JP2014152999A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014152999A
JP2014152999A JP2013023441A JP2013023441A JP2014152999A JP 2014152999 A JP2014152999 A JP 2014152999A JP 2013023441 A JP2013023441 A JP 2013023441A JP 2013023441 A JP2013023441 A JP 2013023441A JP 2014152999 A JP2014152999 A JP 2014152999A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
solenoid valve
indoor heat
dehumidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013023441A
Other languages
Japanese (ja)
Inventor
Shinji Nagaoka
伸二 長岡
Keigo Takemoto
圭吾 竹本
Yoichi Onuma
洋一 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2013023441A priority Critical patent/JP2014152999A/en
Publication of JP2014152999A publication Critical patent/JP2014152999A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that when an R32 refrigerant is used and a dehumidification solenoid valve having the same bleed amount as that of a conventional one is used, reheating dehumidification operation cannot be performed appropriately.SOLUTION: An air conditioner includes a refrigerant circuit formed by annularly interconnecting a compressor, an outdoor heat exchanger, a decompression device, a first indoor heat exchanger, a dehumidification solenoid valve and a second indoor heat exchanger, and performs a dehumidification operation by making the decompression device in an open state and the dehumidification solenoid valve in a restricted state. As a refrigerant, an R32 refrigerant is used, and when the dehumidification solenoid valve is in the restricted state and a pressure difference between the upstream side and the downstream side of the dehumidification solenoid valve is 98 (kPa), a bleed flow rate is 2.0-8.0 (L/min).

Description

本発明は、冷媒としてR32冷媒を使用する空気調和機に関するものである。   The present invention relates to an air conditioner that uses R32 refrigerant as a refrigerant.

空気調和機には、圧縮機、室外熱交換器、減圧器、第1室内熱交換器、除湿用電磁弁および第2室内熱交換器が環状に接続された冷媒回路を備え、減圧器を開状態にして除湿用電磁弁を絞り状態にすることにより再熱除湿運転を行うものがある。   The air conditioner includes a refrigerant circuit in which a compressor, an outdoor heat exchanger, a decompressor, a first indoor heat exchanger, a dehumidifying solenoid valve, and a second indoor heat exchanger are connected in an annular shape, and the decompressor is opened. Some reheat dehumidification operations are performed by bringing the dehumidifying solenoid valve into a throttled state.

上記の空気調和機では、再熱除湿運転時に、圧縮機から吐出された高圧冷媒が、室外熱交換器、全開状態の減圧器、第1室内熱交換器、絞り状態の除湿用電磁弁、第2室内熱交換器を循環して、冷媒が凝縮される第1室内熱交換器で室内空気を加熱する一方、冷媒が蒸発する第2室内熱交換器で室内空気を除湿、冷却することによって、室内温度を下げることなく除湿を行う。   In the above air conditioner, during the reheat dehumidification operation, the high-pressure refrigerant discharged from the compressor is converted into an outdoor heat exchanger, a fully opened decompressor, a first indoor heat exchanger, a throttled dehumidifying solenoid valve, By circulating through the two indoor heat exchangers, the indoor air is heated by the first indoor heat exchanger in which the refrigerant is condensed, while the indoor air is dehumidified and cooled by the second indoor heat exchanger in which the refrigerant evaporates, Dehumidify without lowering the room temperature.

特開2006−162197JP 2006-162197 A

上記の空気調和機では、冷媒としてR410A冷媒が使用されるのが一般的であって、除湿用電磁弁が絞り状態であるときのブリード流量が、再熱除湿運転時において第2室内熱交換器に供給する必要のあるR410A冷媒の流量に基づいて決められていた。したがって、上記の空気調和機において、冷媒としてR32を使用するとともに、従来と同一のブリード流量の除湿用電磁弁を使用した場合には、R32冷媒がR410A冷媒と比べて圧力損失が低い冷媒であることから、再熱除湿運転を適正に行うことができないという問題がある。   In the above air conditioner, the R410A refrigerant is generally used as the refrigerant, and the bleed flow rate when the dehumidifying solenoid valve is in the throttle state is the second indoor heat exchanger during the reheat dehumidifying operation. It was determined based on the flow rate of the R410A refrigerant that needs to be supplied to the refrigerant. Therefore, in the above air conditioner, when R32 is used as a refrigerant and a dehumidifying solenoid valve having the same bleed flow rate as the conventional one is used, the R32 refrigerant is a refrigerant having a lower pressure loss than the R410A refrigerant. For this reason, there is a problem that the reheat dehumidification operation cannot be performed properly.

そこで、本発明の目的は、R32冷媒を使用するとともに再熱除湿運転を適正に行うことができる空気調和機を提供することである。   Then, the objective of this invention is providing the air conditioner which can perform a reheat dehumidification driving | operation appropriately while using R32 refrigerant | coolant.

第1の発明にかかる空気調和機は、圧縮機、室外熱交換器、減圧器、第1室内熱交換器、除湿用電磁弁および第2室内熱交換器が環状に接続された冷媒回路を備え、前記減圧器を開状態にして前記除湿用電磁弁を絞り状態にすることにより除湿運転を行う空気調和機であって、冷媒としてR32冷媒が使用されるとともに、前記除湿用電磁弁が絞り状態であって、前記除湿用電磁弁の上流側と下流側の差圧が98(kPa)のときのブリード流量が2.0〜8.0(L/min)であることを特徴とする。   An air conditioner according to a first invention includes a refrigerant circuit in which a compressor, an outdoor heat exchanger, a decompressor, a first indoor heat exchanger, a dehumidifying solenoid valve, and a second indoor heat exchanger are connected in a ring shape. An air conditioner that performs a dehumidifying operation by opening the pressure reducer and bringing the dehumidifying solenoid valve into a throttled state, wherein R32 refrigerant is used as a refrigerant and the dehumidifying solenoid valve is in a throttled state The bleed flow rate when the differential pressure between the upstream side and the downstream side of the dehumidifying solenoid valve is 98 (kPa) is 2.0 to 8.0 (L / min).

この空気調和機では、冷媒としてR32冷媒が使用されるとともに、除湿用電磁弁を絞り状態であるときのブリード流量が、再熱除湿運転時において第2室内熱交換器に供給する必要のあるR32冷媒の流量(2.0〜8.0(L/min))に基づいて決められているので、再熱除湿運転を適正に行うことができる。   In this air conditioner, R32 refrigerant is used as the refrigerant, and the bleed flow rate when the dehumidifying solenoid valve is in the throttled state needs to be supplied to the second indoor heat exchanger during the reheat dehumidifying operation. Since it is determined based on the flow rate of the refrigerant (2.0 to 8.0 (L / min)), the reheat dehumidification operation can be performed appropriately.

第2の発明にかかる空気調和機は、第1の発明にかかる空気調和機において、前記除湿用電磁弁が、前記第1室内熱交換器と前記第2室内熱交換器との間に、1つ配置されることを特徴とする。   An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect, wherein the dehumidifying solenoid valve is between the first indoor heat exchanger and the second indoor heat exchanger. It is characterized by being arranged.

この空気調和機では、冷媒としてR32冷媒が使用されるので、例えば大きい能力機種の空気調和機の場合でも、再熱除湿運転時において第2室内熱交換器に供給する必要のあるR32冷媒の流量は、冷媒としてR410A冷媒が使用される場合と比べて少ない。したがって、冷媒としてR410A冷媒が使用される場合のように、2つの除湿用電磁弁を第1室内熱交換器と第2室内熱交換器との間に並列に配置しなくても、1つの除湿用電磁弁を第1室内熱交換器と第2室内熱交換器との間に配置するだけでよい。   In this air conditioner, since the R32 refrigerant is used as the refrigerant, the flow rate of the R32 refrigerant that needs to be supplied to the second indoor heat exchanger during the reheat dehumidifying operation, for example, even in the case of an air conditioner of a large capacity model. Is less than the case where the R410A refrigerant is used as the refrigerant. Therefore, as in the case where the R410A refrigerant is used as the refrigerant, one dehumidification is possible without arranging two dehumidifying solenoid valves in parallel between the first indoor heat exchanger and the second indoor heat exchanger. It is only necessary to arrange the solenoid valve for operation between the first indoor heat exchanger and the second indoor heat exchanger.

第3の発明にかかる空気調和機では、第1または第2の発明にかかる空気調和機において、前記除湿用電磁弁が絞り状態であって、前記除湿用電磁弁の上流側と下流側の差圧が98(kPa)のときのブリード流量が4.0〜6.0(L/min)であることを特徴とする。   In the air conditioner pertaining to the third invention, in the air conditioner pertaining to the first or second invention, the dehumidifying solenoid valve is in a throttled state, and the difference between the upstream side and the downstream side of the dehumidifying solenoid valve. The bleed flow rate when the pressure is 98 (kPa) is 4.0 to 6.0 (L / min).

この空気調和機では、除湿用電磁弁が絞り状態であるときのブリード流量が4.0〜6.0(L/min)であるので、再熱除湿運転時において室内温度をほとんど下げずに除湿を行うことができる。   In this air conditioner, since the bleed flow rate is 4.0 to 6.0 (L / min) when the dehumidifying solenoid valve is in the throttle state, the dehumidification is performed without substantially reducing the room temperature during the reheat dehumidifying operation. It can be performed.

以上の説明に述べたように、本発明によれば、以下の効果が得られる。   As described above, according to the present invention, the following effects can be obtained.

第1の発明では、冷媒としてR32冷媒が使用されるとともに、除湿用電磁弁が絞り状態であるときのブリード流量が、再熱除湿運転時において第2室内熱交換器に供給する必要のあるR32冷媒の流量(2.0〜8.0(L/min))に基づいて決められているので、再熱除湿運転を適正に行うことができる。   In the first invention, R32 refrigerant is used as the refrigerant, and the bleed flow rate when the dehumidifying solenoid valve is in the throttle state needs to be supplied to the second indoor heat exchanger during the reheat dehumidifying operation. Since it is determined based on the flow rate of the refrigerant (2.0 to 8.0 (L / min)), the reheat dehumidification operation can be performed appropriately.

第2の発明では、冷媒としてR32冷媒が使用されるので、例えば大きい能力機種の空気調和機の場合でも、再熱除湿運転時において第2室内熱交換器に供給する必要のあるR32冷媒の流量は、冷媒としてR410A冷媒が使用される場合と比べて少ない。したがって、冷媒としてR410A冷媒が使用される場合のように、2つの除湿用電磁弁を第1室内熱交換器と第2室内熱交換器との間に並列に配置しなくても、1つの除湿用電磁弁を第1室内熱交換器と第2室内熱交換器との間に配置するだけでよい。   In the second invention, since the R32 refrigerant is used as the refrigerant, the flow rate of the R32 refrigerant that needs to be supplied to the second indoor heat exchanger during the reheat dehumidifying operation even in the case of an air conditioner of a large capacity model, for example. Is less than the case where the R410A refrigerant is used as the refrigerant. Therefore, as in the case where the R410A refrigerant is used as the refrigerant, one dehumidification is possible without arranging two dehumidifying solenoid valves in parallel between the first indoor heat exchanger and the second indoor heat exchanger. It is only necessary to arrange the solenoid valve for operation between the first indoor heat exchanger and the second indoor heat exchanger.

第3の発明では、除湿用電磁弁が絞り状態であるときのブリード流量が4.0〜6.0(L/min)であるので、再熱除湿運転時において室内温度をほとんど下げずに除湿を行うことができる。   In the third invention, since the bleed flow rate when the dehumidifying solenoid valve is in the throttle state is 4.0 to 6.0 (L / min), the dehumidification is performed without substantially reducing the room temperature during the reheat dehumidifying operation. It can be performed.

本発明の実施形態に係る空気調和機の回路図である。1 is a circuit diagram of an air conditioner according to an embodiment of the present invention. 本発明の実施形態に係る除湿用電磁弁の構成を示す断面図である。It is sectional drawing which shows the structure of the electromagnetic valve for dehumidification which concerns on embodiment of this invention. 除湿用電磁弁の弁座のテーパ面の構成を示す図である。It is a figure which shows the structure of the taper surface of the valve seat of a solenoid valve for dehumidification.

以下、本発明の実施の形態に係る空気調和機について説明する。   Hereinafter, an air conditioner according to an embodiment of the present invention will be described.

<空気調和機10の全体構成>
図1に示すように、本実施形態の空気調和機10は、圧縮機1、四路弁2、室外熱交換器3、減圧器の一例としての膨張弁4、第1室内熱交換器5、除湿用電磁弁6および第2室内熱交換器7が環状に接続された冷媒回路を備えている。また、空気調和機10は、室外熱交換器3の近傍に配置された室外ファン8と、第1室内熱交換器5及び第2室内熱交換器7の近傍に配置された室内ファン9を備えている。
<Overall configuration of the air conditioner 10>
As shown in FIG. 1, the air conditioner 10 of this embodiment includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4 as an example of a decompressor, a first indoor heat exchanger 5, A dehumidifying solenoid valve 6 and a second indoor heat exchanger 7 are provided with a refrigerant circuit connected in an annular shape. The air conditioner 10 includes an outdoor fan 8 disposed in the vicinity of the outdoor heat exchanger 3 and an indoor fan 9 disposed in the vicinity of the first indoor heat exchanger 5 and the second indoor heat exchanger 7. ing.

空気調和機10において、冷房運転時は、除湿用電磁弁6を開いた状態で四路弁2が実線の位置に切り換えられ、圧縮機1から吐出された冷媒は、室外熱交換器3、膨張弁4、第1室内熱交換器5、除湿用電磁弁6、第2室内熱交換器7を介して圧縮機1の吸込側に戻る。この冷媒回路において、凝縮器として働く室外熱交換器3で放熱し、蒸発器として働く第1室内熱交換器5及び第2室内熱交換器7で室内空気を冷却して冷房を行う。一方、暖房運転時は、除湿用電磁弁6を開いた状態で四路弁2が点線の位置に切り換えられ、冷房運転時とは逆の冷凍サイクルで暖房を行う。   In the air conditioner 10, during the cooling operation, the four-way valve 2 is switched to the solid line position with the dehumidifying solenoid valve 6 opened, and the refrigerant discharged from the compressor 1 is transferred to the outdoor heat exchanger 3, It returns to the suction side of the compressor 1 through the valve 4, the first indoor heat exchanger 5, the dehumidifying electromagnetic valve 6, and the second indoor heat exchanger 7. In this refrigerant circuit, heat is radiated by the outdoor heat exchanger 3 that functions as a condenser, and the first indoor heat exchanger 5 and the second indoor heat exchanger 7 that function as evaporators cool the indoor air. On the other hand, during the heating operation, the four-way valve 2 is switched to the dotted line position while the dehumidifying electromagnetic valve 6 is opened, and heating is performed in the refrigeration cycle opposite to that during the cooling operation.

そして、再熱除湿運転では、膨張弁4を開くと共に除湿用電磁弁6を閉じて絞り状態にし、さらに四路弁2が実線の位置に切り換えられ、圧縮機1から吐出された冷媒は、室外熱交換器3、膨張弁4、第1室内熱交換器5、除湿用電磁弁6、第2室内熱交換器7を介して圧縮機1の吸込側に戻る。この冷媒回路において、室外熱交換器3と第1室内熱交換器5が凝縮器として働く一方、第2室内熱交換器7が蒸発器として働く。したがって、第1室内熱交換器5で室内空気を温めつつ第2室内熱交換器7で除湿と冷却が行われて、室内温度を下げずに除湿を行う。   In the reheat dehumidifying operation, the expansion valve 4 is opened and the dehumidifying electromagnetic valve 6 is closed to a throttle state, and the four-way valve 2 is switched to the position shown by the solid line, so that the refrigerant discharged from the compressor 1 It returns to the suction side of the compressor 1 through the heat exchanger 3, the expansion valve 4, the first indoor heat exchanger 5, the dehumidifying electromagnetic valve 6, and the second indoor heat exchanger 7. In this refrigerant circuit, the outdoor heat exchanger 3 and the first indoor heat exchanger 5 function as a condenser, while the second indoor heat exchanger 7 functions as an evaporator. Therefore, dehumidification and cooling are performed in the second indoor heat exchanger 7 while warming the indoor air in the first indoor heat exchanger 5, and dehumidification is performed without lowering the indoor temperature.

図2(a)は、除湿用電磁弁6が開状態である場合であって、図2(b)は、除湿用電磁弁6が絞り状態(閉状態)である場合である。除湿用電磁弁6は、図2に示すように、弁本体20と、開閉機構30とを備えている。弁本体20は、弁室19とその弁室19内の下部に形成された弁座12とを有する円筒部11と、弁座12のテーパ面12aに対向するテーパ面13bを有する弁体13と、円筒部11の上部に内嵌され、弁体13の軸部13aを軸方向に案内するガイド部14とを有している。円筒部11には、入口側通路31が接続された入口11aと、出口側通路32が接続された出口11bを設けている。   2A shows a case where the dehumidifying electromagnetic valve 6 is in an open state, and FIG. 2B shows a case where the dehumidifying electromagnetic valve 6 is in a throttled state (closed state). As shown in FIG. 2, the dehumidifying electromagnetic valve 6 includes a valve body 20 and an opening / closing mechanism 30. The valve body 20 includes a cylindrical portion 11 having a valve chamber 19 and a valve seat 12 formed in a lower portion of the valve chamber 19, and a valve body 13 having a tapered surface 13b facing the tapered surface 12a of the valve seat 12. The guide portion 14 is fitted in the upper portion of the cylindrical portion 11 and guides the shaft portion 13a of the valve body 13 in the axial direction. The cylindrical portion 11 is provided with an inlet 11a to which the inlet side passage 31 is connected and an outlet 11b to which the outlet side passage 32 is connected.

また、開閉機構30は、弁体13の軸部13aの外側に配置されたコイルバネ15と、弁体13の軸部13aの端に固定された円筒形状のプランジャ16と、プランジャ16内に配置された電磁ガイド17と、プランジャ16と電磁ガイド17の外側に配置された電磁コイル18とを有している。コイルバネ15は、プランジャ16を電磁ガイド17側に付勢している。   The opening / closing mechanism 30 is disposed in the plunger 16, a coil spring 15 disposed outside the shaft portion 13 a of the valve body 13, a cylindrical plunger 16 fixed to the end of the shaft portion 13 a of the valve body 13, and the plunger 16. An electromagnetic guide 17, a plunger 16, and an electromagnetic coil 18 disposed outside the electromagnetic guide 17. The coil spring 15 biases the plunger 16 toward the electromagnetic guide 17.

そして、弁座12のテーパ面12aには、図3に示すように、複数の溝(ブリード溝)21が設けられている。したがって、図2(b)のように、除湿用電磁弁6が絞り状態(閉状態)である場合に、弁体13のテーパ面13bと弁座12のテーパ面12aとの間には、弁座12のテーパ面12aにある複数の溝21によって、小さい隙間の冷媒絞り流路が構成される。   And the taper surface 12a of the valve seat 12 is provided with a plurality of grooves (bleed grooves) 21 as shown in FIG. Therefore, as shown in FIG. 2B, when the dehumidifying electromagnetic valve 6 is in the throttled state (closed state), there is no valve between the tapered surface 13b of the valve body 13 and the tapered surface 12a of the valve seat 12. A plurality of grooves 21 in the tapered surface 12a of the seat 12 constitute a refrigerant constriction flow path with a small gap.

上記のように構成された除湿用電磁弁6において、電磁コイル18に通電されると、電磁ガイド17とプランジャ16との間に電磁力が発生して、コイルバネ15の付勢力に反してプランジャ16が下方に移動して、弁体13のテーパ面13bが弁座12のテーパ面12aに当接する。したがって、弁体13のテーパ面13bと弁座12のテーパ面12aとの間が閉鎖されるが、弁座12のテーパ面12aにある複数の溝21によって小さい隙間の冷媒絞り流路が構成される。よって、除湿用電磁弁6が、絞り状態(閉状態)となって、入口側通路31が接続された入口11aと出口側通路32が接続された出口11bとが、弁座12の複数の溝21によって連通する。   In the dehumidifying electromagnetic valve 6 configured as described above, when the electromagnetic coil 18 is energized, an electromagnetic force is generated between the electromagnetic guide 17 and the plunger 16, and the plunger 16 against the urging force of the coil spring 15. Moves downward, and the tapered surface 13b of the valve body 13 contacts the tapered surface 12a of the valve seat 12. Therefore, the gap between the taper surface 13b of the valve body 13 and the taper surface 12a of the valve seat 12 is closed, but a plurality of grooves 21 in the taper surface 12a of the valve seat 12 form a small gap refrigerant throttle channel. The Therefore, the dehumidifying solenoid valve 6 is in a throttled state (closed state), and the inlet 11a to which the inlet side passage 31 is connected and the outlet 11b to which the outlet side passage 32 is connected are a plurality of grooves in the valve seat 12. 21 to communicate.

また、電磁コイル18への通電が停止されると、電磁ガイド17とプランジャ16との間の電磁力がなくなるので、コイルバネ15の付勢力によってプランジャ16が上方に移動して、弁体13のテーパ面13bが弁座12のテーパ面12aから離れる。したがって、除湿用電磁弁6が、開状態となって、入口側通路31が接続された入口11aと出口側通路32が接続された出口11bとが連通する。   Further, when the energization of the electromagnetic coil 18 is stopped, the electromagnetic force between the electromagnetic guide 17 and the plunger 16 disappears, so that the plunger 16 moves upward by the biasing force of the coil spring 15 and the valve body 13 tapers. The surface 13 b is separated from the tapered surface 12 a of the valve seat 12. Accordingly, the dehumidifying electromagnetic valve 6 is opened, and the inlet 11a to which the inlet side passage 31 is connected and the outlet 11b to which the outlet side passage 32 is connected communicate with each other.

空気調和機10では、冷媒としてR32冷媒が使用されるが、除湿用電磁弁6のブリード流量(除湿用電磁弁6が絞り状態であって、除湿用電磁弁6の上流側と下流側の差圧が98(kPa)のときの流量)が、2.0〜8.0(L/min)となるように構成される。このように、除湿用電磁弁6のブリード流量が、再熱除湿運転時において第2室内熱交換器7に供給する必要のあるR32冷媒の流量(2.0〜8.0(L/min))に基づいて決められているので、再熱除湿運転を適正に行うことができる。   In the air conditioner 10, R32 refrigerant is used as the refrigerant. However, the bleed flow rate of the dehumidifying solenoid valve 6 (the difference between the upstream side and the downstream side of the dehumidifying solenoid valve 6 when the dehumidifying solenoid valve 6 is in a throttle state) is described. The flow rate when the pressure is 98 (kPa)) is configured to be 2.0 to 8.0 (L / min). Thus, the bleed flow rate of the dehumidifying solenoid valve 6 is such that the flow rate of the R32 refrigerant (2.0 to 8.0 (L / min)) that needs to be supplied to the second indoor heat exchanger 7 during the reheat dehumidification operation. ), The reheat dehumidification operation can be performed appropriately.

また、再熱除湿運転時において室内温度をほとんど下げずに除湿を行うことを考えると、除湿用電磁弁6のブリード流量(除湿用電磁弁6が絞り状態であって、除湿用電磁弁6の上流側と下流側の差圧が98(kPa)のときの流量)が、4.0〜6.0(L/min)となるように構成される方がよい。   Considering that dehumidification is performed without substantially reducing the room temperature during the reheat dehumidifying operation, the bleed flow rate of the dehumidifying solenoid valve 6 (the dehumidifying solenoid valve 6 is in the throttle state and the dehumidifying solenoid valve 6 The flow rate when the differential pressure between the upstream side and the downstream side is 98 (kPa) is preferably configured to be 4.0 to 6.0 (L / min).

<本実施形態の空気調和機10の特徴>
本実施形態の空気調和機10では、冷媒としてR32冷媒が使用されるが、除湿用電磁弁6が絞り状態であるときのR32冷媒についてのブリード量が、再熱除湿運転時において第2室内熱交換器7に供給する必要のあるR32冷媒の流量(2.0〜8.0(L/min))に基づいて決められているので、再熱除湿運転を適正に行うことができる。
<Characteristics of the air conditioner 10 of this embodiment>
In the air conditioner 10 of the present embodiment, the R32 refrigerant is used as the refrigerant, but the bleed amount of the R32 refrigerant when the dehumidifying solenoid valve 6 is in the throttle state is the second indoor heat during the reheat dehumidifying operation. Since it is determined based on the flow rate (2.0 to 8.0 (L / min)) of the R32 refrigerant that needs to be supplied to the exchanger 7, the reheat dehumidification operation can be performed appropriately.

本実施形態の空気調和機10では、冷媒としてR32冷媒が使用されるので、例えば大きい能力機種の空気調和機の場合でも、再熱除湿運転時において第2室内熱交換器7に供給する必要のあるR32冷媒の流量は、冷媒としてR410A冷媒が使用される場合と比べて少ない。したがって、冷媒としてR410A冷媒が使用される場合のように、2つの除湿用電磁弁を第1室内熱交換器5と第2室内熱交換器7との間に並列に配置しなくても、1つの除湿用電磁弁6を第1室内熱交換器5と第2室内熱交換器7との間に配置するだけでよい。   In the air conditioner 10 of the present embodiment, since the R32 refrigerant is used as the refrigerant, for example, even in the case of an air conditioner of a large capacity model, it is necessary to supply the second indoor heat exchanger 7 during the reheat dehumidifying operation. The flow rate of a certain R32 refrigerant is small compared to the case where the R410A refrigerant is used as the refrigerant. Therefore, even if the two dehumidifying solenoid valves are not arranged in parallel between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 as in the case where the R410A refrigerant is used as the refrigerant, 1 The two dehumidifying solenoid valves 6 need only be arranged between the first indoor heat exchanger 5 and the second indoor heat exchanger 7.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes meanings equivalent to the scope of claims for patent and all modifications within the scope.

本発明を利用すれば、R32冷媒を使用するとともに再熱除湿運転を適正に行うことができる。   If this invention is utilized, while using R32 refrigerant | coolant, a reheat dehumidification driving | operation can be performed appropriately.

1 圧縮機
3 室外熱交換器
4 膨張弁
5 第1室内熱交換器
6 除湿用電磁弁
7 第2室内熱交換器
10 空気調和機
DESCRIPTION OF SYMBOLS 1 Compressor 3 Outdoor heat exchanger 4 Expansion valve 5 1st indoor heat exchanger 6 Electromagnetic valve for dehumidification 7 2nd indoor heat exchanger 10 Air conditioner

Claims (3)

圧縮機、室外熱交換器、減圧器、第1室内熱交換器、除湿用電磁弁および第2室内熱交換器が環状に接続された冷媒回路を備え、前記減圧器を開状態にして前記除湿用電磁弁を絞り状態にすることにより除湿運転を行う空気調和機であって、
冷媒としてR32冷媒が使用されるとともに、
前記除湿用電磁弁が絞り状態であって、前記除湿用電磁弁の上流側と下流側の差圧が98(kPa)のときのブリード流量が2.0〜8.0(L/min)であることを特徴とする空気調和機。
A compressor circuit, an outdoor heat exchanger, a decompressor, a first indoor heat exchanger, a solenoid valve for dehumidification, and a refrigerant circuit in which a second indoor heat exchanger is annularly connected, and the dehumidifier is opened by opening the decompressor An air conditioner that performs a dehumidifying operation by bringing the solenoid valve for use into a throttle state,
While R32 refrigerant is used as the refrigerant,
The bleed flow rate is 2.0 to 8.0 (L / min) when the dehumidifying solenoid valve is in the throttle state and the differential pressure between the upstream side and the downstream side of the dehumidifying solenoid valve is 98 (kPa). An air conditioner characterized by being.
前記除湿用電磁弁が、前記第1室内熱交換器と前記第2室内熱交換器との間に、1つ配置されることを特徴とする請求項1に記載の空気調和機。   2. The air conditioner according to claim 1, wherein one dehumidifying electromagnetic valve is disposed between the first indoor heat exchanger and the second indoor heat exchanger. 前記除湿用電磁弁が絞り状態であって、前記除湿用電磁弁の上流側と下流側の差圧が98(kPa)のときのブリード流量が4.0〜6.0(L/min)であることを特徴とする請求項1または2に記載の空気調和機。





















The bleed flow rate is 4.0 to 6.0 (L / min) when the dehumidifying solenoid valve is in a throttled state and the differential pressure between the upstream side and the downstream side of the dehumidifying solenoid valve is 98 (kPa). The air conditioner according to claim 1, wherein the air conditioner is provided.





















JP2013023441A 2013-02-08 2013-02-08 Air conditioner Pending JP2014152999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013023441A JP2014152999A (en) 2013-02-08 2013-02-08 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013023441A JP2014152999A (en) 2013-02-08 2013-02-08 Air conditioner

Publications (1)

Publication Number Publication Date
JP2014152999A true JP2014152999A (en) 2014-08-25

Family

ID=51575040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013023441A Pending JP2014152999A (en) 2013-02-08 2013-02-08 Air conditioner

Country Status (1)

Country Link
JP (1) JP2014152999A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
CN117529633A (en) * 2021-06-23 2024-02-06 大金工业株式会社 Air conditioner
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181408A (en) * 2000-12-11 2002-06-26 Toshiba Kyaria Kk Air conditioner
JP2002221353A (en) * 2001-12-10 2002-08-09 Mitsubishi Electric Corp Air conditioner
JP2007085730A (en) * 2006-12-18 2007-04-05 Mitsubishi Electric Corp Air conditioner and method of operating air conditioner
JP2007321990A (en) * 2007-08-30 2007-12-13 Saginomiya Seisakusho Inc Two-way solenoid controlled valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181408A (en) * 2000-12-11 2002-06-26 Toshiba Kyaria Kk Air conditioner
JP2002221353A (en) * 2001-12-10 2002-08-09 Mitsubishi Electric Corp Air conditioner
JP2007085730A (en) * 2006-12-18 2007-04-05 Mitsubishi Electric Corp Air conditioner and method of operating air conditioner
JP2007321990A (en) * 2007-08-30 2007-12-13 Saginomiya Seisakusho Inc Two-way solenoid controlled valve

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
CN117529633A (en) * 2021-06-23 2024-02-06 大金工业株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP2014152999A (en) Air conditioner
JP2016089969A (en) solenoid valve
CN108713118B (en) Electromagnetic valve, refrigerating device using same, and vehicle air conditioner using same
WO2011145275A1 (en) Pilot operated solenoid valve
US9057550B2 (en) Refrigerator
JP2017160983A5 (en)
US20100307172A1 (en) Refrigerant system with reheat refrigerant circuit
JP2017165139A5 (en)
JP5620833B2 (en) 3-way solenoid valve
CN104930763A (en) Air conditioner refrigerating system
US20150159935A1 (en) Apparatus with dehumidification and defrosting abilities and controlling method thereof
CN107305074B (en) Temperature and humidity independent control air conditioning system
CN104832679B (en) Refrigerating system and electromagnetic four-way valve thereof
US20160146477A1 (en) Hvac systems and methods for reheat operation
KR20130090133A (en) Air conditoner
JP2006194525A (en) Multi-chamber type air conditioner
JP6805693B2 (en) Air conditioner
WO2018034275A1 (en) Refrigeration cycle device
JP2012087966A (en) Expansion valve
JP2019158311A (en) Air conditioner and control method of the same
JP4629709B2 (en) Bidirectional solenoid valve
JP2005283058A (en) Reheating dehumidifying type air conditioner
JP2012002282A (en) Three-way solenoid valve
KR102147693B1 (en) Air conditioner
US20150075212A1 (en) Carbon Dioxide Refrigeration System with a Multi-Way Valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602