JP2014150347A - Two polarized wave patch antenna - Google Patents

Two polarized wave patch antenna Download PDF

Info

Publication number
JP2014150347A
JP2014150347A JP2013017002A JP2013017002A JP2014150347A JP 2014150347 A JP2014150347 A JP 2014150347A JP 2013017002 A JP2013017002 A JP 2013017002A JP 2013017002 A JP2013017002 A JP 2013017002A JP 2014150347 A JP2014150347 A JP 2014150347A
Authority
JP
Japan
Prior art keywords
field surface
patch antenna
parasitic element
polarization
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013017002A
Other languages
Japanese (ja)
Other versions
JP6082260B2 (en
Inventor
Masatoshi Tada
雅俊 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Yagi Solutions Inc
Original Assignee
Hitachi Kokusai Yagi Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Yagi Solutions Inc filed Critical Hitachi Kokusai Yagi Solutions Inc
Priority to JP2013017002A priority Critical patent/JP6082260B2/en
Publication of JP2014150347A publication Critical patent/JP2014150347A/en
Application granted granted Critical
Publication of JP6082260B2 publication Critical patent/JP6082260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two polarized wave patch antenna which can easily adjust half value widths of a magnetic field surface and an electric field surface while maintaining magnetic field surfaces and electric field surfaces of two polarized waves orthogonal to each other at the same half value width.SOLUTION: For example, a square passive element whose polarization direction is a vertical direction is provided with degeneracy sections 31a-31d formed by notching four corners in a square shape or degeneracy sections 32a-32d formed by notching upper, lower, right, and left central parts in a square shape and used as a wave director of a two polarized wave patch antenna. By using a passive element 30A having the degeneracy sections 31a-31d on the four corners, or a passive element 30B having the degeneracy sections 32a-32d on the upper, lower, right and left central parts as the wave director, fluctuation of a magnetic field surface half value width and an electric field surface half value width is made to be inverse correlation, and the half value widths of the magnetic field surface and the electric field surface in each polarization plane are adjusted to have the desired difference.

Description

本発明は、導波器を備えた2偏波パッチアンテナに関する。   The present invention relates to a two-polarized patch antenna provided with a director.

近年、小型で薄型の円偏波アンテナとしてパッチアンテナが普及しつつある(例えば、特許文献1、2参照。)。この種のパッチアンテナとして、導波器(無給電素子)を備えた2偏波パッチアンテナが従来から考えられている。   In recent years, patch antennas are becoming popular as small and thin circularly polarized antennas (see, for example, Patent Documents 1 and 2). As this type of patch antenna, a two-polarized patch antenna having a director (parasitic element) has been conventionally considered.

図9は、正方形の無給電素子を備えた従来の2偏波パッチアンテナの構成例を示す斜視図である。図9において、11は誘電体(合成樹脂)により例えば厚さがt1で円板状に形成されたアンテナ基板で、その下面には導体により形成された接地板12が全面に設けられている。アンテナ基板11の上面中央には、1辺の長さがL1の正方形のパッチ素子13が設けられる。このパッチ素子13の一辺の中央には、主偏波給電部14が設けられ、その先端中央部が主偏波給電点15となっている。また、パッチ素子13には、主偏波給電部14と隣接する辺の中央に逆偏波給電部16が設けられ、その先端中央部が逆偏波給電点17となっている。上記主偏波給電部14及び逆偏波給電部16は、線路幅によって給電インピーダンスを調整するインピーダンス変換機能を備えている。   FIG. 9 is a perspective view showing a configuration example of a conventional dual-polarized patch antenna including a square parasitic element. In FIG. 9, 11 is an antenna substrate formed of a dielectric material (synthetic resin), for example, in a disk shape with a thickness of t1, and a ground plate 12 formed of a conductor is provided on the entire bottom surface thereof. In the center of the upper surface of the antenna substrate 11, a square patch element 13 having a side length L1 is provided. In the center of one side of the patch element 13, a main polarization feeding portion 14 is provided, and a central portion of the tip is a main polarization feeding point 15. Further, the patch element 13 is provided with a reverse polarization power supply portion 16 at the center of the side adjacent to the main polarization power supply portion 14, and a central portion of the tip is a reverse polarization power supply point 17. The main polarization feeder 14 and the reverse polarization feeder 16 have an impedance conversion function for adjusting the feeding impedance according to the line width.

また、アンテナ基板11の上面には、誘電体(合成樹脂)により厚さがt2で、一辺の長さがL2の正方形に形成された無給電素子用の素子基板18が配置される。この素子基板18は、例えば四隅に設けられた絶縁体からなる支柱19a〜19dによりアンテナ基板11上に所定の高さに設けられる。素子基板18の上面中央には、導体により一辺の長さがL3の正方形に形成された無給電素子21がパッチ素子13に対して所定の高さh1で相対向するように設けられる。   Further, on the upper surface of the antenna substrate 11, an element substrate 18 for a parasitic element formed by a dielectric (synthetic resin) in a square shape having a thickness t2 and a side length L2 is disposed. The element substrate 18 is provided at a predetermined height on the antenna substrate 11 by support columns 19a to 19d made of, for example, insulators provided at four corners. In the center of the upper surface of the element substrate 18, a parasitic element 21 formed in a square having a side length L <b> 3 by a conductor is provided so as to face the patch element 13 at a predetermined height h <b> 1.

上記のように構成された2偏波パッチアンテナにおいて、主偏波給電点15及び逆偏波給電点17に所定の高周波信号を給電することによって異なる二つの直交モードを、独立して励振させることができる。   In the two-polarized patch antenna configured as described above, two different orthogonal modes are excited independently by feeding a predetermined high-frequency signal to the main polarization feed point 15 and the reverse polarization feed point 17. Can do.

