JP2014153096A - Infrared imaging device - Google Patents

Infrared imaging device Download PDF

Info

Publication number
JP2014153096A
JP2014153096A JP2013020985A JP2013020985A JP2014153096A JP 2014153096 A JP2014153096 A JP 2014153096A JP 2013020985 A JP2013020985 A JP 2013020985A JP 2013020985 A JP2013020985 A JP 2013020985A JP 2014153096 A JP2014153096 A JP 2014153096A
Authority
JP
Japan
Prior art keywords
type impurity
impurity region
insulating film
imaging device
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013020985A
Other languages
Japanese (ja)
Other versions
JP5805117B2 (en
Inventor
Daisuke Fujisawa
大介 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013020985A priority Critical patent/JP5805117B2/en
Publication of JP2014153096A publication Critical patent/JP2014153096A/en
Application granted granted Critical
Publication of JP5805117B2 publication Critical patent/JP5805117B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an infrared imaging device capable of reducing noises generated on a boundary face between a semiconductor layer and an insulating film and outputting a good S/N ratio.SOLUTION: In the infrared imaging device having an infrared detection part supported by a supporting leg on a substrate, the infrared detection part includes: a p-n junction diode including an n-type impurity region and a p-type impurity region formed in the n-type impurity region and having an impurity concentration higher than the n-type impurity region; an insulating film provided so as to cover the p-n junction diode; and a wiring layer connected to the p-type impurity region which is exposed in an opening part provided on the insulating film and applying a forward bias to the p-n junction diode. The wiring layer extends onto the insulating film and faces the n-type impurity region by sandwiching the insulating film.

Description

本発明は、赤外線撮像装置に関し、特にpn接合ダイオードを感温素子として備えた赤外線撮像装置に関する。   The present invention relates to an infrared imaging device, and more particularly to an infrared imaging device including a pn junction diode as a temperature sensitive element.

冷却装置が不要な非冷却赤外線撮像装置は、小型化、低消費電力化が可能であり、様々な手法で高感度化され、民生用途としても普及しつつある。このような赤外線撮像装置では、温度センサのpn接合ダイオードはシリコン基板またはSOI基板上に形成されて、縦方向にp型不純物領域とn型不純物領域がそれぞれ1層以上形成された構造となっている。複数のダイオードを直列に接続することにより感度が高められる。
また、低雑音化のためには、個々のダイオードが逆バイアスとなる箇所を電気的に接続するために形成されるコンタクトホールの底部に金属シリサイド膜を設ける構造(例えば、特許文献1参照)や、pn接合ダイオードを構成する半導体層の不純物に分布を持たせ、半導体層を流れる電気伝導キャリアを半導体層の中央部に多く偏在させる構造(例えば、特許文献2参照)が提案されている。
An uncooled infrared imaging device that does not require a cooling device can be reduced in size and power consumption, has been improved in sensitivity by various methods, and is becoming popular for consumer use. In such an infrared imaging device, the pn junction diode of the temperature sensor is formed on a silicon substrate or an SOI substrate, and has a structure in which one or more p-type impurity regions and n-type impurity regions are formed in the vertical direction. Yes. Sensitivity is enhanced by connecting a plurality of diodes in series.
Further, in order to reduce noise, a structure in which a metal silicide film is provided at the bottom of a contact hole formed to electrically connect a portion where each diode is reverse-biased (for example, see Patent Document 1) A structure has been proposed in which impurities in a semiconductor layer constituting a pn junction diode are distributed and a large number of electrically conductive carriers flowing in the semiconductor layer are unevenly distributed in the central portion of the semiconductor layer (see, for example, Patent Document 2).

特開2005−9998号公報JP-A-2005-9998 特開2006−194784号公報JP 2006-194784 A

赤外線撮像装置のpn接合ダイオードは、隣接するpn接合ダイオードとの分離や電気的絶縁のために、分離絶縁膜や保護膜により周囲が囲まれているが、これら分離絶縁膜とpn接合ダイオードを構成する半導体層との界面には、結晶欠陥が存在する。このため、結晶欠陥に起因する界面トラップで電気伝導キャリアが生成および再結合することにより雑音が発生し、しかも、このような界面で発生する雑音は、上述のような半導体層の不純物分布の制御等で低減できない。このため、pn接合ダイオードの出力のS/N(信号/雑音)比、最終的な赤外線撮像装置の出力のS/N比が低下するという問題があった。   A pn junction diode of an infrared imaging device is surrounded by an isolation insulating film and a protective film for isolation and electrical insulation from adjacent pn junction diodes. Crystal defects exist at the interface with the semiconductor layer. For this reason, noise is generated due to the generation and recombination of electrically conductive carriers at the interface trap caused by crystal defects, and the noise generated at such an interface is responsible for controlling the impurity distribution of the semiconductor layer as described above. Etc. cannot be reduced. For this reason, there is a problem that the S / N (signal / noise) ratio of the output of the pn junction diode and the S / N ratio of the output of the final infrared imaging device are lowered.

そこで、本発明は、半導体層と絶縁膜との界面で発生する雑音を低減し、良好なS/N比の出力が可能な赤外線撮像装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an infrared imaging device capable of reducing noise generated at the interface between a semiconductor layer and an insulating film and capable of outputting an excellent S / N ratio.

本発明は、基板上に支持脚により保持された赤外線検知部を有する赤外線撮像装置であって、赤外線検知部は、n型不純物領域と、n型不純物領域中に形成され、n型不純物領域よりも不純物濃度が高いp型不純物領域とを含むpn接合ダイオードと、pn接合ダイオードを覆うように設けられた絶縁膜と、絶縁膜に設けられた開口部中に露出したp型不純物領域に接続し、pn接合ダイオードに順方向のバイアスを印加する配線層と、を含み、配線層は、絶縁膜の上まで延在し、絶縁膜を挟んでn型不純物領域と対向することを特徴とする赤外線撮像装置である。   The present invention is an infrared imaging device having an infrared detection unit held by a support leg on a substrate, and the infrared detection unit is formed in an n-type impurity region and an n-type impurity region. A pn junction diode including a p-type impurity region having a high impurity concentration, an insulating film provided so as to cover the pn junction diode, and a p-type impurity region exposed in an opening provided in the insulating film. And a wiring layer for applying a forward bias to the pn junction diode, the wiring layer extending over the insulating film and facing the n-type impurity region with the insulating film interposed therebetween An imaging device.

