JP2014145106A - Ni-BASED ALLOY EXCELLENT IN CORROSION RESISTANCE TO FLUORIDE MOLTEN SALTS AS WELL AS DEVICE COMPONENT MADE OF THE SAME - Google Patents

Ni-BASED ALLOY EXCELLENT IN CORROSION RESISTANCE TO FLUORIDE MOLTEN SALTS AS WELL AS DEVICE COMPONENT MADE OF THE SAME Download PDF

Info

Publication number
JP2014145106A
JP2014145106A JP2013013943A JP2013013943A JP2014145106A JP 2014145106 A JP2014145106 A JP 2014145106A JP 2013013943 A JP2013013943 A JP 2013013943A JP 2013013943 A JP2013013943 A JP 2013013943A JP 2014145106 A JP2014145106 A JP 2014145106A
Authority
JP
Japan
Prior art keywords
corrosion resistance
molten salt
based alloy
fluoride
fluoride molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013013943A
Other languages
Japanese (ja)
Other versions
JP2014145106A5 (en
JP6041345B2 (en
Inventor
Katsuo Sugawara
克生 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MMC Superalloy Corp
Original Assignee
MMC Superalloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MMC Superalloy Corp filed Critical MMC Superalloy Corp
Priority to JP2013013943A priority Critical patent/JP6041345B2/en
Publication of JP2014145106A publication Critical patent/JP2014145106A/en
Publication of JP2014145106A5 publication Critical patent/JP2014145106A5/ja
Application granted granted Critical
Publication of JP6041345B2 publication Critical patent/JP6041345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Ni-based alloy excellent in corrosion resistance to fluoride molten salts, as well as a device component that is made of the alloy and is used for a heat regenerator, a pump, piping or the like in a Th(thorium) molten-salt reactor.SOLUTION: A Ni-based alloy contains, by wt.%, Cr:6-8%, Mo:15-17%, Fe:0.05-2%, Mn:0.05-0.2%, Si:0.01-0.2%, V:0.001-0.08%, B:0.0001-0.01%, Mg:0.001-0.02%, N:0.001-0.04%, Al:0.005-0.1% and Ti:0.005-0.1% and further contains Cu:0.01-0.35% as required, and the balance is composed of Ni and inevitable impurities including C:0.01% or less. The Ni-based alloy is excellent in corrosion resistance to fluoride molten salts, and a device component made of the alloy is excellent in corrosion resistance to the fluoride molten salts.

Description

この発明は、フッ化物溶融塩に対する耐食性に優れたNi基合金およびこのNi基合金からなる装置構成部材、例えば、蓄熱器、ポンプ、配管等の装置構成部材に関するものである。 The present invention relates to a Ni-based alloy having excellent corrosion resistance against a molten fluoride salt and a device constituent member made of this Ni-based alloy, for example, a device constituent member such as a heat accumulator, a pump, and a pipe.

フッ化物溶融塩は、熱輸送媒体、例えば、太陽熱発電システムにおける熱輸送媒体、あるいは、Th溶融塩炉として知られる原子炉の熱輸送媒体として利用されることが知られている。
特許文献1に示す太陽熱発電システムにおいては、熱輸送媒体であるフッ化物溶融塩は、低温貯蔵タンク、太陽集熱器、高温貯蔵タンクおよびエネルギ変換システムを循環し、太陽集熱器で高温に加熱されたフッ化物溶融塩が、エネルギ変換システムに圧送されて発電し、低温になったフッ化物溶融塩は低温貯蔵タンクで貯蔵され、熱輸送媒体は閉サイクル内で再利用されている。
また、非特許文献1に示すTh溶融塩炉においては、一次冷却剤であるフッ化物溶融塩に核***物質(Thフッ化物を主としたU,Puのフッ化物)を混合して、黒鉛を減速材とした炉心に送り核***反応を起こさせ、核***により高温となった溶融塩は炉心の外へ循環させて、フッ化物溶融塩である二次冷却材と熱を交換させ、この熱を発電等に利用するものである。
Fluoride molten salt is known to be utilized as a heat transport medium, for example, a heat transport medium in a solar thermal power generation system, or a nuclear reactor heat transport medium known as a Th molten salt furnace.
In the solar thermal power generation system shown in Patent Document 1, a fluoride molten salt that is a heat transport medium circulates in a low-temperature storage tank, a solar collector, a high-temperature storage tank, and an energy conversion system, and is heated to a high temperature by the solar collector. The fluorinated molten salt is pumped to an energy conversion system to generate electricity, and the fluorinated molten salt is stored in a low temperature storage tank, and the heat transport medium is reused in a closed cycle.
Further, in the Th molten salt furnace shown in Non-Patent Document 1, a fission material (U, Pu fluoride mainly composed of Th fluoride) is mixed with fluoride molten salt which is a primary coolant to slow down the graphite. The molten salt that was sent to the core of the material and caused a fission reaction, and the molten salt heated to the fission circulates outside the core to exchange heat with the secondary coolant, which is a fluoride molten salt, and this heat is generated. It is used for.