上記2偏波パッチアンテナにおいて、アンテナ基板11の直径D、厚さt1、比誘電率εr、素子基板18の一辺の長さL2、厚さt2、無給電素子21の一辺の長さL3を例えば以下に示すように
D :120mm
t1 :1.6mm
εr :2.3
L1 :41mm
L2 :80mm
t2 :1.6mm
L3 :44mm
の値に設定し、2.3GHz帯の2偏波パッチアンテナとした場合の主偏波のVSWRを図10に、主偏波の利得特性を図11に示す。図10は横軸に周波数[GHz]をとり、縦軸にVSWRをとって示した。図11は横軸に周波数[GHz]をとり、縦軸に利得[dBi]をとって示した。上記のように2偏波パッチアンテナにおいては、VSWR及び利得特性ともに良好な特性が得られている。なお、上記VSWRと利得の特性は、主偏波の特性と逆偏波の特性がほぼ等しいので、図10及び図11では主偏波の特性のみを示している。
In the two-polarized patch antenna, the diameter D, the thickness t1, the relative permittivity εr, the length L2 of one side of the element substrate 18, the thickness t2, and the length L3 of one side of the parasitic element 21 are, for example, D: 120mm as shown below
t1: 1.6 mm
εr: 2.3
L1: 41 mm
L2: 80 mm
t2: 1.6 mm
L3: 44 mm
FIG. 10 shows the VSWR of the main polarization and FIG. 11 shows the gain characteristics of the main polarization when the 2.3 GHz band dual polarization patch antenna is set. In FIG. 10, the horizontal axis represents frequency [GHz] and the vertical axis represents VSWR. FIG. 11 shows the frequency [GHz] on the horizontal axis and the gain [dBi] on the vertical axis. As described above, in the two-polarized patch antenna, both VSWR and gain characteristics are good. Note that the VSWR and gain characteristics are substantially the same as the characteristics of the main polarization and the reverse polarization, and therefore, only the characteristics of the main polarization are shown in FIGS.

図12は、上記2偏波パッチアンテナの2.35GHzにおける指向性パターンを示し、(a)は主偏波指向性、(b)は逆偏波指向性を示している。図12(a)において、実線a1は主偏波磁界面の指向性、破線b1は主偏波電界面の指向性で、磁界面半値幅は90°、電界面半値幅は97°となっている。また、図12(b)において、実線a2は逆偏波磁界面の指向性、破線b2は逆偏波電界面の指向性で、磁界面半値幅は90°、電界面半値幅は96°である。   FIG. 12 shows the directivity pattern at 2.35 GHz of the two-polarized patch antenna, where (a) shows the main polarization directivity and (b) shows the reverse polarization directivity. In FIG. 12A, the solid line a1 is the directivity of the main polarization magnetic field surface, the broken line b1 is the directivity of the main polarization electric field surface, the magnetic field surface half width is 90 °, and the electric field surface half width is 97 °. Yes. In FIG. 12B, the solid line a2 is the directivity of the reverse polarization magnetic field surface, the broken line b2 is the directivity of the reverse polarization electric field surface, the magnetic field surface half width is 90 °, and the electric field surface half width is 96 °. is there.

上記2偏波パッチアンテナにおいては、図12に示したように主偏波指向性及び逆偏波指向性における電界面及び磁界面ともに指向性半値幅にそれぞれ差を生じており、その半値幅の差は6〜7°程度である。   In the two-polarized patch antenna, as shown in FIG. 12, there is a difference in the directivity half-value width in both the electric field surface and the magnetic field surface in the main polarization directivity and the reverse polarization directivity. The difference is about 6-7 °.

上記図9に示した従来の2偏波パッチアンテナでは、VSWR及び利得特性ともに良好な特性が得られている。   In the conventional two-polarized patch antenna shown in FIG. 9, good characteristics are obtained in both VSWR and gain characteristics.

しかし、パッチアンテナは、給電構造を含めると偏波方向に対して対称な形状ではないということや、誘電体基板を用いることなどによって、磁界面と電界面の半値幅に6〜10°程度の差が生じる。この差を解消するには、単一偏波で用いる場合には放射素子や無給電素子を長方形にしたり、反射板の上下と左右で長さが違う形状のものを用いることで調整できる。しかし、直交する2偏波の電界面どうし、磁界面どうしを同じ半値幅に保ちつつ、更には磁界面と電界面の半値幅を揃えたい場合は、先に述べたような、無給電素子を長方形にする手法だと実現できない。なぜなら、偏波方向に対して、一方は上下に長い無給電素子に見え、他方は左右に長い無給電素子に見えるからである。   However, the patch antenna does not have a symmetric shape with respect to the polarization direction when the feed structure is included, or by using a dielectric substrate, the half width of the magnetic field plane and the electric field plane is about 6 to 10 °. There is a difference. In order to eliminate this difference, in the case of using a single polarized wave, it is possible to adjust by making the radiating element and the parasitic element rectangular, or using a shape having different lengths on the top, bottom, left and right of the reflector. However, if it is desired to keep the half-width of the magnetic field plane and the electric field plane while maintaining the two half-polarized electric field planes and the magnetic field planes at the same half-value width, a parasitic element as described above should be used. This is not possible with the rectangular method. This is because, with respect to the polarization direction, one appears to be a parasitic element that is long vertically, and the other appears to be a parasitic element that is long to the left and right.

図13(a)〜(c)は、従来の2偏波パッチアンテナの磁界面と電界面の半値幅調整時における指向性の変化を示し、(a)は半値幅調整前の指向性、(b)は半値幅調整後の一方の偏波の指向性、(c)は半値幅調整後の他方の偏波の指向性を示している。なお、図13において、実線a、a1、a2は磁界面の指向性、破線b、b1、b2は電界面の指向性を示している。   FIGS. 13A to 13C show changes in directivity at the time of adjusting the half-value width of the magnetic field surface and the electric field surface of the conventional dual-polarized patch antenna, and FIG. 13A shows the directivity before the half-value width adjustment. b) shows the directivity of one polarization after half-width adjustment, and (c) shows the directivity of the other polarization after half-width adjustment. In FIG. 13, solid lines a, a1, and a2 indicate the directivity of the magnetic field surface, and broken lines b, b1, and b2 indicate the directivity of the electric field surface.

図13(a)に示すように2偏波パッチアンテナの磁界面と電界面の半値幅に差を生じている場合において、無給電素子を長方形にすることで同図(b)に示すように一方の偏波における磁界面指向性a1と電界面指向性b1が揃うように調整すると、偏波方向によって無給電素子の見え方が異なるため、同図(c)に示すように他方の偏波における磁界面指向性a2と電界面指向性b2の半値幅の差が調整前よりも大きくなってしまう。このため2偏波パッチアンテナにおいて、直交する2偏波の指向性が揃うよう調整することは非常に困難であった。   As shown in FIG. 13B, when the half-value width of the magnetic field plane and the electric field plane of the two-polarized patch antenna is different as shown in FIG. If adjustment is made so that the magnetic field plane directivity a1 and the electric field plane directivity b1 in one polarization are aligned, the appearance of the parasitic element differs depending on the polarization direction, so the other polarization as shown in FIG. The difference between the half-value widths of the magnetic field surface directivity a2 and the electric field surface directivity b2 becomes larger than before the adjustment. For this reason, it has been very difficult to adjust the directivity of two orthogonally polarized waves in a two-polarized patch antenna.