また、本発明は、基板上に支持脚により保持された赤外線検知部を有する赤外線撮像装置であって、赤外線検知部は、n型不純物領域と、n型不純物領域中に形成され、n型不純物領域よりも不純物濃度が高いp型不純物領域とを含むpn接合ダイオードと、pn接合ダイオードを覆うように設けられた絶縁膜と、絶縁膜に設けられた開口部中に露出したp型不純物領域に接続し、pn接合ダイオードに順方向のバイアスを印加する配線層と、絶縁膜の上に形成され、配線層と電気的に接続されたバイアス用配線層と、を含み、バイアス用配線層は、絶縁膜を挟んでn型不純物領域と対向することを特徴とする赤外線撮像装置でもある。   In addition, the present invention is an infrared imaging device having an infrared detector held by a support leg on a substrate, the infrared detector being formed in an n-type impurity region and an n-type impurity region, and an n-type impurity A pn junction diode including a p-type impurity region having an impurity concentration higher than that of the region, an insulating film provided so as to cover the pn junction diode, and a p-type impurity region exposed in an opening provided in the insulating film. A bias wiring layer formed on the insulating film and electrically connected to the wiring layer, wherein the bias wiring layer includes: a wiring layer that connects and applies a forward bias to the pn junction diode; It is also an infrared imaging device characterized by facing an n-type impurity region with an insulating film interposed therebetween.

本発明の赤外線撮像装置では、pnダイオードを設けた半導体層と、半導体層を囲む絶縁膜との界面を流れるダイオード電流を抑制することにより、界面領域における電気伝導キャリアの生成および再結合による雑音を低減することができ、良好なS/N比を有する赤外線撮像装置を提供できる。   In the infrared imaging device of the present invention, by suppressing the diode current flowing through the interface between the semiconductor layer provided with the pn diode and the insulating film surrounding the semiconductor layer, noise due to generation and recombination of electrically conductive carriers in the interface region is reduced. An infrared imaging device that can be reduced and has a good S / N ratio can be provided.

本発明の実施の形態1にかかる赤外線撮像装置の斜視図である。1 is a perspective view of an infrared imaging device according to a first embodiment of the present invention. 本発明の実施の形態1にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる赤外線検出器の上面図である。It is a top view of the infrared detector concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる赤外線検出器の製造工程の断面図である。It is sectional drawing of the manufacturing process of the infrared detector concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる赤外線撮像装置の製造工程の断面図である。It is sectional drawing of the manufacturing process of the infrared imaging device concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる赤外線検出器の上面図である。It is a top view of the infrared detector concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる赤外線検出器の製造工程の断面図である。It is sectional drawing of the manufacturing process of the infrared detector concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 3 of this invention. 本発明の実施の形態4にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 4 of this invention. 本発明の実施の形態4にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 4 of this invention. 本発明の実施の形態5にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 5 of this invention. 本発明の実施の形態5にかかる赤外線検出器の断面図である。It is sectional drawing of the infrared detector concerning Embodiment 5 of this invention.

実施の形態1.
図1は、全体が100で表される、本発明の実施の形態1にかかる赤外線撮像装置の概略を示す斜視図である。赤外線撮像装置100は、アレイ状に設けられた赤外線検出器1を含む。赤外線検出器1の周囲には、駆動走査回路4と信号走査回路5とが設けられている。また、赤外線検出器1の間には、駆動走査回路4に接続された選択線2と、信号走査回路5に接続された信号線3が設けられ、それぞれの赤外線検出器1に接続されている。信号走査回路5には出力アンプ6が接続されている。
Embodiment 1 FIG.
FIG. 1 is a perspective view schematically showing the infrared imaging apparatus according to the first embodiment of the present invention, the whole being represented by 100. FIG. The infrared imaging device 100 includes an infrared detector 1 provided in an array. A drive scanning circuit 4 and a signal scanning circuit 5 are provided around the infrared detector 1. Further, a selection line 2 connected to the drive scanning circuit 4 and a signal line 3 connected to the signal scanning circuit 5 are provided between the infrared detectors 1 and are connected to the respective infrared detectors 1. . An output amplifier 6 is connected to the signal scanning circuit 5.

赤外線検出器1は、マイクロマシニング技術を用いて作製された断熱構造体と、断熱構造体の上に設けられ、光電変換を行う、例えばpn接続ダイオードのような熱電気変換素子とを有する。赤外線検出器1に赤外光が入射すると断熱構造体上の検知部の温度が上昇し、その温度上昇を熱電気変換素子が検出して電気信号として出力する。出力された電気信号は、駆動走査回路4と信号走査回路5とのスキャン動作によりそれぞれの赤外線検出器1から時系列で読み出され、赤外画像信号が得られる。   The infrared detector 1 includes a heat insulating structure manufactured using a micromachining technique, and a thermoelectric conversion element such as a pn-connected diode that is provided on the heat insulating structure and performs photoelectric conversion. When infrared light is incident on the infrared detector 1, the temperature of the detection unit on the heat insulating structure rises, and the thermoelectric conversion element detects the temperature rise and outputs it as an electrical signal. The output electrical signals are read out in time series from the respective infrared detectors 1 by the scanning operation of the drive scanning circuit 4 and the signal scanning circuit 5, and an infrared image signal is obtained.

図2Aは、図1に示した赤外線撮像装置100に含まれる赤外線検出器1の断面Aにおける断面図であり、図2Bは、赤外線検出器1の上面図である。   2A is a cross-sectional view of the infrared detector 1 included in the infrared imaging device 100 illustrated in FIG. 1, and FIG. 2B is a top view of the infrared detector 1.

図2A、図2Bに示すように、赤外線検出器1は、例えばシリコンからなる基板12と、その上に設けられた例えば酸化シリコンからなる絶縁膜10を有し(例えばSOI基板)、基板12は回路部と画素部とに分けられる。   As shown in FIGS. 2A and 2B, the infrared detector 1 has a substrate 12 made of, for example, silicon, and an insulating film 10 made of, for example, silicon oxide (for example, an SOI substrate) provided thereon. It is divided into a circuit portion and a pixel portion.