非特許文献2によって知られているように、ハステロイN(「ハステロイ」は米国ヘインズインターナショナル社の登録商標)は、1960年代にTh溶融塩炉に用いる容器用材料として、Oak Ridge National Laboratoriesによって設計された合金で、Haynes International, Inc.にて製造された。
したがって、ハステロイNはフッ化物溶融塩に対する耐食性に優れている。材料規格としてもUNS N10003としてASTMに登録されている。
ハステロイNは、最高704℃までのフッ化物溶融塩中でごく小さな腐食速度を示すことが実証されている。
しかし、ハステロイNをもってしても、フッ化物溶融塩に対する十分な耐食性を備えた合金であるとはいえない。なぜならば、ラボにおけるフッ化物溶融塩を用いた腐食試験では、コンタミとして混入するCrイオンやTe(テリウム)イオンによって、ハステロイNに粒界割れが発生することが観察されているからである。
30年間という長期間の連続運転を指向しているTh溶融塩炉ばかりでなく、各種の装置構成材料においても、粒界割れ発生は防止しなければならない課題である。
As known by Non-Patent Document 2, Hastelloy N ("Hastelloy" is a registered trademark of Haynes International, USA) was designed by Oak Ridge National Laboratories as a container material for use in Th molten salt furnaces in the 1960s. Made by Haynes International, Inc.
Therefore, Hastelloy N is excellent in corrosion resistance against fluoride molten salt. The material standard is also registered in ASTM as UNS N10003.
Hastelloy N has been demonstrated to exhibit very low corrosion rates in fluoride molten salts up to 704 ° C.
However, even with Hastelloy N, it cannot be said that it is an alloy having sufficient corrosion resistance against fluoride molten salt. This is because, in a corrosion test using a fluoride molten salt in a laboratory, it has been observed that intergranular cracking occurs in Hastelloy N due to Cr ions and Te (terium) ions mixed as contaminants.
The occurrence of intergranular cracking is a problem that must be prevented not only in the Th molten salt furnace, which is oriented to a long-term continuous operation of 30 years, but also in various apparatus constituent materials.

特開2008−14627号公報JP 2008-14627 A

日本原子力学会和文論文誌、Vol.7,No.2,p.127〜133(2008)Japanese Atomic Energy Society Journal, Vol. 7, no. 2, p. 127-133 (2008) ヘインズインターナショナル社技術資料050907、インターネット<http://www.haynesintl.com/pdf/h2052.pdf>Haynes International Technical Document 050907, Internet <http://www.haynesintl.com/pdf/h2052.pdf> J.R.Keiser, Status of tellurium-hastelloy N Studies in molten fluoride salts, ORNL/TM-6002、インターネット、<http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=7295251>J.R.Keiser, Status of tellurium-hastelloy N Studies in molten fluoride salts, ORNL / TM-6002, Internet, <http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=7295251>

上記非特許文献3に示すように、ハステロイNの耐食性を改善すべく、特に、粒界割れ対策として、ハステロイNをベースにTiやNbを0.5〜2%程度添加した合金が、提案されている。しかし、こうした元素の添加は相安定性の低下をもたらし、短期的に粒界割れを低減できたとしても、700℃付近の保持により、金属間化合物であるイータ相やデルタ相が形成され合金全体の脆化を招くという課題があり、長期の使用に亘っての十分な信頼性を確保するまでには至っていない。 As shown in Non-Patent Document 3, in order to improve the corrosion resistance of Hastelloy N, an alloy in which about 0.5 to 2% of Ti or Nb is added based on Hastelloy N is proposed as a countermeasure against intergranular cracking. ing. However, the addition of such elements brings about a decrease in phase stability, and even if the grain boundary cracking can be reduced in the short term, the eta phase and delta phase, which are intermetallic compounds, are formed by holding around 700 ° C. There is a problem of causing embrittlement, and it has not yet been possible to secure sufficient reliability over a long period of use.

本発明者は、上記の課題を解決すべく、フッ化物溶融塩に対する耐食性に優れたNi基合金を求め、鋭意研究を行ったところ、フッ化物溶融塩に対する耐食性に優れ、しかも、相安定性に優れたNi基合金を見いだしのである。
そして、この合金からなる装置構成部材、例えば、太陽熱発電システムにおける太陽集熱器、貯蔵タンク、配管、あるいは、Th(トリウム)溶融塩炉に用いられる蓄熱器、ポンプ、配管等の装置構成部材は、長期間に亘って安定的に使用可能であることを見いだしたのである。
In order to solve the above-mentioned problems, the present inventor has sought a Ni-based alloy having excellent corrosion resistance against fluoride molten salt, and has conducted intensive research. As a result, the present inventors have excellent corrosion resistance against fluoride molten salt, and have improved phase stability. An excellent Ni-based alloy has been found.
And the apparatus structural member which consists of this alloy, for example, the solar heat collector in a solar thermal power generation system, a storage tank, piping, or apparatus structural members, such as a heat storage unit used for a Th (thorium) molten salt furnace, a pump, piping, They have found that it can be used stably over a long period of time.

本発明は、上記知見に基づいてなされたものであって、
「(1)重量%で、
Cr:6〜8%、
Mo:15〜17%、
Fe:0.05〜2%、
Mn:0.05〜0.2%、
Si:0.01〜0.2%、
V:0.001〜0.08%、
B:0.0001〜0.01%、
Mg:0.001〜0.02%、
N:0.001〜0.04%、
Al:0.005〜0.1%、
Ti:0.005〜0.1% を含有し、
残りがNiおよび不可避不純物から成り、不可避不純物としてのC: 0.01%以下であることを特徴とするフッ化物溶融塩に対する耐食性に優れたNi基合金。
(2)重量%で、
Cr:6〜8%、
Mo:15〜17%、
Fe:0.05〜2%、
Mn:0.05〜0.2%、
Si:0.01〜0.2%、
V:0.001〜0.08%、
B:0.0001〜0.01%、
Mg:0.001〜0.02%、
N:0.001〜0.04%、
Al:0.005〜0.1%、
Ti:0.005〜0.1% を含有し、
さらに
Cu:0.01〜0.35%を含有し、
残りがNiおよび不可避不純物から成り、不可避不純物としてのC: 0.01%以下であることを特徴とするフッ化物溶融塩に対する耐食性に優れたNi基合金。
(3)前記(1)または(2)に記載のNi基合金からなるフッ化物溶融塩に対する耐食性に優れた装置構成部材。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1)% by weight,
Cr: 6-8%
Mo: 15-17%,
Fe: 0.05-2%,
Mn: 0.05-0.2%
Si: 0.01 to 0.2%,
V: 0.001 to 0.08%,
B: 0.0001 to 0.01%
Mg: 0.001 to 0.02%,
N: 0.001 to 0.04%,
Al: 0.005 to 0.1%,
Ti: 0.005 to 0.1% is contained,
A Ni-based alloy excellent in corrosion resistance to a fluoride molten salt, characterized in that the remainder consists of Ni and inevitable impurities, and C: 0.01% or less as an inevitable impurity.
(2) By weight%
Cr: 6-8%
Mo: 15-17%,
Fe: 0.05-2%,
Mn: 0.05-0.2%
Si: 0.01 to 0.2%,
V: 0.001 to 0.08%,
B: 0.0001 to 0.01%
Mg: 0.001 to 0.02%,
N: 0.001 to 0.04%,
Al: 0.005 to 0.1%,
Ti: 0.005 to 0.1% is contained,
Furthermore, Cu: 0.01 to 0.35% is contained,
A Ni-based alloy excellent in corrosion resistance to a fluoride molten salt, characterized in that the remainder consists of Ni and inevitable impurities, and C: 0.01% or less as an inevitable impurity.
(3) An apparatus component having excellent corrosion resistance against a fluoride molten salt made of the Ni-based alloy according to (1) or (2). "
It is characterized by.

以下に、この発明のNi基合金について、各合金成分の組成範囲の数値限定理由を詳述する。 The reason for limiting the numerical value of the composition range of each alloy component will be described in detail below for the Ni-based alloy of the present invention.

Cr:
Crは、フッ化物溶融塩に対して耐食性を劣化させる元素である一方、フッ化物溶融塩に直接接しない、例えば、大気酸化を抑制する元素として最低限の含有が必要となる。高温の耐酸化性を向上させるためには、6%以上のCrを含有が必要であるが、8%を超えて含有するとフッ化物溶融塩に対する耐食性が著しく劣化する。そのため、Crの含有量を6〜8%とした。好ましくは、Cr:6.5〜7.5%である。
Cr:
While Cr is an element that degrades corrosion resistance with respect to a fluoride molten salt, it needs to be contained at a minimum as an element that does not directly contact the fluoride molten salt, for example, suppresses atmospheric oxidation. In order to improve the oxidation resistance at high temperature, it is necessary to contain 6% or more of Cr, but if it contains more than 8%, the corrosion resistance against the fluoride molten salt is remarkably deteriorated. Therefore, the content of Cr is set to 6 to 8%. Preferably, Cr: 6.5 to 7.5%.

Mo:
Moは、フッ化物溶融塩に対する耐食性を向上させる元素であるとともに、高温強度を向上させる効果があるが、そのためには、15%以上のMoを含有することが必要である。しかし、17%を越えて含有すると、高温保持によりμ相の析出が顕在化し脆化傾向を示すこととなるので好ましくない。そのため、Moの含有量を15〜17%とした。好ましくは、Mo:15.5〜16.5%である。
Mo:
Mo is an element that improves the corrosion resistance against fluoride molten salt and has the effect of improving the high-temperature strength, but for that purpose, it is necessary to contain 15% or more of Mo. However, if the content exceeds 17%, the precipitation of the μ phase becomes obvious due to holding at a high temperature and an embrittlement tendency is exhibited, which is not preferable. Therefore, the Mo content is set to 15 to 17%. Preferably, Mo: 15.5 to 16.5%.

Fe:
Feは、熱間加工性を向上させる効果がある。そのためには、0.05%以上のFeを含有することが必要であるが、1%を越えて含有すると、フッ化物溶融塩に対する耐食性が劣化する。そこで、Feの含有量を0.05〜2%とした。好ましくは、Fe:0.1〜1%である。
Fe:
Fe has the effect of improving hot workability. For that purpose, it is necessary to contain 0.05% or more of Fe, but if it exceeds 1%, the corrosion resistance against the fluoride molten salt deteriorates. Therefore, the Fe content is set to 0.05 to 2%. Preferably, Fe: 0.1 to 1%.

Mn:
Mnは、母相の結晶構造であるオーステナイト構造を安定化させることにより、粒界析出を抑制し、その結果、粒界割れを抑制するという効果がある。そのためには、Mnを0.05%以上含有することが必要であるが、0.2%を超えて含有すると、フッ化物溶融塩に対する耐食性を劣化させることとなる。そのため、Mnの含有量を0.05〜0.2%とした。好ましくは、Mn:0.06〜0.15%である。
Mn:
Mn stabilizes the austenite structure, which is the crystal structure of the parent phase, thereby suppressing grain boundary precipitation and, as a result, has the effect of suppressing grain boundary cracking. For that purpose, it is necessary to contain 0.05% or more of Mn, but if it exceeds 0.2%, the corrosion resistance against the fluoride molten salt will be deteriorated. Therefore, the Mn content is set to 0.05 to 0.2%. Preferably, it is Mn: 0.06-0.15%.

Si:
Siは、酸素との親和性が高いため、Ni基合金中の酸素を固定化し粒界酸化を抑制することにより、粒界割れを抑制する効果がある。そのためには、Siを0.01%以上含有することで、その効果を示すが、0.2%を超えて含有すると、逆に粒界割れを促進してしまう。そのため、Siの含有量を0.01〜0.2%とした。好ましくは、Si:0.02〜0.08%である。
Si:
Since Si has a high affinity with oxygen, it has the effect of suppressing intergranular cracking by fixing oxygen in the Ni-based alloy and suppressing intergranular oxidation. For that purpose, the effect is shown by containing 0.01% or more of Si, but if it exceeds 0.2%, grain boundary cracking is promoted conversely. Therefore, the Si content is set to 0.01 to 0.2%. Preferably, Si: 0.02 to 0.08%.

V:
Vは、高温での結晶粒粗大化を抑制する効果がある。熱間加工割れの原因となる結晶粒粗大化を抑制することにより高温での変形能が向上し、その結果、割れが抑制されるようになることからVが添加されるが、Vを0.001%以上含有することで、その効果を示すが、0.08%を超えて含有すると、フッ化物溶融塩に対する耐食性の劣化の傾向が見られるため好ましくない。そのため、Vの含有量を0.001〜0.08%とした。好ましくは、V:0.005〜0.06%である。
V:
V has the effect of suppressing crystal grain coarsening at high temperatures. By suppressing the grain coarsening that causes hot working cracks, the deformability at high temperature is improved. As a result, cracks are suppressed, so V is added. Although the effect is shown by containing 001% or more, when it contains exceeding 0.08%, since the tendency of the corrosion resistance with respect to fluoride molten salt is seen, it is unpreferable. Therefore, the content of V is set to 0.001 to 0.08%. Preferably, V: 0.005 to 0.06%.

B:
Bは、熱間における変形能を向上させる効果がある。Bを0.0001%以上含有することで、効果を示すが、0.01%を超えて含有すると逆に熱間における変形能を低下させる傾向にあるため、Bの含有量を0.0001〜0.01%とした。好ましくは、B:0.0005〜0.002%である。
B:
B has an effect of improving hot deformability. Although the effect is shown by containing 0.0001% or more of B, if it exceeds 0.01%, conversely, the hot deformability tends to be lowered, so the content of B is 0.0001 to 0.01%. Preferably, B: 0.0005 to 0.002%.

Mg:
Mgは、熱間における変形抵抗を低減させることにより熱間加工性を向上させる効果がある。しかし、Mgの含有量が0.001%未満では、その効果が発揮されず、また0.02%以上含有させた場合には、相安定性を劣化させ脆化相を生成することにより加工を困難にさせてしまう。そのため、Mgの含有量を0.001〜0.02%とした。好ましくは、Mg:0.005〜0.01%である。
Mg:
Mg has the effect of improving hot workability by reducing hot deformation resistance. However, when the Mg content is less than 0.001%, the effect is not exhibited. When the Mg content is 0.02% or more, the phase stability is deteriorated to produce an embrittled phase. It makes it difficult. Therefore, the content of Mg is set to 0.001 to 0.02%. Preferably, Mg: 0.005 to 0.01%.

N:
Nは、Mnと同様に母相の結晶構造であるオーステナイト構造を安定化させることにより、粒界析出を抑制し、その結果、粒界割れを抑制するという効果がある。そのためには、Nを0.001%以上含有することが必要であるが、0.04%を超えて含有すると、逆に粒界割れを促進させることとなる。そのため、Nの含有量を0.001〜0.04%とした。好ましくは、N:0.005〜0.02%である。
N:
N stabilizes the austenite structure, which is the crystal structure of the parent phase, like Mn, thereby suppressing grain boundary precipitation and, as a result, suppressing grain boundary cracking. For this purpose, it is necessary to contain N in an amount of 0.001% or more. However, if it exceeds 0.04%, intergranular cracking is promoted. Therefore, the content of N is set to 0.001 to 0.04%. Preferably, N is 0.005 to 0.02%.

AlおよびTi:
AlおよびTiは、脱酸剤として添加することにより、合金内の清浄度を高め、結果的に粒界への不純物濃縮を抑制することより粒界割れを防止する効果がある。そのためには、AlおよびTiをそれぞれ0.005%以上含有することで、その効果を示すが、0.1%を超えて含有すると、金属間化合物を析出することにより、脆化を促進してしまう。そのため、AlおよびTiの含有量はそれぞれ0.005〜0.1%とした。好ましくは、それぞれ0.01〜0.09%である。
Al and Ti:
Al and Ti have the effect of preventing intergranular cracking by adding them as deoxidizers to increase the cleanliness in the alloy and consequently suppressing the concentration of impurities at the grain boundaries. For that purpose, the effect is shown by containing 0.005% or more of Al and Ti respectively. However, if it contains more than 0.1%, the intermetallic compound is precipitated to promote embrittlement. End up. Therefore, the contents of Al and Ti are 0.005 to 0.1%, respectively. Preferably, it is 0.01 to 0.09%, respectively.

Cu:
Cuは、フッ化物溶融塩に対する耐食性を向上させる効果があるために必要に応じて添加する。その効果を得るには、0.01%以上のCuを含有することが必要である。しかし、0.35%を越えて含有すると、耐酸化性を劣化させることとなるので好ましくない。そのため、Cuの含有量を0.01〜0.35%とした。好ましくは、Cu:0.05〜0.15%である。
Cu:
Since Cu has an effect of improving the corrosion resistance against the fluoride molten salt, it is added as necessary. In order to obtain the effect, it is necessary to contain 0.01% or more of Cu. However, if the content exceeds 0.35%, the oxidation resistance is deteriorated, which is not preferable. Therefore, the Cu content is set to 0.01 to 0.35%. Preferably, it is Cu: 0.05-0.15%.

不可避不純物:
本発明のNi基合金中に含有される不可避不純物としては、C、PやSなどが挙げられるが、こうした不純物は、しばしば粒界に偏析し粒界割れの原因となるので、できるだけ低減することが望ましい。特に、Cは重要な合金元素であるMoと炭化物を形成しその周辺にMoの希薄化領域を形成することにより、フッ化物溶融塩環境で粒界割れの原因となる粒界腐食を誘発する。Mo炭化物に起因する粒界腐食を抑制するためにもCは0.01%以下に、好ましくは0.005%以下にすべきである。
Inevitable impurities:
Examples of inevitable impurities contained in the Ni-based alloy of the present invention include C, P, and S. Such impurities are often segregated at the grain boundaries and cause intergranular cracks, and therefore should be reduced as much as possible. Is desirable. In particular, C induces intergranular corrosion that causes intergranular cracking in a fluoride molten salt environment by forming a carbide with Mo, which is an important alloying element, and forming a diluted region of Mo around it. In order to suppress intergranular corrosion due to Mo carbide, C should be 0.01% or less, preferably 0.005% or less.

本発明のNi基合金はフッ化物溶融塩に対する耐食性に優れるため、それらを熱伝達媒体とする熱伝達用配管やポンプ、蓄熱槽等の部材として用いることにより、これら部材の寿命を飛躍的に向上させることができる。
本発明のNi基合金は、Th溶融塩炉用の各種装置構成部材、フッ化物溶融塩を熱媒体とする太陽熱発電システムにおける各種装置構成部材等として適用可能である。
Since the Ni-based alloy of the present invention is excellent in corrosion resistance to fluoride molten salt, the life of these members is dramatically improved by using them as members of heat transfer pipes, pumps, heat storage tanks, etc. Can be made.
The Ni-based alloy of the present invention can be applied as various device constituent members for a Th molten salt furnace, various device constituent members in a solar thermal power generation system using fluoride molten salt as a heat medium, and the like.

以下に、本発明の実施例について説明する。   Examples of the present invention will be described below.

通常の高周波溶解炉を用いて溶解し、表1および表2に示される成分組成を有し、厚さ:40mmで約5kgのインゴットを作製し、このインゴットを1230℃で10時間均質化熱処理を施し、1000〜1230℃の温度範囲内に保持しながら、1回の熱間圧延で1mmの厚さを減少させつつ、最終的に3mm厚とし、1200℃で30分間保持し水焼き入れにより固溶化処理を施し、表面をバフ研磨することにより、表1〜3に示す成分組成の本発明Ni基合金1〜25と比較Ni基合金1〜23、従来Ni基合金1〜2を作製した。
ついで、表面を研磨し最終的に耐水エメリー紙#80仕上げとした。
研磨後の試料をアセトン中超音波振動状態に5分間保持し脱脂した。
なお、比較Ni基合金1〜23の作製にあたり、いくつかのものについては、熱間加工中に割れが発生したため所定の製品を得ることができなかったので、表2の備考欄にその旨を記した。
It melts using a normal high-frequency melting furnace, has an ingredient composition shown in Tables 1 and 2, and produces an ingot of about 5 kg at a thickness of 40 mm. The ingot is subjected to homogenization heat treatment at 1230 ° C. for 10 hours. While maintaining within the temperature range of 1000-1230 ° C., the thickness of 1 mm is reduced by one hot rolling, and finally the thickness is 3 mm. The thickness is maintained at 1200 ° C. for 30 minutes and hardened by water quenching. The present invention Ni-based alloys 1 to 25, comparative Ni-based alloys 1 to 23, and conventional Ni-based alloys 1 to 2 having the component compositions shown in Tables 1 to 3 were produced by performing a solution treatment and buffing the surface.
Next, the surface was polished to finally make a water-resistant emery paper # 80 finish.
The polished sample was degreased by being kept in an ultrasonic vibration state in acetone for 5 minutes.
In the preparation of comparative Ni-based alloys 1 to 23, some products could not be obtained because cracks occurred during hot working. I wrote.

ついで、上記本発明Ni基合金1〜25、比較Ni基合金1〜23(但し、熱間加工中に割れが発生したため製品化できなかった比較Ni基合金を除く)および従来Ni基合金1〜2のそれぞれについて、フッ化物溶融塩試験、相安定性試験・耐酸化試験を実施したので、その結果を、表1〜3に示す。
なお、具体的な試験方法は以下のとおりである。
Next, the Ni-based alloys 1 to 25 of the present invention, the comparative Ni-based alloys 1 to 23 (excluding the comparative Ni-based alloys that could not be produced because cracking occurred during hot working) and the conventional Ni-based alloys 1 to 1 About each of 2, since the fluoride molten salt test, the phase stability test, and the oxidation resistance test were implemented, the result is shown to Tables 1-3.
The specific test method is as follows.

フッ化物溶融塩試験:
(a)作製したNi基合金から20×30×2mm板に切り出し、耐水エメリー紙を用いて#1000仕上げとし、脱脂洗浄を行い腐食試験用の試験片とした。
(b)700℃に保持したAr雰囲気炉内に設置した、フッ化物溶融塩を満たした黒鉛るつぼにこれら試験片を浸漬し、1000時間の腐食試験を実施した。
なお、フッ化物溶融塩としては、FLiNaKと呼ばれるLiF−NaF−KF (46.5−11.5−42mol%)の共晶塩に、CrTeを0.1%(質量%)添加したものを使用した。
(c)ついで、試験前後の重量減少量を求め、試験前表面積と試験期間から腐食速度を算出した。
なお、試験後の金属表面にはスケールや付着物が付着しているが、ステンレス製のワイヤーブラシを用いて完全に除去した。
(d)高速薄刃砥石を用いて、長手方向に対して垂直に切断し、切断面を観察面として熱硬化性のフェノール樹脂に埋め込み、耐水エメリー紙およびダイヤモンドペーストを用いて試験片が鏡面になるまで研磨して、観察用の試料を作製した。
(e)ついで、光学顕微鏡を用いて、任意の視野中の粒界割れの最大深さを測定した。
Fluoride molten salt test:
(A) A 20 × 30 × 2 mm plate was cut out from the produced Ni-based alloy, finished with # 1000 using water-resistant emery paper, degreased and washed to obtain a test piece for a corrosion test.
(B) These test pieces were immersed in a graphite crucible filled with a molten fluoride salt placed in an Ar atmosphere furnace maintained at 700 ° C., and a corrosion test for 1000 hours was performed.
In addition, as a molten fluoride salt, 0.1% (mass%) of Cr 2 Te 3 was added to a eutectic salt of LiF—NaF—KF (46.5-11.5-42 mol%) called FLiNaK. I used something.
(C) Next, the weight loss before and after the test was determined, and the corrosion rate was calculated from the surface area before the test and the test period.
In addition, although the scale and the deposit | attachment have adhered to the metal surface after a test, it removed completely using the stainless steel wire brush.
(D) Using a high-speed thin-blade grindstone, cut perpendicularly to the longitudinal direction, embed the cut surface as an observation surface in thermosetting phenol resin, and use water-resistant emery paper and diamond paste to make the test piece a mirror surface The sample for observation was produced.
(E) Next, the maximum depth of grain boundary cracking in an arbitrary visual field was measured using an optical microscope.

相安定性試験・耐酸化試験:
(a)作製したNi基合金からそれぞれ20×110×3mmの板に切り出し試験片とした。
(b)これらの試験片を、大気雰囲気中、700℃にて1000時間保持し、時効した。
(c)試験前後の重量減少量を求め、単位面積・単位時間当たりの重量変化を算出した。試験後の金属表面にはスケールや付着物が付着しているが、ステンレス製のワイヤーブラシを用いて可能な限り除去した。
なお、表1〜3の「酸化度合」の欄の「-」(マイナス)は、酸化による重量増を示す。
(d)耐酸化試験に供した試験片より、引張試験片を切り出し、室温にて引張試験に供した。
G.L.=15mmとし、クロスヘッドスピードは、0.2%耐力までを0.15mm/min、それ以降を1.5mm/minとした。
(e)時効前の板から引張試験片を切り出し、同様に引張試験に供した。
(f)時効による脆化の度合いを、延性率((時効後の伸び/時効前の伸び)×100(%))として表した。延性率の数値が小さいほど、時効による脆化傾向が大きいことになる。
Phase stability test / Oxidation resistance test:
(A) Each of the produced Ni-based alloys was cut into 20 × 110 × 3 mm plates to form test pieces.
(B) These test pieces were aged by holding at 700 ° C. for 1000 hours in an air atmosphere.
(C) The amount of weight loss before and after the test was determined, and the change in weight per unit area / unit time was calculated. Although the scale and deposits are adhered to the metal surface after the test, it was removed as much as possible using a stainless steel wire brush.
In Tables 1 to 3, “−” (minus) in the column of “degree of oxidation” indicates an increase in weight due to oxidation.
(D) A tensile test piece was cut out from the test piece subjected to the oxidation resistance test and subjected to a tensile test at room temperature.
G. L. = 15 mm, and the crosshead speed was 0.15 mm / min up to 0.2% proof stress, and 1.5 mm / min after that.
(E) A tensile test piece was cut out from the plate before aging, and was similarly subjected to a tensile test.
(F) The degree of embrittlement due to aging was expressed as ductility ratio ((elongation after aging / elongation before aging) × 100 (%)). The smaller the numerical value of the ductility ratio, the greater the tendency to embrittle due to aging.





本発明のNi基合金はフッ化物溶融塩に対する耐食性が優れるため、それらを熱伝達媒体とする熱伝達用配管やポンプ、蓄熱槽等の部材として用いることにより、これら部材の寿命を飛躍的に向上させることができる。
また、Th溶融塩炉用の部材のみならず、フッ化物溶融塩を熱媒体とする高温太陽熱集熱器などの部材としても適用可能である。














































Since the Ni-based alloy of the present invention has excellent corrosion resistance against fluoride molten salt, the life of these members is dramatically improved by using them as members for heat transfer pipes, pumps, heat storage tanks, etc. Can be made.
Moreover, it is applicable not only as a member for a Th molten salt furnace but also as a member such as a high-temperature solar heat collector using a fluoride molten salt as a heat medium.














































Claims (3)

重量%で、
Cr:6〜8%、
Mo:15〜17%、
Fe:0.05〜2%、
Mn:0.05〜0.2%、
Si:0.01〜0.2%、
V:0.001〜0.08%、
B:0.0001〜0.01%、
Mg:0.001〜0.02%、
N:0.001〜0.04%、
Al:0.005〜0.1%、
Ti:0.005〜0.1% を含有し、
残りがNiおよび不可避不純物から成り、不可避不純物としてのC: 0.01%以下であることを特徴とするフッ化物溶融塩に対する耐食性に優れたNi基合金。
% By weight
Cr: 6-8%
Mo: 15-17%,
Fe: 0.05-2%,
Mn: 0.05-0.2%
Si: 0.01 to 0.2%,
V: 0.001 to 0.08%,
B: 0.0001 to 0.01%
Mg: 0.001 to 0.02%,
N: 0.001 to 0.04%,
Al: 0.005 to 0.1%,
Ti: 0.005 to 0.1% is contained,
A Ni-based alloy excellent in corrosion resistance to a fluoride molten salt, characterized in that the remainder consists of Ni and inevitable impurities, and C: 0.01% or less as an inevitable impurity.
重量%で、
Cr:6〜8%、
Mo:15〜17%、
Fe:0.05〜2%、
Mn:0.05〜0.2%、
Si:0.01〜0.2%、
V:0.001〜0.08%、
B:0.0001〜0.01%、
Mg:0.001〜0.02%、
N:0.001〜0.04%、
Al:0.005〜0.1%、
Ti:0.005〜0.1% を含有し、
さらに
Cu:0.01〜0.35%を含有し、
残りがNiおよび不可避不純物から成り、不可避不純物としてのC: 0.01%以下であることを特徴とするフッ化物溶融塩に対する耐食性に優れたNi基合金。
% By weight
Cr: 6-8%
Mo: 15-17%,
Fe: 0.05-2%,
Mn: 0.05-0.2%
Si: 0.01 to 0.2%,
V: 0.001 to 0.08%,
B: 0.0001 to 0.01%
Mg: 0.001 to 0.02%,
N: 0.001 to 0.04%,
Al: 0.005 to 0.1%,
Ti: 0.005 to 0.1% is contained,
Furthermore, Cu: 0.01 to 0.35% is contained,
A Ni-based alloy excellent in corrosion resistance to a fluoride molten salt, characterized in that the remainder consists of Ni and inevitable impurities, and C: 0.01% or less as an inevitable impurity.
請求項1または2に記載のNi基合金からなるフッ化物溶融塩に対する耐食性に優れた装置構成部材。














An apparatus component having excellent corrosion resistance against a fluoride molten salt comprising the Ni-based alloy according to claim 1.














JP2013013943A 2013-01-29 2013-01-29 Ni-base alloy excellent in corrosion resistance to fluoride molten salt and device component made of Ni-base alloy Active JP6041345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013013943A JP6041345B2 (en) 2013-01-29 2013-01-29 Ni-base alloy excellent in corrosion resistance to fluoride molten salt and device component made of Ni-base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013943A JP6041345B2 (en) 2013-01-29 2013-01-29 Ni-base alloy excellent in corrosion resistance to fluoride molten salt and device component made of Ni-base alloy

Publications (3)

Publication Number Publication Date
JP2014145106A true JP2014145106A (en) 2014-08-14
JP2014145106A5 JP2014145106A5 (en) 2016-02-04
JP6041345B2 JP6041345B2 (en) 2016-12-07

Family

ID=51425583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013943A Active JP6041345B2 (en) 2013-01-29 2013-01-29 Ni-base alloy excellent in corrosion resistance to fluoride molten salt and device component made of Ni-base alloy

Country Status (1)

Country Link
JP (1) JP6041345B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105925925A (en) * 2016-07-15 2016-09-07 中国科学院上海应用物理研究所 Post-welded heat treatment method of fused salt corrosion-resistant nickel-based high temperature alloy welded structure part
CN110643858A (en) * 2019-11-08 2020-01-03 中国科学院上海应用物理研究所 Method for improving tellurium corrosion resistance of nickel-based superalloy and nickel-based superalloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576622A (en) * 1968-05-29 1971-04-27 Atomic Energy Commission Nickel-base alloy
JPS5928550A (en) * 1982-08-07 1984-02-15 Kubota Ltd High hardness and high corrosion resistant alloy
JPS61147834A (en) * 1984-12-19 1986-07-05 Hitachi Metals Ltd Corrosion-resistant high-strength ni alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576622A (en) * 1968-05-29 1971-04-27 Atomic Energy Commission Nickel-base alloy
JPS5928550A (en) * 1982-08-07 1984-02-15 Kubota Ltd High hardness and high corrosion resistant alloy
JPS61147834A (en) * 1984-12-19 1986-07-05 Hitachi Metals Ltd Corrosion-resistant high-strength ni alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016041568; VICTOR IGNATIEV、他9名: 'COMPATIBILITY OF SELECTED Ni-BASED ALLOYS IN MOLTEN Li,Na,Be/F SALTS WITH PuF3 AND TELLURIUM ADDITIO' NUCLEAR TECHNOLOGY Vol.164 No.1, 200810, Page.130-142 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105925925A (en) * 2016-07-15 2016-09-07 中国科学院上海应用物理研究所 Post-welded heat treatment method of fused salt corrosion-resistant nickel-based high temperature alloy welded structure part
CN110643858A (en) * 2019-11-08 2020-01-03 中国科学院上海应用物理研究所 Method for improving tellurium corrosion resistance of nickel-based superalloy and nickel-based superalloy
CN110643858B (en) * 2019-11-08 2020-10-30 中国科学院上海应用物理研究所 Method for improving tellurium corrosion resistance of nickel-based superalloy and nickel-based superalloy

Also Published As

Publication number Publication date
JP6041345B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
KR101630096B1 (en) Ni-BASED HEAT-RESISTANT ALLOY
JP5212533B2 (en) Seamless austenitic heat-resistant alloy tube
RU2351675C2 (en) Castable magnesium alloy
JP6369632B2 (en) High Cr austenitic stainless steel
JP5500038B2 (en) Austenitic stainless steel with excellent adhesion to film
CN103882266B (en) For the nickel-base alloy and preparation method thereof of molten salt reactor (MSR)
CN1784503A (en) Welded joint of tempered martensite based heat-resistant steel
CN101195880A (en) Zirconium alloy composition having excellent corrosion resistance for nuclear applications and method of preparing the same
WO2014115845A1 (en) Titanium alloy having excellent corrosion resistance in environment containing bromine ions
JP2013208628A (en) Ni-BASED ALLOY WELDING MATERIAL, AND WELDING WIRE, ROD AND POWDER USING THE SAME
JP6041345B2 (en) Ni-base alloy excellent in corrosion resistance to fluoride molten salt and device component made of Ni-base alloy
JP2017205800A (en) Ni-BASED ALLOY FOR WELDING, AND FILLER MATERIAL FOR BOILING WATER REACTOR
EP1541701A1 (en) Titanium alloys excellent in hydrogen absorption-resistance
JP5696271B2 (en) Austenitic high-purity iron alloy with excellent high-temperature strength characteristics
JP6724991B2 (en) Austenitic stainless steel
JP6026208B2 (en) Co-base alloy excellent in erosion resistance against hydrogen sulfide and hydrogen selenide, and device component comprising the Co-base alloy
JP6057331B2 (en) Ni-base alloy excellent in erosion resistance against hydrogen sulfide and hydrogen selenide, and device component comprising the Ni-base alloy
JP5675957B2 (en) Heat generator tube for steam generator, steam generator and nuclear power plant
JP6172077B2 (en) Method for producing Ni alloy clad steel with excellent intergranular corrosion resistance
JP2018197391A (en) Ferritic stainless steel for plating bath
JPWO2019198147A1 (en) Titanium alloy and its manufacturing method
JPWO2018225831A1 (en) Ni-base alloy tube for nuclear power
KR102001388B1 (en) Rolled stainless steel plate for neutron shielding and manufacturing method thereof
JP2000239740A (en) MANUFACTURE OF Fe-BASE ALLOY MEMBER EXCELLENT IN STRESS CORROSION CRACKING RESISTANCE, AND Fe-BASE ALLOY MEMBER
RU2582171C1 (en) Titanium-based alloy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

R150 Certificate of patent or registration of utility model

Ref document number: 6041345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350