特開2006−237904号公報JP 2006-237904 A 特開2006−25035号公報JP 2006-25035 A

上記のようにパッチアンテナにおいて、磁界面と電界面の半値幅を揃えたい場合、単一偏波で用いる場合には放射素子や無給電素子を長方形にしたり、反射板の上下と左右で長さが違う形状のものを用いることで調整できる。しかし、直交する2偏波の磁界面どうし、電界面どうしを同じ半値幅に保ちつつ、更には磁界面と電界面の半値幅を揃えたい場合、従来の調整方法では偏波方向によって無給電素子等の見え方が異なるため、直交する2偏波の指向性が揃うよう調整することは非常に困難である。   As described above, in patch antennas, when the half-width of the magnetic field plane and the electric field plane is to be equalized, when using single polarization, the radiating element and parasitic element are rectangular, or the reflector plate has a length at the top, bottom, left and right. Can be adjusted by using a different shape. However, in the case where it is desired to keep the half-width of the magnetic field plane and the electric field plane while keeping the orthogonal two polarized magnetic field planes and the electric field planes at the same half-value width, the conventional adjustment method can change the parasitic element depending on the polarization direction. Therefore, it is very difficult to adjust the directivity of two orthogonal polarizations to be uniform.

本発明は上記の課題を解決するためになされたもので、直交する2偏波の磁界面どうし、電界面どうしを同じ半値幅に保ちつつ、更には磁界面と電界面の半値幅を容易に調整することができる2偏波パッチアンテナを提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and while maintaining the same half-value width between two orthogonally polarized magnetic field surfaces and between electric field surfaces, the half-width of the magnetic field surface and the electric field surface can be easily increased. An object of the present invention is to provide a dual-polarized patch antenna that can be adjusted.

第1の発明は、アンテナ基板と、前記アンテナ基板の下面に設けられる接地板と、前記アンテナ基板の上面に設けられる直交する2偏波の給電点を備えたパッチ素子と、前記パッチ素子に相対向して所定の高さに設けられる無給電素子とを具備してなる2偏波パッチアンテナにおいて、前記無給電素子は、偏波方向を基準として四隅あるいは上下左右の中央部に設けられる縮退部を備え、該縮退部により各偏波面における磁界面半値幅と電界面半値幅を調整可能に構成したことを特徴とする。   According to a first aspect of the present invention, there is provided an antenna substrate, a ground plate provided on a lower surface of the antenna substrate, a patch element having two orthogonally polarized feed points provided on an upper surface of the antenna substrate, and a relative to the patch element A two-polarized patch antenna comprising a parasitic element provided at a predetermined height and the parasitic element is a degenerate portion provided at four corners or at the upper, lower, left and right central portions with reference to the polarization direction. The magnetic field plane half width and the electric field plane half width in each polarization plane can be adjusted by the degenerate portion.

第2の発明は、前記第1の発明に係る2偏波パッチアンテナにおいて、前記無給電素子は、偏波方向を基準として四隅あるいは上下左右の中央部を切欠して縮退部を構成したことを特徴とする。   According to a second aspect of the present invention, in the dual-polarized patch antenna according to the first aspect of the invention, the parasitic element is configured such that a degenerate portion is formed by cutting out four corners or upper, lower, left and right central portions with reference to the polarization direction. Features.

第3の発明は、前記第1の発明に係る2偏波パッチアンテナにおいて、前記無給電素子は、偏波方向を基準として四隅あるいは上下左右の中央部に誘電体材料を設け、該誘電体材料の形状及び配置によって縮退部を構成したことを特徴とする。   According to a third aspect of the invention, in the dual-polarized patch antenna according to the first aspect of the invention, the parasitic element is provided with a dielectric material at four corners or at the upper, lower, left and right central portions with reference to the polarization direction. The degenerate portion is configured by the shape and arrangement of the above.

本発明によれば、導波器を備えた2偏波パッチアンテナにおいて、四隅に縮退部を設けてなる無給電素子あるいは上下左右の中央部に縮退部を設けてなる無給電素子を導波器として使用することにより、直交する2偏波の磁界面どうし、電界面どうしを同じ半値幅に保ちながら、磁界面と電界面の半値幅を目的に応じて容易に調整することができる。   According to the present invention, in a two-polarized patch antenna including a director, a parasitic element having a degenerate portion at four corners or a parasitic element having a degenerate portion at the center of the top, bottom, left, and right is a waveguide. As a result, it is possible to easily adjust the half-value widths of the magnetic field surface and the electric field surface according to the purpose while keeping the perpendicular two-polarized magnetic field surfaces and the electric field surfaces at the same half-value width.

本発明の一実施形態に係る2偏波パッチアンテナの基本構成を説明するための図である。It is a figure for demonstrating the basic composition of the two polarization patch antenna which concerns on one Embodiment of this invention. 同実施形態に係る2偏波パッチアンテナにおいて、磁界面どうし又は電界面どうしをより広くしたい場合の無給電素子上に必要とする電流分布を示す図である。In the dual-polarized patch antenna according to the same embodiment, it is a diagram showing a current distribution required on the parasitic element when it is desired to make the magnetic field planes or the electric field planes wider. 同実施形態に係る2偏波パッチアンテナにおける無給電素子上の電流分布を示す図である。It is a figure which shows the electric current distribution on the parasitic element in the two polarization patch antenna which concerns on the same embodiment. 同実施形態に係る2偏波パッチアンテナにおいて、放射に寄与する無給電素子上の電流分布を示す図である。It is a figure which shows the electric current distribution on the parasitic element which contributes to radiation | emission in the two polarization patch antenna which concerns on the same embodiment. 本発明の実施例1に係る2偏波パッチアンテナの具体的な構成例を示す斜視図である。It is a perspective view which shows the specific structural example of the dual polarization patch antenna which concerns on Example 1 of this invention. 同実施例1に係る2偏波パッチアンテナの主偏波指向性及び逆偏波指向性を示す図である。It is a figure which shows the main polarization directivity and reverse polarization directivity of the dual polarization patch antenna which concerns on the Example 1. FIG. 同実施例2に係る2偏波パッチアンテナの具体的な構成例を示す斜視図である。It is a perspective view which shows the specific structural example of the two polarization patch antenna which concerns on the Example 2. FIG. 同実施例2に係る2偏波パッチアンテナの主偏波指向性及び逆偏波指向性を示す図である。It is a figure which shows the main polarization directivity and reverse polarization directivity of the two-polarization patch antenna based on the Example 2. FIG. 従来の2偏波パッチアンテナの構成例を示す斜視図である。It is a perspective view which shows the structural example of the conventional 2 polarized-wave patch antenna. 従来及び本発明の実施例に係る2偏波パッチアンテナのVSWR特性を示す図である。It is a figure which shows the VSWR characteristic of the conventional 2 polarized wave patch antenna based on the Example of this invention. 従来及び本発明の実施例に係る2偏波パッチアンテナの利得特性を示す図である。It is a figure which shows the gain characteristic of the 2 polarized-wave patch antenna which concerns on the prior art and the Example of this invention. 従来の2偏波パッチアンテナの主偏波指向性及び逆偏波指向性を示す図である。It is a figure which shows the main polarization directivity and reverse polarization directivity of the conventional 2 polarization patch antenna. 従来の2偏波パッチアンテナの磁界面と電界面の半値幅調整時における指向性を示す図である。It is a figure which shows the directivity at the time of the half value width adjustment of the magnetic field surface and electric field surface of the conventional 2 polarized-wave patch antenna.

以下、本発明の実施の形態について図面を参照して詳細に説明する。
まず、本発明の一実施形態に係る2偏波パッチアンテナの基本構成について説明する。 本発明は、導波器を備えた2偏波パッチアンテナにおいて、図1(a)に示すように例えば偏波方向が上下方向である正方形の無給電素子30に対し、同図(b)に示すように例えば四隅を方形に切欠して縮退部31a〜31dを設けるか、あるいは同図(c)に示すように上下左右の中央部を方形に切欠して縮退部32a〜32dを設ける。図1(b)に示すように四隅に縮退部31a〜31dを設けてなる無給電素子30A、図1(c)に示すように上下左右の中央部に縮退部32a〜32dを設けてなる無給電素子30Bを導波器として使用することで、磁界面半値幅と電界面半値幅の増減を逆相関とし、各偏波面における磁界面と電界面の半値幅を所望する差に調整する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
First, a basic configuration of a two-polarized patch antenna according to an embodiment of the present invention will be described. The present invention shows a two-polarized patch antenna having a director, as shown in FIG. 1A, for example, with respect to a square parasitic element 30 whose polarization direction is vertical, as shown in FIG. As shown in the figure, for example, four corners are cut into squares to provide the contracted portions 31a to 31d, or as shown in FIG. 3C, the upper, lower, left and right central portions are cut into a square to provide the contracted portions 32a to 32d. As shown in FIG. 1 (b), the parasitic element 30A is provided with the degenerate portions 31a to 31d at the four corners, and as shown in FIG. 1 (c), the degenerate portions 32a to 32d are provided at the upper, lower, left and right central portions. By using the feed element 30B as a director, the increase / decrease in the magnetic field surface half-value width and the electric field surface half-value width are inversely correlated, and the half-value width of the magnetic field surface and the electric field surface in each polarization plane is adjusted to a desired difference.

次に、上記四隅に縮退部31a〜31dを設けてなる無給電素子30Aと、上下左右の中央部に縮退部32a〜32dを設けてなる無給電素子30Bの半値幅調整作用について、図2〜図4を参照して説明する。   Next, with respect to the half-value width adjusting action of the parasitic element 30A in which the degenerate portions 31a to 31d are provided at the four corners and the parasitic element 30B in which the degenerate portions 32a to 32d are provided in the central portions of the upper, lower, left, and right sides, FIG. This will be described with reference to FIG.

図2(a)は、磁界面半値幅を電界面半値幅に比較してより広くしたい場合の無給電素子30上に必要となる電流分布を示し、矢印線41と矢印線42は異なる偏波方向の励振電流を示している。一方の励振電流41は無給電素子30上を水平方向に流れ、他方の励振電流42は励振電流41と直交する方向に流れ、無給電素子30上の中央部にて交差している。   FIG. 2A shows a current distribution required on the parasitic element 30 when it is desired to make the magnetic field surface half width wider than the electric field surface half width, and the arrow line 41 and the arrow line 42 are different polarizations. Directional excitation current is shown. One excitation current 41 flows in a horizontal direction on the parasitic element 30, and the other excitation current 42 flows in a direction orthogonal to the excitation current 41, and intersects at a central portion on the parasitic element 30.

図2(b)は、電界面半値幅を磁界面半値幅に比較してより広くしたい場合の無給電素子30上に必要となる電流分布を示し、矢印線43と矢印線44は異なる偏波方向の励振電流を示している。一方の偏波の励振電流43は無給電素子30の上側縁及び下側縁の中央部を同一の方向例えば右方向に流れ、他方の励振電流44は無給電素子30の左右の側縁の中央部において励振電流43と90°異なる方向例えば上方向に流れる。なお、上記図2に矢印線で示す励振電流は、位置を示したものであって、大きさは示していない。   FIG. 2B shows a current distribution required on the parasitic element 30 when it is desired to make the electric field surface half-width wider than the magnetic field surface half-width, and the arrow line 43 and the arrow line 44 are different polarizations. Directional excitation current is shown. The excitation current 43 of one polarized wave flows in the same direction, for example, in the right direction in the central portion of the upper edge and the lower edge of the parasitic element 30, and the other excitation current 44 is the center of the left and right side edges of the parasitic element 30. The current flows in a direction different from the excitation current 43 by 90 °, for example, upward. The excitation current indicated by the arrow line in FIG. 2 indicates the position, and does not indicate the magnitude.

図3(a)は、上記図1(c)に示したように上下左右の中央部に縮退部31a〜31dを設けてなる無給電素子30B上の大まかな電流分布を示し、図3(b)は上記図1(b)に示したように四隅に縮退部31a〜31dを設けてなる無給電素子30A上の大まかな電流分布を示している。   FIG. 3A shows a rough current distribution on the parasitic element 30B in which the degenerate portions 31a to 31d are provided at the central portions of the top, bottom, left, and right as shown in FIG. 1C. ) Shows a rough current distribution on the parasitic element 30A in which the degenerate portions 31a to 31d are provided at the four corners as shown in FIG.

図3(a)に示すように上下左右の中央部に縮退部32a〜32dが設けられた無給電素子30Bにおいては、水平方向に流れる一方の偏波の励振電流51は、上下の中央部に設けられた縮退部32a、32cに沿って湾曲して流れる。また、上方向に流れる他方の偏波の励振電流52は、左右の中央部に設けられた縮退部32b、32dに沿って湾曲して流れる。   As shown in FIG. 3A, in the parasitic element 30B in which the degenerate portions 32a to 32d are provided in the upper, lower, left and right central portions, the excitation current 51 of one polarized wave flowing in the horizontal direction is generated in the upper and lower central portions. It flows in a curved manner along the provided degenerate portions 32a and 32c. In addition, the excitation current 52 of the other polarization that flows upward flows in a curved manner along the degenerate portions 32b and 32d provided in the left and right central portions.

また、図3に(b)に示すように四隅に縮退部31a〜31dが設けられた無給電素子30Aにおいては、水平方向に流れる一方の偏波の励振電流53は、縮退部31a〜31dの無い中央部において外側方向(上下方向)に湾曲した形状の流れとなる。また、上方向に向かって流れる他方の偏波の励振電流54は、縮退部31a〜31dの無い中央部において左右の外側方向に湾曲した形状の流れとなる。   In addition, in the parasitic element 30A in which the degenerate portions 31a to 31d are provided at the four corners as shown in FIG. 3B, the excitation current 53 of one polarization flowing in the horizontal direction is applied to the degenerate portions 31a to 31d. The flow has a shape curved in the outer direction (vertical direction) in the center portion that is not present. Further, the excitation current 54 of the other polarized wave that flows in the upward direction becomes a flow having a curved shape in the left and right outer directions at the central portion without the degenerate portions 31a to 31d.

上記無給電素子30Bに流れる励振電流51、52及び無給電素子30Aに流れる励振電流53、54において、電流の値が大きいのは、分布曲線の中央付近であるので、特に放射に寄与する電流分布は図4に示すようになる。   In the excitation currents 51 and 52 flowing through the parasitic element 30B and the excitation currents 53 and 54 flowing through the parasitic element 30A, the current value is large in the vicinity of the center of the distribution curve. Is as shown in FIG.

無給電素子30Bにおける放射に寄与する励振電流51、52は、図4(a)に示すように縮退部32a〜32dの内側に沿って湾曲し、無給電素子30Bの中央部で交差する電流分布となる。この電流分布は、図2(a)に示した磁界面半値幅を電界面半値幅に対してより広くしたい場合の電流分布に近くなっている。この結果、上下左右の中央部に縮退部32a〜32dを設けた無給電素子30Bにおいては、縮退部32a〜32dの大きさを調整することによって磁界面半値幅の調整が可能となる。   Excitation currents 51 and 52 that contribute to radiation in the parasitic element 30B are curved along the inside of the degenerate portions 32a to 32d as shown in FIG. 4A, and current distribution intersects at the center of the parasitic element 30B. It becomes. This current distribution is close to the current distribution in the case where it is desired to make the magnetic field surface half width shown in FIG. 2A wider than the electric field surface half width. As a result, in the parasitic element 30B in which the contracted portions 32a to 32d are provided at the center portions of the upper, lower, left, and right sides, the magnetic field surface half width can be adjusted by adjusting the size of the contracted portions 32a to 32d.

また、無給電素子30Aにおける放射に寄与する励振電流53、54は、図4(b)に示すように縮退部31a〜31dの無い中央部において外側方向に湾曲した電流分布となる。この電流分布は、図2(b)に示した電界面半値幅を磁界面半値幅に対してより広くしたい場合の電流分布に近くなっている。この結果、四隅に縮退部31a〜31dを設けた無給電素子30Aにおいては、縮退部31a〜31dの大きさを調整することによって電界面半値幅の調整が可能となる。   In addition, the excitation currents 53 and 54 that contribute to radiation in the parasitic element 30A have a current distribution that is curved outward in the center portion where the degenerate portions 31a to 31d are not present as shown in FIG. This current distribution is close to the current distribution in the case where it is desired to make the electric field surface half width shown in FIG. 2B wider than the magnetic field surface half width. As a result, in the parasitic element 30A in which the degenerate portions 31a to 31d are provided at the four corners, it is possible to adjust the electric field surface half width by adjusting the size of the degenerate portions 31a to 31d.

次に、上記無給電素子30Aあるいは無給電素子30Bを用いた2偏波パッチアンテナの具体的な構成例について説明する。   Next, a specific configuration example of a two-polarized patch antenna using the parasitic element 30A or the parasitic element 30B will be described.

図5は、本発明の実施例1に係る2偏波パッチアンテナの具体的な構成例を示す斜視図である。この実施例1では、四隅に縮退部31a〜31dが設けられた無給電素子30Aを使用した場合の例を示している。この実施例1に係る2偏波パッチアンテナは、図9に示した従来の2偏波パッチアンテナに比較し、無給電素子30Aの構成が異なるのみであるので、図9と同一部分には同一符号を付して詳細な説明は省略する。   FIG. 5 is a perspective view showing a specific configuration example of the dual polarization patch antenna according to the first embodiment of the present invention. In this Example 1, the example at the time of using the parasitic element 30A in which the compression parts 31a-31d were provided in the four corners is shown. The two-polarized patch antenna according to the first embodiment is different from the conventional two-polarized patch antenna shown in FIG. 9 only in the configuration of the parasitic element 30A. A detailed description is omitted with reference numerals.

無給電素子30Aは、素子基板18の上面中央に設けられ、導体により一辺の長さがL3の正方形に形成され、アンテナ基板11上のパッチ素子13に対して所定の高さh1で相対向するように設けられる。無給電素子30Aは、四隅をd1、d2の長さで方形に切欠して形成した縮退部31a〜31dを備えている。縮退部31a〜31dの長さd1、d2は、例えば約4mmに設定される。   The parasitic element 30A is provided at the center of the upper surface of the element substrate 18 and is formed into a square having a side length L3 by a conductor, and is opposed to the patch element 13 on the antenna substrate 11 at a predetermined height h1. It is provided as follows. The parasitic element 30 </ b> A includes degenerate portions 31 a to 31 d formed by cutting four corners into squares with lengths of d <b> 1 and d <b> 2. The lengths d1 and d2 of the contracting portions 31a to 31d are set to about 4 mm, for example.

上記のように無給電素子30Aを備えた2偏波パッチアンテナにおいて、アンテナ基板11の直径D、厚さt1、比誘電率εr、素子基板18の一辺の長さL2、厚さt2、無給電素子21の一辺の長さL3を図9に示した従来の2偏波パッチアンテナと同様に、
D :120mm
t1 :1.6mm
εr :2.3
L1 :41mm
L2 :80mm
t2 :1.6mm
L3 :44mm
の値に設定し、且つ無給電素子30Aにおける縮退部31a〜31dの長さd1、d2を
d1 :4mm
d2 :4mm
に設定して2.3GHz帯の2偏波パッチアンテナとした場合、図9に示した従来の2偏波パッチアンテナと同様のVSWR(図10参照)及び利得特性(図11参照)が得られた。上記各部の寸法は、一例を示したものであり、使用する周波数帯や指向性等の仕様に応じて任意に変更することが可能である。
In the dual-polarized patch antenna having the parasitic element 30A as described above, the antenna substrate 11 has a diameter D, a thickness t1, a relative permittivity εr, a length L2 of one side of the element substrate 18, a thickness t2, and a parasitic power. Similarly to the conventional two-polarized patch antenna shown in FIG.
D: 120 mm
t1: 1.6 mm
εr: 2.3
L1: 41 mm
L2: 80 mm
t2: 1.6 mm
L3: 44 mm
And the lengths d1 and d2 of the degenerate portions 31a to 31d in the parasitic element 30A are d1: 4 mm
d2: 4 mm
When a 2.3 GHz band dual polarization patch antenna is set, the same VSWR (see FIG. 10) and gain characteristics (see FIG. 11) as the conventional dual polarization patch antenna shown in FIG. 9 are obtained. It was. The dimensions of the above-described parts are merely examples, and can be arbitrarily changed according to specifications such as a frequency band to be used and directivity.

図6は、上記実施例1に係る2偏波パッチアンテナの2.35GHzにおける指向性パターンを示し、(a)は主偏波指向性、(b)は逆偏波指向性を示している。図6(a)において、実線a1は主偏波磁界面の指向性、破線b1は主偏波電界面の指向性で、磁界面半値幅は92°、電界面半値幅は103°となっている。また、図6(b)において、実線a2は逆偏波磁界面の指向性、破線b2は逆偏波電界面の指向性で、磁界面半値幅は92°、電界面半値幅は102°である。   FIG. 6 shows the directivity pattern at 2.35 GHz of the dual-polarized patch antenna according to the first embodiment, where (a) shows the main polarization directivity and (b) shows the reverse polarization directivity. In FIG. 6A, the solid line a1 is the directivity of the main polarization magnetic field surface, the broken line b1 is the directivity of the main polarization electric field surface, the magnetic field surface half width is 92 °, and the electric field surface half width is 103 °. Yes. In FIG. 6B, the solid line a2 is the directivity of the reverse polarization magnetic field surface, the broken line b2 is the directivity of the reverse polarization electric field surface, the magnetic field surface half width is 92 °, and the electric field surface half width is 102 °. is there.

上記実施例1は、四隅に縮退部31a〜31dを備えた無給電素子30Aを使用し、磁界面半値幅に対して電界面半値幅がより広くなるように設定した場合の例を示したもので、電界面半値幅を磁界面半値幅に対して10°〜11°広くすることができた。   Example 1 shows an example in which a parasitic element 30A having degenerate portions 31a to 31d at four corners is used and the electric field surface half width is set wider than the magnetic field surface half width. Thus, the electric field surface half width could be increased by 10 ° to 11 ° with respect to the magnetic field surface half width.

図7は、本発明の実施例2に係る2偏波パッチアンテナの具体的な構成例を示す斜視図である。この実施例2では、上下左右の中央部に縮退部32a〜32dが設けられた無給電素子30Bを使用した場合の例を示している。   FIG. 7 is a perspective view showing a specific configuration example of the dual polarization patch antenna according to the second embodiment of the present invention. In the second embodiment, an example is shown in which a parasitic element 30 </ b> B in which the degenerate portions 32 a to 32 d are provided in the center portions of the upper, lower, left, and right sides is used.

この実施例2に係る2偏波パッチアンテナは、図9に示した従来の2偏波パッチアンテナに比較し、無給電素子30Bの構成が異なるのみであるので、図9と同一部分には同一符号を付して詳細な説明は省略する。   The two-polarized patch antenna according to the second embodiment is different from the conventional two-polarized patch antenna shown in FIG. 9 only in the configuration of the parasitic element 30B. A detailed description is omitted with reference numerals.

無給電素子30Bは、上下左右の中央部を幅W1、深さd3で切欠して形成した縮退部32a〜32dを備えている。縮退部32a〜32dの幅W1は例えば約2mm、深さd3は約7mmに設定される。   The parasitic element 30 </ b> B includes degenerate portions 32 a to 32 d formed by notching the center portions of the top, bottom, left, and right with a width W <b> 1 and a depth d <b> 3. For example, the width W1 of the contracted portions 32a to 32d is set to about 2 mm, and the depth d3 is set to about 7 mm.

上記のように無給電素子30Bを備えた2偏波パッチアンテナにおいて、アンテナ基板11の直径D、厚さt1、比誘電率εr、素子基板18の一辺の長さL2、厚さt2、無給電素子21の一辺の長さL3を図9に示した従来の2偏波パッチアンテナと同じ値に設定し、且つ無給電素子30Bにおける幅W1を2mm、深さd3を7mmに設定して2.3GHz帯の2偏波パッチアンテナとした場合、図9に示した従来の2偏波パッチアンテナと同様のVSWR(図10参照)及び利得特性(図11参照)が得られた。   In the dual-polarized patch antenna having the parasitic element 30B as described above, the antenna substrate 11 has a diameter D, a thickness t1, a relative permittivity εr, a length L2 of one side of the element substrate 18, a thickness t2, and a parasitic power. 1. The length L3 of one side of the element 21 is set to the same value as that of the conventional two-polarized patch antenna shown in FIG. 9, the width W1 of the parasitic element 30B is set to 2 mm, and the depth d3 is set to 7 mm. In the case of a 3 GHz band dual polarization patch antenna, the same VSWR (see FIG. 10) and gain characteristics (see FIG. 11) as those of the conventional dual polarization patch antenna shown in FIG. 9 were obtained.

図8は、上記実施例2に係る2偏波パッチアンテナの2.35GHzにおける指向性パターンを示し、(a)は主偏波指向性、(b)は逆偏波指向性を示している。図8(a)において、実線a1は主偏波磁界面の指向性、破線b1は主偏波電界面の指向性で、磁界面半値幅は88°、電界面半値幅は84°となっている。また、図8(b)において、実線a2は逆偏波磁界面の指向性、破線b2は逆偏波電界面の指向性で、磁界面半値幅は88°、電界面半値幅は84°である。   FIG. 8 shows the directivity pattern at 2.35 GHz of the dual-polarized patch antenna according to the second embodiment, where (a) shows the main polarization directivity and (b) shows the reverse polarization directivity. In FIG. 8A, the solid line a1 indicates the directivity of the main polarization magnetic field surface, the broken line b1 indicates the directivity of the main polarization electric field surface, the magnetic field surface half width is 88 °, and the electric field surface half width is 84 °. Yes. In FIG. 8B, the solid line a2 is the directivity of the reverse polarization magnetic field surface, the broken line b2 is the directivity of the reverse polarization electric field surface, the magnetic field surface half width is 88 °, and the electric field surface half width is 84 °. is there.

上記実施例2は、上下左右の中央部に縮退部32a〜32dを備えた無給電素子30Bを使用し、磁界面半値幅が電界面半値幅に対してより広くなるように設定した場合の例を示したもので、従来の2偏波パッチアンテナ(図9参照)に対して半値幅の広い面が逆転し、主偏波指向性及び逆偏波指向性の磁界面半値幅が88°、電界面半値幅が84°となり、磁界面半値幅が電界面半値幅に対して4°広くなっている。   Example 2 above is an example in which a parasitic element 30B including degenerate portions 32a to 32d is used in the center portion of the upper, lower, left, and right sides, and the magnetic field surface half width is set to be wider than the electric field surface half width. The surface having a wide half-value width is reversed with respect to the conventional two-polarization patch antenna (see FIG. 9), and the half-width of the magnetic field plane of the main polarization directivity and the reverse polarization directivity is 88 °. The electric field surface half width is 84 °, and the magnetic field surface half width is 4 ° wider than the electric field surface half width.

上記実施例1、2に示したように導波器を備えた2偏波パッチアンテナにおいて、四隅に縮退部31a〜31dを設けてなる無給電素子30Aあるいは上下左右の中央部に縮退部32a〜32dを設けてなる無給電素子30Bを導波器として使用することにより、直交する2偏波の磁界面どうし、電界面どうしを同じ半値幅に保ちながら、磁界面と電界面の半値幅を目的に応じて容易に調整することができる。また、プリント基板による無給電素子を用いることにより、上記磁界面及び電界面の半値幅を更に容易に調整することができる。更に、円偏波のアンテナを設計する際、軸比を改善することが可能である。   In the two-polarized patch antenna having a director as shown in the first and second embodiments, the parasitic element 30A in which the degenerate portions 31a to 31d are provided at the four corners, or the degenerate portions 32a to 32a By using the parasitic element 30B provided with 32d as a director, the half-width of the magnetic field plane and the electric field plane is maintained while maintaining the same half-width between the two polarized magnetic field surfaces and the electric field surfaces. It can be easily adjusted according to. Moreover, the half-value width of the magnetic field plane and the electric field plane can be adjusted more easily by using a parasitic element made of a printed circuit board. Furthermore, the axial ratio can be improved when designing a circularly polarized antenna.

また、パッチアンテナで、±45°偏波の1列多段スタックアンテナを設計し、垂直方向のビームチルトを成形する際、水平面における最大放射方向の変化を抑えることが可能である。   In addition, when a single-row multi-stage stack antenna with ± 45 ° polarization is designed as a patch antenna and a vertical beam tilt is formed, a change in the maximum radiation direction in the horizontal plane can be suppressed.

なお、上記実施例では、無給電素子に縮退部31a〜31d、32a〜32dを設けた場合について示したが、無給電素子の導体形状をそのままにし、無給電素子の周囲に誘電体材料を設け、該誘電体材料を縮退形状とすることによっても、上記実施例と同様に、磁界面と電界面の半値幅を調整することができる。すなわち、誘電体材料の分布は、導体上の電流分布に影響を及ぼすため、無給電素子の周囲に設けた誘電体材料の形状及び配置によって縮退部を構成することにより、磁界面と電界面の半値幅を調整することができる。   In the above embodiment, the case where the parasitic elements are provided with the degenerate portions 31a to 31d and 32a to 32d has been described. However, the conductor shape of the parasitic element is left as it is, and a dielectric material is provided around the parasitic element. The half width of the magnetic field surface and the electric field surface can also be adjusted by making the dielectric material into a degenerated shape as in the above embodiment. That is, since the distribution of the dielectric material affects the current distribution on the conductor, the degenerate portion is configured by the shape and arrangement of the dielectric material provided around the parasitic element, so that the magnetic field surface and the electric field surface are The full width at half maximum can be adjusted.

また、上記実施例では、正方形の無給電素子30に縮退部31a〜31d、32a〜32dを設けた場合について示したが、円形に形成した無給電素子に偏波方向を基準として四隅あるいは上下左右の中央部に縮退部を構成しても、各偏波面における磁界面と電界面の半値幅を調整することができる。   In the above-described embodiment, the case where the degenerate portions 31a to 31d and 32a to 32d are provided in the square parasitic element 30 has been described. Even if the degenerate portion is formed at the center portion of each, the half-value width of the magnetic field surface and the electric field surface in each polarization plane can be adjusted.

更に上記実施例では、素子基板18の上面に無給電素子30A又は30Bを設けた場合について説明したが、素子基板18の下面に無給電素子30A又は30Bを設けても良い。この場合、無給電素子30A、30Bは、アンテナ基板11上のパッチ素子13に対して所定の高さに保持する。   Furthermore, although the case where the parasitic element 30A or 30B is provided on the upper surface of the element substrate 18 has been described in the above embodiment, the parasitic element 30A or 30B may be provided on the lower surface of the element substrate 18. In this case, the parasitic elements 30 </ b> A and 30 </ b> B are held at a predetermined height with respect to the patch element 13 on the antenna substrate 11.

また上記実施例では、1段の無給電素子(30A又は30B)を設けた場合について説明したが、無給電素子を多段に構成しても良いことは勿論である。   In the above-described embodiment, the case where the one-stage parasitic element (30A or 30B) is provided has been described, but it is needless to say that the parasitic element may be configured in multiple stages.

また、本発明は、上記実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できるものである。   Further, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.

11…アンテナ基板、12…接地板、13…パッチ素子、14…主偏波給電部、15…主偏波給電点、16…逆偏波給電部、17…逆偏波給電点、18…無給電素子用の素子基板、19a〜19d…支柱、21…無給電素子、30、30A、30B…無給電素子、31a〜31d、32a〜32d…縮退部、41〜44、51〜54…励振電流。   DESCRIPTION OF SYMBOLS 11 ... Antenna board, 12 ... Ground plate, 13 ... Patch element, 14 ... Main polarization feeding part, 15 ... Main polarization feeding point, 16 ... Inverse polarization feeding part, 17 ... Inverse polarization feeding point, 18 ... None Element substrate for power feeding elements, 19a to 19d ... posts, 21 ... parasitic elements, 30, 30A, 30B ... parasitic elements, 31a to 31d, 32a to 32d ... degenerate parts, 41 to 44, 51 to 54 ... excitation currents .

Claims (3)

アンテナ基板と、前記アンテナ基板の下面に設けられる接地板と、前記アンテナ基板の上面に設けられる直交する2偏波の給電点を備えたパッチ素子と、前記パッチ素子に相対向して所定の高さに設けられる無給電素子とを具備してなる2偏波パッチアンテナにおいて、
前記無給電素子は、偏波方向を基準として四隅あるいは上下左右の中央部に設けられる縮退部を備え、該縮退部により各偏波面における磁界面半値幅と電界面半値幅を調整可能に構成したことを特徴とする2偏波パッチアンテナ。
An antenna substrate, a ground plate provided on the lower surface of the antenna substrate, a patch element having two orthogonally polarized feed points provided on the upper surface of the antenna substrate, and a predetermined height opposite to the patch element In the two-polarized patch antenna comprising a parasitic element provided in the antenna,
The parasitic element includes a degenerate portion provided at the four corners or at the center of the upper, lower, left, and right with respect to the polarization direction, and the degenerate portion is configured to be able to adjust the magnetic field surface half width and electric field surface half width in each polarization plane. A two-polarized patch antenna.
前記無給電素子は、偏波方向を基準として四隅あるいは上下左右の中央部を切欠して縮退部を構成したことを特徴とする請求項1に記載の2偏波パッチアンテナ。   2. The two-polarized patch antenna according to claim 1, wherein the parasitic element has a degenerate portion formed by cutting out four corners or upper, lower, left and right central portions based on a polarization direction. 前記無給電素子は、偏波方向を基準として四隅あるいは上下左右の中央部に誘電体材料を設け、該誘電体材料の形状及び配置によって縮退部を構成したことを特徴とする請求項1に記載の2偏波パッチアンテナ。   2. The parasitic element according to claim 1, wherein a dielectric material is provided at four corners or upper, lower, left and right central portions with reference to a polarization direction, and a degenerate portion is configured by the shape and arrangement of the dielectric material. Two-polarized patch antenna.
JP2013017002A 2013-01-31 2013-01-31 Dual polarized patch antenna Active JP6082260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013017002A JP6082260B2 (en) 2013-01-31 2013-01-31 Dual polarized patch antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013017002A JP6082260B2 (en) 2013-01-31 2013-01-31 Dual polarized patch antenna

Publications (2)

Publication Number Publication Date
JP2014150347A true JP2014150347A (en) 2014-08-21
JP6082260B2 JP6082260B2 (en) 2017-02-15

Family

ID=51573023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013017002A Active JP6082260B2 (en) 2013-01-31 2013-01-31 Dual polarized patch antenna

Country Status (1)

Country Link
JP (1) JP6082260B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240621A (en) * 1994-02-25 1995-09-12 Mitsubishi Electric Corp Antenna device and power feeding device
JPH1131914A (en) * 1997-07-09 1999-02-02 Nec Corp Plane antenna having parasitic element
JP2002359517A (en) * 2001-05-31 2002-12-13 Hitachi Cable Ltd Antenna device for base station
JP2011155479A (en) * 2010-01-27 2011-08-11 Murata Mfg Co Ltd Wideband antenna
WO2014045966A1 (en) * 2012-09-21 2014-03-27 株式会社村田製作所 Dual-polarized antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240621A (en) * 1994-02-25 1995-09-12 Mitsubishi Electric Corp Antenna device and power feeding device
JPH1131914A (en) * 1997-07-09 1999-02-02 Nec Corp Plane antenna having parasitic element
JP2002359517A (en) * 2001-05-31 2002-12-13 Hitachi Cable Ltd Antenna device for base station
JP2011155479A (en) * 2010-01-27 2011-08-11 Murata Mfg Co Ltd Wideband antenna
WO2014045966A1 (en) * 2012-09-21 2014-03-27 株式会社村田製作所 Dual-polarized antenna

Also Published As

Publication number Publication date
JP6082260B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
US11431087B2 (en) Wideband, low profile, small area, circular polarized UHF antenna
Fakhte et al. A novel low-cost circularly polarized rotated stacked dielectric resonator antenna
KR101679281B1 (en) Dual band patch antenna for adjusting polarization
Qing et al. Compact asymmetric-slit microstrip antennas for circular polarization
KR20120072144A (en) Circularly polarized antenna with wide beam width
Ko et al. Hybrid zeroth-order resonance patch antenna with broad $ E $-Plane beamwidth
US9515387B2 (en) Multi-input multi-output antenna with electromagnetic band-gap structure
US11133601B2 (en) Fractal-rectangular reactive impedance surface for antenna miniaturization
Ghosh et al. Miniaturization of slot antennas using wire loading
JP5060588B2 (en) Polarization diversity antenna
Tang et al. A bandwidth-enhanced, compact, single-feed, low-profile, multilayered, circularly polarized patch antenna
Nakano et al. Radiation characteristics of a metaloop antenna
JP2007208692A (en) Patch antenna
JP4524293B2 (en) Circularly polarized grid array antenna
JP4212613B2 (en) Dual polarization antenna
US10170829B2 (en) Self-complementary multilayer array antenna
US6577276B2 (en) Low cross-polarization microstrip patch radiator
KR102218801B1 (en) Array antenna device
CN107579343B (en) Single-feed positive polygonal annular circularly polarized microstrip antenna
KR101288237B1 (en) Patch Antenna for Receiving Circular Polarization and Linear Polarization
JP6082260B2 (en) Dual polarized patch antenna
Dash et al. Wideband circularly polarized sectored conical dielectric resonator antenna excited by S‐shaped slot
WO2014108977A1 (en) Antenna apparatus
KR100991818B1 (en) High Efficiency Wide Band-Width Circular Patch Antenna
KR101393280B1 (en) Dual band patch antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170120

R150 Certificate of patent or registration of utility model

Ref document number: 6082260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250