回路部には、MOS型の半導体素子を含む回路部15や、回路部15に接続された回路部配線16が設けられている。一方、画素部には空洞部13が設けられ、その上に赤外線検知部8が支持脚14で支持されている。赤外線検知部8には、温度によって電気特性が変化する感温素子として、pn接合ダイオード23が設けられている。図2Bに示すように、複数のpnダイオード23を直列に接続することにより、検出感度を向上させることができる。赤外線検知部8の上には傘構造をした赤外線吸収部9が設けられている。赤外線検知部8と隣接する赤外線検知部(図示せず)との間には配線(縦方向が信号線、横方向が選択線)11が設けられている。配線11とpn接合ダイオード23とは、支持脚14に設けられた薄膜配線22により電気的に接続されている。薄膜配線22は、例えば窒化シリコンからなる保護膜19で覆われている。   In the circuit portion, a circuit portion 15 including a MOS type semiconductor element and a circuit portion wiring 16 connected to the circuit portion 15 are provided. On the other hand, the cavity portion 13 is provided in the pixel portion, and the infrared detection portion 8 is supported on the support leg 14 thereon. The infrared detector 8 is provided with a pn junction diode 23 as a temperature-sensitive element whose electrical characteristics change with temperature. As shown in FIG. 2B, detection sensitivity can be improved by connecting a plurality of pn diodes 23 in series. An infrared absorbing portion 9 having an umbrella structure is provided on the infrared detecting portion 8. Between the infrared detection unit 8 and an adjacent infrared detection unit (not shown), a wiring (a signal line in the vertical direction and a selection line in the horizontal direction) 11 is provided. The wiring 11 and the pn junction diode 23 are electrically connected by a thin film wiring 22 provided on the support leg 14. The thin film wiring 22 is covered with a protective film 19 made of, for example, silicon nitride.

図3Aは、図2Bに示す赤外線検出器1の断面Bにおける断面図であり、ダイオード電流が流れる方向の断面を示す。また、図3Bは、図2Bに示す赤外線検出器1の断面Cにおける断面図であり、pn接合ダイオード23の高濃度p型不純物領域25が形成された領域の断面を示す。   FIG. 3A is a cross-sectional view of the infrared detector 1 shown in FIG. FIG. 3B is a cross-sectional view of the infrared detector 1 shown in FIG. 2B, showing a cross section of the region where the high-concentration p-type impurity region 25 of the pn junction diode 23 is formed.

図3A、図3Bに示すように、pn接合ダイオード23は、シリコン等の半導体からなり、低濃度n型不純物領域24と、その中に形成された高濃度p型不純物領域25とを有する。低濃度n型不純物領域24と高濃度p型不純物領域25との接合部がpn接合となる。図3A、図3Bに示すように、高濃度p型不純物領域25と低濃度n型不純物領域24との接合面積が大きくなるように、深さ方向にもpn接合面が形成されている。即ち、pn接合ダイオード23を構成する低濃度n型不純物領域24が、高濃度p型不純物領域25を、上面を除いて3次元的に内包するように形成されている。   As shown in FIGS. 3A and 3B, the pn junction diode 23 is made of a semiconductor such as silicon and has a low-concentration n-type impurity region 24 and a high-concentration p-type impurity region 25 formed therein. A junction between the low-concentration n-type impurity region 24 and the high-concentration p-type impurity region 25 is a pn junction. As shown in FIGS. 3A and 3B, a pn junction surface is also formed in the depth direction so that the junction area between the high-concentration p-type impurity region 25 and the low-concentration n-type impurity region 24 is increased. That is, the low concentration n-type impurity region 24 constituting the pn junction diode 23 is formed so as to three-dimensionally include the high concentration p-type impurity region 25 except for the upper surface.

低濃度n型不純物領域24の不純物濃度のピーク値は、1×1018/cm以下で、高濃度p型不純物領域25の不純物濃度に比べて2桁以上低くなっている。このため、電気伝導は正孔電流が支配的となる。また、pn接合ダイオード23の下層は、基板(図示せず)の上に設けられた酸化シリコンからなる絶縁膜10であり、上部も酸化シリコンからなる層間膜17で覆われている。このように、pn接合ダイオード23は、その周囲が絶縁膜10、層間膜17に接している。pn接合ダイオード23を形成する半導体層と絶縁膜10、層間膜17との界面には、通常、結晶欠陥が多く存在し、界面トラップで電気伝導キャリアが生成、再結合し、雑音発生の原因となる。 The peak value of the impurity concentration in the low-concentration n-type impurity region 24 is 1 × 10 18 / cm 3 or less, which is two orders of magnitude lower than the impurity concentration in the high-concentration p-type impurity region 25. For this reason, hole conduction is dominant in electrical conduction. The lower layer of the pn junction diode 23 is an insulating film 10 made of silicon oxide provided on a substrate (not shown), and the upper part is also covered with an interlayer film 17 made of silicon oxide. Thus, the pn junction diode 23 is in contact with the insulating film 10 and the interlayer film 17 at the periphery thereof. There are usually many crystal defects at the interface between the semiconductor layer forming the pn junction diode 23 and the insulating film 10 and the interlayer film 17, and electric conduction carriers are generated and recombined by the interface trap. Become.

低濃度n型不純物領域24、高濃度p型不純物領域25には、例えばTi、TiN等からなる薄膜配線22が、層間膜17、18に設けられた開口部を通って接続され、その上には、例えば窒化シリコンからなる保護膜19が形成されている。図3A、図3Bの構造では、高濃度p型不純物領域25にバイアスを印加する薄膜配線22は、高濃度p型不純物領域25よりも大きく、低濃度n型不純物領域24の上部の層間膜17、18の上まで延在している。赤外線撮像装置の動作時には、高濃度p型不純物領域25には正のバイアスが印加され、高濃度p型不純物領域25から低濃度n型不純物領域24に向かって正孔が移動する。   A thin film wiring 22 made of, for example, Ti, TiN or the like is connected to the low-concentration n-type impurity region 24 and the high-concentration p-type impurity region 25 through an opening provided in the interlayer films 17 and 18, and is further formed thereon. A protective film 19 made of, for example, silicon nitride is formed. 3A and 3B, the thin film wiring 22 for applying a bias to the high-concentration p-type impurity region 25 is larger than the high-concentration p-type impurity region 25, and the interlayer film 17 above the low-concentration n-type impurity region 24 is used. , 18 up. During the operation of the infrared imaging device, a positive bias is applied to the high-concentration p-type impurity region 25, and holes move from the high-concentration p-type impurity region 25 toward the low-concentration n-type impurity region 24.

正孔電流が流れ込む低濃度n型不純物領域24は、層間膜17、18を挟んで薄膜配線22と対向配置されているため、高濃度p型不純物領域25に接続された薄膜配線22に正のバイアスが印加された場合、層間膜17、18を介して低濃度n型不純物領域24の表面にも正のバイアスが印加される。これにより、正孔電流は、pn接合ダイオード23と層間膜17との界面近傍を正孔電流が流れるのを抑制でき、雑音を低減できる。   Since the low-concentration n-type impurity region 24 into which the hole current flows is disposed opposite to the thin-film wiring 22 with the interlayer films 17 and 18 interposed therebetween, the thin-film wiring 22 connected to the high-concentration p-type impurity region 25 is positive. When a bias is applied, a positive bias is also applied to the surface of the low-concentration n-type impurity region 24 through the interlayer films 17 and 18. As a result, the hole current can be suppressed from flowing near the interface between the pn junction diode 23 and the interlayer film 17, and noise can be reduced.

