JP2014157872A - Organic solar cell and process of manufacturing the same - Google Patents

Organic solar cell and process of manufacturing the same Download PDF

Info

Publication number
JP2014157872A
JP2014157872A JP2013026847A JP2013026847A JP2014157872A JP 2014157872 A JP2014157872 A JP 2014157872A JP 2013026847 A JP2013026847 A JP 2013026847A JP 2013026847 A JP2013026847 A JP 2013026847A JP 2014157872 A JP2014157872 A JP 2014157872A
Authority
JP
Japan
Prior art keywords
layer
solar cell
organic solar
thiophene
phenylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013026847A
Other languages
Japanese (ja)
Other versions
JP6246470B2 (en
Inventor
Osamu Hotta
収 堀田
Takeshi Yamao
健史 山雄
Naoki Iwamoto
尚樹 岩本
Kenji Oga
健司 大賀
Akira Nakamura
昌 中村
Takao Nakagawa
貴雄 中川
Kenji Ogino
賢治 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Original Assignee
Kyoto Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC filed Critical Kyoto Institute of Technology NUC
Priority to JP2013026847A priority Critical patent/JP6246470B2/en
Publication of JP2014157872A publication Critical patent/JP2014157872A/en
Application granted granted Critical
Publication of JP6246470B2 publication Critical patent/JP6246470B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel organic solar cell of a simple structure capable of being easily and simply manufactured with a simple manufacturing method, and a manufacturing method of the organic solar cell.SOLUTION: The organic solar cell includes: two electrode layers 3, 4 at least one of which is a transparent electrode layer 4; and a (thiophene/phenylene) co-oligomer layer 1 disposed therebetween as an organic photoelectric conversion layer, wherein the (thiophene/phenylene) co-oligomer layer 1 has a thickness of 10 nm to 225 nm. When a Clayer 2 that is in contact with the (thiophene/phenylene) co-oligomer layer 1 and is disposed between the two electrode layers 3, 4 is further included, conversion efficiency is further improved.

Description

本発明は、有機太陽電池及びその製造方法に関する。特に、本発明は、(チオフェン/フェニレン)コオリゴマー層を有する有機太陽電池及びその製造方法に関する。   The present invention relates to an organic solar cell and a manufacturing method thereof. In particular, the present invention relates to an organic solar cell having a (thiophene / phenylene) co-oligomer layer and a method for producing the same.

近年、地球環境保護の観点から、再生可能エネルギーが注目されており、太陽電池はその一つである。シリコン等の無機物を使用した太陽電池と比較して、小型軽量、柔軟性、大面積製膜容易性等の点から、有機物を使用する有機太陽電池は期待され、種々の研究が行われている。   In recent years, renewable energy has attracted attention from the viewpoint of protecting the global environment, and solar cells are one of them. Compared to solar cells using inorganic materials such as silicon, organic solar cells using organic materials are expected and various studies have been conducted in terms of small size and light weight, flexibility, large area film formation ease, etc. .

有機太陽電池を形成するための有機材料として、有機光電変換層に、ポルフィリンやフタロシアニン等を含む層が検討されることが多い。ポルフィリンやフタロシアニン等を使用すると、一定の太陽電池を形成することができる。しかし、その有機層に特殊な構造を持たせることが必要である、又は光電変換層と無関係の組成物を共蒸着後除去することが必要であるなど(特許文献1〜2、非特許文献1第3321頁右欄第14行〜第18行及び第22行〜第28行参照)、煩雑である。   As an organic material for forming an organic solar cell, a layer containing porphyrin, phthalocyanine, or the like is often considered in the organic photoelectric conversion layer. When porphyrin or phthalocyanine is used, a certain solar cell can be formed. However, it is necessary to give the organic layer a special structure, or it is necessary to remove a composition unrelated to the photoelectric conversion layer after co-evaporation (Patent Documents 1 and 2, Non-Patent Document 1). Page 3321 right column 14th line-18th line and 22nd line-28th line), it is complicated.

従って、簡便な製造方法で、容易に簡単に製造することができる有機太陽電池が求められている。得られた太陽電池の構造は、単純であることが要求される。そのような新たな有機太陽電池が得られるか否かは、学術的にも商業的にも興味深い。   Accordingly, there is a demand for an organic solar cell that can be easily and easily manufactured by a simple manufacturing method. The structure of the obtained solar cell is required to be simple. Whether such a new organic solar cell can be obtained is interesting both academically and commercially.

そこで、新たな有機半導体材料を使用した有機太陽電池の検討が求められている。
荻野他は、250nmの厚さを有する(チオフェン/フェニレン)コオリゴマー層を光電変換層として使用した太陽電池を報告したが、その変換効率は、0.000061%と極めて低かった(非特許文献2参照)。
(チオフェン/フェニレン)コオリゴマーは、有機発光トランジスターとして注目されていることを考慮すると(特許文献3参照)、(チオフェン/フェニレン)コオリゴマーは、たとえ起電力が発生したとしても、発光してしまい、太陽電池として使用することは困難と考えられた。
Therefore, studies on organic solar cells using new organic semiconductor materials are required.
Sugano et al. Reported a solar cell using a (thiophene / phenylene) co-oligomer layer having a thickness of 250 nm as a photoelectric conversion layer, and the conversion efficiency was extremely low as 0.000061% (Non-patent Document 2). reference).
Considering that (thiophene / phenylene) co-oligomer is attracting attention as an organic light-emitting transistor (see Patent Document 3), (thiophene / phenylene) co-oligomer emits light even if an electromotive force is generated. It was considered difficult to use as a solar cell.

尚、(チオフェン/フェニレン)コオリゴマーを太陽電池の構成材料の一部として用いる試みは報告されている。(チオフェン/フェニレン)コオリゴマーは、フタロシアニン等の有機光電変換層の結晶性及び平滑性を高めることを主な目的として使用されており、(チオフェン/フェニレン)コオリゴマーを電極と有機光電変換層との間に介在させる構成のみが開示されている(非特許文献3、4参照)。変換効率のわずかの向上が報告されているが、(チオフェン/フェニレン)コオリゴマーを積極的に光電変換層に用いておらず、太陽電池の構成はより複雑である。
非特許文献3及び4では、(チオフェン/フェニレン)コオリゴマーの1種であるBP2Tが用いられており、その膜厚は8nmであることも開示されている。
An attempt to use (thiophene / phenylene) co-oligomer as a part of a constituent material of a solar cell has been reported. The (thiophene / phenylene) co-oligomer is used mainly for the purpose of improving the crystallinity and smoothness of an organic photoelectric conversion layer such as phthalocyanine, and the (thiophene / phenylene) co-oligomer is composed of an electrode, an organic photoelectric conversion layer, and Only the structure interposed between the two is disclosed (see Non-Patent Documents 3 and 4). Although a slight improvement in conversion efficiency has been reported, the (thiophene / phenylene) co-oligomer is not actively used in the photoelectric conversion layer, and the configuration of the solar cell is more complicated.
Non-Patent Documents 3 and 4 also disclose that BP2T, which is a kind of (thiophene / phenylene) co-oligomer, is used, and its film thickness is 8 nm.

特開2005−236278号公報JP 2005-236278 A 特開2012−160677号公報JP 2012-160677 A PTC/JP2011/052760PTC / JP2011 / 052760

T. Kaji et. al, Adv. Mater., 2011, 23, 3320-3325.T. Kaji et.al, Adv. Mater., 2011, 23, 3320-3325. 荻野賢治、京都工芸繊維大学、平成22年度高分子機能工学課程卒業論文Kenji Kanno, Kyoto Institute of Technology, 2010 Graduation thesis W. Chen et. al, Appl. Phys. Lett., 2012, 100, 133302 (全4ページ).W. Chen et. Al, Appl. Phys. Lett., 2012, 100, 133302 (4 pages in total). B. Yu et. al, Adv. Mater., 2010, 22, 1017-1020.B. Yu et.al, Adv. Mater., 2010, 22, 1017-1020.

本発明は、かかる課題を解決するためになされたもので、その課題は、簡便な製造方法で、容易に簡単に製造することができ、構造が単純な新たな有機太陽電池及びその製造方法を提供することである。   The present invention has been made to solve such a problem, and the problem is to provide a new organic solar cell that can be easily and easily manufactured by a simple manufacturing method and has a simple structure, and a method for manufacturing the same. Is to provide.

本発明者は、鋭意研究を重ねた結果、驚くべきことに、(チオフェン/フェニレン)コオリゴマー層の厚さを特定の厚さに制御することで、簡便な製造方法で、容易に簡単に製造することができ、構造が単純な新たな有機太陽電池が得られることを見い出し、本発明を完成させるに至った。   As a result of extensive research, the inventor has surprisingly surprisingly controlled the thickness of the (thiophene / phenylene) co-oligomer layer to a specific thickness so that it can be easily and simply manufactured. It has been found that a new organic solar cell having a simple structure can be obtained, and the present invention has been completed.

即ち、本発明は、1の要旨において、
少なくとも一方が透明電極層である二枚の電極層及びそれらの間に配置された(チオフェン/フェニレン)コオリゴマー層を有機光電変換層として含む有機太陽電池であって、
(チオフェン/フェニレン)コオリゴマー層は、10nm〜225nmの厚さを有する、有機太陽電池を提供する。
That is, the present invention provides one aspect of the present invention,
An organic solar cell comprising two electrode layers, at least one of which is a transparent electrode layer, and a (thiophene / phenylene) co-oligomer layer disposed therebetween as an organic photoelectric conversion layer,
The (thiophene / phenylene) co-oligomer layer provides an organic solar cell having a thickness of 10 nm to 225 nm.

本発明は、好ましい態様において、(チオフェン/フェニレン)コオリゴマー層と接し、二枚の電極層の間に配置されたC60層を、更に含む有機太陽電池を提供する。 The present invention, in a preferred embodiment, (thiophene / phenylene) co-oligomer layer and contact with the C 60 layer disposed between two electrode layers, provides organic solar cells, which further comprises.

本発明に係る有機太陽電池は、二枚の電極層及びそれらの間に配置された(チオフェン/フェニレン)コオリゴマー層を有機光電変換層として含み、
(チオフェン/フェニレン)コオリゴマー層は、10nm〜225nmの厚さを有するので、簡便な製造方法で、容易に簡単に製造することができ、単純な構造を有する。
The organic solar cell according to the present invention includes two electrode layers and a (thiophene / phenylene) co-oligomer layer disposed between them as an organic photoelectric conversion layer,
Since the (thiophene / phenylene) co-oligomer layer has a thickness of 10 nm to 225 nm, it can be easily manufactured by a simple manufacturing method and has a simple structure.

更に、本発明の有機太陽電池は、(チオフェン/フェニレン)コオリゴマー層と接し、二枚の電極層の間に配置されたC60層を更に含む場合、変換効率がより向上する。
以下、添付した図面を参照しながら、本発明を詳細に説明する。
Furthermore, organic solar cell of the present invention, (thiophene / phenylene) co-oligomer layer and in contact with, when containing a C 60 layer disposed between two electrode layers further conversion efficiency is further improved.
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明に係る1の形態の有機太陽電池の断面模式図である。FIG. 1 is a schematic cross-sectional view of an organic solar battery according to the first embodiment of the present invention. 図2は、15mm×15mmの大きさの透明基板上での、2mm×2mm、および6.5mm×2mmの透明電極の配置を模式的に示した図である。FIG. 2 is a diagram schematically showing the arrangement of transparent electrodes of 2 mm × 2 mm and 6.5 mm × 2 mm on a transparent substrate having a size of 15 mm × 15 mm. 図3は、図2の透明電極付透明基板上に(チオフェン/フェニレン)コオリゴマー層を蒸着した後の配置を模式的に示した図である。FIG. 3 is a diagram schematically showing an arrangement after a (thiophene / phenylene) co-oligomer layer is deposited on the transparent substrate with a transparent electrode in FIG. 図4は、図1に記載した有機太陽電池を金属電極側から見た模式図である。FIG. 4 is a schematic view of the organic solar battery described in FIG. 1 as viewed from the metal electrode side. 図5は、石英基板上に蒸着されたP6T薄膜の光吸収スペクトルである。FIG. 5 is a light absorption spectrum of a P6T thin film deposited on a quartz substrate. 図6は、石英基板上に蒸着されたP6T薄膜のX線回折像である。FIG. 6 is an X-ray diffraction image of a P6T thin film deposited on a quartz substrate. 図7は、太陽電池に入射した水銀ランプのスペクトルである。FIG. 7 is a spectrum of a mercury lamp incident on the solar cell. 図8Aは、実施例1の有機太陽電池の電流−電圧特性である。図8Bは、図8Aの第四象限の原点付近の拡大図である。FIG. 8A is a current-voltage characteristic of the organic solar battery of Example 1. FIG. 8B is an enlarged view of the vicinity of the origin of the fourth quadrant of FIG. 8A. 図9は、本発明に係る好ましい形態の有機太陽電池の断面模式図である。FIG. 9 is a schematic cross-sectional view of a preferred embodiment of the organic solar battery according to the present invention. 図10は、石英基板上に蒸着されたC60薄膜の光吸収スペクトルである。Figure 10 is a light absorption spectrum of the C 60 film deposited on a quartz substrate. 図11Aは、実施例2の有機太陽電池の電流−電圧特性である。図11Bは、図11Aの第四象限の原点付近の拡大図である。FIG. 11A shows current-voltage characteristics of the organic solar battery of Example 2. FIG. 11B is an enlarged view of the vicinity of the origin of the fourth quadrant of FIG. 11A. 図12Aは、実施例3の有機太陽電池の電流−電圧特性である。図12Bは、図12Aの第四象限の原点付近の拡大図である。12A shows the current-voltage characteristics of the organic solar battery of Example 3. FIG. FIG. 12B is an enlarged view near the origin of the fourth quadrant of FIG. 12A. 図13は、石英基板上に蒸着されたBP2T−OMe薄膜の光吸収スペクトルである。FIG. 13 is a light absorption spectrum of a BP2T-OMe thin film deposited on a quartz substrate. 図14Aは、実施例4の有機太陽電池の電流−電圧特性である。図14Bは、図14Aの第四象限の原点付近の拡大図である。FIG. 14A shows the current-voltage characteristics of the organic solar battery of Example 4. FIG. 14B is an enlarged view of the vicinity of the origin of the fourth quadrant of FIG. 14A. 図15Aは、比較例1の有機太陽電池の電流−電圧特性である。図15Bは、図15Aの第四象限の原点付近の拡大図である。FIG. 15A shows current-voltage characteristics of the organic solar battery of Comparative Example 1. FIG. 15B is an enlarged view of the vicinity of the origin of the fourth quadrant of FIG. 15A.

本発明に係る有機太陽電池は、二つの電極層の間に配置された10nm〜225nmの厚さを有する(チオフェン/フェニレン)コオリゴマー層を含む。
「(チオフェン/フェニレン)コオリゴマー」とは、通常、「(チオフェン/フェニレン)コオリゴマー」と考えられる化合物であって、本発明に係る有機太陽電池を得ることができる限り、特に限定されない。より具体的には、下記式(I)で示される化合物を示すことができる。
The organic solar cell according to the present invention comprises a (thiophene / phenylene) co-oligomer layer having a thickness of 10 nm to 225 nm arranged between two electrode layers.
The “(thiophene / phenylene) co-oligomer” is a compound that is usually considered as “(thiophene / phenylene) co-oligomer”, and is not particularly limited as long as the organic solar cell according to the present invention can be obtained. More specifically, a compound represented by the following formula (I) can be shown.

式(I):(X)−(Y)
[ここで、
Xは、チオフェン環であり、Yは、ベンゼン環である。
XとYは、各々独立して、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等)、ハロゲン、アルコキシ基(例えば、メトキシ基、エトキシ基等)、アルケニル基(例えば、エテニル基等)、シアノ基、フッ素化アルキル基(例えば、トリフルオロメチル基等)等の置換基を有してよい。
mは、1〜12が好ましく、2〜8がより好ましく、3〜6が特に好ましい。nは、1〜6が好ましく、1〜4がより好ましく、1〜2が特に好ましい。
XとYは、ブロックで結合しても、ランダムに結合しても、交互に結合してもよい。
XとYは、単結合で結合している。]
を例示することができる。
(チオフェン/フェニレン)コオリゴマーは、上記XおよびYがブロック、ランダムあるいは交互に結合する結合様式に応じて、擬直線状、直線状、折れ曲がり状及びジグザグ状等の様々な分子形状を取ることが出来る。
Formula (I): (X) m- (Y) n
[here,
X is a thiophene ring, and Y is a benzene ring.
X and Y are each independently an alkyl group (for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, etc.), halogen, alkoxy group (for example, methoxy group) , An ethoxy group, etc.), an alkenyl group (eg, ethenyl group, etc.), a cyano group, a fluorinated alkyl group (eg, trifluoromethyl group, etc.) and the like.
m is preferably 1 to 12, more preferably 2 to 8, and particularly preferably 3 to 6. n is preferably 1 to 6, more preferably 1 to 4, and particularly preferably 1 to 2.
X and Y may be combined in a block, randomly, or alternately.
X and Y are bonded by a single bond. ]
Can be illustrated.
The (thiophene / phenylene) co-oligomer can take various molecular shapes such as quasi-linear, linear, bent, and zigzag depending on the binding mode in which the above X and Y are combined in a block, random or alternating manner. I can do it.

(チオフェン/フェニレン)コオリゴマーの一形態として、式(I)において、下記擬直線状の形状を有するコオリゴマーを例示できる。

Figure 2014157872
As one form of the (thiophene / phenylene) co-oligomer, a co-oligomer having the following quasi-linear shape in the formula (I) can be exemplified.
Figure 2014157872

(チオフェン/フェニレン)コオリゴマーの一形態として、式(I)において、下記直線状の形状を有するコオリゴマーを例示できる。

Figure 2014157872
As one form of (thiophene / phenylene) co-oligomer, a co-oligomer having the following linear shape in formula (I) can be exemplified.
Figure 2014157872

(チオフェン/フェニレン)コオリゴマーの一形態として、式(I)において、下記折れ曲がり状の形状を有するコオリゴマーを例示できる。

Figure 2014157872
As a form of the (thiophene / phenylene) co-oligomer, a co-oligomer having the following bent shape in the formula (I) can be exemplified.
Figure 2014157872

(チオフェン/フェニレン)コオリゴマーの一形態として、式(I)において、下記ジグザグ状の形状を有するコオリゴマーを例示できる。

Figure 2014157872
As one form of the (thiophene / phenylene) co-oligomer, a co-oligomer having the following zigzag shape in the formula (I) can be exemplified.
Figure 2014157872

尚、上記例示したコオリゴマーは、置換基を有してよく、そのようなコオリゴマーとして、下記のコオリゴマー等を例示できる。

Figure 2014157872
The co-oligomer exemplified above may have a substituent, and examples of such a co-oligomer include the following co-oligomers.
Figure 2014157872

(チオフェン/フェニレン)コオリゴマーは、層状の形状を有し、10nm〜225nmの厚さを有する。層厚が10nm未満の場合、十分な光電変換が達成されず、層厚が225nmを超える場合、却って光電変換の効率が低下する。層厚は20nm〜150nmであることが好ましく、30nm〜100nmであることがより好ましい。   The (thiophene / phenylene) co-oligomer has a layered shape and a thickness of 10 nm to 225 nm. When the layer thickness is less than 10 nm, sufficient photoelectric conversion is not achieved, and when the layer thickness exceeds 225 nm, the efficiency of photoelectric conversion decreases. The layer thickness is preferably 20 nm to 150 nm, and more preferably 30 nm to 100 nm.

本明細書において、層の厚さとは、平らな基板の表面上の一部に配置された層状の形状を有する物体に対し、基板の表面とそれに平行な物体の表面との距離を、アルバック(ULVAC, Inc.)社製の触針式表面形状測定器DEKTAK−3ST(商品名)を用いて測定した値をいう。測定は、先端にダイヤモンドのついた触針の下の試料を移動させて、電気的及び機械的に行った。測定条件は、試料を考慮して適切に決めた。精密試料台にのせた、触針の下の試料を、50〜15000μmの測定距離、1〜5000μm/秒の速度及び1〜30mgの針圧で、移動させた。測定は、常温(10〜30℃)、常圧下で、行った。測定中の試料は、35〜200倍のビデオカメラで観察した。より具体的な測定方法は、実施例に記載した。   In the present specification, the thickness of a layer refers to the distance between the surface of the substrate and the surface of the object parallel to the surface of the object with a layered shape arranged on a part of the surface of the flat substrate. It is a value measured using a stylus type surface shape measuring device DEKTAK-3ST (trade name) manufactured by ULVAC, Inc. The measurement was performed electrically and mechanically by moving the sample under the stylus with a diamond at the tip. The measurement conditions were appropriately determined in consideration of the sample. The sample under the stylus on the precision sample stage was moved at a measurement distance of 50 to 15000 μm, a speed of 1 to 5000 μm / sec and a needle pressure of 1 to 30 mg. The measurement was performed at normal temperature (10 to 30 ° C.) and normal pressure. The sample under measurement was observed with a video camera of 35 to 200 times. More specific measuring methods are described in the examples.

このような(チオフェン/フェニレン)コオリゴマーは、通常、(チオフェン/フェニレン)コオリゴマーを製造することができる方法を用いて製造することができ、その製造方法は、本発明が目的とする有機太陽電池を得ることができる限り特に制限されることはない。   Such a (thiophene / phenylene) co-oligomer can be usually produced by using a method capable of producing a (thiophene / phenylene) co-oligomer, and the production method is an organic solar targeted by the present invention. There is no particular limitation as long as the battery can be obtained.

更に、そのコオリゴマーの層は、通常、(チオフェン/フェニレン)コオリゴマーの層を製造することができる方法であれば、本発明が目的とする有機太陽電池を得ることができる限り特に制限されることはない。   Furthermore, the layer of the co-oligomer is particularly limited as long as the organic solar cell targeted by the present invention can be obtained as long as the method can produce a (thiophene / phenylene) co-oligomer layer. There is nothing.

本発明にかかる有機太陽電池は、10nm〜225nmの厚さを有する(チオフェン/フェニレン)コオリゴマー層を含む。必要に応じて他の層を含んでよいが、一般的に、二つの電極層を有し、一つの基板を有し得る。二つの電極層の間に上記コオリゴマー層が配置され、一つの電極が基板上に接して配置される。従って、一般的には、本発明の有機太陽電池は、基板上に一つの電極層、その上に上記コオリゴマー層、その上にもう一つの電極層を有する。尚、コオリゴマー層に光を照射することが必要なので、基板及びそれに接する電極層、又は基板に接しない電極層の少なくとも一方は、透明であることが必要である。二つの電極層のうち、少なくとも一つが十分な機械的な強度を有する場合、電極が基板を兼ねてもよい(この場合、基板は必要ではない)。   The organic solar cell according to the present invention includes a (thiophene / phenylene) co-oligomer layer having a thickness of 10 nm to 225 nm. Other layers may be included as required, but generally it has two electrode layers and can have a single substrate. The co-oligomer layer is disposed between two electrode layers, and one electrode is disposed in contact with the substrate. Therefore, in general, the organic solar cell of the present invention has one electrode layer on the substrate, the co-oligomer layer thereon, and another electrode layer thereon. Since it is necessary to irradiate the co-oligomer layer with light, at least one of the substrate and the electrode layer in contact with the substrate or the electrode layer not in contact with the substrate needs to be transparent. If at least one of the two electrode layers has sufficient mechanical strength, the electrode may also serve as a substrate (in this case, the substrate is not necessary).

本発明に係る「基板」として、通常有機太陽電池に用いられる基板であれば、本発明が目的とする有機太陽電池を得ることができる限り特に制限されることはない。そのような基板として、例えば、酸化ケイ素、石英、ソーダガラス、ポリメタクリル酸メチル、ポリスチレン、ポリエチレンテレフタレート、パリレン等を例示することができるが、不透明でも良い場合、さらにシリコン、酸化膜付シリコン、ポリイミド、テフロン(登録商標)、KBr、グラファイト、絶縁性のフォトレジスト等を例示することができる。   If it is a board | substrate normally used for an organic solar cell as a "substrate" concerning this invention, it will not restrict | limit especially as long as the organic solar cell which this invention aims can be obtained. Examples of such a substrate include silicon oxide, quartz, soda glass, polymethyl methacrylate, polystyrene, polyethylene terephthalate, and parylene. , Teflon (registered trademark), KBr, graphite, insulating photoresist, and the like.

本発明に係る「透明電極層」として、通常有機太陽電池に用いられる透明電極層であれば、本発明が目的とする有機太陽電池を得ることができる限り特に制限されることはない。そのような透明電極層として、例えば、インジウム酸化物(In)、スズ酸化物(SnO)、亜鉛酸化物(ZnO)、インジウム−スズ酸化物(ITO)、アルミニウムやガリウム、インジウムをドープした亜鉛酸化物(AZO、GZO、IZO)等を例示することができ、また層厚が十分薄く半透明な、金(Au)、白金(Pt)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム−金合金(MgAu)、マグネシウム−銀合金(MgAg)、アルミニウム−リチウム合金(AlLi)、カルシウム(Ca)、ルビジウム(Rb)、セシウム(Cs)、シリコン(Si)等を例示することができる。 If it is a transparent electrode layer normally used for an organic solar cell as a "transparent electrode layer" concerning this invention, there will be no restriction | limiting in particular as long as the organic solar cell which this invention aims at can be obtained. Examples of such transparent electrode layers include indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), indium-tin oxide (ITO), aluminum, gallium, and indium. Examples include doped zinc oxide (AZO, GZO, IZO) and the like, and the layer thickness is sufficiently thin and translucent, such as gold (Au), platinum (Pt), silver (Ag), copper (Cu), Aluminum (Al), magnesium-gold alloy (MgAu), magnesium-silver alloy (MgAg), aluminum-lithium alloy (AlLi), calcium (Ca), rubidium (Rb), cesium (Cs), silicon (Si), etc. It can be illustrated.

本発明に係る「電極層(不透明でよい)」として、通常有機太陽電池に用いられる電極層であれば、本発明が目的とする有機太陽電池を得ることができる限り特に制限されることはない。そのような電極層として、例えば、金(Au)、白金(Pt)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム−金合金(MgAu)、マグネシウム−銀合金(MgAg)、アルミニウム−リチウム合金(AlLi)、カルシウム(Ca)、ルビジウム(Rb)、セシウム(Cs)、シリコン(Si)、インジウム酸化物(In)、スズ酸化物(SnO)、亜鉛酸化物(ZnO)、インジウム−スズ酸化物(ITO)、アルミニウムやガリウム、インジウムをドープした亜鉛酸化物(AZO、GZO、IZO)等を例示することができる。 The “electrode layer (which may be opaque)” according to the present invention is not particularly limited as long as the organic solar cell intended by the present invention can be obtained as long as it is an electrode layer normally used for an organic solar cell. . As such an electrode layer, for example, gold (Au), platinum (Pt), silver (Ag), copper (Cu), aluminum (Al), magnesium-gold alloy (MgAu), magnesium-silver alloy (MgAg), Aluminum-lithium alloy (AlLi), calcium (Ca), rubidium (Rb), cesium (Cs), silicon (Si), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide ( ZnO), indium-tin oxide (ITO), aluminum, gallium, zinc oxide doped with indium (AZO, GZO, IZO) and the like can be exemplified.

本発明に係る「基板」、「透明電極層」及び「電極層(不透明でよい)」の製造方法は、通常それらの製造に用いられる方法であれば、本発明が目的とする有機太陽電池を得ることができる限り特に制限されることはない。   If the manufacturing method of the “substrate”, “transparent electrode layer” and “electrode layer (which may be opaque)” according to the present invention is a method usually used for the manufacturing thereof, the organic solar cell intended by the present invention is used. There is no particular limitation as long as it can be obtained.

このような、本発明に係る有機太陽電池の具体的な1例を、図1に示す。
図1の有機太陽電池10は、ガラスでできた透明基板5、透明基板5の表面の一部に設置されたインジウム−スズ酸化物(以下「ITO」)でできた透明電極層4、透明電極層4を覆い透明基板5の一部を覆う(チオフェン/フェニレン)コオリゴマー層1、(チオフェン/フェニレン)コオリゴマー層1上に配置されたアルミニウムでできた金属電極層3で構成されている。
透明電極層4と透明基板5とは一体となって、透明電極付透明基板6を形成する。
この本発明に係る太陽電池の構成は、極めて簡単で単純であるので、製造も簡単で容易であるという特徴を有する。
One specific example of such an organic solar cell according to the present invention is shown in FIG.
An organic solar cell 10 in FIG. 1 includes a transparent substrate 5 made of glass, a transparent electrode layer 4 made of indium-tin oxide (hereinafter referred to as “ITO”) placed on a part of the surface of the transparent substrate 5, a transparent electrode The layer 4 is composed of a (thiophene / phenylene) co-oligomer layer 1 and a metal electrode layer 3 made of aluminum and disposed on the (thiophene / phenylene) co-oligomer layer 1.
The transparent electrode layer 4 and the transparent substrate 5 are integrated to form a transparent substrate 6 with a transparent electrode.
Since the configuration of the solar cell according to the present invention is extremely simple and simple, it is characterized by being easy and easy to manufacture.

本発明に係る有機太陽電池は、(チオフェン/フェニレン)コオリゴマー層と接し、二枚の電極層の間に配置されたC60層を更に有することが好ましい。即ち、(チオフェン/フェニレン)コオリゴマー層とC60層は、一緒に有機光電変換層として作用する。
非特許文献3及び4は、(チオフェン/フェニレン)コオリゴマー層とC60層の両者を有するが、コオリゴマー層とC60層は、接触することを何ら開示も教示もしていない。非特許文献3及び4は、コオリゴマー層を有機光電変換層として使用していないからである。このことは、背景技術の欄で説明した。
The organic solar cell according to the present invention preferably further has a C 60 layer disposed in contact with the (thiophene / phenylene) co-oligomer layer and disposed between the two electrode layers. That is, (thiophene / phenylene) co-oligomer layer and the C 60 layer acts as an organic photoelectric conversion layer together.
Non-patent Documents 3 and 4, which have both (thiophene / phenylene) co-oligomer layer and the C 60-layer, co-oligomer layer and the C 60 layer is not any disclosure also teaches that contact. This is because Non-Patent Documents 3 and 4 do not use the co-oligomer layer as the organic photoelectric conversion layer. This has been explained in the background section.

本発明において、「C60」とは、通常C60とされている化合物であり、「フラーレン」ともよばれる。本発明が目的とする有機太陽電池を得ることができる限り特に制限されることはなく、適宜、置換基等を有してよい。従って、本発明に係る「C60」は、「C60」の誘導体も含む。そのような「C60」の誘導体として、例えば、置換基を有するフェニルC61酪酸メチルエステル(PCBM)、フェニル−C61酪酸ブチルエステル(PCBB)、フェニル−C61酪酸オクチルエステル(PCBO)、チエニル−C61酪酸メチルエステル(ThCBM)等を例示することができる。C60及びC60の誘導体は、単独又は組み合わせて使用することができる。 In the present invention, “C 60 ” is a compound usually designated as C 60 and is also called “fullerene”. There is no particular limitation as long as the organic solar battery targeted by the present invention can be obtained, and it may have a substituent or the like as appropriate. Therefore, “C 60 ” according to the present invention includes derivatives of “C 60 ”. As derivatives of such "C 60", for example, phenyl C 61 butyric acid methyl ester having a substituent (PCBM), phenyl -C 61 acid butyl ester (PCBB), phenyl -C 61 acid octyl ester (PCBO), thienyl it can be exemplified -C 61 butyric acid methyl ester (ThCBM) or the like. The C 60 and C 60 derivatives can be used alone or in combination.

60は、通常それらの製造に用いられる製造方法を用いて製造することができ、本発明が目的とする有機太陽電池を得ることができる限り特に制限されることはない。市販品を使用することができる。そのようなC60として、例えば、シグマ・アルドリッチ社製のFullerene−C60(商品名)、フロンティアカーボン株式会社製のnanom purple SUH(商品名)、関東化学株式会社製のCarbon cluster C60,ST(商品名)等を例示できる。 C 60 typically can be manufactured by the methods used in their manufacture, are not particularly limited as long as the present invention it is possible to obtain the organic solar cell of interest. Commercial products can be used. Examples of such C 60 include Fullerene-C 60 (trade name) manufactured by Sigma-Aldrich, nanom purple SUH (trade name) manufactured by Frontier Carbon Co., and Carbon cluster C 60 , ST manufactured by Kanto Chemical Co., Ltd. (Product name) can be exemplified.

「C60層」は、そのようなC60を用いて、通常使用される方法を使用して、C60層を製造することができる。本発明が目的とする有機太陽電池を得ることができる限り、その方法は、特に制限されることはない。
60層の厚さは、本発明が目的とする有機太陽電池を得ることができる限り特に制限されることはないが、1〜225nmであることが好ましく、2〜150nmであることがより好ましく、5〜100nmであることが特に好ましい。層厚の測定方法は、コオリゴマー層の層厚の測定方法と同様である。
"C 60 layer" uses such C 60, using a method usually used, it is possible to produce a C 60 layer. The method is not particularly limited as long as the organic solar battery targeted by the present invention can be obtained.
The thickness of the C 60 layer is not to be particularly limited as long as the present invention can be obtained an organic solar cell of interest is preferably 1~225Nm, more preferably 2~150nm 5 to 100 nm is particularly preferable. The method for measuring the layer thickness is the same as the method for measuring the layer thickness of the co-oligomer layer.

60層は、コオリゴマー層と接触し、二つの電極間に存するように配置される。このようにC60層を配置することで、(チオフェン/フェニレン)コオリゴマー層が、p−型有機半導体層となり、C60層がn−型有機半導体層となって、より変換効率が向上し、好ましい。 C 60 layer is in contact with the co-oligomer layer is positioned to lie between the two electrodes. By disposing the C60 layer in this manner, the (thiophene / phenylene) co-oligomer layer becomes a p-type organic semiconductor layer, and the C60 layer becomes an n-type organic semiconductor layer, thereby further improving the conversion efficiency. ,preferable.

そのような好ましい本発明に係る有機太陽電池の1例を、図9を参照しながら説明する。図9の有機太陽電池10は、ガラスでできた透明基板5、透明基板5の表面の一部に設置されたITOでできた透明電極層4、透明電極層4を覆い透明基板5の一部を覆う(チオフェン/フェニレン)コオリゴマー層1、(チオフェン/フェニレン)コオリゴマー層1上に重なるように覆うC60層2、C60層2に配置されたアルミニウムでできた金属電極層3で構成されている。
この本発明に係る太陽電池の構成は、C60層が増えているが、C60層は、(チオフェン/フェニレン)コオリゴマー層と一緒に有機光電変換層を形成しているので、基本的な構成は、極めて簡単で単純であり、製造も簡単で容易であるという特徴を有する。
One example of such a preferred organic solar cell according to the present invention will be described with reference to FIG. 9 includes a transparent substrate 5 made of glass, a transparent electrode layer 4 made of ITO placed on a part of the surface of the transparent substrate 5, a part of the transparent substrate 5 covering the transparent electrode layer 4 (Thiophene / phenylene) co-oligomer layer 1 covering, (thiophene / phenylene) co-oligomer layer 1 covering C 60 layer 2 and metal electrode layer 3 made of aluminum disposed on C 60 layer 2 Has been.
Configuration of a solar cell according to the present invention is C 60 layers is increasing, C 60 layer, since the formation of the organic photoelectric conversion layer with (thiophene / phenylene) co-oligomer layer, basic The configuration is characterized by being very simple and simple and easy and easy to manufacture.

本発明に係る有機太陽電池は、本発明が目的とする有機太陽電池を得ることができる限り特に制限されることなく、必要に応じて、他の層を有してよい。そのような他の層として、電荷(ホール及び電子)の電荷輸送を円滑にする層、あるいは逆にホールや電子をブロックする層、もしくは酸素や水分等の侵入を防ぐバリア層等を例示することができる。これらの層は、通常使用される製造方法で、製造することができる。   The organic solar cell according to the present invention is not particularly limited as long as the organic solar cell targeted by the present invention can be obtained, and may have other layers as necessary. Examples of such other layers include a layer that facilitates charge transport of charges (holes and electrons), a layer that blocks holes and electrons, or a barrier layer that prevents entry of oxygen, moisture, etc. Can do. These layers can be produced by a commonly used production method.

本発明に係る有機太陽電池は、上述のような特徴を有するので、有機太陽電池として、優れた変換効率を示しながら、極めて構成が簡単であり、簡単に容易に製造することができるとの優れた効果を奏する。
本願発明が優れた効果を奏する理由は、以下の通りと考えられる。
(チオフェン/フェニレン)コオリゴマー層の層厚に好ましい範囲が存在することは、以下のように解釈できる。即ち、層厚が10nm以下の場合、デバイスの単位面積あたりに換算すると、(チオフェン/フェニレン)コオリゴマー層内に発生する励起子の数が少なく、有効な光電変換が達成できないと考えられる。一方、層厚が225nm以上の場合、たとえ多くの励起子が発生しても、励起子が電極または(チオフェン/フェニレン)コオリゴマー層とC60層との間の界面に到達するために移動する距離が大きくなり、励起子の失活を招きやすくするので、やはり有効な光電変換が達成できないと考えられる。
Since the organic solar cell according to the present invention has the above-described characteristics, the organic solar cell has an extremely simple structure while exhibiting excellent conversion efficiency, and can be easily manufactured easily. Has an effect.
The reason why the present invention has an excellent effect is considered as follows.
The fact that there is a preferred range for the layer thickness of the (thiophene / phenylene) co-oligomer layer can be interpreted as follows. That is, when the layer thickness is 10 nm or less, when converted per unit area of the device, the number of excitons generated in the (thiophene / phenylene) co-oligomer layer is small, and it is considered that effective photoelectric conversion cannot be achieved. On the other hand, if the thickness is more than 225 nm, even if a lot of excitons occurs, moves to exciton reaches the interface between the electrode or (thiophene / phenylene) co-oligomer layer and the C 60 layer It is thought that effective photoelectric conversion cannot be achieved because the distance increases and the exciton is easily deactivated.

これらのことは、光照射の結果、(チオフェン/フェニレン)コオリゴマー層に発生した励起子が解離して生じた電荷についても当てはまることが予想される。
60層は、(チオフェン/フェニレン)コオリゴマー層の内部に発生する励起子の解離を促進してホール及び電子に電荷分離することを促進する作用をもつと考えられる。層厚が1nm以下の場合は、この作用が十分でなく、225nm以上の場合は、C60層の内部に発生した電子を電極に輸送する距離が大きくなり、有効な光電変換が達成できないと考えられる。
These are also expected to apply to the charges generated by the dissociation of excitons generated in the (thiophene / phenylene) co-oligomer layer as a result of light irradiation.
The C60 layer is considered to have an action of promoting the dissociation of excitons generated in the (thiophene / phenylene) co-oligomer layer and promoting charge separation into holes and electrons. When the layer thickness is 1 nm or less, this effect is not sufficient, and when the layer thickness is 225 nm or more, the distance for transporting electrons generated in the C 60 layer to the electrode is increased, and effective photoelectric conversion cannot be achieved. It is done.

以下、本発明を実施例及び比較例を用いて説明するが、これらの例は、本発明を説明するためのものであり、本発明を何ら限定するものではない。   EXAMPLES Hereinafter, although this invention is demonstrated using an Example and a comparative example, these examples are for demonstrating this invention, and do not limit this invention at all.

実施例1
実施例1の有機太陽電池
本発明に係る1の態様の太陽電池の断面模式図である図1を参照しながら、実施例1の有機太陽電池及びその製造方法を説明する。図1の有機太陽電池の構成は、上述した。
実施例1の有機太陽電池は、以下のようにして製造した。
Example 1
Organic Solar Cell of Example 1 An organic solar cell of Example 1 and a manufacturing method thereof will be described with reference to FIG. 1 which is a schematic cross-sectional view of a solar cell of one aspect according to the present invention. The configuration of the organic solar cell in FIG. 1 has been described above.
The organic solar cell of Example 1 was manufactured as follows.

ITO層のエッチング
厚さ150nmのITOが表面に付いた厚さ0.7mmのガラス基板を、寸法15mm×15mmの中に、6.5mm×2mmおよび2mm×2mmのITO層が各4個ずつ、図2に示す配置で残るようにエッチングした。その後15mm×15mmの寸法に切断した。以上のように、透明電極付透明基板6を準備した。
Etching of ITO layer A 0.7 mm thick glass substrate with 150 nm ITO on the surface, each having four ITO layers of 6.5 mm × 2 mm and 2 mm × 2 mm in a size of 15 mm × 15 mm, Etching was performed so as to remain in the arrangement shown in FIG. Thereafter, it was cut into a size of 15 mm × 15 mm. As described above, the transparent substrate 6 with a transparent electrode was prepared.

基板の洗浄
透明電極付透明基板6を順番にアセトン、2−プロパノール、エタノール、蒸留水で各10分間ずつ大気中にて超音波洗浄した後、基板に残った蒸留水を窒素ブローで除去した。その後、紫外線ランプによるオゾン洗浄を10分間施し、基板の表面を清浄にした。
Cleaning the substrate The transparent substrate 6 with a transparent electrode was sequentially ultrasonically washed with acetone, 2-propanol, ethanol, and distilled water for 10 minutes each in the air, and then distilled water remaining on the substrate was removed by nitrogen blowing. Thereafter, ozone cleaning with an ultraviolet lamp was performed for 10 minutes to clean the surface of the substrate.

有機層の蒸着
4.1mm×4.6mmの長方形の4つの穴の開いた蒸着用のマスクを、基板表面の6.5mm×2mmの大きさのITOの基板中央寄りの一端がマスクの長方形の穴の中心になるように、ITO付ガラス基板に被せた。その後、ITO面が蒸着源に向くように基板を真空蒸着装置に設置した。真空度約10−3Paで、(チオフェン/フェニレン)コオリゴマー層1として化1で示されるP6Tを、厚さ約80nmだけ、マスクの上から基板に蒸着した後、基板を大気暴露して取り出した。
P6Tの蒸着源にはタングステン製の蒸着ボートを用いた。この蒸着ボートは、3つの部品からなる。下部の部品には凹みがあり、そこに蒸着材料を入れる。中央に挿入する板に二つの穴が開き、上部の蓋に一つの穴が開いている。
蒸着後、P6T層は、6.5mm×2mmの大きさのITO層の一部を覆っていた。
図3は、透明電極付透明基板6に蒸着された(チオフェン/フェニレン)コオリゴマー層1の配置を模式的に表す。
Deposition of organic layer 4.1 mm x 4.6 mm rectangular deposition mask with four holes, and 6.5 mm x 2 mm ITO on the substrate surface near the center of the substrate. It covered on the glass substrate with ITO so that it might become the center of a hole. Thereafter, the substrate was placed in a vacuum vapor deposition apparatus so that the ITO surface faced the vapor deposition source. P6T represented by Chemical Formula 1 as a (thiophene / phenylene) co-oligomer layer 1 was deposited on the substrate from above the mask at a vacuum degree of about 10 −3 Pa, and then the substrate was exposed to the atmosphere and taken out. It was.
A tungsten vapor deposition boat was used as a P6T vapor deposition source. This vapor deposition boat consists of three parts. There is a dent in the lower part, and the deposition material is put there. There are two holes in the plate inserted in the center and one hole in the upper lid.
After vapor deposition, the P6T layer covered a portion of the 6.5 mm × 2 mm ITO layer.
FIG. 3 schematically shows the arrangement of the (thiophene / phenylene) co-oligomer layer 1 deposited on the transparent substrate 6 with a transparent electrode.

金属電極の蒸着
P6T蒸着層の上に、2mm×7mmの長方形の4つの穴の開いた蒸着用のマスクを、P6T蒸着層の一部と、2mm×2mmのITO層が長方形の穴から見えるようにITO付ガラス基板に被せた後、P6T層が蒸着源に向くように基板を真空蒸着装置に設置した。真空度約10−3Paで、マスクの上から金属電極層3としてアルミニウムを厚さ約100nm蒸着した後、基板を大気暴露して取り出した。
図4に、完成した有機太陽電池10を金属電極層3側から見た模式図を示す。実施例1の有機太陽電池は、(チオフェン/フェニレン)コオリゴマー層1であるP6Tを金属電極層3であるアルミニウムと透明電極層4であるITOで挟んだ構造を有する。
尚、実施例1の有機太陽電池のP6T層の層厚は、上にアルミニウムが蒸着されてなく、ガラス基板のITOの無い部分に直接乗ったP6T層の一部分を、アルバック社の触針式表面形状測定器DEKTAK−3STを用いて、常温、常圧で、測定した。精密試料台にのせた、触針の下の試料を、1000〜2000μmの測定距離、20〜667μm/秒の速度及び1〜30mgの針圧で、移動させた。測定中の試料は、35倍のビデオカメラで観察した。
Metal electrode deposition On the P6T vapor deposition layer, a 2 mm x 7 mm rectangular four-hole vapor deposition mask is formed so that a part of the P6T vapor deposition layer and the 2 mm x 2 mm ITO layer can be seen from the rectangular hole. Then, the substrate was placed in a vacuum deposition apparatus so that the P6T layer was directed to the deposition source. After vacuum-depositing aluminum with a thickness of about 100 nm as the metal electrode layer 3 from above the mask at a degree of vacuum of about 10 −3 Pa, the substrate was exposed to the atmosphere and taken out.
In FIG. 4, the schematic diagram which looked at the completed organic solar cell 10 from the metal electrode layer 3 side is shown. The organic solar cell of Example 1 has a structure in which P6T which is a (thiophene / phenylene) co-oligomer layer 1 is sandwiched between aluminum which is a metal electrode layer 3 and ITO which is a transparent electrode layer 4.
In addition, the layer thickness of the P6T layer of the organic solar cell of Example 1 is such that a part of the P6T layer directly placed on a portion of the glass substrate on which no ITO is deposited and on which no ITO is deposited is a stylus type surface of ULVAC. Measurement was performed at normal temperature and normal pressure using a shape measuring instrument DEKTAK-3ST. The sample under the stylus on the precision sample stage was moved at a measurement distance of 1000 to 2000 μm, a speed of 20 to 667 μm / sec and a needle pressure of 1 to 30 mg. The sample under measurement was observed with a 35 times video camera.

図5は、石英基板に厚さ約60nmのP6Tのみを蒸着した試料の光吸収スペクトルを示す。390nmにピークがある300nmから580nmの範囲のブロードな吸収をもつ。
図6は、図5と同じ試料のX線回折像を示す。2.74度と5.40度に明確にピークが見られた。図5から求まる面間隔は32.5Åであり、P6T結晶のc軸の長さ61.88Å(非特許文献5参照)の半分とほぼ一致する。
非特許文献5:S. Hotta et. al, Chem. Mater., 2004, 16, 237-241.
FIG. 5 shows a light absorption spectrum of a sample in which only P6T having a thickness of about 60 nm is deposited on a quartz substrate. It has a broad absorption in the range of 300 nm to 580 nm with a peak at 390 nm.
FIG. 6 shows an X-ray diffraction image of the same sample as FIG. Clear peaks were seen at 2.74 degrees and 5.40 degrees. The plane spacing determined from FIG. 5 is 32.5 mm, which is almost the same as half the length of the c-axis 61.88 mm (see Non-Patent Document 5) of the P6T crystal.
Non-Patent Document 5: S. Hotta et. Al, Chem. Mater., 2004, 16, 237-241.

このようにして得られた実施例1の有機太陽電池の暗時下、および水銀ランプの照射下における電流−電圧特性を、真空中(約10−3Pa)で測定した。
太陽電池に照射した水銀ランプのスペクトルを図7に示す。
図8Aは、アルミニウム電極を接地し、ITO電極に−3Vから3Vまでの直流電圧を印加したときに太陽電池を流れる電流を測定した結果を示す。水銀ランプの照射強度は20.1mW/cmであり、水銀ランプは透明基板側より基板に垂直に照射された。暗時下において、−3Vの時−0.297μAの電流が流れ、3Vの時7.71mAの電流が観測された。整流比は26000であった。
図8Bは、図8Aの第四象限を原点付近で拡大した拡大図を示す。
20.1mW/cmの強度の水銀ランプ照射下における開放電圧は0.29V、短絡電流は4.43μAであった。
The current-voltage characteristics of the organic solar cell of Example 1 thus obtained under dark conditions and mercury lamp irradiation were measured in a vacuum (about 10 −3 Pa).
The spectrum of the mercury lamp irradiated to the solar cell is shown in FIG.
FIG. 8A shows the result of measuring the current flowing through the solar cell when the aluminum electrode is grounded and a DC voltage of −3 V to 3 V is applied to the ITO electrode. The irradiation intensity of the mercury lamp was 20.1 mW / cm 2 , and the mercury lamp was irradiated perpendicularly to the substrate from the transparent substrate side. Under dark conditions, a current of −0.297 μA flowed at −3 V, and a current of 7.71 mA was observed at 3 V. The rectification ratio was 26000.
FIG. 8B shows an enlarged view in which the fourth quadrant of FIG. 8A is enlarged near the origin.
The open circuit voltage was 0.29 V and the short circuit current was 4.43 μA under irradiation of a mercury lamp having an intensity of 20.1 mW / cm 2 .

水銀ランプの照射強度が10.6、20.1、48.3、109mW/cmのときの開放電圧、短絡電流、最大電力、フィルファクター、変換効率を表1に示す。
最大照射強度109mW/cmのときの変換効率は3.95×10−4%であった。
Table 1 shows the open-circuit voltage, short-circuit current, maximum power, fill factor, and conversion efficiency when the irradiation intensity of the mercury lamp is 10.6, 20.1, 48.3, and 109 mW / cm 2 .
The conversion efficiency when the maximum irradiation intensity was 109 mW / cm 2 was 3.95 × 10 −4 %.

Figure 2014157872
Figure 2014157872

実施例2
実施例2の有機太陽電池
本発明に係る好ましい態様の有機太陽電池の断面模式図である図9を参照しながら、実施例2の有機太陽電池及びその製造方法を説明する。図9の有機太陽電池の構成は、上述した。
実施例2の有機太陽電池は、以下のようにして製造した。
Example 2
Organic Solar Cell of Example 2 The organic solar cell of Example 2 and its manufacturing method will be described with reference to FIG. 9 which is a schematic cross-sectional view of an organic solar cell of a preferred embodiment according to the present invention. The configuration of the organic solar cell in FIG. 9 has been described above.
The organic solar cell of Example 2 was manufactured as follows.

実施例1と同様に透明電極付透明基板6としてパターニングされたITOを有するガラス基板を準備した。その後、実施例1と同様の方法を用いて、透明電極付透明基板6を洗浄した。   As in Example 1, a glass substrate having ITO patterned as a transparent substrate 6 with a transparent electrode was prepared. Thereafter, using the same method as in Example 1, the transparent substrate 6 with a transparent electrode was washed.

有機層の蒸着
実施例1の方法と同様に、厚さ約60nmのP6TをITOガラス基板に蒸着した後、基板を大気暴露した。その後、基板に対しP6Tを蒸着した時と同じマスクを同じ配置で用い、マスクの上からシグマアルドリッチ社製のフラーレン-C60(純度:99.9%)からなるC60層2を厚さ約100nm蒸着した。その後、基板を大気暴露して取り出した。C60の蒸着源には、P6Tと同じ形状のタングステンボートを用いた。
Deposition of organic layer In the same manner as in Example 1, P6T having a thickness of about 60 nm was deposited on an ITO glass substrate, and then the substrate was exposed to the atmosphere. Thereafter, the same mask as that used when P6T was deposited on the substrate was used in the same arrangement, and a C 60 layer 2 made of Sigma-Aldrich fullerene-C 60 (purity: 99.9%) was formed on the mask with a thickness of about 100 nm was deposited. Thereafter, the substrate was exposed to the atmosphere and taken out. A tungsten boat having the same shape as P6T was used as the C 60 vapor deposition source.

金属電極の蒸着
実施例1の方法と同様に、C60層2の上に金属電極層3としてアルミニウムを厚さ約100nm蒸着した後、基板を大気暴露して取り出した。
実施例2の有機太陽電池は、C60層と(チオフェン/フェニレン)コオリゴマー層1であるP6Tを、金属電極層3であるアルミニウムと透明電極層4であるITOで挟んだ構造である。
尚、実施例2の有機太陽電池のP6T層とC60層の層厚は、それぞれ、実施例2の有機太陽電池のP6T層とC60層を蒸着する際、別途、真空蒸着装置に設置した実施例2の有機太陽電池の近くに、何も蒸着されていない酸化膜付シリコン基板を設置し、その酸化膜付シリコン基板上に蒸着されたP6T層とC60層を、DEKTAK−3STを使用して、実施例1に記載した方法と同様の方法を用いて測定して決めた。
Deposition of metal electrode In the same manner as in Example 1, after depositing aluminum as a metal electrode layer 3 to a thickness of about 100 nm on the C60 layer 2, the substrate was exposed to the atmosphere and taken out.
The organic solar cell of Example 2, and C 60 Layers (thiophene / phenylene) co oligomeric layer 1 P6T, is sandwiched between an ITO aluminum and transparent electrode layer 4 is a metal electrode layer 3.
Incidentally, the thickness of the P6T layer and C 60 layers of the organic solar cell of Example 2, respectively, when depositing the P6T layer and C 60 layers of the organic solar cell of Example 2, was separately placed in a vacuum deposition apparatus near organic solar cell of example 2, nothing silicon substrate with oxide film not deposited installed, the P6T layer deposited oxide film-coated silicon substrate and C 60 layers, using DEKTAK-3ST Then, the measurement was performed using the same method as that described in Example 1 and determined.

図10は、石英基板に厚さ約100nmのC60を蒸着した試料の光吸収スペクトルである。波長400nm以下に強い吸収が見られる。
この試料では、X線回折のピークは観測されなかった。
Figure 10 is a light absorption spectrum of the sample was deposited C 60 having a thickness of about 100nm on a quartz substrate. Strong absorption is observed at a wavelength of 400 nm or less.
In this sample, no X-ray diffraction peak was observed.

このようにして得られた実施例2の有機太陽電池の暗時下、および水銀ランプの照射下における電流−電圧特性、を真空中(約10−3Pa)で測定した。
図11Aは、アルミニウム電極を接地し、ITO電極に−3Vから3Vまでの直流電圧を印加したときに太陽電池を流れる電流を測定した結果を示す。水銀ランプの照射強度は261mW/cmであり、水銀ランプは透明基板側より基板に垂直に照射された。暗時下において、−3Vの時−1.43μAの電流が流れ、3Vの時2.37mAの電流が観測された。整流比は1660であった。
図11Bは、図11Aの第四象限を原点付近で拡大した拡大図を示す。
261mW/cmの強度の水銀ランプ照射下における開放電圧は0.35V、短絡電流は0.313mAであった。
The current-voltage characteristics of the organic solar cell of Example 2 thus obtained under dark conditions and mercury lamp irradiation were measured in a vacuum (about 10 −3 Pa).
FIG. 11A shows the result of measuring the current flowing through the solar cell when the aluminum electrode is grounded and a DC voltage of −3 V to 3 V is applied to the ITO electrode. The irradiation intensity of the mercury lamp was 261 mW / cm 2 , and the mercury lamp was irradiated perpendicularly to the substrate from the transparent substrate side. Under dark conditions, a current of −1.43 μA flows at −3 V and a current of 2.37 mA at 3 V is observed. The rectification ratio was 1660.
FIG. 11B shows an enlarged view in which the fourth quadrant of FIG. 11A is enlarged near the origin.
The open circuit voltage under irradiation of a mercury lamp with an intensity of 261 mW / cm 2 was 0.35 V, and the short-circuit current was 0.313 mA.

水銀ランプの照射強度が65.2、131、261mW/cmのときの開放電圧、短絡電流、最大電力、フィルファクター、変換効率を表2に示す。
最大照射強度261mW/cmのときの変換効率は0.183%であった。
Table 2 shows the open-circuit voltage, short-circuit current, maximum power, fill factor, and conversion efficiency when the irradiation intensity of the mercury lamp is 65.2, 131, 261 mW / cm 2 .
The conversion efficiency when the maximum irradiation intensity was 261 mW / cm 2 was 0.183%.

Figure 2014157872
Figure 2014157872

実施例3
実施例3の有機太陽電池
本発明に係る好ましい態様の有機太陽電池の断面模式図である図9を参照しながら、実施例3の有機太陽電池及びその製造方法を説明する。図9の有機太陽電池の構成は、上述した。実施例3の有機太陽電池は、以下のようにして製造した。
Example 3
Organic Solar Cell of Example 3 An organic solar cell of Example 3 and a manufacturing method thereof will be described with reference to FIG. 9 which is a schematic cross-sectional view of an organic solar cell of a preferred embodiment according to the present invention. The configuration of the organic solar cell in FIG. 9 has been described above. The organic solar cell of Example 3 was manufactured as follows.

実施例1の方法と同様に透明電極付透明基板6としてパターニングされたITOを有するガラス基板を準備した。その後、実施例1と同様の方法を用いて、透明電極付透明基板6を洗浄した。   In the same manner as in Example 1, a glass substrate having ITO patterned as a transparent substrate 6 with a transparent electrode was prepared. Thereafter, using the same method as in Example 1, the transparent substrate 6 with a transparent electrode was washed.

有機層の蒸着
(チオフェン/フェニレン)コオリゴマー層1として、厚さ約70nmのP6Tを用いたこと、C60の厚さが約5nmであること、P6TとC60の蒸着を大気暴露を経ることなく一貫した真空下で連続的に行ったことを除き、実施例2の方法と同様にして有機層を蒸着した。
Deposition of organic layer (thiophene / phenylene) Co-oligomer layer 1 was made of P6T with a thickness of about 70 nm, C 60 had a thickness of about 5 nm, and P6T and C 60 were vapor-deposited through air exposure. The organic layer was deposited in the same manner as in Example 2 except that it was performed continuously under a consistent vacuum.

金属電極の蒸着
実施例2の方法と同様に、シグマアルドリッチ社製のフラーレン-C60(純度:99.9%)からなるC60層2の上に金属電極層3としてアルミニウムを厚さ約150nm蒸着した後、基板を大気暴露して取り出した。
実施例3の有機太陽電池は、C60層2と(チオフェン/フェニレン)コオリゴマー層1であるP6Tを、金属電極層3であるアルミニウムと透明電極層4であるITOで挟んだ構造である。
尚、実施例3の有機太陽電池のP6T層とC60層の層厚は以下のように決めた。まず真空蒸着装置に何も蒸着されていない酸化膜付シリコン基板を設置し、その基板上にP6T層もしくはC60層を蒸着した。蒸着の際、材料の蒸着量を測定する水晶振動子式膜厚モニターで最終的な蒸着量(蒸着の間の振動数変化から割り出される値)を確認し、記録した。P6T層もしくはC60層が蒸着された基板における、P6T層もしくはC60層の実際の層厚を、DEKTAK−3STを使用して、実施例1に記載した方法と同様の方法を用いて測定した。P6T層もしくはC60層の実際の層厚と膜厚モニターの蒸着量の換算比率を算出した。実施例3の有機太陽電池のP6T層およびC60層を蒸着する際、P6T層およびC60層の所望の層厚に対する膜厚モニターの蒸着量を換算比率から割り出し、膜厚モニターの蒸着量がその値になるまで、P6T層およびC60層を蒸着した。
Deposition of metal electrode In the same manner as in Example 2, aluminum was deposited to a thickness of about 150 nm as the metal electrode layer 3 on the C 60 layer 2 made of Sigma-Aldrich fullerene-C 60 (purity: 99.9%). After vapor deposition, the substrate was exposed to the atmosphere and removed.
The organic solar cell of Example 3 has a structure in which C 60 layer 2 and P6T which is (thiophene / phenylene) co-oligomer layer 1 are sandwiched between aluminum which is metal electrode layer 3 and ITO which is transparent electrode layer 4.
Incidentally, the thickness of the P6T layer and C 60 layers of the organic solar cell of Example 3 was determined as follows. Nothing silicon substrate was placed with oxide film which is not deposited in a vacuum deposition device was first deposited P6T layer or C 60 layers on the substrate. At the time of vapor deposition, the final vapor deposition amount (value calculated from the change in the frequency during vapor deposition) was confirmed and recorded with a crystal oscillator type film thickness monitor that measures the vapor deposition amount of the material. In substrate P6T layer or C 60 layer has been deposited, the actual thickness of the P6T layer or C 60 layers, using DEKTAK-3ST, was measured using a method similar to that described in Example 1 . P6T layer or to calculate the actual layer thickness and the conversion ratio of the amount of deposited thickness monitor C 60 layers. When depositing P6T layer and C 60 layers of the organic solar cell of Example 3, the indexing from the conversion ratio of the amount of deposited film thickness monitor to the desired layer thickness of the P6T layer and C 60 layer, the deposition amount of a film thickness monitor until that value, it was deposited P6T layer and C 60 layers.

このようにして得られた実施例3の有機太陽電池の暗時下、および水銀ランプの照射下における電流−電圧特性を、真空中(約10−3Pa)で測定した。
図12Aは、アルミニウム電極を接地し、ITO電極に−3Vから3Vまでの直流電圧を印加したときに太陽電池を流れる電流を測定したものである。水銀ランプの照射強度は109mW/cmであり、水銀ランプは透明基板側より基板に垂直に照射された。暗時下において、−3Vの時−1.21μAの電流が流れ、3Vの時10.2mAの電流が観測された。整流比は8480であった。
図12Bは、図12Aの第四象限を原点付近で拡大した拡大図である。
109mW/cmの強度の水銀ランプ照射下における開放電圧は0.17V、短絡電流は2.40μAであった。
Thus, the current-voltage characteristic of the organic solar cell of Example 3 obtained in the dark and under irradiation of a mercury lamp was measured in a vacuum (about 10 −3 Pa).
FIG. 12A shows the measurement of the current flowing through the solar cell when the aluminum electrode is grounded and a DC voltage of −3 V to 3 V is applied to the ITO electrode. The irradiation intensity of the mercury lamp was 109 mW / cm 2 , and the mercury lamp was irradiated perpendicularly to the substrate from the transparent substrate side. Under dark conditions, a current of −1.21 μA flowed at −3 V, and a current of 10.2 mA was observed at 3 V. The rectification ratio was 8480.
FIG. 12B is an enlarged view in which the fourth quadrant of FIG. 12A is enlarged near the origin.
The open circuit voltage was 0.17 V and the short circuit current was 2.40 μA under irradiation of a mercury lamp having an intensity of 109 mW / cm 2 .

水銀ランプの照射強度が20.1、48.3、109mW/cmのときの開放電圧、短絡電流、最大電力、フィルファクター、変換効率を表3に示す。
実施例3の有機太陽電池は、照射強度の増加に伴い変換効率が上昇し、最大照射強度109mW/cmのときの変換効率は2.01×10−3%であった。
Table 3 shows the open circuit voltage, short circuit current, maximum power, fill factor, and conversion efficiency when the mercury lamp irradiation intensity is 20.1, 48.3, and 109 mW / cm 2 .
In the organic solar cell of Example 3, the conversion efficiency increased as the irradiation intensity increased, and the conversion efficiency when the maximum irradiation intensity was 109 mW / cm 2 was 2.01 × 10 −3 %.

Figure 2014157872
Figure 2014157872

実施例4
実施例4の有機太陽電池
本発明に係る好ましい態様の有機太陽電池の断面模式図である図9を参照しながら、実施例4の有機太陽電池及びその製造方法を説明する。図9の有機太陽電池の構成は、上述した。実施例4の有機太陽電池は、以下のようにして製造した。
Example 4
Organic Solar Cell of Example 4 An organic solar cell of Example 4 and a method for manufacturing the same will be described with reference to FIG. 9 which is a schematic cross-sectional view of an organic solar cell of a preferred embodiment according to the present invention. The configuration of the organic solar cell in FIG. 9 has been described above. The organic solar cell of Example 4 was manufactured as follows.

実施例1の方法と同様に透明電極付透明基板6としてパターニングされたITOを有するガラス基板を準備した。その後、実施例1と同様の方法を用いて、透明電極付透明基板6を洗浄した。   In the same manner as in Example 1, a glass substrate having ITO patterned as a transparent substrate 6 with a transparent electrode was prepared. Thereafter, using the same method as in Example 1, the transparent substrate 6 with a transparent electrode was washed.

有機層の蒸着
(チオフェン/フェニレン)コオリゴマー層1として、化1で示されるP6Tの代わりに化5で示される厚さ約50nmのBP2T−OMeを用いたこと、BP2T−OMeとC60の蒸着を大気暴露を経ることなく一貫した真空下で連続的に行ったこと、C60の厚さが約70nmであることを除き、実施例2の方法と同様にして有機層を蒸着した。ただし、シグマアルドリッチ社製のフラーレン-C60(純度:98%)をC60層2として用いた。C60層2の蒸着の後大気暴露した。なお、C60は、層厚2nmまでは0.01nm/s、2nm〜23nmまでは0.02〜0.40nm/s、それ以降は0.01nm/sの速さで蒸着した
As deposition (thiophene / phenylene) co-oligomer layer 1 of the organic layer, it was used BP2T-OMe having a thickness of about 50nm represented by instead of 5 P6T represented by Formula 1, deposition of BP2T-OMe and C 60 The organic layer was deposited in the same manner as in Example 2 except that it was continuously performed under consistent vacuum without exposure to the atmosphere and the C 60 thickness was about 70 nm. However, fullerene-C 60 (purity: 98%) manufactured by Sigma-Aldrich was used as the C 60 layer 2. C 60 layer 2 was deposited and exposed to air. C 60 was deposited at a rate of 0.01 nm / s up to a layer thickness of 2 nm, 0.02 to 0.40 nm / s from 2 nm to 23 nm, and 0.01 nm / s thereafter.

金属電極の蒸着
実施例2の方法と同様に、C60層2の上に金属電極層3としてアルミニウムを厚さ約150nm蒸着した後、基板を大気暴露して取り出した。
実施例4の有機太陽電池は、C60層2と(チオフェン/フェニレン)コオリゴマー層1であるBP2T−OMeを、金属電極層3であるアルミニウムと透明電極層4であるITOで挟んだ構造である。
尚、実施例4の有機太陽電池のBP2T−OMe層とC60層の層厚は、実施例3の方法と同様に決定した。
Similar to the method of depositing a second embodiment of the metal electrode, after a thickness of about 150nm depositing aluminum as the metal electrode layer 3 on the C 60-layer 2, the substrate was taken out and exposed to the atmosphere.
The organic solar cell of Example 4, C 60 layer 2 and the (thiophene / phenylene) co BP2T-OMe oligomers layer 1, with sandwiched in ITO is aluminum and the transparent electrode layer 4 is a metal electrode layer 3 is there.
Incidentally, the layer thickness of BP2T-OMe layer and C 60 layers of the organic solar cell of Example 4 were determined in the same manner as described in Example 3.

図13は、石英基板に厚さ約250nmのBP2T−OMeを蒸着した試料の光吸収スペクトルである。波長345nmにピークがあり、310nmから490nmの範囲にブロードな吸収が見られる。   FIG. 13 is a light absorption spectrum of a sample in which BP2T-OMe having a thickness of about 250 nm is deposited on a quartz substrate. There is a peak at a wavelength of 345 nm, and broad absorption is observed in the range of 310 nm to 490 nm.

このようにして得られた実施例4の有機太陽電池の暗時下、および水銀ランプの照射下における電流−電圧特性を、真空中(約10−3Pa)で測定した。
図14Aは、アルミニウム電極を接地し、ITO電極に−2Vから2Vまでの直流電圧を印加したときに太陽電池を流れる電流を測定したものである。水銀ランプの照射強度は105mW/cmであり、水銀ランプは透明基板側より基板に垂直に照射された。暗時下において、−2Vの時−1.50μAの電流が流れ、2Vの時4.29mAの電流が観測された。整流比は2860であった。
図14Bは、図14Aの第四象限を原点付近で拡大した拡大図である。
105mW/cmの強度の水銀ランプ照射下における開放電圧は0.64V、短絡電流は0.171mAであった。
The current-voltage characteristics of the organic solar cell of Example 4 thus obtained under dark conditions and mercury lamp irradiation were measured in a vacuum (about 10 −3 Pa).
FIG. 14A shows the measurement of the current flowing through the solar cell when the aluminum electrode is grounded and a DC voltage of −2 V to 2 V is applied to the ITO electrode. The irradiation intensity of the mercury lamp was 105 mW / cm 2 , and the mercury lamp was irradiated perpendicularly to the substrate from the transparent substrate side. Under dark conditions, a current of -1.50 μA was flowed at −2 V, and a current of 4.29 mA was observed at 2 V. The rectification ratio was 2860.
FIG. 14B is an enlarged view in which the fourth quadrant of FIG. 14A is enlarged near the origin.
The open circuit voltage was 0.64 V and the short circuit current was 0.171 mA under the irradiation of a mercury lamp having an intensity of 105 mW / cm 2 .

水銀ランプの照射強度が9.4、18.5、44.5、105mW/cmのときの開放電圧、短絡電流、最大電力、フィルファクター、変換効率を表4に示す。
最大照射強度105mW/cmのときの変換効率は1.20%であった。
Table 4 shows the open circuit voltage, short circuit current, maximum power, fill factor, and conversion efficiency when the irradiation intensity of the mercury lamp is 9.4, 18.5, 44.5, and 105 mW / cm 2 .
The conversion efficiency when the maximum irradiation intensity was 105 mW / cm 2 was 1.20%.

Figure 2014157872
実施例2〜4に見られように、(チオフェン/フェニレン)コオリゴマー層1とC60層2とを組み合わせた場合、(チオフェン/フェニレン)コオリゴマー層1のみを用いる場合と比べて、強い強度の照射光を照射した場合に変換効率の低下が少ないか、むしろ向上するという優れた作用がある。この原因は定かでないものの、C60層2の内部に、強い照射光によって多量に発生した電子が有効に電極に捕捉されることが考えられる。
Figure 2014157872
As seen in Examples 2 to 4, when (thiophene / phenylene) co-oligomer layer 1 and C 60 layer 2 are combined, the strength is stronger than when only (thiophene / phenylene) co-oligomer layer 1 is used. When the irradiation light is irradiated, there is an excellent effect that the conversion efficiency decreases little or rather improves. Although the cause of this is not clear, it is conceivable that a large amount of electrons generated by strong irradiation light inside the C 60 layer 2 are effectively captured by the electrodes.

比較例1
比較例1の有機太陽電池(非特許文献2参照)
比較例1の有機太陽電池は、BP2T−OMeとC60の蒸着に石英セルにヒーター線を巻いた蒸着源を用いたこと、BP2T−OMeを蒸着した後、C60を蒸着する前に基板を大気暴露していること、BP2T−OMeとC60の層厚が250nmであること、アルミニウムの層厚が100nmであることを除き、実施例4と同様の方法で作製した。
尚、比較例1の有機太陽電池のBP2T−OMe層とC60層の層厚は、実施例2の方法と同様に決定した。
このようにして得られた比較例1の有機太陽電池の暗時下、および水銀ランプの照射下における電流−電圧特性を、真空中(約10−3Pa)で測定した。
図15Aは、アルミニウム電極を接地し、ITO電極に−0.2Vから1.5Vまでの直流電圧を印加したときに太陽電池を流れる電流を測定したものである。水銀ランプの照射強度は259mW/cmであり、水銀ランプは透明基板側より基板に垂直に照射された。
図15Bは、図15Aの第四象限を原点付近で拡大した拡大図である。
259mW/cmの強度の水銀ランプ照射下における開放電圧は0.46V、短絡電流は102nAであった。
Comparative Example 1
Organic solar cell of Comparative Example 1 (see Non-Patent Document 2)
The organic solar cell of Comparative Example 1, it was used the evaporation source by winding the heater wire in a quartz cell deposition of BP2T-OMe and C 60, after depositing the BP2T-OMe, the substrate before depositing the C 60 it is exposed to the atmosphere, layer thickness of BP2T-OMe and C 60 is 250 nm, except that the layer thickness of the aluminum is 100 nm, were produced in the same manner as in example 4.
Incidentally, the layer thickness of BP2T-OMe layer and C 60 layers of organic solar battery of Comparative Example 1 was determined in the same manner as described in Example 2.
The current-voltage characteristics of the organic solar cell of Comparative Example 1 thus obtained under dark conditions and mercury lamp irradiation were measured in a vacuum (about 10 −3 Pa).
FIG. 15A shows the measurement of the current flowing through the solar cell when the aluminum electrode is grounded and a DC voltage of −0.2 V to 1.5 V is applied to the ITO electrode. The irradiation intensity of the mercury lamp was 259 mW / cm 2 , and the mercury lamp was irradiated perpendicularly to the substrate from the transparent substrate side.
FIG. 15B is an enlarged view in which the fourth quadrant of FIG. 15A is enlarged near the origin.
The open circuit voltage was 0.46 V and the short circuit current was 102 nA under irradiation of a mercury lamp with an intensity of 259 mW / cm 2 .

水銀ランプの照射強度が32、56、123、259mW/cmのときの開放電圧、短絡電流、最大電力、フィルファクター、変換効率を表5に示す。
最大照射強度259mW/cmのときの変換効率は6.10×10−5%であった。
Table 5 shows open circuit voltage, short circuit current, maximum power, fill factor, and conversion efficiency when the irradiation intensity of the mercury lamp is 32, 56, 123, 259 mW / cm 2 .
The conversion efficiency when the maximum irradiation intensity was 259 mW / cm 2 was 6.10 × 10 −5 %.

Figure 2014157872
Figure 2014157872

本発明は、有機太陽電池を提供する。本発明に係る有機太陽電池は、モバイル充電器、移動式電源等に用いることができる。   The present invention provides an organic solar cell. The organic solar cell according to the present invention can be used for a mobile charger, a mobile power source and the like.

10 本発明に係る有機太陽電池
1 (チオフェン/フェニレン)コオリゴマー層
2 C60
3 金属電極層
4 透明電極層
5 透明基板
6 透明電極付透明基板
DESCRIPTION OF SYMBOLS 10 Organic solar cell according to the present invention 1 (thiophene / phenylene) co-oligomer layer 2 C 60 layer 3 metal electrode layer 4 transparent electrode layer 5 transparent substrate 6 transparent substrate with transparent electrode

イ 暗時の電流−電圧特性
ロ 水銀ランプ照射下の電流−電圧特性
ハ 短絡電流
ニ 開放電圧
ホ 最大出力点
(B) Current-voltage characteristics under dark conditions (b) Current-voltage characteristics under mercury lamp irradiation c Short circuit current D Open circuit voltage E Maximum output point

Claims (2)

少なくとも一方が透明電極層である二枚の電極層;及び
それらの間に配置された(チオフェン/フェニレン)コオリゴマー層を有機光電変換層として含む有機太陽電池であって、
(チオフェン/フェニレン)コオリゴマー層は、10nm〜225nmの厚さを有する、有機太陽電池。
An organic solar cell comprising two electrode layers, at least one of which is a transparent electrode layer; and a (thiophene / phenylene) co-oligomer layer disposed therebetween as an organic photoelectric conversion layer,
The (thiophene / phenylene) co-oligomer layer is an organic solar cell having a thickness of 10 nm to 225 nm.
(チオフェン/フェニレン)コオリゴマー層と接し、二枚の電極層の間に配置されたC60層を、更に含む請求項1に記載の有機太陽電池。 The organic solar cell according to claim 1, further comprising a C 60 layer in contact with the (thiophene / phenylene) co-oligomer layer and disposed between the two electrode layers.
JP2013026847A 2013-02-14 2013-02-14 Organic solar cell and manufacturing method thereof Expired - Fee Related JP6246470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013026847A JP6246470B2 (en) 2013-02-14 2013-02-14 Organic solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013026847A JP6246470B2 (en) 2013-02-14 2013-02-14 Organic solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014157872A true JP2014157872A (en) 2014-08-28
JP6246470B2 JP6246470B2 (en) 2017-12-13

Family

ID=51578588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013026847A Expired - Fee Related JP6246470B2 (en) 2013-02-14 2013-02-14 Organic solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6246470B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149500A (en) * 2015-02-13 2016-08-18 国立大学法人京都工芸繊維大学 Organic solar cell and method for manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974216A (en) * 1995-09-07 1997-03-18 Nippon Shokubai Co Ltd Organic solar battery
JP2005336075A (en) * 2004-05-25 2005-12-08 Sumitomo Seika Chem Co Ltd (thiophene/phenylene) cooligomers and luminescent material containing the same
JP2007005620A (en) * 2005-06-24 2007-01-11 Dainippon Printing Co Ltd Organic thin film solar cell
US20070092752A1 (en) * 2005-10-25 2007-04-26 Lucent Technologies Inc. Branched phenylene-terminated thiophene oligomers
JP2010024191A (en) * 2008-07-22 2010-02-04 Sumitomo Seika Chem Co Ltd (thiophene/phenylene) cooligomer, method for producing the same, and organic semiconductor material and light-emitting material containing the same
JP2010053045A (en) * 2008-08-26 2010-03-11 Sumitomo Seika Chem Co Ltd (thiophene/phenylene) cooligomer, method for producing the same, and organic semiconductor material and light-emitting material containing the same
JP2010141268A (en) * 2008-12-15 2010-06-24 Shinshu Univ Photoelectric conversion device and solar battery
US20110001128A1 (en) * 2009-07-03 2011-01-06 Samsung Electronics Co., Ltd. Color unit and imaging device having the same
JP2014120590A (en) * 2012-12-16 2014-06-30 Shinshu Univ Organic photoelectric conversion element, and organic thin-film solar battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974216A (en) * 1995-09-07 1997-03-18 Nippon Shokubai Co Ltd Organic solar battery
JP2005336075A (en) * 2004-05-25 2005-12-08 Sumitomo Seika Chem Co Ltd (thiophene/phenylene) cooligomers and luminescent material containing the same
JP2007005620A (en) * 2005-06-24 2007-01-11 Dainippon Printing Co Ltd Organic thin film solar cell
US20070092752A1 (en) * 2005-10-25 2007-04-26 Lucent Technologies Inc. Branched phenylene-terminated thiophene oligomers
JP2010024191A (en) * 2008-07-22 2010-02-04 Sumitomo Seika Chem Co Ltd (thiophene/phenylene) cooligomer, method for producing the same, and organic semiconductor material and light-emitting material containing the same
JP2010053045A (en) * 2008-08-26 2010-03-11 Sumitomo Seika Chem Co Ltd (thiophene/phenylene) cooligomer, method for producing the same, and organic semiconductor material and light-emitting material containing the same
JP2010141268A (en) * 2008-12-15 2010-06-24 Shinshu Univ Photoelectric conversion device and solar battery
US20110001128A1 (en) * 2009-07-03 2011-01-06 Samsung Electronics Co., Ltd. Color unit and imaging device having the same
JP2014120590A (en) * 2012-12-16 2014-06-30 Shinshu Univ Organic photoelectric conversion element, and organic thin-film solar battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKESHI YAMAO ET AL.: "Direct Formation of Thin Single Crystals of Organic Semiconductors onto a Substrate", CHEMISTRY OF MATERIALS, vol. 19, JPN6017013889, 2007, pages 3748 - 3753, ISSN: 0003541168 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149500A (en) * 2015-02-13 2016-08-18 国立大学法人京都工芸繊維大学 Organic solar cell and method for manufacturing the same

Also Published As

Publication number Publication date
JP6246470B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
Chen et al. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications
Tian et al. Hybrid organic–inorganic perovskite photodetectors
Zhou et al. Photodetectors based on organic–inorganic hybrid lead halide perovskites
Wan et al. Zinc as a new dopant for NiO x-based planar perovskite solar cells with stable efficiency near 20%
Chen et al. Two‐dimensional materials for halide perovskite‐based optoelectronic devices
Ahmadi et al. A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics
Zhao et al. Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene
Noh et al. Tailored electronic properties of Zr-doped SnO2 nanoparticles for efficient planar perovskite solar cells with marginal hysteresis
Huo et al. Field-effect transistors based on van-der-Waals-grown and dry-transferred all-inorganic perovskite ultrathin platelets
Erande et al. Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets
Bera et al. Graphene sandwich stable perovskite quantum-dot light-emissive ultrasensitive and ultrafast broadband vertical phototransistors
Su et al. High-performance organolead halide perovskite-based self-powered triboelectric photodetector
Chang et al. Regulating infrared photoresponses in reduced graphene oxide phototransistors by defect and atomic structure control
Choi et al. Lateral MoS2 p–n junction formed by chemical doping for use in high-performance optoelectronics
TWI556460B (en) Perovskite solar cell
Liu et al. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells
Lee et al. Effect of single-walled carbon nanotube in PbS/TiO2 quantum dots-sensitized solar cells
KR20110051821A (en) P-type nio conducting film for organic solar cell, the method for preparation of nio conducting film and organic solar cell with enhanced light to electric energy conversion using thereof
Wei et al. Performance improvement of multilayered SnS2 field effect transistors through synergistic effect of vacancy repairing and electron doping introduced by EDTA
Mathur et al. Organolead halide perovskites beyond solar cells: self-powered devices and the associated progress and challenges
Peng et al. High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces
Chang et al. Preparation and characterization of MoSe2/CH3NH3PbI3/PMMA perovskite solar cells using polyethylene glycol solution
Li et al. Sb2O3 nanobelt networks for excellent visible-light-range photodetectors
TW201611314A (en) Photovoltaic element
Jung et al. Effect of layer number on the properties of stable and flexible perovskite solar cells using two dimensional material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171115

R150 Certificate of patent or registration of utility model

Ref document number: 6246470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees