させることができる。
The vibration actuator 3 having the above configuration is inserted into the cylindrical tube p and used in the same manner as the vibration actuator 1.
According to the vibration actuator 3, as in the vibration actuator 1, the vibration on the vibration member 20 "side can be efficiently transmitted to the movable shaft 10 '. In addition, the movable shaft 10' is formed in a prismatic shape. Therefore, when it is not desired to rotate the movable shaft 10 ′ depending on the application of the vibration actuator 3, etc., the movable shaft 10 ′ can be linearly moved in the axial direction without rotating.

<振動アクチュエータ4について>
図7に示す振動アクチュエータ4は、図5に示す振動アクチュエータ2からケース部材40’を省き、図6のものと略同様の板バネ状の付勢部材42”を設け、これらを円筒状チューブp内へ直接挿入したものである。
付勢部材42”は、周方向に並ぶ可振部材20’及び圧電ユニット30’に対応して三つ以上(図示例によれば四つ)設けられる。
各付勢部材42”及び圧電ユニット30’は、各可振部材20’の角寄りを避けるようにして、各可振部材20’の平坦面部22’における中央寄りに配設される。したがって、各付勢部材42’及び圧電ユニット30’は、可振部材20’の平坦面部22’と円筒状チューブpの内周面との間に形成される隙間に位置することになる。
<About vibration actuator 4>
The vibration actuator 4 shown in FIG. 7 omits the case member 40 ′ from the vibration actuator 2 shown in FIG. 5 and is provided with a leaf spring-like biasing member 42 ″ substantially the same as that of FIG. It was inserted directly into.
Three or more urging members 42 ″ are provided (four according to the illustrated example) corresponding to the vibrating members 20 ′ and the piezoelectric units 30 ′ arranged in the circumferential direction.
Each urging member 42 ″ and the piezoelectric unit 30 ′ are disposed near the center of the flat surface portion 22 ′ of each oscillating member 20 ′ so as to avoid the cornering of each oscillating member 20 ′. Each urging member 42 ′ and the piezoelectric unit 30 ′ are located in a gap formed between the flat surface portion 22 ′ of the vibrating member 20 ′ and the inner peripheral surface of the cylindrical tube p.

よって、図7に示す振動アクチュエータ4によれば、図5に示す振動アクチュエータ2と同様に、可振部材20’及び圧電ユニット30’の振動を、円筒状チューブp側へ逃がさないようにして効率的に可動軸10に伝達し、可動軸10を回転駆動することができる上、ケース部材40等を省いているため、より細身な構造とすることができる。   Therefore, according to the vibration actuator 4 shown in FIG. 7, as with the vibration actuator 2 shown in FIG. 5, the vibration of the vibration member 20 ′ and the piezoelectric unit 30 ′ is efficiently prevented from escaping to the cylindrical tube p side. Therefore, the movable shaft 10 can be rotated and driven, and the case member 40 and the like are omitted, so that the structure can be made thinner.

なお、上述した振動アクチュエータ1,2,4は、各可振部材20(20’又は20”)上の圧電ユニットを、図8に示す態様のように、軸方向と周方向にそれぞれ複数設けるようにするようにしてもよい。
図8に示す態様では、単一の可振部材20の平坦面部22に、軸方向と周方向に並ぶ複数の圧電ユニット30”を固定している。図示例では、圧電ユニット30”を、軸方向に四つ、周方向に二つ並べ設けている。
各圧電ユニット30”は、一枚の圧電素子31に一組の電極32を設けてなり、各電極には図示しない給電配線が接続されている。
In the vibration actuators 1, 2, and 4 described above, a plurality of piezoelectric units on each vibration member 20 (20 ′ or 20 ″) are provided in the axial direction and the circumferential direction as shown in FIG. You may make it.
In the embodiment shown in FIG. 8, a plurality of piezoelectric units 30 ″ arranged in the axial direction and the circumferential direction are fixed to the flat surface portion 22 of the single vibration member 20. In the illustrated example, the piezoelectric unit 30 ″ is connected to the shaft. Four in the direction and two in the circumferential direction.
Each piezoelectric unit 30 ″ is provided with a pair of electrodes 32 on one piezoelectric element 31, and a power supply wiring (not shown) is connected to each electrode.

よって、図8に示す可振部材20及び圧電ユニット30”を用いた振動アクチュエータによれば、複数の電極32への通電順序に応じて、可動軸10が直進運動及び/又は回転運動する。
すなわち、複数の圧電ユニット30”の電極32に対し、軸方向へ順番に通電を行えば、この通電方向に沿って可動軸10を直進運動させることができ、周方向へ順番に通電を行えば、この通電方向に沿って可動軸10を回転運動させることができる。また、前記通電の順番を逆にすれば、可動軸10の直進方向を逆にしたり、可動軸10の回転方向を逆にしたりすることができる。さらに、軸方向と周方向の通電を同時に行って、可動軸10を回転運動させながら直進運動させることも可能である。
Therefore, according to the vibration actuator using the vibrating member 20 and the piezoelectric unit 30 ″ shown in FIG. 8, the movable shaft 10 moves straight and / or rotates in accordance with the energization sequence to the plurality of electrodes 32.
That is, if the electrodes 32 of the plurality of piezoelectric units 30 ″ are energized sequentially in the axial direction, the movable shaft 10 can be moved straight along the energizing direction, and if energized sequentially in the circumferential direction. The movable shaft 10 can be rotated along the energization direction, and if the energization order is reversed, the linear movement direction of the movable shaft 10 is reversed or the rotation direction of the movable shaft 10 is reversed. Furthermore, it is also possible to carry out rectilinear movement while rotating the movable shaft 10 by conducting energization in the axial direction and the circumferential direction at the same time.

なお、図8の一例では、単一の圧電素子31と一組の電極32からなる圧電ユニット30を、縦横に複数配設するようにしているが、同様の機能が得られる他例としては、前記複数の圧電ユニット30を、一枚の圧電素子と縦横に並ぶ複数の電極とからなる単一の圧電ユニットに置換することも可能である。   In the example of FIG. 8, a plurality of piezoelectric units 30 including a single piezoelectric element 31 and a set of electrodes 32 are arranged vertically and horizontally. It is also possible to replace the plurality of piezoelectric units 30 with a single piezoelectric unit comprising a single piezoelectric element and a plurality of electrodes arranged vertically and horizontally.

また、図9に例示するように、上記振動アクチュエータ1〜4における可動軸10(又は10’)の外周面には、必要に応じて、滑り防止加工部10aを設けるようにしてもよい。同様に、振動アクチュエータ1〜4における可振部材20(20’又は20”)の内周面にも、図10に例示するように、必要に応じて、滑り防止加工部20aを設けるようにしてもよい。
滑り防止加工部10a,20aを有する構成によれば、例えば、本実施の形態の振動アクチュエータ1〜4が内視鏡等に適用され、血液や体液等の液体が可動軸10(又は10’)と可振部材20(20’又は20”)との間に流入した場合でも、これらの間に滑りを生じるのを防止することができ、可動軸10(又は10’)の動作を安定させることができる。
In addition, as illustrated in FIG. 9, an anti-slip processing portion 10 a may be provided on the outer peripheral surface of the movable shaft 10 (or 10 ′) in the vibration actuators 1 to 4 as necessary. Similarly, on the inner peripheral surface of the vibration member 20 (20 ′ or 20 ″) in the vibration actuators 1 to 4, as shown in FIG. Also good.
According to the configuration having the anti-slip processing portions 10a and 20a, for example, the vibration actuators 1 to 4 of the present embodiment are applied to an endoscope or the like, and liquid such as blood or body fluid is movable shaft 10 (or 10 '). Even if it flows between the vibration member 20 and the vibration member 20 (20 ′ or 20 ″), it is possible to prevent slippage between them, and to stabilize the operation of the movable shaft 10 (or 10 ′). Can do.

滑り防止加工部10a,20aの好ましい一例としては、可動軸10外周面と可振部材20内周面に、所定粗さの粗面加工を施した態様とすることができる。
前記粗面加工は、表面粗さの範囲を、平均粗さ2マイクロメータ以上で6マイクロメータ以下とするのが好ましい。すなわち、前記範囲よりも平均粗さが小さい場合には、流入した液体により摩擦力が著しく低下し滑りを増加してしまうおそれがある。逆に、前記範囲よりも平均粗さが大きい場合には、摩擦力が著しく増大して、可動軸10(又は10’)の滑らかな運動を阻害してしまうおそれがある。
As a preferable example of the anti-slip processing portions 10a and 20a, a mode in which a rough surface processing with a predetermined roughness is applied to the outer peripheral surface of the movable shaft 10 and the inner peripheral surface of the vibration member 20 can be employed.
In the rough surface processing, it is preferable that the range of the surface roughness is an average roughness of 2 micrometers or more and 6 micrometers or less. That is, when the average roughness is smaller than the above range, the flowing liquid may significantly reduce the frictional force and increase the slip. On the contrary, when the average roughness is larger than the above range, the frictional force is remarkably increased, and there is a possibility that the smooth movement of the movable shaft 10 (or 10 ′) may be hindered.

また、滑り防止加工部10a,20aの他の好ましい一例としては、可動軸10(又は10’)外周面に、軸方向に等ピッチの環状突起を設けるとともに、可振部材20(20’又は20”)の内周面には、前記環状突起に嵌り合う環状凹部を複数設ける。
この構成によれば、可動軸10(又は10’)を直進運動させた場合に、該可動軸10(又は10’)の環状突起と、可振部材20(20’又は20”)の環状凹部とが嵌脱を繰り返しながら軸方向へ進むため、可動軸10(又は10’)が軸方向へ滑りを生じるようなことを防止することができる。
Further, as another preferred example of the anti-slip processed portions 10a and 20a, an annular protrusion having an equal pitch in the axial direction is provided on the outer peripheral surface of the movable shaft 10 (or 10 '), and the vibration member 20 (20' or 20 '). ”) Is provided with a plurality of annular recesses that fit into the annular protrusions.
According to this configuration, when the movable shaft 10 (or 10 ′) is linearly moved, the annular protrusion of the movable shaft 10 (or 10 ′) and the annular recess of the vibration member 20 (20 ′ or 20 ″) are provided. Since it advances in the axial direction while repeatedly engaging and disengaging, it is possible to prevent the movable shaft 10 (or 10 ′) from slipping in the axial direction.

また、他例としては、可動軸10(又は10’)と可振部材20(20’又は20”)のうちの何れか一方のみに、前記構成の滑り防止加工部10a,20aを設けた態様とすることも可能である。
また、滑り防止加工部10a,20aの他例としては、可動軸10(又は10’)の外周面、及び/又は可振部材20(20’又は20”)の内周面を、例えばローレット加工状等の多数の凹凸面とした態様等とすることも可能である。
Moreover, as another example, the aspect which provided the anti-slip | skid process part 10a, 20a of the said structure only in any one of the movable shaft 10 (or 10 ') and the vibration member 20 (20' or 20 "). It is also possible.
Further, as another example of the anti-slip processing portions 10a and 20a, the outer peripheral surface of the movable shaft 10 (or 10 ′) and / or the inner peripheral surface of the vibration member 20 (20 ′ or 20 ″) are knurled, for example. It is also possible to adopt an aspect in which a large number of uneven surfaces such as a shape are formed.

<振動アクチュエータ5について>
図11〜図16に示す振動アクチュエータ5は、可動軸50と、可動軸50の外周面に接触するとともに周方向に分離するように支持された複数の可振部材60と、これら可振部材60の外面にそれぞれ固定された複数の圧電ユニット70a,70b,70c,70dと、可振部材60及び圧電ユニット70a,70b,70c,70dの周囲を覆うケース部材80とを備え、圧電ユニット70a,70b,70c,70dに通電した際の可振部材60の振動により可動軸50を所定方向へ回転させながら軸方向へ直進させる。
<About vibration actuator 5>
The vibration actuator 5 shown in FIGS. 11 to 16 includes a movable shaft 50, a plurality of vibration members 60 that are in contact with the outer peripheral surface of the movable shaft 50 and supported so as to be separated in the circumferential direction, and these vibration members 60. A plurality of piezoelectric units 70a, 70b, 70c, and 70d fixed to the outer surface of the piezoelectric member 70, and a case member 80 that covers the periphery of the vibrating member 60 and the piezoelectric units 70a, 70b, 70c, and 70d, respectively. , 70c, 70d, the movable shaft 50 is moved straight in the axial direction while rotating the movable shaft 50 in a predetermined direction by the vibration of the vibrating member 60 when energized.

可動軸50は、例えば、金属等の剛性を有する材料から長尺な円柱状に形成され、その外周面に雄ネジ部51を有する。雄ネジ部51は、少なくとも当該可動軸50の可動範囲と可振部材60とが重なる範囲に設ければよく、図11に示す好ましい一例では可動軸50の略全長にわたって設けられる。   The movable shaft 50 is formed in a long cylindrical shape from a material having rigidity such as metal, for example, and has a male screw portion 51 on the outer peripheral surface thereof. The male screw portion 51 may be provided at least in a range where the movable range of the movable shaft 50 and the vibration member 60 overlap. In a preferred example shown in FIG.

可振部材60は、可動軸50の外周面を接触支持するとともに周方向に分離して、複数、好ましくは三つ以上八つ以内(図示例によれば四つ)設けられる。
各可振部材60は、金属等の剛性材料から可動軸50の軸方向へわたる略長尺片状に形成され、その内周側に凹曲面部61を有するとともに、外周面側には平坦面部62を有する(図12及び図13参照)。
The vibration member 60 is provided in contact with and supports the outer peripheral surface of the movable shaft 50 and separated in the circumferential direction.
Each vibration member 60 is formed in a substantially long piece shape extending from the rigid material such as metal in the axial direction of the movable shaft 50, and has a concave curved surface portion 61 on the inner peripheral side thereof, and a flat surface portion on the outer peripheral surface side. 62 (see FIGS. 12 and 13).

凹曲面部61は、可動軸50の外周面に沿って軸方向へ延設された断面略円弧状の曲面であり、可動軸50外周面の雄ネジ部51に螺合する雌ネジ部を有する。   The concave curved surface portion 61 is a curved surface having a substantially arc-shaped cross section that extends in the axial direction along the outer peripheral surface of the movable shaft 50, and has a female screw portion that is screwed into the male screw portion 51 on the outer peripheral surface of the movable shaft 50. .

平坦面部62は、可動軸50の軸方向及び接線方向に平行する平坦状の面であり、当該振動アクチュエータ5が円筒状チューブpに挿入された場合(図16参照)に、該円筒状チューブpの内周面から離れて位置する。この平坦面部62の表面には、圧電ユニット70a(70b,70c又は70d)が固定される。なお、図示例によれば、圧電ユニット70a(70b,70c又は70d)が平板状であるため、これの取付け対象である可振部材60の表面を平坦面状に形成したが、他例としては、その双方の表面を緩い円周面状に形成してもよい。   The flat surface portion 62 is a flat surface parallel to the axial direction and the tangential direction of the movable shaft 50, and when the vibration actuator 5 is inserted into the cylindrical tube p (see FIG. 16), the cylindrical tube p. It is located away from the inner peripheral surface. A piezoelectric unit 70a (70b, 70c or 70d) is fixed to the surface of the flat surface portion 62. According to the illustrated example, since the piezoelectric unit 70a (70b, 70c, or 70d) has a flat plate shape, the surface of the vibration member 60 to which the piezoelectric unit 70a is attached is formed in a flat surface shape. Both surfaces may be formed into a loose circumferential surface.

また、圧電ユニット70a,70b,70c,70dの各々は、可振部材60の平坦面部62に密着して固定された圧電素子71と、この圧電素子71に固定された電極72と、この電極72に電力を供給するように接続された給電配線73とを具備する(図12参照)。   In addition, each of the piezoelectric units 70a, 70b, 70c, and 70d includes a piezoelectric element 71 that is fixed in close contact with the flat surface portion 62 of the vibration member 60, an electrode 72 that is fixed to the piezoelectric element 71, and the electrode 72 And a power supply wiring 73 connected so as to supply power (see FIG. 12).

圧電素子71は、上記圧電素子31と略同様に、ユニモルフ構造やバイモルフ構造のものが用いられる。
電極72は、図示例によれば、圧電素子71の端部側に固定される。
また、給電配線73は、電極72に対し電気的に接続され、可振部材60とケース部材80の隙間や、ケース部材80と円筒状チューブpの隙間等を通って、可動軸50の軸方向へ導かれる。この給電配線73は、特に、可振部材60の振動に悪影響を及ぼさないようにする観点から、図16に示すように、ケース部材80と円筒状チューブpの間の隙間であって、ケース部材80の角部分から離れた位置(換言すれば平坦部分寄り)に配置されるのが好ましい。
The piezoelectric element 71 has a unimorph structure or a bimorph structure in substantially the same manner as the piezoelectric element 31 described above.
According to the illustrated example, the electrode 72 is fixed to the end portion side of the piezoelectric element 71.
The power supply wiring 73 is electrically connected to the electrode 72 and passes through the gap between the vibration member 60 and the case member 80, the gap between the case member 80 and the cylindrical tube p, and the like. Led to. This power supply wiring 73 is a gap between the case member 80 and the cylindrical tube p, as shown in FIG. 16, particularly from the viewpoint of preventing the vibration of the vibration member 60 from being adversely affected. It is preferably arranged at a position away from the corner portion of 80 (in other words, near the flat portion).

可振部材60及び圧電ユニット70a,70b,70c,70dの数は、可動軸10の回転方向を容易に特定できるように三組以上とするのが好ましいが、制御方法等によっては二組とすることも可能である。
また、他例としては、単一の可振部材60に対し周方向に並ぶように複数の圧電ユニットを設けた態様や、単一の圧電素子71に対し周方向に並ぶように複数の電極72を具備した態様等とすることも可能である。
The number of the vibrating members 60 and the piezoelectric units 70a, 70b, 70c, and 70d is preferably three or more so that the rotation direction of the movable shaft 10 can be easily specified. It is also possible.
As another example, a mode in which a plurality of piezoelectric units are provided so as to be arranged in the circumferential direction with respect to a single vibration member 60, or a plurality of electrodes 72 that are arranged in the circumferential direction with respect to a single piezoelectric element 71. It is also possible to have an aspect including

また、ケース部材80は、図11及び図13に示すように、可動軸50、可振部材60及び圧電ユニット70a,70b,70c,70dの周囲を環状に囲む角筒状のケース本体81と、該ケース本体81の内側に位置する付勢部材82とから一体に構成される。   Further, as shown in FIGS. 11 and 13, the case member 80 includes a rectangular tube-like case body 81 that annularly surrounds the movable shaft 50, the vibration member 60, and the piezoelectric units 70a, 70b, 70c, and 70d, The urging member 82 located inside the case body 81 is integrally formed.

ケース本体81は、図示例によれば、円筒状チューブpの内周面に角部分を接触させる四角形筒状に形成される。このケース本体81は、金属材料等から形成されるが、必要に応じて、合成樹脂材料等から形成することも可能である。   According to the illustrated example, the case main body 81 is formed in a rectangular tube shape in which a corner portion is in contact with the inner peripheral surface of the cylindrical tube p. The case body 81 is formed of a metal material or the like, but can be formed of a synthetic resin material or the like as necessary.

付勢部材82は、金属材料等の弾性的に撓むことが可能な材料により略四角筒状に形成され、その四方の面を、径方向にバネ作用を有する形状としている。図11に示す一例について詳細に説明すれば、付勢部材82を構成する四方の面の各々は、軸方向の端部を開口した長尺状の凹状片82aを、前記開口の向きが互い違いになるように周方向に複数並べて接続することで、おおまかには平面視S字状に形成される。この付勢部材82のバネ乗数は、可振部材60を可動軸50中心側へ柔軟に保持するように、適宜に設定されている。   The urging member 82 is formed in a substantially rectangular tube shape by a material that can be elastically bent such as a metal material, and the four surfaces thereof have a shape having a spring action in the radial direction. Describing in detail an example shown in FIG. 11, each of the four surfaces constituting the biasing member 82 has a long concave piece 82a having an axial end opened, and the opening directions are staggered. As a result, a plurality of lines are arranged side by side in the circumferential direction so that they are roughly formed in an S shape in plan view. The spring multiplier of the urging member 82 is appropriately set so as to flexibly hold the vibration member 60 toward the center of the movable shaft 50.

上記構成の振動アクチュエータ5は、図16に示すように、円筒状チューブpの中に挿入されて用いられる。この挿入状態において、ケース部材80の四角部分81aが円筒状チューブpの内周面に当接し、隣り合う二つの角部分81a,81aの間の平坦面部81bが円筒状チューブpの内周面から離れて位置する。
そして、可振部材60とケース部材80の間の隙間や、ケース部材80と円筒状チューブpの間の隙間には、圧電素子71への給電配線73が挿通され、さらに、必要に応じて、当該振動アクチュエータ5以外の機器の電気配線74(例えば、内視鏡等の信号線等)もコンパクトに挿通される。
The vibration actuator 5 having the above configuration is used by being inserted into a cylindrical tube p as shown in FIG. In this inserted state, the square portion 81a of the case member 80 abuts on the inner peripheral surface of the cylindrical tube p, and the flat surface portion 81b between the two adjacent corner portions 81a, 81a extends from the inner peripheral surface of the cylindrical tube p. Located away.
Then, a power supply wiring 73 to the piezoelectric element 71 is inserted into the gap between the vibration member 60 and the case member 80 and the gap between the case member 80 and the cylindrical tube p. Further, if necessary, Electrical wiring 74 (for example, a signal line of an endoscope or the like) of equipment other than the vibration actuator 5 is also inserted in a compact manner.

次に、上記構成の振動アクチュエータ5の動作及び作用効果について詳細に説明する。
振動アクチュエータ5を動作させるためには、図示しない制御回路から複数の圧電ユニット70a,70b,70c,70dに対し所定周波数の電力が順次に供給される。詳細に説明すれば、先ず、一つの圧電ユニット70aのみが通電され、次に、該圧電ユニット70aへの通電が遮断されて、圧電ユニット70bのみが通電され、同様にして、圧電ユニット70cのみへの通電、圧電ユニット70dのみへの通電が順次に行われ、このような通電が無限ループ状に繰り返し行われる。すると、圧電素子71には、前記通電順序の周方向へ向かう進行波状の振動が生じ、この進行波状の振動が各可振部材60に伝達し、さらに可振部材60から可動軸50に伝達することで、可動軸50が前記通電順序の周方向に沿って回転運動する。したがって、可動軸50は、周囲の可振部材60の雌ネジ部に螺合して回転しながら軸方向へ進むことになる。
なお、他の通電方法としては、圧電ユニット70a,70b、圧電ユニット70b,70c、圧電ユニット70c,70d、圧電ユニット70d,70aの順番に二つずつ通電する方法や、あるいは、圧電ユニット70a、圧電ユニット70a,70b、圧電ユニット70b、圧電ユニット70b,70c、圧電ユニット70c、圧電ユニット70c,70d、圧電ユニット70d、圧電ユニット70d,70aのように、電極を移行する毎に通電数が切り替わるように通電する方法等としてもよい(図14及び図15参照)。
Next, the operation and effect of the vibration actuator 5 configured as described above will be described in detail.
In order to operate the vibration actuator 5, electric power of a predetermined frequency is sequentially supplied to a plurality of piezoelectric units 70a, 70b, 70c, 70d from a control circuit (not shown). More specifically, first, only one piezoelectric unit 70a is energized, then the energization to the piezoelectric unit 70a is interrupted, only the piezoelectric unit 70b is energized, and similarly only to the piezoelectric unit 70c. And energization of only the piezoelectric unit 70d are sequentially performed, and such energization is repeatedly performed in an infinite loop. Then, a traveling wave-like vibration toward the circumferential direction of the energization sequence is generated in the piezoelectric element 71, and this traveling wave-like vibration is transmitted to each vibrating member 60 and further transmitted from the vibrating member 60 to the movable shaft 50. Thus, the movable shaft 50 rotates along the circumferential direction of the energization sequence. Therefore, the movable shaft 50 advances in the axial direction while rotating by being screwed into the female thread portion of the surrounding vibration member 60.
As other energization methods, the piezoelectric units 70a and 70b, the piezoelectric units 70b and 70c, the piezoelectric units 70c and 70d, and the piezoelectric units 70d and 70a are energized two by two, or the piezoelectric units 70a and 70a. As the units 70a and 70b, the piezoelectric unit 70b, the piezoelectric units 70b and 70c, the piezoelectric unit 70c, the piezoelectric units 70c and 70d, the piezoelectric unit 70d, and the piezoelectric units 70d and 70a, the number of energizations is switched every time the electrodes are moved. A method of energizing may be used (see FIGS. 14 and 15).

振動アクチュエータ5によれば、前記回転運動の際、複数の可振部材60が周方向において分離配置されているため、これら可振部材を一体環状の部材に構成した従来技術等と比較し、各可振部材60の可動性が良好であり、効果的に振動を伝達することができる。
さらに、各可振部材60を付勢部材82の付勢力によって可動軸50外周面に常に押圧するようにしているため、可振部材60から可動軸50へ伝達される振動の損失を軽減することができる。
また、特に図16に示されるように、比較的振動の少ない角部分81aを円筒状チューブp内周面に接触させるとともに、隣り合う角部分81a,81aの間の平坦面部81bを円筒状チューブpの内周面から離隔させた状態で、可振部材60が円筒状チューブpの中心部寄りに柔軟に支持されるため、可振部材60及び圧電ユニット70a,70b,70c,70dの振動が円筒状チューブpに吸収されたり抑制されたりするのを効果的に軽減することができる。
よって、圧電素子71の振動を効率的に可動軸50に伝達して、可動軸50の駆動力を増大することができる。
また、ケース部材80と可振部材60の隙間や、円筒状チューブpとケース部材80の隙間に給電配線73や、他の機器の電気配線74を挿通して、コンパクトな収納態様にすることができる。
According to the vibration actuator 5, since the plurality of vibration members 60 are separately arranged in the circumferential direction during the rotational movement, each of the vibration members is compared with the prior art in which the vibration members are formed into an integral annular member. The movable member 60 has good mobility and can effectively transmit vibration.
Further, since each oscillating member 60 is always pressed against the outer peripheral surface of the movable shaft 50 by the urging force of the urging member 82, the loss of vibration transmitted from the oscillating member 60 to the movable shaft 50 can be reduced. Can do.
In particular, as shown in FIG. 16, the corner portion 81a with relatively little vibration is brought into contact with the inner peripheral surface of the cylindrical tube p, and the flat surface portion 81b between the adjacent corner portions 81a and 81a is connected to the cylindrical tube p. Since the oscillating member 60 is flexibly supported near the center of the cylindrical tube p in a state separated from the inner peripheral surface of the oscillating member 60, the vibrations of the oscillating member 60 and the piezoelectric units 70a, 70b, 70c, 70d are It is possible to effectively reduce absorption and suppression by the tube-like tube p.
Therefore, the vibration of the piezoelectric element 71 can be efficiently transmitted to the movable shaft 50, and the driving force of the movable shaft 50 can be increased.
In addition, the power supply wiring 73 and the electric wiring 74 of other equipment may be inserted into the gap between the case member 80 and the vibration member 60 or the gap between the cylindrical tube p and the case member 80 to form a compact storage mode. it can.

<振動アクチュエータ6について>
上記振動アクチュエータ5によれば、ケース本体81内に四角筒状の付勢部材82を設けてケース部材80を構成したが、このケース部材80の他例としては、図17に示す振動アクチュエータ6のように、角筒状のケース部材80’内に、独立した板バネ状の付勢部材82’を有する態様等とすることも可能である。なお、さらに他例としては、板バネ状の前記付勢部材82’をコイルスプリングに置換することも可能である。
<Vibration actuator 6>
According to the vibration actuator 5, the case member 80 is configured by providing the rectangular cylindrical biasing member 82 in the case body 81. As another example of the case member 80, the vibration actuator 6 shown in FIG. As described above, it is also possible to adopt an embodiment in which an independent leaf spring-like urging member 82 ′ is provided in the rectangular tubular case member 80 ′. As yet another example, the urging member 82 'in the form of a leaf spring can be replaced with a coil spring.

また、ケース部材80の他例としては、上記振動アクチュエータ1,2と同様にケース本体41(又は41’)と付勢部材42(又は42’)を一体の部材とした態様(図4及び図5参照)とすることも可能である。   Further, as another example of the case member 80, as in the case of the vibration actuators 1 and 2, the case main body 41 (or 41 ') and the biasing member 42 (or 42') are integrated members (FIGS. 4 and 4). 5).

さらに他例としては、図18に示す振動アクチュエータ7のように、ケース部材を省くことも可能である。
この振動アクチュエータ7は、図17に示す振動アクチュエータ6からケース部材80’を省き、各可振部材60に対応して図17のものと略同様の板バネ状の付勢部材82’を設け、これらを円筒状チューブp内へ直接挿入したものである。
各付勢部材82’及び各圧電ユニット70a(70b,70c又は70d)は、各可振部材60の角寄りを避けるようにして、各可振部材60の平坦面部62における中央寄りに配設される。したがって、各付勢部材82’及び各圧電ユニット70a(70b,70c又は70d)は、前記平坦面部62と、円筒状チューブpの内周面との間に形成される隙間に位置することになる。
As another example, a case member can be omitted as in the vibration actuator 7 shown in FIG.
This vibration actuator 7 omits the case member 80 ′ from the vibration actuator 6 shown in FIG. 17, and is provided with a leaf spring-like biasing member 82 ′ substantially the same as that of FIG. These are inserted directly into the cylindrical tube p.
Each urging member 82 ′ and each piezoelectric unit 70 a (70 b, 70 c, or 70 d) are disposed near the center of the flat surface portion 62 of each vibration member 60 so as to avoid the corner of each vibration member 60. The Therefore, each urging member 82 'and each piezoelectric unit 70a (70b, 70c or 70d) are positioned in a gap formed between the flat surface portion 62 and the inner peripheral surface of the cylindrical tube p. .

よって、図18に示す振動アクチュエータ7によれば、上記振動アクチュエータ5と同様に、可振部材60及び圧電ユニット70a,70b,70c,70dの振動を、円筒状チューブp側へ逃がさないようにして効率的に可動軸50に伝達し、可動軸50を回転させながら軸方向へ進めることができる上、ケース部材80等を省いているため、より細身な構造とすることができる。   Therefore, according to the vibration actuator 7 shown in FIG. 18, as in the vibration actuator 5, the vibrations of the vibration member 60 and the piezoelectric units 70a, 70b, 70c, and 70d are not released to the cylindrical tube p side. Since it can be efficiently transmitted to the movable shaft 50 and advanced in the axial direction while rotating the movable shaft 50, and the case member 80 and the like are omitted, a more slim structure can be achieved.

次に、上記構成の振動アクチュエータ1〜7を用いた応用機構について説明する。
なお、以下に示す応用機構では上記振動アクチュエータ1(図1〜図4参照)を用いているが、この振動アクチュエータ1を、他の態様の振動アクチュエータ2〜7に置換することが可能である。
Next, an application mechanism using the vibration actuators 1 to 7 having the above configuration will be described.
In the application mechanism described below, the vibration actuator 1 (see FIGS. 1 to 4) is used. However, the vibration actuator 1 can be replaced with vibration actuators 2 to 7 of other modes.

<挟持機構Aについて>
図19は、先端側部分で被挟持物を挟持したり放したりする挟持機構Aである。
この挟持機構Aは、可撓性を有する円筒状チューブp内に、振動アクチュエータ1を内在するとともに、振動アクチュエータ1の可動軸10に係合したフィンガーA1,A2を、円筒状チューブp前端から外部に露出している。
<About the clamping mechanism A>
FIG. 19 shows a clamping mechanism A that clamps and releases the object to be clamped at the tip side portion.
This clamping mechanism A includes a vibration actuator 1 in a flexible cylindrical tube p, and fingers A1 and A2 engaged with the movable shaft 10 of the vibration actuator 1 from the front end of the cylindrical tube p to the outside. Is exposed.

振動アクチュエータ1は、ケース部材40の四つの角部分41aを円筒状チューブp内周面に当接させて前後不動に内在される(図4参照)。振動アクチュエータ1の給電配線33は、円筒状チューブp内を後方へ導かれ、制御装置X(例えば、内視鏡下治療システムの制御部等)に電気的に接続されている。   The vibration actuator 1 is housed in the front-rear direction by bringing the four corner portions 41a of the case member 40 into contact with the inner peripheral surface of the cylindrical tube p (see FIG. 4). The power supply wiring 33 of the vibration actuator 1 is guided backward in the cylindrical tube p and is electrically connected to a control device X (for example, a control unit of an endoscopic treatment system).

フィンガーA1,A2は、それぞれ軸部A11,A21を支点にして前端側を回動させるように支持される。軸部A11,A21は、ブラケット等を介してケース部材40又は円筒状チューブp内面等に不動に支持される。   The fingers A1 and A2 are supported so as to rotate the front end side with the shaft portions A11 and A21 as fulcrums, respectively. The shaft portions A11 and A21 are supported by the case member 40 or the cylindrical tube p inner surface through a bracket or the like.

これらフィンガーA1,A2における軸部A11,A21よりも後側の部分には、可動軸10と係合している。より詳細に説明すれば、フィンガーA1,A2のそれぞれの後端側部分には長孔A13が設けられ、この長孔A13には可動軸10側に支持された作動軸A14が遊挿されている。   The fingers A1 and A2 are engaged with the movable shaft 10 at portions rearward of the shaft portions A11 and A21. More specifically, a long hole A13 is provided in the rear end portion of each of the fingers A1 and A2, and an operating shaft A14 supported on the movable shaft 10 side is loosely inserted into the long hole A13. .

次に上記構成の挟持機構Aについて、作用効果を詳細に説明する。
制御装置Xから振動アクチュエータ1に電力が供給され、振動アクチュエータ1の可動軸10及び作動軸A14が前進すると、作動軸A14の直進運動が長孔A13によってフィンガーA1,A2の回転運動に変換され、フィンガーA1,A2が開放方向へ回動する。可動軸10への供給電力の制御により可動軸10が後退した際には、作動軸A14の後退に伴いフィンガーA1,A2が閉鎖方向へ回動する。
よって、挟持機構Aによれば、円筒状チューブp、振動アクチュエータ1及びフィンガーA1,A2等を極小な構成にした場合でも、上述したように振動アクチュエータ1における振動エネルギーの損失が少なく比較的大きな駆動力が得られるため、良好な動作性を有する。
Next, the effect of the clamping mechanism A having the above configuration will be described in detail.
When electric power is supplied from the control device X to the vibration actuator 1 and the movable shaft 10 and the operation shaft A14 of the vibration actuator 1 move forward, the rectilinear motion of the operation shaft A14 is converted into the rotational motion of the fingers A1 and A2 by the long holes A13. The fingers A1 and A2 rotate in the opening direction. When the movable shaft 10 moves backward by controlling the power supplied to the movable shaft 10, the fingers A1 and A2 rotate in the closing direction as the operating shaft A14 moves backward.
Therefore, according to the clamping mechanism A, even when the cylindrical tube p, the vibration actuator 1 and the fingers A1, A2 and the like have a minimal configuration, the vibration energy loss in the vibration actuator 1 is small and relatively large driving as described above. Since force is obtained, it has good operability.

なお、挟持機構Aにおいて、振動アクチュエータ1を、ネジ状の可動軸50を有する振動アクチュエータ5〜7(図11〜図18参照)に置換する場合には、可動軸50と作動軸A14の間に、可動軸50を空転させる機構(例えば、自在継手等)を介在させればよい。また、他例としては、作動軸A14に可動軸50と螺合するナット状部材を設け、可動軸50の回転に伴う前記ナット状部材及び作動軸14の進退により、軸部A11,A21を回動させるようにしてもよい。   In the clamping mechanism A, when the vibration actuator 1 is replaced with vibration actuators 5 to 7 (see FIGS. 11 to 18) having a screw-like movable shaft 50, the movable shaft 50 is interposed between the movable shaft 50 and the operation shaft A14. A mechanism (for example, a universal joint) that idles the movable shaft 50 may be interposed. As another example, a nut-like member screwed to the movable shaft 50 is provided on the operating shaft A14, and the shaft portions A11, A21 are rotated by the advancement and retraction of the nut-like member and the operating shaft 14 as the movable shaft 50 rotates. You may make it move.

<揺動機構Bについて>
図20〜図21は、円筒状チューブpを揺動させる揺動機構Bである。
この揺動機構Bは、可撓性を有する円筒状チューブp内に、振動アクチュエータ1を内在するとともに、振動アクチュエータ1の可動軸10前端側に、円筒状チューブp内壁を押動するためのジョイント部B1、揺動杆B2及び接続部B3を設けている。
<About swing mechanism B>
20 to 21 show a swing mechanism B that swings the cylindrical tube p.
The swing mechanism B includes a vibration actuator 1 in a flexible cylindrical tube p, and a joint for pushing the inner wall of the cylindrical tube p to the front end side of the movable shaft 10 of the vibration actuator 1. A portion B1, a swing rod B2, and a connecting portion B3 are provided.

この円筒状チューブpにおいても、振動アクチュエータ1は、ケース部材40の四つの角部分41aを円筒状チューブp内周面に当接させて前後不動に内在される(図4参照)。振動アクチュエータ1の給電配線33は、円筒状チューブp内を後方へ導かれ、上述した制御装置X等に電気的に接続されている。   Also in the cylindrical tube p, the vibration actuator 1 is contained in the forward and backward directions by bringing the four corner portions 41a of the case member 40 into contact with the inner peripheral surface of the cylindrical tube p (see FIG. 4). The power supply wiring 33 of the vibration actuator 1 is guided backward in the cylindrical tube p and is electrically connected to the control device X described above.

ジョイント部B1は、可動軸10に対し揺動機構Bを回動可能に接続する構造であればよく、例えば、可動軸10に対し軸部を介して揺動杆B2が回動するように支持した構成や、可動軸10と揺動杆B2とを自在継手により接続した構成、可動軸10と揺動杆B2を可撓性部材(例えば弾性合成樹脂材料やゴム等)を介して接続した構成等とすればよい。   The joint portion B1 may have any structure as long as the swing mechanism B is connected to the movable shaft 10 so as to be rotatable. For example, the joint portion B1 is supported so that the swing rod B2 rotates with respect to the movable shaft 10 via the shaft portion. A configuration in which the movable shaft 10 and the swing rod B2 are connected by a universal joint, and a configuration in which the movable shaft 10 and the swing rod B2 are connected via a flexible member (for example, an elastic synthetic resin material or rubber). And so on.

また、揺動杆B2は、ジョイント部B1に接続され、円筒状チューブp内で前方へ延設された棒状の部材である。
また、接続部B3は、揺動杆B2に対し回動自在に接続されるとともに、円筒状チューブp内面に接着等により固定されている。この接続部B3を揺動杆B2に対し回動自在にする手段は、前記ジョイント部B1と同様の構造とすればよい。
The swing rod B2 is a rod-like member that is connected to the joint portion B1 and extends forward in the cylindrical tube p.
The connecting portion B3 is pivotally connected to the swinging rod B2, and is fixed to the inner surface of the cylindrical tube p by bonding or the like. The means for making the connecting portion B3 rotatable with respect to the swinging rod B2 may have the same structure as the joint portion B1.

次に、上記構成の揺動機構Bについて、作用効果を詳細に説明する。
振動アクチュエータ1への電力供給により可動軸10が前進した際には、図20に示すように、接続部B3が可動軸10の軸方向へは移動不能であるため、ジョイント部B1が折れ曲がるようにして、揺動杆B2が一方へ揺動し、これに伴って円筒状チューブpに前端側も同方向へ揺動する。
また、可動軸10が後退した際には、図21に示すように、ジョイント部B1が折れ曲がった状態から略真直状態に戻るため、これに伴い円筒状チューブpが逆方向へ揺動する。
よって、揺動機構Bによれば、円筒状チューブp、振動アクチュエータ1及び揺動杆B2等を極小な構成にした場合でも、上述したように振動アクチュエータ1における振動エネルギーの損失が少なく比較的大きな駆動力が得られるため、良好な動作性を有する。
Next, the effect of the swing mechanism B having the above configuration will be described in detail.
When the movable shaft 10 moves forward by supplying electric power to the vibration actuator 1, as shown in FIG. 20, since the connecting portion B3 cannot move in the axial direction of the movable shaft 10, the joint portion B1 is bent. Accordingly, the swing rod B2 swings in one direction, and accordingly, the front end side of the cylindrical tube p swings in the same direction.
Further, when the movable shaft 10 moves backward, as shown in FIG. 21, the joint portion B1 returns from the bent state to the substantially straight state, and accordingly, the cylindrical tube p swings in the reverse direction.
Therefore, according to the swinging mechanism B, even when the cylindrical tube p, the vibration actuator 1 and the swinging rod B2 are made extremely small, the vibration energy loss in the vibration actuator 1 is small and relatively large as described above. Since driving force can be obtained, it has good operability.

なお、揺動機構Bにおいて、振動アクチュエータ1を、ネジ状の可動軸50を有する振動アクチュエータ5〜7(図11〜図18参照)に置換する場合には、可動軸50とジョイント部B1の間に、可動軸50を空転させる機構(例えば、自在継手等)を介在させればよい。また、他例としては、ジョイント部B1に可動軸50と螺合するナット状部材を設け、可動軸50の回転に伴う前記ナット状部材及びジョイント部B1の進退により、揺動杆B2を揺動させるようにしてもよい。   In the swing mechanism B, when the vibration actuator 1 is replaced with vibration actuators 5 to 7 (see FIGS. 11 to 18) having a screw-like movable shaft 50, the movable shaft 50 and the joint portion B1 are disposed. Further, a mechanism (for example, a universal joint) that idles the movable shaft 50 may be interposed. As another example, a nut-like member screwed to the movable shaft 50 is provided in the joint portion B1, and the swinging rod B2 is swung by the advancement and retraction of the nut-like member and the joint portion B1 as the movable shaft 50 rotates. You may make it make it.

また、上記振動アクチュエータ1〜7、挟持機構A及び揺動機構Bは、作用及び機能等を阻害しないようにすれば、各部の構造や部品等を、適宜、他の態様のものと交換したり、組み合わせて構成することが可能である。   Further, the vibration actuators 1 to 7, the clamping mechanism A, and the swinging mechanism B can appropriately replace the structure and parts of each part with those of other aspects as long as the action and function are not hindered. Can be combined.

本発明の一実施形態である振動アクチュエータは、近年急速に進歩する内視鏡による低侵襲手術システム等において、可振部材を可動軸に隙間無く密着させ、さらに例えば内視鏡用の円筒状チューブ内に収める場合にも角状のケース部材の非振動部分(具体的には角部分等)をチューブ内壁面に固定し、振動する平坦面部の振動を阻害しないので、振動が減衰せず小径でも駆動力が大きい。また、可振部材と可動軸の接触面に初期摩耗や経年変化があった時にも、付勢部材の押し圧力が安定して働くので可振部材と可動軸の間に隙間を生じることがなく、安定した駆動力が得られる。
また、本発明の一実施形態である振動アクチュエータは、内視鏡以外にも工業用マイクロロボットのハンド等に組み込む事で、小型で大きい駆動力を得ることができる。
A vibration actuator according to an embodiment of the present invention has a vibratory member in close contact with a movable shaft without any gap in a minimally invasive surgical system using an endoscope that has been rapidly advanced in recent years, and further, for example, a cylindrical tube for an endoscope Even when housed inside, the non-vibrating part (specifically the corner part etc.) of the square case member is fixed to the inner wall surface of the tube and does not hinder the vibration of the vibrating flat surface part. Large driving force. In addition, even when there is initial wear or secular change on the contact surface between the vibration member and the movable shaft, the pressing force of the biasing member works stably, so there is no gap between the vibration member and the movable shaft. A stable driving force can be obtained.
In addition, the vibration actuator according to one embodiment of the present invention can be obtained in a small size and a large driving force by being incorporated in an industrial microrobot hand or the like in addition to the endoscope.

1〜7:振動アクチュエータ
10,10’,10”,50:可動軸
10a:滑り防止加工部
20,20’,20”,60:可振部材
21,21’,61:凹曲面部
22,22’,62:平坦面部
30,30’,30”,70a,70b,70c,70d:圧電ユニット
31,71:圧電素子
32a,32b,32c,32d,72:電極
32a1,32a2,32a3,32a4:電極
33,73:給電配線
40,80:ケース部材
41,41’,81:ケース本体
41a,81a:角部分
41b.81b:平坦面部
42,42’,42”,82,82’:付勢部材
51:雄ネジ部
A:挟持機構
B:揺動機構
p:円筒状チューブ
1-7: Vibration actuator 10, 10 ', 10 ", 50: Movable shaft 10a: Anti-slip processed part 20, 20', 20", 60: Vibrating member 21, 21 ', 61: Concave surface part 22, 22 ', 62: Flat surface portion 30, 30', 30 ", 70a, 70b, 70c, 70d: Piezoelectric unit 31, 71: Piezoelectric element 32a, 32b, 32c, 32d, 72: Electrode 32a1, 32a2, 32a3, 32a4: Electrode 33, 73: Power supply wiring 40, 80: Case member 41, 41 ', 81: Case main body 41a, 81a: Corner portion 41b. 81b: Flat surface portion 42, 42', 42 ", 82, 82 ': Biasing member
51: Male screw part A: Holding mechanism B: Oscillating mechanism p: Cylindrical tube

Claims (5)

振動により可動軸が運動する振動アクチュエータにおいて、
前記可動軸と、
前記可動軸の外周面に接触するとともに周方向に分離するように支持された複数の可振部材と、
前記可振部材の外面に固定された圧電素子とを備え、
前記圧電素子に通電した際の前記可振部材の振動により前記可動軸を運動させるようにしたことを特徴とする振動アクチュエータ。
In the vibration actuator where the movable shaft moves by vibration,
The movable shaft;
A plurality of vibrating members that are in contact with the outer peripheral surface of the movable shaft and supported so as to be separated in the circumferential direction;
A piezoelectric element fixed to the outer surface of the vibration member,
A vibration actuator characterized in that the movable shaft is moved by vibration of the vibrating member when the piezoelectric element is energized.
前記可振部材及び前記圧電素子を、周方向に三つ以上並べ設け、これら三つ以上の前記圧電素子に順次に通電した際の前記可振部材の振動により前記可動軸が回転するようにしたことを特徴とする請求項1記載の振動アクチュエータ。   Three or more of the vibration member and the piezoelectric element are arranged in the circumferential direction, and the movable shaft is rotated by the vibration of the vibration member when the three or more piezoelectric elements are sequentially energized. The vibration actuator according to claim 1. 前記可動軸の外周面に、雄ネジ部を形成し、
前記可振部材の各々の内周面に、前記雄ネジ部に螺合する雌ネジ部を形成し、
三つ以上の前記圧電素子に順次に通電した際の前記可振部材の振動により前記可動軸が回転しながら軸方向へ直進するようにしたことを特徴とする請求項2記載の振動アクチュエータ。
On the outer peripheral surface of the movable shaft, a male screw part is formed,
On the inner peripheral surface of each of the vibration member, a female screw portion that is screwed into the male screw portion is formed,
3. The vibration actuator according to claim 2, wherein the movable shaft rotates straightly in the axial direction by the vibration of the oscillating member when the three or more piezoelectric elements are sequentially energized.
円筒状チューブに挿入された場合に該円筒状チューブの内周面から離隔するように、前記可振部材の外周側に前記圧電素子を配置したことを特徴とする請求項1〜3何れか1項記載の振動アクチュエータ。   4. The piezoelectric element according to claim 1, wherein the piezoelectric element is arranged on an outer peripheral side of the vibration member so as to be separated from an inner peripheral surface of the cylindrical tube when inserted into the cylindrical tube. The vibration actuator described in the item. 円筒状チューブに挿入された場合に前記円筒状チューブの内周面と前記可振部材の間に位置するように、前記圧電素子の給電配線を設けたことを特徴とする請求項1〜4何れか1項記載の振動アクチュエータ。   The power supply wiring of the said piezoelectric element was provided so that it might be located between the internal peripheral surface of the said cylindrical tube, and the said vibration member when it inserts in a cylindrical tube. The vibration actuator according to claim 1.
JP2013028298A 2013-02-15 2013-02-15 Vibration actuator Pending JP2014158373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013028298A JP2014158373A (en) 2013-02-15 2013-02-15 Vibration actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028298A JP2014158373A (en) 2013-02-15 2013-02-15 Vibration actuator

Publications (1)

Publication Number Publication Date
JP2014158373A true JP2014158373A (en) 2014-08-28

Family

ID=51578924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028298A Pending JP2014158373A (en) 2013-02-15 2013-02-15 Vibration actuator

Country Status (1)

Country Link
JP (1) JP2014158373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7492046B2 (en) 2022-02-22 2024-05-28 新思考電機有限公司 Piezoelectric ultrasonic motor, optical member driving device, camera device, and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225182A (en) * 1986-03-25 1987-10-03 Canon Inc Oscillatory wave motor
EP0424609A1 (en) * 1989-09-28 1991-05-02 Rockwell International Corporation Piezoelectric actuator
JP2012070572A (en) * 2010-09-24 2012-04-05 Olympus Corp Piezoelectric motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225182A (en) * 1986-03-25 1987-10-03 Canon Inc Oscillatory wave motor
EP0424609A1 (en) * 1989-09-28 1991-05-02 Rockwell International Corporation Piezoelectric actuator
JP2012070572A (en) * 2010-09-24 2012-04-05 Olympus Corp Piezoelectric motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7492046B2 (en) 2022-02-22 2024-05-28 新思考電機有限公司 Piezoelectric ultrasonic motor, optical member driving device, camera device, and electronic device

Similar Documents

Publication Publication Date Title
US10044295B2 (en) Piezoelectric actuator and robot
EP2114004B1 (en) Ultrasonic operation device and microtube inside system
JP6565104B2 (en) Actuator
US20140012298A1 (en) Ultrasonic surgical instruments
JP2010167084A (en) Ultrasonic surgical apparatus
JP4542499B2 (en) Ultrasonic therapy device
JP2014158373A (en) Vibration actuator
JP6393382B2 (en) Medical equipment
US10639065B2 (en) Medical assist device
JP2006271065A (en) Driving device
JP6084061B2 (en) Vibration actuator
US10211390B2 (en) Friction drive actuator
US20180287513A1 (en) Vibration wave motor and imaging device having vibration wave motor
JP6292963B2 (en) Ultrasonic transducer and ultrasonic medical device
WO2016051486A1 (en) Ultrasonic vibrator and ultrasonic medical apparatus
US20180138834A1 (en) Ultrasonic actuator
JP2010172157A (en) Ultrasonic motor driving apparatus
JP5640334B2 (en) Driving device, lens barrel and camera
KR20200103820A (en) Actuator and wire bonding device
JP2009261494A (en) Ultrasonic control apparatus and system for examining inside of microtube
JP2015211535A (en) Ultrasonic vibrator and ultrasonic medical device
JP6242536B2 (en) Forceps treatment tool
JP5932434B2 (en) Ultrasonic motor and device driving apparatus with ultrasonic motor
TWM382663U (en) Ultrasonic linear motor
JP2015186330A (en) piezoelectric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307