次に、図3Aおよび図3Bに示す赤外線検出器の作製方法について、図4を参照しながら説明する。図4は、図3Bと同等の断面Cにおける、赤外線検出器1の断面図を示す。   Next, a method for manufacturing the infrared detector shown in FIGS. 3A and 3B will be described with reference to FIGS. FIG. 4 shows a cross-sectional view of the infrared detector 1 in a cross-section C equivalent to FIG. 3B.

図4(a)に示すように、赤外線検知部8の絶縁膜10の上に、シリコン等の半導体層を形成し、その上に窒化膜27を形成して熱酸化を行い、LOCOS(Local Oxidation of Silicon)分離を行う。   As shown in FIG. 4A, a semiconductor layer such as silicon is formed on the insulating film 10 of the infrared detector 8, and a nitride film 27 is formed on the semiconductor layer, and thermal oxidation is performed, and a LOCOS (Local Oxidation) is formed. of Silicon).

次に、図4(b)に示すように、LOCOS分離膜10と窒化膜27を選択的に除去した後に、半導体層(活性領域)にn型不純物を注入して低濃度n型不純物領域24を形成する。   Next, as shown in FIG. 4B, after the LOCOS isolation film 10 and the nitride film 27 are selectively removed, an n-type impurity is implanted into the semiconductor layer (active region) to form a low-concentration n-type impurity region 24. Form.

次に、図4(c)に示すように、低濃度n型不純物領域24中にp型不純物を注入し、低濃度n型不純物領域24の一部に高濃度p型不純物領域25を形成する。続いて、酸化シリコンからなる層間膜17、18を形成する。   Next, as shown in FIG. 4C, p-type impurities are implanted into the low-concentration n-type impurity region 24, and a high-concentration p-type impurity region 25 is formed in a part of the low-concentration n-type impurity region 24. . Subsequently, interlayer films 17 and 18 made of silicon oxide are formed.

次に、図4(d)に示すように、スパッタおよびパターニングを用いて、Ti、TiN等からなる薄膜配線22を形成し、最後に保護膜19を形成する。薄膜配線22は、高濃度p型不純物領域25の上面よりも大きく、ダイオード電流が流れる低濃度n型不純物領域24の上方まで広がるように形成される。   Next, as shown in FIG. 4D, a thin film wiring 22 made of Ti, TiN or the like is formed by sputtering and patterning, and finally a protective film 19 is formed. The thin-film wiring 22 is formed so as to be larger than the upper surface of the high-concentration p-type impurity region 25 and to extend above the low-concentration n-type impurity region 24 through which the diode current flows.

次に、図5を参照しながら、図2Aに示す赤外線検出器1の製造方法について説明する。図5は、図2Aと同じく、図1の断面Aにおける断面図であり、図5中、図2A、図2Bと同一符号は、同一または相当箇所を示す。   Next, a manufacturing method of the infrared detector 1 shown in FIG. 2A will be described with reference to FIG. 5 is a cross-sectional view taken along the cross-section A of FIG. 1 as in FIG. 2A. In FIG. 5, the same reference numerals as those in FIGS. 2A and 2B indicate the same or corresponding portions.

赤外線検出器1の製造方法では、まず、図5(a)に示すように、基板12の回路部にMOS型半導体素子等の回路部15を形成する。続いて、基板12上に、絶縁膜10の一部を形成し、その上に、回路部15に接続された回路部配線16と、複数のpn接合ダイオード(図示せず)を含む赤外線検出部8とを形成する。更に、その上に、絶縁膜10を形成する。この工程で、図4(a)〜(c)の工程が行われる。   In the manufacturing method of the infrared detector 1, first, as shown in FIG. 5A, a circuit portion 15 such as a MOS type semiconductor element is formed on the circuit portion of the substrate 12. Subsequently, a part of the insulating film 10 is formed on the substrate 12, and an infrared detection unit including a circuit unit wiring 16 connected to the circuit unit 15 and a plurality of pn junction diodes (not shown) thereon. 8 and. Further, an insulating film 10 is formed thereon. In this step, the steps of FIGS. 4A to 4C are performed.

次に、図5(b)に示すように、フォトレジスト20を全面に形成し、赤外線検知部8の上のみを開口する。   Next, as shown in FIG. 5B, a photoresist 20 is formed on the entire surface, and only the infrared detecting portion 8 is opened.

次に、図5(c)に示すように、赤外線検出部8上の絶縁膜10をエッチングする。絶縁膜10のエッチングは、弗化水素酸溶液を用いたウェットエッチングにより行う。弗化水素酸溶液によりフォトレジスト20が開口している領域の絶縁膜10のみがエッチングされ、赤外線検知部8の上の絶縁膜10も薄膜化される。ドライエッチングにより絶縁膜10をエッチングしても良い。   Next, as shown in FIG. 5C, the insulating film 10 on the infrared detecting portion 8 is etched. The insulating film 10 is etched by wet etching using a hydrofluoric acid solution. Only the insulating film 10 in the region where the photoresist 20 is opened is etched by the hydrofluoric acid solution, and the insulating film 10 on the infrared detector 8 is also thinned. The insulating film 10 may be etched by dry etching.

次に、図5(d)に示すように、フォトレジスト20を除去後、赤外線検知部8と赤外線検知部8を中空に保持する支持脚部分に薄膜配線22を形成する。そして、酸化シリコン等からなる層間膜18を所望の膜厚だけ堆積する。この工程で、図4(d)の工程が行われる。   Next, as shown in FIG. 5D, after the photoresist 20 is removed, the thin film wiring 22 is formed on the supporting leg portion that holds the infrared detecting unit 8 and the infrared detecting unit 8 in a hollow state. Then, an interlayer film 18 made of silicon oxide or the like is deposited to a desired thickness. In this step, the step of FIG. 4D is performed.

次に、図5(e)に示すように、Al、Ti、TiN、W、WSi等からなる配線11を形成する。配線11の形成後、例えば酸化シリコン等からなる保護膜19を全面に形成する。   Next, as shown in FIG. 5E, a wiring 11 made of Al, Ti, TiN, W, WSi or the like is formed. After the wiring 11 is formed, a protective film 19 made of, for example, silicon oxide is formed on the entire surface.

次に、図5(f)に示すように、ドライエッチングで、絶縁膜10、層間膜18にエッチングホール21を形成した後、赤外線検知部8の上に赤外線吸収部9を形成する。続いて、XeF等を用いたドライエッチングにより、基板12をエッチングして空洞部13を形成し、赤外線検知部8を中空構造にする。ここでは、1つの赤外線検出器1を例に説明したが、実際にはアレイ状に形成された複数の赤外線検出器1が同時に形成される。この結果、画素部にアレイ状の赤外線検出器1を有し、回路部に回路部15や回路部配線16を有する非冷却の赤外線撮像装置100が完成する。 Next, as shown in FIG. 5 (f), an etching hole 21 is formed in the insulating film 10 and the interlayer film 18 by dry etching, and then an infrared absorbing portion 9 is formed on the infrared detecting portion 8. Subsequently, the substrate 12 is etched by dry etching using XeF 2 or the like to form the cavity 13, and the infrared detection unit 8 has a hollow structure. Here, one infrared detector 1 has been described as an example, but actually, a plurality of infrared detectors 1 formed in an array are formed simultaneously. As a result, an uncooled infrared imaging device 100 having the arrayed infrared detector 1 in the pixel portion and the circuit portion 15 and the circuit portion wiring 16 in the circuit portion is completed.

この赤外線撮像装置100では、入射した赤外線が赤外線吸収部9で吸収されて熱に変換される。この熱は赤外線検知部8に伝わり、これにより赤外線検知部8の温度が上昇し、赤外線検知部8に形成されたpn接合ダイオード23の電気特性が変化する。この特性の変化は、電気信号として配線11を介して回路部15に送られる。回路部15では、各画素の電気信号の変化から赤外線検知部8に入射した赤外線の量を決定する。   In the infrared imaging device 100, incident infrared rays are absorbed by the infrared absorbing unit 9 and converted into heat. This heat is transmitted to the infrared detection unit 8, whereby the temperature of the infrared detection unit 8 rises, and the electrical characteristics of the pn junction diode 23 formed in the infrared detection unit 8 change. This change in characteristics is sent as an electrical signal to the circuit unit 15 via the wiring 11. The circuit unit 15 determines the amount of infrared light incident on the infrared detection unit 8 from the change in the electrical signal of each pixel.

本発明の実施の形態1にかかる赤外線撮像装置100では、pn接合ダイオード23と、それに接する絶縁膜17との界面領域の界面トラップに、電気伝導キャリア(ここでは正孔)が捕獲されにくくなり、pn接合ダイオード23の雑音が低減でき、良好なS/N比を有する赤外線撮像装置100を得ることができる。   In the infrared imaging device 100 according to the first embodiment of the present invention, it is difficult for electric conduction carriers (here, holes) to be captured by the interface trap in the interface region between the pn junction diode 23 and the insulating film 17 in contact therewith, The noise of the pn junction diode 23 can be reduced, and the infrared imaging device 100 having a good S / N ratio can be obtained.

実施の形態2.
図6は、本発明の実施の形態2にかかる赤外線撮像装置の赤外線検出器(画素部)の上面図であり、図6中、図2A、2Bと同一符号は、同一または相当箇所を示す。
Embodiment 2. FIG.
FIG. 6 is a top view of the infrared detector (pixel unit) of the infrared imaging device according to the second embodiment of the present invention. In FIG. 6, the same reference numerals as those in FIGS. 2A and 2B indicate the same or corresponding portions.

図7Aは、図6の断面Dにおける断面図、図7Bは、図6の断面Eにおける断面図、図7Cは、図6の断面Fにおける断面図である。実施の形態1にかかる赤外線検出器と異なる点は、ダイオードに順方向バイアスを印加する配線22とは別に、層間膜17を介して低濃度n型不純物領域24にバイアスを印加するバイアス用配線26が設けられていることである。バイアス用配線26へのバイアス電圧の供給は、赤外線検出部8に複数個直列接続されているpn接合ダイオード23の任意の接続点において、薄膜配線22とバイアス用配線26とを接続することで行われる。例えば、図7(c)に示すように、薄膜配線22とバイアス用配線26とが接続され、バイアス用配線26にも薄膜配線22と同様に正のバイアスが印加される。   7A is a cross-sectional view taken along a cross-section D in FIG. 6, FIG. 7B is a cross-sectional view taken along a cross-section E in FIG. 6, and FIG. 7C is a cross-sectional view taken along a cross-section F in FIG. The difference from the infrared detector according to the first embodiment is that a bias wiring 26 for applying a bias to the low-concentration n-type impurity region 24 via the interlayer film 17 separately from the wiring 22 for applying a forward bias to the diode. Is provided. The bias voltage is supplied to the bias wiring 26 by connecting the thin film wiring 22 and the bias wiring 26 at an arbitrary connection point of a plurality of pn junction diodes 23 connected in series to the infrared detector 8. Is called. For example, as shown in FIG. 7C, the thin film wiring 22 and the bias wiring 26 are connected, and a positive bias is applied to the bias wiring 26 in the same manner as the thin film wiring 22.

図8は、本発明の実施の形態2にかかる赤外線検出器の製造工程の断面図である。図8中、図4と同一符号は、同一または相当箇所を示す。   FIG. 8 is a cross-sectional view of the manufacturing process of the infrared detector according to the second embodiment of the present invention. 8, the same reference numerals as those in FIG. 4 denote the same or corresponding parts.

本発明の実施の形態2の製造方法では、実施の形態1と同様に図8(a)および図8(b)に示す工程を行った後、図8(c)に示すように、低濃度n型不純物領域24中に高濃度p型不純物領域25を不純物注入により形成し、その上に、酸化シリコンからなる層間膜17を形成する。続いて、CVDおよびパターニングを用いて、例えば多結晶シリコンからなるバイアス用配線26を形成する。このバイアス用配線26は、層間膜17挟んで低濃度n型不純物領域24と対向するように形成される。   In the manufacturing method according to the second embodiment of the present invention, after the steps shown in FIGS. 8A and 8B are performed as in the first embodiment, a low concentration is obtained as shown in FIG. 8C. A high-concentration p-type impurity region 25 is formed in the n-type impurity region 24 by impurity implantation, and an interlayer film 17 made of silicon oxide is formed thereon. Subsequently, a bias wiring 26 made of, for example, polycrystalline silicon is formed using CVD and patterning. The bias wiring 26 is formed so as to face the low-concentration n-type impurity region 24 with the interlayer film 17 interposed therebetween.

続いて、図8(d)に示すように、図4(d)と同様に、層間膜18を形成した後に、高濃度p型不純物領域25と接続された薄膜配線22が形成され、最後に窒化シリコンからなる保護膜19が形成される。   Subsequently, as shown in FIG. 8D, after forming the interlayer film 18 as in FIG. 4D, the thin film wiring 22 connected to the high-concentration p-type impurity region 25 is formed. A protective film 19 made of silicon nitride is formed.

本発明の実施の形態2にかかる赤外線撮像装置では、バイアス用配線26のバイアス値を、低濃度n型不純物領域24の不純物濃度や層間膜18の厚さに応じて、任意に設定することができる。この結果、ダイオードの雑音を効果的に低減でき、良好なS/N比の赤外線撮像装置を得ることができる。   In the infrared imaging device according to the second embodiment of the present invention, the bias value of the bias wiring 26 can be arbitrarily set according to the impurity concentration of the low-concentration n-type impurity region 24 and the thickness of the interlayer film 18. it can. As a result, the noise of the diode can be effectively reduced, and an infrared imaging device having a good S / N ratio can be obtained.

なお、本発明の実施の形態2にかかる赤外線撮像装置では、図7Aに示すように、薄膜配線22がバイアス用配線26より上層に形成されているが、バイアス用配線26を薄膜配線22より上層に形成しても良い。これは以下の実施の形態4、5においても同様である。   In the infrared imaging device according to Embodiment 2 of the present invention, as shown in FIG. 7A, the thin film wiring 22 is formed in an upper layer than the bias wiring 26. However, the bias wiring 26 is formed in an upper layer than the thin film wiring 22. You may form in. The same applies to the following fourth and fifth embodiments.

実施の形態3.
図9A〜図9Cは、本発明の実施の形態3にかかる赤外線撮像装置であり、図9Aは、図2Bの断面Bと同等の断面における断面図、図9B、図9Cは、図2Bの断面Cと同等の断面における断面図である。
Embodiment 3 FIG.
9A to 9C are infrared imaging devices according to the third exemplary embodiment of the present invention. FIG. 9A is a cross-sectional view equivalent to the cross-section B of FIG. 2B, and FIGS. 9B and 9C are cross-sections of FIG. 2B. FIG.

図9A〜図9Cからわかるように、本発明の実施の形態3にかかる赤外線検出器では、低濃度n型不純物領域24の側面が、基板10の表面に対して垂直方向に形成されている。この結果、高濃度p型不純物領域25と低濃度n型不純物領域24の接合面が深さ方向に広がり、高濃度p型不純物領域25と低濃度n型不純物領域24との接合面積が大きくできる。低濃度n型不純物領域24の垂直な側面は、ドライエッチング等の異方性エッチングで形成する。   As can be seen from FIGS. 9A to 9C, in the infrared detector according to the third embodiment of the present invention, the side surface of the low-concentration n-type impurity region 24 is formed in a direction perpendicular to the surface of the substrate 10. As a result, the junction surface between the high-concentration p-type impurity region 25 and the low-concentration n-type impurity region 24 extends in the depth direction, and the junction area between the high-concentration p-type impurity region 25 and the low-concentration n-type impurity region 24 can be increased. . The vertical side surface of the low concentration n-type impurity region 24 is formed by anisotropic etching such as dry etching.

低濃度n型不純物領域24の側面が、基板10の表面に垂直方向に形成されることに伴って、低濃度n型不純物領域24の側面上の、層間膜1、薄膜配線22も基板10の表面に対して垂直方向に形成される。   As the side surface of the low-concentration n-type impurity region 24 is formed in the direction perpendicular to the surface of the substrate 10, the interlayer film 1 and the thin film wiring 22 on the side surface of the low-concentration n-type impurity region 24 are also formed on the substrate 10. It is formed in a direction perpendicular to the surface.

本発明の実施の形態3にかかる赤外線検知器でも、低濃度n型不純物領域24は、層間膜17を挟んで薄膜配線22と対向配置されているため、高濃度p型不純物領域25に接続された薄膜配線22に正のバイアスが印加された場合、層間膜17を介して低濃度n型不純物領域24の表面にも正のバイアスが印加される。これにより、pn接合ダイオード23と層間膜17との界面領域を正孔電流が流れるのを抑制でき、雑音を低減できる。   Also in the infrared detector according to the third exemplary embodiment of the present invention, the low-concentration n-type impurity region 24 is connected to the high-concentration p-type impurity region 25 because the low-concentration n-type impurity region 24 is disposed opposite to the thin film wiring 22 with the interlayer film 17 interposed therebetween. When a positive bias is applied to the thin film wiring 22, a positive bias is also applied to the surface of the low-concentration n-type impurity region 24 through the interlayer film 17. Thereby, it can suppress that a positive hole current flows through the interface region of the pn junction diode 23 and the interlayer film 17, and can reduce noise.

なお、図9Cでは、低濃度n型不純物領域24の側面に窒化シリコン等からなるサイドウォール28が形成されている。低濃度n型不純物領域24には、層間膜17およびサイドウォール28を介して、バイアスが印加されるため、サイドウォール28の厚さを調整することにより、低濃度n型不純物領域24を走行する電気伝導キャリアへの影響を調整できる。サイドウォール28の厚さは堆積層の厚さに依存し、ナノオーダーで調整できる。   In FIG. 9C, a sidewall 28 made of silicon nitride or the like is formed on the side surface of the low-concentration n-type impurity region 24. A bias is applied to the low-concentration n-type impurity region 24 via the interlayer film 17 and the sidewall 28, so that the low-concentration n-type impurity region 24 travels by adjusting the thickness of the sidewall 28. The influence on the conductive carrier can be adjusted. The thickness of the sidewall 28 depends on the thickness of the deposited layer, and can be adjusted on the nano order.

また、本発明の実施の形態3にかかる赤外線検出器では、pn接合ダイオード23をより高密度で形成することが可能になり、赤外線検知部8を低熱容量化することができる。この結果、より高速の物体を検知可能な赤外線撮像装置を得ることができる。   Further, in the infrared detector according to the third embodiment of the present invention, the pn junction diodes 23 can be formed at a higher density, and the infrared detector 8 can be reduced in heat capacity. As a result, an infrared imaging device capable of detecting a higher speed object can be obtained.

実施の形態4.
図10A、図10Bは、本発明の実施の形態4にかかる赤外線撮像装置であり、図10Aは、図2Bの断面Bと同等の断面における断面図、図10Bは、図2Bの断面Cと同等の断面における断面図である。
Embodiment 4 FIG.
10A and 10B are infrared imaging devices according to the fourth exemplary embodiment of the present invention. FIG. 10A is a cross-sectional view equivalent to the cross-section B of FIG. 2B, and FIG. 10B is equivalent to the cross-section C of FIG. FIG.

本発明の実施の形態4の構造は、実施の形態3と同様に、低濃度n型不純物領域24の側面を基板表面に対して垂直方向に設けて、高濃度p型不純物領域25と低濃度n型不純物領域24との接合面積を大きくした構造において、薄膜配線22とは別にバイアス用配線26を設けたものである。   As in the third embodiment, the structure of the fourth embodiment of the present invention is such that the side surface of the low-concentration n-type impurity region 24 is provided in the direction perpendicular to the substrate surface, so that the high-concentration p-type impurity region 25 In the structure in which the junction area with the n-type impurity region 24 is increased, a bias wiring 26 is provided separately from the thin film wiring 22.

本発明の実施の形態4の構造では、正孔電流が流れ込む低濃度n型不純物領域24に層間膜17を介してバイアス用配線26からバイアスが印加でき、これにより正孔電流がpn接合ダイオード23周囲の界面領域を流れることが抑制され、雑音を低減できる。   In the structure of the fourth embodiment of the present invention, a bias can be applied from the bias wiring 26 to the low-concentration n-type impurity region 24 through which the hole current flows through the interlayer film 17. It is possible to suppress the noise from flowing through the surrounding interface region.

実施の形態5.
図11A、図11Bは、本発明の実施の形態5にかかる赤外線撮像装置であり、図11Aは、図2Bの断面Bと同等の断面における断面図、図11Bは、図2Bの断面Cと同等の断面における断面図である。
Embodiment 5 FIG.
11A and 11B are infrared imaging devices according to the fifth exemplary embodiment of the present invention. FIG. 11A is a cross-sectional view equivalent to the cross-section B of FIG. 2B, and FIG. 11B is equivalent to the cross-section C of FIG. FIG.

本発明の実施の形態5の構造では、基板(図示せず)の上に絶縁膜10が設けられ、更にその上に例えばシリコンからなる導電層29が設けられ、その上に絶縁膜10が設けられている。即ち、下層および上層の2つの埋め込み酸化層を有するSOI基板が用いられ、上層の酸化層の上にpn接合ダイオード23が形成された半導体層を有する。低濃度n型不純物領域24は、上層の絶縁膜10の上に形成され、バイアス用配線26は導電層29に接続されている。他の構造は、実施の形態4の構造と同じである。   In the structure of the fifth embodiment of the present invention, an insulating film 10 is provided on a substrate (not shown), a conductive layer 29 made of, for example, silicon is further provided thereon, and the insulating film 10 is provided thereon. It has been. That is, an SOI substrate having two buried oxide layers, a lower layer and an upper layer, is used, and has a semiconductor layer in which a pn junction diode 23 is formed on the upper oxide layer. The low-concentration n-type impurity region 24 is formed on the upper insulating film 10, and the bias wiring 26 is connected to the conductive layer 29. Other structures are the same as those of the fourth embodiment.

本発明の実施の形態5にかかる構造では、pn接合ダイオードにバイアスを印加する薄膜配線22と、酸化膜を介して低濃度n型不純物領域24にバイアスを印加するバイアス用配線26が異なり、バイアス用配線26へのバイアスの印加は導電層29を介して行われる。例えば、薄膜配線22と導電層29とを電気的に接続することにより、バイアス用配線26にバイアスを印加しても良い。   In the structure according to the fifth embodiment of the present invention, the thin film wiring 22 for applying a bias to the pn junction diode is different from the bias wiring 26 for applying a bias to the low-concentration n-type impurity region 24 through the oxide film. Bias is applied to the wiring 26 via the conductive layer 29. For example, a bias may be applied to the bias wiring 26 by electrically connecting the thin film wiring 22 and the conductive layer 29.

本発明の実施の形態5の構造では、正孔電流が流れ込む低濃度n型不純物領域24に層間膜17を介してバイアス用配線26からバイアスが印加でき、これにより正孔電流がpn接合ダイオード23周囲の界面領域を流れることが抑制され、雑音を低減できる。   In the structure of the fifth embodiment of the present invention, a bias can be applied from the bias wiring 26 to the low-concentration n-type impurity region 24 through which the hole current flows through the interlayer film 17. It is possible to suppress the noise from flowing through the surrounding interface region.

1 赤外線検出器、2 選択線、3 信号線、4 駆動走査回路、5 信号走査回路、6 出力アンプ、8 赤外線検知部、9 赤外線吸収部、10 絶縁膜、11 配線、12 基板、13 空洞部、14 支持脚、15 回路部、16回路部配線、17、18 層間膜、19 保護膜、20 フォトレジスト、21 エッチングホール、22 薄膜配線、23 pn接合ダイオード、24 低濃度n型不純物領域、25 高濃度p型不純物領域、26 バイアス用配線、27 窒化膜、28 サイドウォール、29 導電層、100 赤外線撮像装置。   DESCRIPTION OF SYMBOLS 1 Infrared detector, 2 selection line, 3 signal line, 4 drive scanning circuit, 5 signal scanning circuit, 6 output amplifier, 8 infrared detection part, 9 infrared absorption part, 10 insulating film, 11 wiring, 12 board | substrate, 13 cavity part , 14 Support legs, 15 circuit part, 16 circuit part wiring, 17, 18 interlayer film, 19 protective film, 20 photoresist, 21 etching hole, 22 thin film wiring, 23 pn junction diode, 24 low-concentration n-type impurity region, 25 High-concentration p-type impurity region, 26 bias wiring, 27 nitride film, 28 sidewall, 29 conductive layer, 100 infrared imaging device.

Claims (7)

基板上に支持脚により保持された赤外線検知部を有する赤外線撮像装置であって、該赤外線検知部は、
n型不純物領域と、該n型不純物領域中に形成され、該n型不純物領域よりも不純物濃度が高いp型不純物領域とを含むpn接合ダイオードと、
該pn接合ダイオードを覆うように設けられた絶縁膜と、
該絶縁膜に設けられた開口部中に露出した該p型不純物領域に接続し、該pn接合ダイオードに順方向のバイアスを印加する配線層と、を含み、
該配線層は、該絶縁膜の上まで延在し、該絶縁膜を挟んで該n型不純物領域と対向することを特徴とする赤外線撮像装置。
An infrared imaging device having an infrared detection unit held by a support leg on a substrate, the infrared detection unit,
a pn junction diode including an n-type impurity region and a p-type impurity region formed in the n-type impurity region and having an impurity concentration higher than that of the n-type impurity region;
An insulating film provided to cover the pn junction diode;
A wiring layer connected to the p-type impurity region exposed in the opening provided in the insulating film and applying a forward bias to the pn junction diode,
The infrared imaging device, wherein the wiring layer extends over the insulating film and opposes the n-type impurity region with the insulating film interposed therebetween.
基板上に支持脚により保持された赤外線検知部を有する赤外線撮像装置であって、該赤外線検知部は、
n型不純物領域と、該n型不純物領域中に形成され、該n型不純物領域よりも不純物濃度が高いp型不純物領域とを含むpn接合ダイオードと、
該pn接合ダイオードを覆うように設けられた絶縁膜と、
該絶縁膜に設けられた開口部中に露出した該p型不純物領域に接続し、該pn接合ダイオードに順方向のバイアスを印加する配線層と、
該絶縁膜の上に形成され、該配線層と電気的に接続されたバイアス用配線層と、を含み、
該バイアス用配線層は、該絶縁膜を挟んで該n型不純物領域と対向することを特徴とする赤外線撮像装置。
An infrared imaging device having an infrared detection unit held by a support leg on a substrate, the infrared detection unit,
a pn junction diode including an n-type impurity region and a p-type impurity region formed in the n-type impurity region and having an impurity concentration higher than that of the n-type impurity region;
An insulating film provided to cover the pn junction diode;
A wiring layer connected to the p-type impurity region exposed in the opening provided in the insulating film and applying a forward bias to the pn junction diode;
A bias wiring layer formed on the insulating film and electrically connected to the wiring layer;
The infrared imaging device, wherein the bias wiring layer is opposed to the n-type impurity region with the insulating film interposed therebetween.
上記配線層と上記バイアス用配線層とは、直接接続されたことを特徴とする請求項2に記載の赤外線撮像装置。   The infrared imaging device according to claim 2, wherein the wiring layer and the bias wiring layer are directly connected. 上記配線層と上記バイアス用配線層とは、上記基板に設けられた導電層を介して接続されたことを特徴とする請求項2に記載の赤外線撮像装置。   The infrared imaging device according to claim 2, wherein the wiring layer and the bias wiring layer are connected via a conductive layer provided on the substrate. 上記基板は、絶縁層と、該絶縁層上に形成された半導体層とを含むSOI基板からなり、該半導体層中に上記pn接合ダイオードが形成されたことを特徴とする請求項1〜4のいずれかに記載の赤外線撮像装置。   5. The substrate according to claim 1, wherein the substrate comprises an SOI substrate including an insulating layer and a semiconductor layer formed on the insulating layer, and the pn junction diode is formed in the semiconductor layer. The infrared imaging device according to any one of the above. 上記n型不純物領域の側面にサイドウォールが設けられ、該サイドウォールの上に上記絶縁膜が設けられたことを特徴とする請求項1〜5のいずれかに記載の赤外線撮像装置。   The infrared imaging device according to claim 1, wherein a sidewall is provided on a side surface of the n-type impurity region, and the insulating film is provided on the sidewall. 上記p型不純物領域は、その側面と底面とが上記n型不純物領域と接してpn接合を形成することを特徴とする請求項1〜6のいずれかに記載の赤外線撮像装置。   The infrared imaging device according to claim 1, wherein a side surface and a bottom surface of the p-type impurity region are in contact with the n-type impurity region to form a pn junction.
JP2013020985A 2013-02-06 2013-02-06 Infrared imaging device Expired - Fee Related JP5805117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013020985A JP5805117B2 (en) 2013-02-06 2013-02-06 Infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013020985A JP5805117B2 (en) 2013-02-06 2013-02-06 Infrared imaging device

Publications (2)

Publication Number Publication Date
JP2014153096A true JP2014153096A (en) 2014-08-25
JP5805117B2 JP5805117B2 (en) 2015-11-04

Family

ID=51575114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020985A Expired - Fee Related JP5805117B2 (en) 2013-02-06 2013-02-06 Infrared imaging device

Country Status (1)

Country Link
JP (1) JP5805117B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012115A1 (en) * 2016-07-12 2018-01-18 三菱電機株式会社 Infrared ray detection element and method for manufacturing infrared ray detection element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194784A (en) * 2005-01-14 2006-07-27 Mitsubishi Electric Corp Infrared solid imaging apparatus and manufacturing method of the same
JP2010276516A (en) * 2009-05-29 2010-12-09 Mitsubishi Electric Corp Infrared imaging element and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194784A (en) * 2005-01-14 2006-07-27 Mitsubishi Electric Corp Infrared solid imaging apparatus and manufacturing method of the same
JP2010276516A (en) * 2009-05-29 2010-12-09 Mitsubishi Electric Corp Infrared imaging element and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012115A1 (en) * 2016-07-12 2018-01-18 三菱電機株式会社 Infrared ray detection element and method for manufacturing infrared ray detection element
JPWO2018012115A1 (en) * 2016-07-12 2018-10-18 三菱電機株式会社 Infrared detector and method for manufacturing infrared detector

Also Published As

Publication number Publication date
JP5805117B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
AU740862B2 (en) Infrared solid state image sensing device
JP4975669B2 (en) Infrared detector and solid-state imaging device equipped with the infrared detector
JP5264597B2 (en) Infrared detector and infrared solid-state imaging device
JP4239980B2 (en) Infrared solid-state imaging device and manufacturing method thereof
JP2010278045A (en) Optical semiconductor device
US6504153B1 (en) Semiconductor infrared detecting device
KR100898621B1 (en) Optical semiconductor device with sensitivity improved
JP5805117B2 (en) Infrared imaging device
JP4703502B2 (en) Temperature sensor and infrared solid-state imaging device
JP4028441B2 (en) Infrared solid-state imaging device and manufacturing method thereof
JP5428535B2 (en) Infrared imaging device and manufacturing method thereof
JP5369196B2 (en) Infrared imaging device and manufacturing method thereof
US20060151814A1 (en) Optical semiconductor device
JP6570750B2 (en) Infrared detector and method for manufacturing infrared detector
JP2013120142A (en) Infrared imaging element and infrared imaging apparatus
JP6355297B2 (en) Infrared imaging device
JP4410071B2 (en) Infrared solid-state imaging device
JP3681113B2 (en) Thermal infrared detector array
JP5669654B2 (en) Infrared imaging device manufacturing method and infrared imaging device
JP7170714B2 (en) Infrared solid-state imaging device
JP2006170956A (en) Infrared detector, semiconductor substrate, and manufacturing method therefor
JP4904545B2 (en) Infrared solid-state imaging device and manufacturing method thereof
JP4531537B2 (en) Semiconductor device and manufacturing method thereof
EP3633332A1 (en) Infrared imaging element, infrared imaging array, and method for manufacturing infrared imaging element
JP2003037259A (en) Semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150901

R150 Certificate of patent or registration of utility model

Ref document number: 5805117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees