JP2014144915A - Crystallized glass - Google Patents

Crystallized glass Download PDF

Info

Publication number
JP2014144915A
JP2014144915A JP2014092749A JP2014092749A JP2014144915A JP 2014144915 A JP2014144915 A JP 2014144915A JP 2014092749 A JP2014092749 A JP 2014092749A JP 2014092749 A JP2014092749 A JP 2014092749A JP 2014144915 A JP2014144915 A JP 2014144915A
Authority
JP
Japan
Prior art keywords
crystallized glass
component
glass
temperature
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014092749A
Other languages
Japanese (ja)
Inventor
Hisashi Murozumi
久志 室住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2014092749A priority Critical patent/JP2014144915A/en
Publication of JP2014144915A publication Critical patent/JP2014144915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crystallized glass having an extremely low average linear expansion coefficient from 0°C to 50°C and having an extremely tenuous gradient of a ΔL/L curve, more specifically to provide a crystallized glass having an average linear expansion coefficient of 0.0±0.2×10°Cor below from 0°C to 50°C, whose absolute value of the maximal value-minimal value of ΔL/L is 10×10or below from 0°C to 50°C, and whose value of the dCTE/dT-temperature curve between 20°C and 30°C is confined to a range from -1.5 ppb °Cto +1.5 ppb °C.SOLUTION: The provided crystallized glass comprises β-quartz and/or β-quartz solid solution in a state where the variation of the refractive index nd thereof before and after crystallization is 0.04 or less.

Description

本発明は極低膨張特性を有する結晶化ガラスに関する。   The present invention relates to a crystallized glass having extremely low expansion characteristics.

β−石英及び/又はβ−石英固溶体を含む結晶化ガラスは低い平均線膨張係数を有し、極端紫外線を光源とする極端紫外線露光技術(EUVL)を利用した次世代半導体製造装置などのミラー基板材やフォトマスク基板材としての使用が検討されている。   Crystallized glass containing β-quartz and / or β-quartz solid solution has a low average linear expansion coefficient and is a mirror substrate for next-generation semiconductor manufacturing equipment using extreme ultraviolet exposure technology (EUVL) using extreme ultraviolet light as a light source. Use as a plate material or a photomask substrate material has been studied.

EUVLの反射光学系では、ミラー面の投影像が基板材の熱膨張などによって変形すると、最終的な露光品質が劣化してしまうため、ミラーやフォトマスクの基板材料にはppb/℃レベルの熱膨張係数が極めて小さな材料を使用する必要がある。
例えばEUVLのフォトマスク基板の規格であるSEMI P37−1102には、クラスDで19℃から25℃における平均線膨張係数が0±30ppb/℃、クラスAで19℃から25℃における平均線膨張係数が0±5ppb/℃と定められている。
In the EUVL reflective optical system, if the projected image on the mirror surface is deformed due to thermal expansion of the substrate material or the like, the final exposure quality deteriorates. Therefore, the substrate material of the mirror or photomask has a heat level of ppb / ° C. It is necessary to use a material with an extremely small expansion coefficient.
For example, SEMI P37-1102, which is the EUVL photomask substrate standard, has an average linear expansion coefficient of 0 ± 30 ppb / ° C. at 19 ° C. to 25 ° C. for class D and an average linear expansion coefficient of 19 ° C. to 25 ° C. for class A Is defined as 0 ± 5 ppb / ° C.

ここで、T1℃からT2℃における平均線膨張係数αとは次の式によって得られる。
α=(LT2−LT1)/{L×(T2−T1)}
L:室温における試料の長さ(本発明においては室温を25℃と定義する。)
T1:T1の時の試料の長さ
T2:T2の時の試料の長さ
また、ある温度における膨張傾向を把握する為にCTE−温度曲線や、ΔL/L曲線を描くことが良く行われる。
CTE−温度曲線とは上記の式において、T1とT2の温度範囲を充分に狭くした時の、ある温度Tにおける平均線膨張係数をy軸に、温度をx軸としてプロットした時に得られる曲線を言う。
ΔL/L曲線とは室温における試料の長さをLとし、温度Tの時の試料の長さをLTとする時、(LT−L)/Lの値(ΔL/L)をy軸に、温度をx軸としてプロットした時に得られる曲線を言う。
また、dCTE/dT−温度曲線とは、CTE−温度曲線を温度で微分した曲線であり、膨張特性の温度依存性を示す。
Here, the average linear expansion coefficient α from T1 ° C. to T2 ° C. is obtained by the following equation.
α = (L T2 −L T1 ) / {L × (T2−T1)}
L: Length of sample at room temperature (in the present invention, room temperature is defined as 25 ° C.)
L T1 : Length of the sample at T1 L T2 : Length of the sample at T2 In order to grasp the expansion tendency at a certain temperature, a CTE-temperature curve and a ΔL / L curve are often drawn. Is called.
The CTE-temperature curve is a curve obtained when the average linear expansion coefficient at a certain temperature T is plotted on the y axis and the temperature is plotted on the x axis when the temperature range of T1 and T2 is sufficiently narrowed in the above formula. say.
The ΔL / L curve means that the length of the sample at room temperature is L, and the length of the sample at temperature T is LT, and the value of (LT−L) / L (ΔL / L) is on the y-axis, A curve obtained when temperature is plotted on the x-axis.
The dCTE / dT-temperature curve is a curve obtained by differentiating the CTE-temperature curve with temperature, and indicates the temperature dependence of the expansion characteristics.

次世代半導体製造装置などのミラー基板材やフォトマスク基板材として結晶化ガラスを使用するためには、平均線膨張係数がゼロ付近であることに加え、膨張傾向の変化が少ないこと、すなわちΔL/L曲線の傾きの変化が少ないことが好ましい。   In order to use crystallized glass as a mirror substrate material or a photomask substrate material for a next-generation semiconductor manufacturing apparatus or the like, in addition to the average linear expansion coefficient being near zero, there is little change in expansion tendency, that is, ΔL / It is preferable that the change in the slope of the L curve is small.

特許文献1には0℃〜50℃において、平均線膨張係数が0.0±0.2×10−7・℃−1以内であり、ΔL/Lの最大値−最小値が10×10−7以内である結晶化ガラスが開示されている。
しかし、特許文献1のΔL/L曲線は20℃から30℃の領域では山なりとなっており、ΔL/L曲線の傾きの変化が大きく、使用温度領域での膨張傾向が変化するため、次世代半導体製造装置などのミラー基板材やフォトマスク基板材への適用は必ずしも好ましくない。
In Patent Document 1, the average linear expansion coefficient is within 0.0 ± 0.2 × 10 −7 · ° C.-1 at 0 ° C. to 50 ° C., and the maximum value−minimum value of ΔL / L is 10 × 10 A crystallized glass that is within 7 is disclosed.
However, the ΔL / L curve in Patent Document 1 has a mountain in the region of 20 ° C. to 30 ° C., and the change in the slope of the ΔL / L curve is large, and the expansion tendency in the operating temperature region changes. Application to a mirror substrate material or a photomask substrate material such as a generation semiconductor manufacturing apparatus is not necessarily preferable.

特開2005−89272号公報JP 2005-89272 A

本発明の課題は、0℃から50℃において平均線膨張係数が極めて小さく、かつΔL/L曲線の傾きの変化が極めて小さい結晶化ガラスを提供することであり、より具体的には0℃から50℃において平均線膨張係数が0.0±0.2×10−7・℃−1、ΔL/Lの最大値−最小値の絶対値が0℃から50℃において10×10−7以下、かつ20℃〜30℃におけるdCTE/dT−温度曲線の値が−1.5ppb・℃−2から+1.5ppb・℃−2の範囲内である結晶化ガラスを提供することである。 An object of the present invention is to provide a crystallized glass having an extremely small average linear expansion coefficient from 0 ° C. to 50 ° C. and an extremely small change in the slope of the ΔL / L curve, more specifically from 0 ° C. The average linear expansion coefficient is 0.0 ± 0.2 × 10 −7 · ° C. 1 at 50 ° C., the maximum value of ΔL / L—the absolute value of the minimum value is 10 × 10 −7 or less from 0 ° C. to 50 ° C., And the value of the dCTE / dT-temperature curve in 20-30 degreeC is providing the crystallized glass which exists in the range of -1.5 ppb * degreeC- 2 to +1.5 ppb * degreeC- 2 .

結晶化ガラスの大まかな膨張特性は組成と結晶相およびガラス相の構造によって決まるが、特に平均線膨張係数が極めて小さい結晶化ガラスにおいて、ΔL/L曲線の傾きの変化が極めて小さくなるような精密な膨張の制御においては、結晶化ガラスの組成、並びに結晶化後の結晶相の個々の結晶の形状、結晶の粒径分布及び結晶化度等の結晶化ガラスの微細構造を決める様々な要素が複雑に関連しあって結晶化ガラスの膨張特性に反映され、これらの個々の要素を個々に制御しても所望の結晶化ガラスは得られなかった。   The rough expansion characteristics of crystallized glass are determined by the composition, crystal phase, and glass phase structure. In particular, in crystallized glass with a very small average linear expansion coefficient, the precision is such that the change in the slope of the ΔL / L curve is extremely small. In controlling the expansion, there are various factors that determine the microstructure of the crystallized glass, such as the composition of the crystallized glass and the shape of the individual crystals in the crystal phase after crystallization, the crystal grain size distribution and the crystallinity. It was related in a complex manner and reflected in the expansion characteristics of the crystallized glass, and even if these individual elements were controlled individually, the desired crystallized glass could not be obtained.

本発明者は上記の課題に鑑み、鋭意研究を重ねたところ、結晶化前後における屈折率ndの変化量を一定の値の範囲内とすることによって、平均線膨張係数が極めて小さく、かつΔL/L曲線の傾きの変化が極めて小さい結晶化ガラスが得られる事を見いだしたのである。本発明者は結晶化前の原ガラスの屈折率ndと、結晶化後の結晶化ガラスの屈折率ndの差、すなわち結晶化前後における屈折率ndの変化量を特定の値の範囲内に制御することによって、結晶化ガラスの微細構造が本発明の課題を解決する為に理想的な状態となり、0℃から50℃において平均線膨張係数が0.0±0.2×10−7/℃、ΔL/Lの最大値−最小値の絶対値が10×10−7以下、かつ20℃〜30℃におけるdCTE/dT−温度曲線の値が0±1.5ppb・℃−2の範囲内である結晶化ガラスが得られる事を見いだし、この発明を完成したものであり、その具体的な構成は以下の通りである。 In view of the above-mentioned problems, the present inventor has conducted extensive research and found that the amount of change in the refractive index nd before and after crystallization is within a certain range, so that the average linear expansion coefficient is extremely small and ΔL / It has been found that a crystallized glass with a very small change in the slope of the L curve can be obtained. The inventor controls the difference between the refractive index nd of the original glass before crystallization and the refractive index nd of the crystallized glass after crystallization, that is, the amount of change in the refractive index nd before and after crystallization, within a specific value range. By doing so, the microstructure of the crystallized glass becomes an ideal state for solving the problems of the present invention, and the average linear expansion coefficient is 0.0 ± 0.2 × 10 −7 / ° C. at 0 ° C. to 50 ° C. , ΔL / L maximum value−minimum absolute value is 10 × 10 −7 or less, and the value of dCTE / dT-temperature curve at 20 ° C. to 30 ° C. is within the range of 0 ± 1.5 ppb · ° C. −2. It has been found that a certain crystallized glass can be obtained, and the present invention has been completed, and its specific configuration is as follows.

(構成1)
β−石英及び/又はβ−石英固溶体を含み、結晶化前後における屈折率ndの変化量が0.0400以下である結晶化ガラス。
(構成2)
結晶化度が85wt%以下である構成1に記載の結晶化ガラス。
(構成3)
0℃〜50℃における平均線膨張係数の値が0.0±0.2×10−7・℃−1である構成1または2に記載の結晶化ガラス。
(構成4)
0℃〜50℃の温度範囲におけるΔL/Lの最大値−最小値の絶対値が10×10−7以下である構成1から3のいずれかに記載の結晶化ガラス。
(構成5)
20℃〜30℃におけるdCTE/dT−温度曲線の値が0±1.5ppb・℃−2の範囲内であることを特徴とする構成1から4のいずれかに記載の結晶化ガラス。
(構成6)
酸化物基準の質量%で、
SiO 47〜65%、
Al 17〜29%、
LiO 1〜8%、
の各成分を含有する構成1から5のいずれかに記載の結晶化ガラス。
(構成7)
酸化物基準の質量%で、
1〜13%、
MgO 0.1〜5%、
ZnO 0.1〜5.5%、
TiO 1〜7%、
ZrO 1〜7%
の範囲の各成分を含有する構成1から6のいずれかに記載の結晶化ガラス。
(構成8)
酸化物基準の質量%で、
NaO 0〜4%、及び/又は
O 0〜4%、及び/又は
CaO 0〜7%、及び/又は
BaO 0〜7%、及び/又は
SrO 0〜4%、及び/又は
As 0〜2%、及び/又は
Sb 0〜2%、
の範囲の各成分を含有することを特徴とする構成1から7のいずれかに記載の結晶化ガラス。
(構成9)
酸化物基準の質量%で、
SiO+Al+P=65.0〜93.0%であり、
とSiOの質量百分率の比、
とAlの質量百分率の比がそれぞれ、
/SiO=0.02〜0.200、
/Al=0.059〜0.448、
であることを特徴とする構成1から8のいずれかに記載の結晶化ガラス。
(Configuration 1)
Crystallized glass containing β-quartz and / or β-quartz solid solution and having a refractive index nd change of 0.0400 or less before and after crystallization.
(Configuration 2)
2. The crystallized glass according to configuration 1, wherein the crystallinity is 85 wt% or less.
(Configuration 3)
The crystallized glass according to Configuration 1 or 2, wherein a value of an average linear expansion coefficient at 0 ° C. to 50 ° C. is 0.0 ± 0.2 × 10 −7 · ° C. −1 .
(Configuration 4)
The crystallized glass according to any one of configurations 1 to 3, wherein an absolute value of a maximum value-minimum value of ΔL / L in a temperature range of 0 ° C. to 50 ° C. is 10 × 10 −7 or less.
(Configuration 5)
The value of the dCTE / dT-temperature curve at 20 ° C. to 30 ° C. is in the range of 0 ± 1.5 ppb · ° C. −2 .
(Configuration 6)
% By mass based on oxide,
SiO 2 47~65%,
Al 2 O 3 17-29%,
Li 2 O 1-8%,
The crystallized glass according to any one of constitutions 1 to 5 containing each component of
(Configuration 7)
% By mass based on oxide,
P 2 O 5 1~13%,
MgO 0.1-5%,
ZnO 0.1-5.5%,
TiO 2 1-7%,
ZrO 2 1-7%
The crystallized glass according to any one of constitutions 1 to 6, which contains each component in the range of.
(Configuration 8)
% By mass based on oxide,
Na 2 O 0-4% and / or K 2 O 0-4% and / or CaO 0-7% and / or BaO 0-7% and / or SrO 0-4% and / or As 2 O 3 0-2% and / or Sb 2 O 3 0-2%,
The crystallized glass according to any one of the constitutions 1 to 7, which comprises each component in the range of.
(Configuration 9)
% By mass based on oxide,
SiO 2 + Al 2 O 3 + P 2 O 5 = 65.0-93.0%,
Ratio of mass percentage of P 2 O 5 and SiO 2 ,
The ratio of mass percentages of P 2 O 5 and Al 2 O 3 is respectively
P 2 O 5 / SiO 2 = 0.02 to 0.200,
P 2 O 5 / Al 2 O 3 = 0.059 to 0.448,
The crystallized glass according to any one of Structures 1 to 8, wherein

本発明によれば0℃から50℃において平均線膨張係数が0.0±0.2×10−7・℃−1、より好ましい態様においては、0.0±0.1×10−7・℃−1
ΔL/Lの最大値−最小値の絶対値が0℃から50℃において10×10−7以下、より好ましい態様においては、8×10−7以下、最も好ましい態様においては、2×10−7以下、
かつ20℃〜30℃におけるdCTE/dT−温度曲線の値が−1.5ppb・℃−2から+1.5ppb・℃−2の範囲内であり、より好ましい態様においては、−1.3ppb・℃−2から+1.3ppb・℃−2の範囲内であり、最も好ましい態様においては−1.0ppb・℃−2から+1.0ppb・℃−2である結晶化ガラスを得ることができる。
According to the present invention, the average linear expansion coefficient is 0.0 ± 0.2 × 10 −7 · ° C. −1 from 0 ° C. to 50 ° C., and in a more preferred embodiment, 0.0 ± 0.1 × 10 −7 · ° C -1 ,
The absolute value of the maximum value-minimum value of ΔL / L is 10 × 10 −7 or less at 0 ° C. to 50 ° C., 8 × 10 −7 or less in a more preferable embodiment, and 2 × 10 −7 in the most preferable embodiment. Less than,
And the value of the dCTE / dT-temperature curve at 20 ° C. to 30 ° C. is in the range of −1.5 ppb · ° C. −2 to +1.5 ppb · ° C. −2 , and in a more preferred embodiment, −1.3 ppb · ° C. A crystallized glass in the range of −2 to +1.3 ppb · ° C.− 2 , and in the most preferred embodiment −1.0 ppb · ° C. −2 to +1.0 ppb · ° C. −2 can be obtained.

本発明の実施例のΔL/L−温度グラフである。It is (DELTA) L / L-temperature graph of the Example of this invention. 本発明の実施例のdCTE/dT−温度グラフである。It is a dCTE / dT-temperature graph of the Example of this invention.

本発明の結晶化ガラスについて述べる。
結晶化ガラスの結晶相は、平均線膨張係数を左右する重要な要因である。本発明の結晶化ガラスは、負の平均線膨張係数を有する結晶相を析出させ、全体としての平均線膨張係数を所望の範囲としている。この目的を実現するための結晶相には、β−石英(β−SiO)、及び/又はβ−石英固溶体(β−SiO固溶体)を含有する事が好ましい。なお、本明細書において、β−石英固溶体とはβ−石英にSiおよびO以外の元素が侵入したもの(interstitial)および/または置換したもの(substitutional)を指す。特に本願結晶化ガラスにおいては、Si+4原子がAl+3と置換されLi、Mg+2、Zn+2原子が添加され平衡を保つ結晶体である事が好ましい。
The crystallized glass of the present invention will be described.
The crystal phase of crystallized glass is an important factor affecting the average linear expansion coefficient. In the crystallized glass of the present invention, a crystal phase having a negative average linear expansion coefficient is precipitated, and the average linear expansion coefficient as a whole is within a desired range. The crystal phase for realizing this object preferably contains β-quartz (β-SiO 2 ) and / or β-quartz solid solution (β-SiO 2 solid solution). In the present specification, β-quartz solid solution refers to β-quartz in which elements other than Si and O have invaded (interstitial) and / or substituted (substitutive). In particular, the crystallized glass of the present invention is preferably a crystal body in which Si +4 atoms are substituted with Al +3 and Li + , Mg +2 , and Zn +2 atoms are added to maintain equilibrium.

さらに本発明の課題を解決する為には、結晶化前後における屈折率ndの変化量を0.04以下とすることが必要である。
すなわち結晶化前の原ガラスのndをndとし、結晶化後の結晶化ガラスのndをndとする時、|nd−nd|の値を0.0400以下とすることが必要であり、0.0200以下とすることがより好ましく、0.0163以下とすることが最も好ましい。
これにより、0℃から50℃において平均線膨張係数が0.0±0.2×10−7/℃、ΔL/Lの最大値−最小値の絶対値が10×10−7以下、かつ20℃〜30℃におけるdCTE/dT−温度曲線の値が−1.5ppb・℃−2から+1.5ppb・℃−2の範囲内である結晶化ガラスを得ることが可能となる。
|nd−nd|の値が0.04を超えると、上記の膨張特性を有する結晶化ガラスを得ることができなくなってしまう。
なお、β−石英及び/又はβ−石英固溶体を含む結晶化ガラスの場合は結晶化によってndは増加するため、nd−ndの値は常に正である。
Furthermore, in order to solve the problem of the present invention, it is necessary to set the amount of change in the refractive index nd before and after crystallization to 0.04 or less.
That is, when nd of the original glass before crystallization is nd 1 and nd of the crystallized glass after crystallization is nd 2 , the value of | nd 2 −nd 1 | must be 0.0400 or less. Yes, more preferably 0.0200 or less, and most preferably 0.0163 or less.
Thus, the average linear expansion coefficient is 0.0 ± 0.2 × 10 −7 / ° C. from 0 ° C. to 50 ° C., the absolute value of the maximum value-minimum value of ΔL / L is 10 × 10 −7 or less, and 20 ° C. becomes possible value of dCTE / dT- temperature curve at to 30 ° C. to obtain a crystallized glass is in the range of -1.5ppb · ℃ -2 of + 1.5ppb · ℃ -2.
If the value of | nd 2 −nd 1 | exceeds 0.04, it becomes impossible to obtain a crystallized glass having the above expansion characteristics.
In the case of crystallized glass containing β-quartz and / or β-quartz solid solution, nd increases by crystallization, and therefore the value of nd 2 -nd 1 is always positive.

また、所望の結晶化ガラスを得る為には|nd−nd|の値は、0.0100以上とすることが好ましく、0.01300以上とすることがより好ましく、0.01500以上とすることが最も好ましい。|nd−nd|の値が0.0100未満であると上記の膨張特性を有する結晶化ガラスを得ることができなくなってしまう。 Further, in order to obtain a desired crystallized glass, the value of | nd 2 −nd 1 | is preferably 0.0100 or more, more preferably 0.01300 or more, and 0.01500 or more. Most preferred. If the value of | nd 2 −nd 1 | is less than 0.0100, crystallized glass having the above expansion characteristics cannot be obtained.

屈折率ndの値は日本光学硝子工業会規格(JOGIS)01−2003「光学ガラスの屈折率の測定方法」に従い、Heを光源とする587.56nmの光の屈折率を測定する。なお、既に結晶化され、原ガラスの屈折率が未知の結晶化ガラスについての結晶化前後の屈折率ndの変化量の測定は、まず結晶化ガラスの屈折率を測定し、その後、この結晶化ガラスを再溶解し、原ガラスを作製して屈折率を測定すればよい。   The refractive index nd is measured in accordance with Japan Optical Glass Industry Association Standard (JOGIS) 01-2003 “Measurement Method of Refractive Index of Optical Glass” and the refractive index of light of 587.56 nm using He as a light source. For the crystallized glass that has already been crystallized and the refractive index of the original glass is unknown, the amount of change in the refractive index nd before and after crystallization is measured by first measuring the refractive index of the crystallized glass. What is necessary is just to melt | dissolve glass, produce original glass and measure a refractive index.

本発明の結晶化ガラスの好ましい組成について説明する。なお、各組成成分について述べるとき、特に記載が無い場合は、各成分の含有量は酸化物基準の質量%で示す。ここで、「酸化物基準」とは、本発明の結晶化ガラスの構成成分の原料として使用される酸化物、硝酸塩等が溶融時にすべて分解され酸化物へ変化すると仮定して、ガラス中に含有される各成分の組成を表記する方法であり、この生成酸化物の質量の総和を100質量%として、結晶化ガラス中に含有される各成分の量を表記する。   A preferred composition of the crystallized glass of the present invention will be described. In addition, when describing each composition component, when there is no description in particular, content of each component is shown by the mass% of an oxide basis. Here, the “oxide standard” means that oxides, nitrates, etc. used as raw materials of the constituent components of the crystallized glass of the present invention are all decomposed and converted into oxides when melted. The amount of each component contained in the crystallized glass is expressed with the total mass of the generated oxides being 100% by mass.

SiO成分は、原ガラスの熱処理により、結晶相として析出するβ−石英及び/又はβ−石英固溶体を生成する成分であり、その量が47%以上であると、原ガラスの熱膨張係数が小さくなり、所望の熱膨張係数を有する結晶化ガラスが得やすくなる。また、65%以下であると原ガラスの溶融・成形性が容易であり、均質性が向上する。前記効果をより容易に得るには、成分量の下限は51%が好ましく、53%がより好ましい。また、成分量の上限は60%が好ましく、58%がより好ましい。 The SiO 2 component is a component that generates β-quartz and / or β-quartz solid solution that precipitates as a crystal phase by heat treatment of the raw glass. If the amount is 47% or more, the thermal expansion coefficient of the raw glass is high. It becomes small and it becomes easy to obtain the crystallized glass which has a desired thermal expansion coefficient. On the other hand, if it is 65% or less, the melting and moldability of the original glass is easy and the homogeneity is improved. In order to obtain the effect more easily, the lower limit of the component amount is preferably 51%, more preferably 53%. Further, the upper limit of the component amount is preferably 60%, more preferably 58%.

Al成分は、その量が17%以上29%以下であると原ガラスの溶融が容易となり、そのため、得られる結晶化ガラスの均質性が向上し、更に結晶化ガラスの化学的耐久性も良好なものとなる。また、29%以下であると原ガラスの耐失透性が向上し、耐失透性の低下が原因となって結晶化段階で結晶化ガラスの組織が粗大化することがなくなり、機械的強度が向上する。
前記効果をより容易に得るには、成分量の下限は20%が好ましく、22%がより好ましい。また、成分量の上限は27%が好ましく、26%がより好ましい。
When the amount of the Al 2 O 3 component is 17% or more and 29% or less, melting of the original glass is facilitated. Therefore, the homogeneity of the obtained crystallized glass is improved, and the chemical durability of the crystallized glass is further improved. Will also be good. Further, if it is 29% or less, the devitrification resistance of the original glass is improved, and the structure of the crystallized glass is not coarsened in the crystallization stage due to the decrease in the devitrification resistance. Will improve.
In order to obtain the effect more easily, the lower limit of the component amount is preferably 20%, more preferably 22%. Further, the upper limit of the component amount is preferably 27%, more preferably 26%.

LiO成分はβ−石英固溶体の構成要素となる成分であり、結晶化ガラスの低膨張特性向上や高温時のたわみ量を低減させ、更に原ガラスの溶融性、清澄性を著しく向上させる成分である。LiO成分の量が1%以上であると前記効果が飛躍的に向上し、また、原ガラスの溶融性が向上することにより均質性が向上し、さらに目的とする結晶相の析出が飛躍的に向上する。また8%以下であると低膨張特性が飛躍的に向上し、極低膨張特性を容易に得ることができ、原ガラスの耐失透性がより向上し、耐失透性の低下に起因する結晶化段階後の結晶化ガラス中の析出結晶の粗大化を抑制し、機械的強度が向上する。前記効果をより容易に得るには、成分量の下限は2%がより好ましく、3%が最も好ましい。また、成分量の上限は6%がより好ましく、5%が最も好ましい。 The Li 2 O component is a component that is a constituent element of β-quartz solid solution, which improves the low expansion characteristics of crystallized glass and reduces the amount of deflection at high temperatures, and further significantly improves the meltability and fining of the original glass. It is. When the amount of the Li 2 O component is 1% or more, the above-described effect is drastically improved, the homogeneity is improved by improving the meltability of the original glass, and the precipitation of the target crystal phase is further leap. Improve. Further, if it is 8% or less, the low expansion characteristic is remarkably improved, and the extremely low expansion characteristic can be easily obtained, the devitrification resistance of the original glass is further improved, and the devitrification resistance is lowered. The coarsening of the precipitated crystal in the crystallized glass after the crystallization stage is suppressed, and the mechanical strength is improved. In order to obtain the effect more easily, the lower limit of the component amount is more preferably 2%, and most preferably 3%. Further, the upper limit of the component amount is more preferably 6%, and most preferably 5%.

成分は、原ガラスの溶融・清澄性を向上させる効果と、熱処理結晶化後の熱膨張を所望の値に安定化させる効果を有する。本願の結晶化ガラスにおいてはP成分の量が1%以上であると前記の効果が飛躍的に向上し、また13%以下であると、原ガラスの耐失透性が良く、耐失透性の低下が原因となって結晶化段階で結晶化ガラスの組織が粗大化することがなくなり、機械的強度が向上する。前記効果をより容易に得るには、成分量の下限は4%がより好ましく、6%が最も好ましい。また、成分量の上限は10%がより好ましく、9%が最も好ましい。 The P 2 O 5 component has the effect of improving the melting and clarifying properties of the original glass and the effect of stabilizing the thermal expansion after heat treatment crystallization to a desired value. In the crystallized glass of the present application, when the amount of the P 2 O 5 component is 1% or more, the above effect is remarkably improved, and when it is 13% or less, the devitrification resistance of the original glass is good, The structure of crystallized glass is not coarsened in the crystallization stage due to the decrease in devitrification, and the mechanical strength is improved. In order to obtain the effect more easily, the lower limit of the component amount is more preferably 4%, and most preferably 6%. Further, the upper limit of the component amount is more preferably 10%, and most preferably 9%.

本発明の結晶化ガラスはSiO成分、Al成分、P成分の合計量(SiO+Al+P)を65.0〜93.0%とすることにより、低膨張特性を著しく向上させ、極低膨張特性を得ることができる。より容易に前記効果を得るには、SiO+Al+Pの含有量の下限は75%がより好ましく、80%が最も好ましい。また、SiO+Al+Pの含有量の上限は91%がより好ましく、89%が最も好ましい。 In the crystallized glass of the present invention, the total amount of SiO 2 component, Al 2 O 3 component and P 2 O 5 component (SiO 2 + Al 2 O 3 + P 2 O 5 ) is 65.0 to 93.0%. It is possible to remarkably improve the low expansion characteristic and obtain an extremely low expansion characteristic. In order to obtain the effect more easily, the lower limit of the content of SiO 2 + Al 2 O 3 + P 2 O 5 is more preferably 75%, and most preferably 80%. Further, the upper limit of the content of SiO 2 + Al 2 O 3 + P 2 O 5 is more preferably 91%, and most preferably 89%.

本発明の結晶化ガラスはSiO成分に対するP成分の比の値(P/SiO)を0.02〜0.20とすることにより、低膨張特性を著しく向上させ、極低膨張特性を得ることができる。より容易に前記効果を得るには、P/SiOの下限は0.08がより好ましく、0.12が最も好ましい。P/SiOの上限は0.16がより好ましく、0.14が最も好ましい。 In the crystallized glass of the present invention, the value of the ratio of the P 2 O 5 component to the SiO 2 component (P 2 O 5 / SiO 2 ) is 0.02 to 0.20, thereby significantly improving the low expansion property, Extremely low expansion characteristics can be obtained. In order to obtain the effect more easily, the lower limit of P 2 O 5 / SiO 2 is more preferably 0.08, and most preferably 0.12. The upper limit of P 2 O 5 / SiO 2 is more preferably 0.16, and most preferably 0.14.

本発明の結晶化ガラスはAl成分に対するP成分の比の値(P/Al)を0.059〜0.448とすることにより、低膨張特性を著しく向上させ、極低膨張特性を得ることができる。より容易に前記効果を得るには、P/Alの下限は0.150がより好ましく、0.250が最も好ましい。P/Alの上限は0.400がより好ましく0.350が最も好ましい。 The crystallized glass of the present invention has a low expansion property by setting the value of the ratio of P 2 O 5 component to Al 2 O 3 component (P 2 O 5 / Al 2 O 3 ) to 0.059 to 0.448. It can be remarkably improved and extremely low expansion characteristics can be obtained. In order to obtain the effect more easily, the lower limit of P 2 O 5 / Al 2 O 3 is more preferably 0.150, and most preferably 0.250. The upper limit of P 2 O 5 / Al 2 O 3 is more preferably 0.400, and most preferably 0.350.

MgO成分は、β−石英固溶体の構成要素となる成分であり、結晶化ガラスの低膨張特性向上や高温時のたわみ量を低減させ、更に原ガラスの溶融性、清澄性を著しく向上させる成分である。MgO成分の量が0.1%以上であると前記効果が飛躍的に向上し、また5%以下であると低膨張特性が飛躍的に向上し、極低膨張特性を得ることができる。前記効果をより容易に得るには、成分量の下限は0.4%がより好ましく、0.6%が最も好ましい。また、成分量の上限は3%がより好ましく、2%が最も好ましい。   The MgO component is a component that is a constituent element of β-quartz solid solution, and is a component that improves the low expansion characteristics of crystallized glass and reduces the amount of deflection at high temperatures, and further significantly improves the meltability and fining of the original glass. is there. When the amount of the MgO component is 0.1% or more, the effect is drastically improved, and when it is 5% or less, the low expansion characteristic is drastically improved and an extremely low expansion characteristic can be obtained. In order to obtain the effect more easily, the lower limit of the component amount is more preferably 0.4%, and most preferably 0.6%. Further, the upper limit of the component amount is more preferably 3%, and most preferably 2%.

ZnO成分は、β−石英固溶体の構成要素となる成分であり、結晶化ガラスの低膨張特性向上や高温時のたわみ量を低減させ、更に原ガラスの溶融性、清澄性を著しく向上させる成分である。ZnO成分の量が0.1%以上であると前記効果が飛躍的に向上し、また5.5%以下であると低膨張特性が飛躍的に向上し、極低膨張特性を容易に得ることができ、原ガラスの耐失透性がより向上し、耐失透性の低下に起因する結晶化段階後の結晶化ガラス中の析出結晶の粗大化を抑制し、機械的強度が向上する。前記効果をより容易に得るには、成分量の下限は0.2%がより好ましく、0.3%が最も好ましい、また、成分量の上限は4%がより好ましく、3%が最も好ましい。   The ZnO component is a component that is a constituent element of β-quartz solid solution, and is a component that improves the low expansion characteristics of crystallized glass and reduces the amount of deflection at high temperatures, and further significantly improves the meltability and fining of the original glass. is there. When the amount of ZnO component is 0.1% or more, the above-mentioned effect is drastically improved, and when it is 5.5% or less, the low expansion characteristic is drastically improved, and extremely low expansion characteristic is easily obtained. Thus, the devitrification resistance of the original glass is further improved, the coarsening of the precipitated crystals in the crystallized glass after the crystallization step due to the decrease in the devitrification resistance is suppressed, and the mechanical strength is improved. In order to obtain the effect more easily, the lower limit of the component amount is more preferably 0.2%, most preferably 0.3%, and the upper limit of the component amount is more preferably 4%, and most preferably 3%.

CaO、BaOの2成分は、基本的にガラス中に析出した結晶以外のガラスマトリックスとして残存するものであり、極低膨張特性および溶融性改善の効果に対して、結晶相とガラスマトリックス相の微調整成分として任意に添加しうる。   The two components CaO and BaO basically remain as a glass matrix other than the crystals precipitated in the glass, and the crystal phase and the glass matrix phase have a fine effect on the effect of improving the extremely low expansion characteristics and the meltability. It can be optionally added as a regulating component.

CaO成分は熔融性の改善とともに、原ガラスの耐失透性の向上、耐失透性の低下に起因する結晶化段階後の結晶化ガラス中における析出結晶の粗大化抑制および機械的強度の向上が期待できる。しかしながら、7%を超えると原ガラスの膨張係数が大きくなり、所望の結晶化ガラスが得難くなるため、成分量の上限は5%がより好ましく、3%が最も好ましい。   The CaO component improves meltability, improves devitrification resistance of the original glass, suppresses coarsening of precipitated crystals in the crystallized glass after the crystallization stage due to reduced devitrification resistance, and improves mechanical strength Can be expected. However, if it exceeds 7%, the expansion coefficient of the original glass increases, making it difficult to obtain the desired crystallized glass. Therefore, the upper limit of the component amount is more preferably 5%, and most preferably 3%.

BaO成分は熔融性の改善とともに、原ガラスの耐失透性の向上、耐失透性の低下に起因する結晶化段階後の結晶化ガラス中における析出結晶の粗大化抑制および機械的強度の向上が期待できる。しかしながら、7%を超えると原ガラスの膨張係数が大きくなり、所望の結晶化ガラスが得難くなるため、成分量の上限は5%がより好ましく、3%が最も好ましい。   The BaO component improves the meltability, improves the devitrification resistance of the original glass, suppresses the coarsening of the precipitated crystals in the crystallized glass after the crystallization stage due to the decrease in the devitrification resistance, and improves the mechanical strength. Can be expected. However, if it exceeds 7%, the expansion coefficient of the original glass increases, making it difficult to obtain the desired crystallized glass. Therefore, the upper limit of the component amount is more preferably 5%, and most preferably 3%.

TiOおよびZrO成分は、いずれも結晶核形成剤として用いられる。これらの量がそれぞれTiO 1%、ZrO 1%以上であると目的とする結晶相の析出が可能となる。またそれぞれ7%以下であると不熔物の発生が無くなって原ガラスの溶融性が良好となり均質性が向上する。前記効果をより容易に得るには、TiOの成分量の下限は1.3%がより好ましく、1.5%が最も好ましい。ZrOの成分量の下限は1.3%がより好ましく、1.5%が最も好ましい。また、TiOの成分量の上限は、5%がより好ましく、3%が最も好ましい。ZrOの成分量の上限は5%がより好ましく、3%が最も好ましい。 Both TiO 2 and ZrO 2 components are used as crystal nucleating agents. When these amounts are 1% or more of TiO 2 and 1% or more of ZrO 2 , the target crystal phase can be precipitated. Further, when the content is 7% or less, insoluble matters are not generated, the meltability of the original glass is improved, and the homogeneity is improved. In order to obtain the effect more easily, the lower limit of the component amount of TiO 2 is more preferably 1.3%, and most preferably 1.5%. The lower limit of the component amount of ZrO 2 is more preferably 1.3%, and most preferably 1.5%. Further, the upper limit of the component amount of TiO 2 is more preferably 5%, and most preferably 3%. The upper limit of the component amount of ZrO 2 is more preferably 5%, and most preferably 3%.

As成分やSb成分は、均質な製品を得るためガラス溶融の際の清澄剤として添加し得る。その効果を得るには各々の成分量が2%以下の範囲が良い。 As 2 O 3 component and Sb 2 O 3 component can be added as a fining agent during glass melting in order to obtain a homogeneous product. In order to obtain the effect, the amount of each component is preferably 2% or less.

上記As成分やSb成分は、環境や人体への影響を考慮してその使用が控えられる傾向にあり、As成分やSb成分に代えて、Ce成分やSn成分を用いることも可能である。この場合、清澄剤としての効果を得る為には各々の成分量が2%以下の範囲が良い。 The As 2 O 3 component and the Sb 2 O 3 component tend to be refrained from use in consideration of the influence on the environment and the human body. Instead of the As 2 O 3 component and the Sb 2 O 3 component, Ce 2 It is also possible to use O 3 component or Sn 2 O 3 component. In this case, in order to obtain the effect as a clarifier, the amount of each component is preferably in the range of 2% or less.

尚、上記成分の他に特性の微調整等を目的として、本発明の結晶化ガラスの特性を損なわない範囲で、SrO、B、F、La、Bi、WO、Y、Gd、SnO成分を1種または2種以上の合計量で2%以下、他にもCoO、NiO、MnO、Fe、Cr等の着色成分を1種または2種以上の合計量で2%以下まで、それぞれ添加し得る。しかし、本発明の結晶化ガラスを高い光線透過率が求められる用途に用いる場合には、前記着色成分は含まない事が好ましい。 In addition to the above components, SrO, B 2 O 3 , F 2 , La 2 O 3 , Bi 2 O 3 , S2O 3 , F 2 , La 2 O 3 , Bi 2 O 3 , as long as the characteristics of the crystallized glass of the present invention are not impaired. WO 3 , Y 2 O 3 , Gd 2 O 3 , SnO 2 component may be one or two or more in total amount of 2% or less, besides CoO, NiO, MnO 2 , Fe 2 O 3 , Cr 2 O 3 Such coloring components as 1 type or 2 types or more can be added up to 2% or less, respectively. However, when the crystallized glass of the present invention is used for applications requiring high light transmittance, it is preferable that the colored component is not included.

本発明の結晶化ガラスにおいては、負の平均線膨張係数を有する主結晶相を析出させ、正の平均線膨張係数を有するガラスマトリックス相と相まって、全体として極低膨張特性を実現している。このためには正の平均線膨張係数を有する結晶相、すなわち、二珪酸リチウム、珪酸リチウム、α−石英、α−クリストバライト、α−トリジマイト、Zn−ペタライトをはじめとするペタライト、ウォラストナイト、フォルステライト、ディオプサイト、ネフェリン、クリノエンスタタイト、アノーサイト、セルシアン、ゲーレナイト、フェルスパー、ウィレマイト、ムライト、コランダム、ランキナイト、ラルナイトおよびこれらの固溶体等を含まないことが好ましく、これらに加えて、良好な機械的強度を維持するためには、Hf−タングステン酸塩やZr−タングステン酸塩をはじめとするタングステン酸塩、チタン酸マグネシウムやチタン酸バリウムやチタン酸マンガンをはじめとするチタン酸塩、ムライト、3ケイ酸2バリウム、Al・5SiOおよびこれらの固溶体等も含まないことが好ましい。 In the crystallized glass of the present invention, a main crystal phase having a negative average linear expansion coefficient is precipitated, and combined with a glass matrix phase having a positive average linear expansion coefficient, an extremely low expansion characteristic is realized as a whole. For this purpose, a crystalline phase having a positive average linear expansion coefficient, namely, lithium disilicate, lithium silicate, α-quartz, α-cristobalite, α-tridymite, Zn-petalite and other petalites, wollastonite, forma It is preferable not to contain stellite, diopsite, nepheline, clinoenstatite, anorthite, celsian, gelenite, felsper, willemite, mullite, corundum, lanquinite, larnite and solid solutions thereof, in addition to these, good In order to maintain high mechanical strength, tungstates such as Hf-tungstate and Zr-tungstate, titanates such as magnesium titanate, barium titanate and manganese titanate, mullite 3 barium silicates, is preferably free l 2 O 3 · 5SiO 2 and also those solid solutions.

本発明の結晶化ガラスにおいて結晶化度が85wt%を越えると、所望のΔL/Lの最大値−最小値の絶対値、あるいはdCTE/dT−温度曲線の値を有する結晶化ガラスが得難くなるため、その上限値は85wt%以下であることが好ましく、82wt%以下がより好ましく、80wt%が最も好ましい。また60wt%未満であると所望の熱膨張係数を有する結晶化ガラスが得難くなるため、その下限値は60wt%以上であることが好ましく、63wt%以上がより好ましく、65wt%が最も好ましい。
結晶化度の算出は、次の通り行う。予め原ガラス粉末と目的とする析出結晶粉末(例えばβ−ユークリプタイト)を任意比で混合し、さらに標準試料となるSiOを加えた混合粉末数種のXRD測定によって、析出結晶粉末量(wt%)をx軸に、結晶積分強度/標準試料積分強度をy軸にプロットした検量線を作成する。次に測定対象の結晶化ガラスおよび標準試料の混合粉末のXRD測定を行い、求められた結晶積分強度/標準試料積分強度から検量線を用いて結晶化度を算出する。
When the crystallinity of the crystallized glass of the present invention exceeds 85 wt%, it is difficult to obtain a crystallized glass having a desired maximum value-minimum value of ΔL / L or a value of a dCTE / dT-temperature curve. Therefore, the upper limit value is preferably 85 wt% or less, more preferably 82 wt% or less, and most preferably 80 wt%. Moreover, since it becomes difficult to obtain crystallized glass having a desired thermal expansion coefficient if it is less than 60 wt%, the lower limit is preferably 60 wt% or more, more preferably 63 wt% or more, and most preferably 65 wt%.
The crystallinity is calculated as follows. The amount of precipitated crystal powder (by the XRD measurement of several kinds of mixed powders obtained by previously mixing the original glass powder and the target precipitated crystal powder (for example, β-eucryptite) at an arbitrary ratio and further adding SiO 2 as a standard sample ( wt%) is plotted on the x-axis, and a calibration curve is plotted with the integrated crystal intensity / standard sample integrated intensity plotted on the y-axis. Next, XRD measurement is performed on the mixed powder of the crystallized glass to be measured and the standard sample, and the degree of crystallinity is calculated using a calibration curve from the obtained crystal integral intensity / standard sample integral intensity.

また、本発明の結晶化ガラスにおいて、研磨加工時における良好な表面平滑性を得るために析出結晶の平均粒径は80nmを超えないことが好ましく、粒径の標準偏差は20nmを超えないことが好ましい。   In the crystallized glass of the present invention, in order to obtain good surface smoothness during polishing, the average particle size of the precipitated crystals is preferably not more than 80 nm, and the standard deviation of the particle size is not more than 20 nm. preferable.

次に、本発明の結晶化ガラスは以下の方法により製造する。まずガラス原料を秤量、調合し、坩堝などに入れ、約1500℃〜1600℃で溶融し、ガラス融液を得る。
その後、ガラス融液を、金型に鋳込む、および/または熱間成形等の操作により、所望の形状に成形し徐冷して原ガラスを得る。
Next, the crystallized glass of the present invention is produced by the following method. First, glass raw materials are weighed and prepared, put in a crucible or the like, and melted at about 1500 ° C. to 1600 ° C. to obtain a glass melt.
Thereafter, the glass melt is cast into a mold and / or formed into a desired shape by an operation such as hot forming and then slowly cooled to obtain an original glass.

次に、結晶化ための熱処理を行う。結晶化のための熱処理は好ましくは核形成工程と核成長工程に分けられる。核形成工程は原ガラスのTgに対して+10℃から+50℃の範囲の温度で、より好ましくは+15℃から+45℃の温度、最も好ましくは+20℃から+40℃で原ガラスを保持する。核形成工程では前記範囲の温度で20〜100時間、より好ましくは30〜80時間、最も好ましくは35〜65時間保持する。   Next, heat treatment for crystallization is performed. The heat treatment for crystallization is preferably divided into a nucleation step and a nucleation growth step. The nucleation step holds the original glass at a temperature in the range of + 10 ° C. to + 50 ° C., more preferably from + 15 ° C. to + 45 ° C., most preferably from + 20 ° C. to + 40 ° C., relative to the Tg of the original glass. In the nucleation step, the temperature is kept in the above range for 20 to 100 hours, more preferably 30 to 80 hours, and most preferably 35 to 65 hours.

核形成工程後、核成長工程を行う。核成長工程は原ガラスのTgに対して+50℃から+110℃の範囲の温度で、より好ましくは+55℃から+90℃の温度、最も好ましくは+60℃から+80℃で原ガラスを保持する。核成長工程では前記範囲の温度で40〜400時間、より好ましくは45〜250時間、最も好ましくは50〜150時間保持する。
核成長工程の保持温度は核形成工程の保持温度より高いことが好ましい。
After the nucleation process, a nucleation process is performed. The nucleus growth step holds the original glass at a temperature in the range of + 50 ° C. to + 110 ° C., more preferably from + 55 ° C. to + 90 ° C., most preferably from + 60 ° C. to + 80 ° C. with respect to the Tg of the original glass. In the nucleus growth step, the temperature is maintained in the above range for 40 to 400 hours, more preferably 45 to 250 hours, and most preferably 50 to 150 hours.
The holding temperature in the nucleation step is preferably higher than the holding temperature in the nucleation step.

核形成工程および核成長工程の前後には昇温工程または降温工程がある。通常、室温からスタートし、昇温工程、核形成工程、昇温工程、核成長工程、降温工程を経て室温まで徐冷されることが好ましい。
上記の熱処理を行うことによって、結晶化ガラスの結晶化前後の屈折率ndの変化量を所望のものとすることができる。
There is a temperature raising step or a temperature lowering step before and after the nucleation step and the nucleus growth step. Usually, it is preferable to start from room temperature and gradually cool to room temperature through a temperature raising step, a nucleation step, a temperature raising step, a nucleus growth step, and a temperature lowering step.
By performing the above heat treatment, the amount of change in the refractive index nd before and after crystallization of the crystallized glass can be made desired.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

酸化物基準の質量%で表1に記載の組成となるように原料として酸化物、炭酸塩あるいは硝酸塩等の原料を混合し、これを通常の溶解装置を用いて約1450〜1550℃の温度で溶解し攪拌均質化した後、成形、冷却しガラス成形体(原ガラス)を得た。   A raw material such as oxide, carbonate or nitrate is mixed as a raw material so as to have the composition described in Table 1 by mass% based on the oxide, and this is mixed at a temperature of about 1450 to 1550 ° C. using a normal melting apparatus. After melting and homogenizing with stirring, the product was molded and cooled to obtain a glass molded body (original glass).

得られたガラス成形体を、表1に記載の条件で結晶化し、結晶化ガラスを作製した。
得られた結晶化ガラスはβ−石英およびβ−石英固溶体が析出しており、この時の平均結晶粒径、結晶粒径分布、結晶化度、原ガラスのTg、原ガラスの屈折率nd、結晶化ガラスの屈折率nd、結晶化前後の屈折率の変化量|nd−nd|、0℃から50℃における平均線膨張係数α、0℃から50℃の温度範囲内でのΔL/L−温度曲線の最大値−最小値を表1に示す。
なお、平均結晶粒径、結晶粒径分布はTEMにより得られた画像から無作為に選んだ30個の結晶の最大幅を測定して算出した。平均結晶粒径はこれらの個数基準の平均値であり、結晶粒径分布は標準偏差である。
The obtained glass molded body was crystallized under the conditions described in Table 1 to produce crystallized glass.
In the obtained crystallized glass, β-quartz and β-quartz solid solution are precipitated. At this time, the average crystal grain size, crystal grain size distribution, crystallinity, Tg of original glass, refractive index nd 1 of original glass , Refractive index nd 2 of crystallized glass, change in refractive index before and after crystallization | nd 2 −nd 1 |, average linear expansion coefficient α from 0 ° C. to 50 ° C., within a temperature range of 0 ° C. to 50 ° C. Table 1 shows the maximum value-minimum value of the ΔL / L-temperature curve.
The average crystal grain size and crystal grain size distribution were calculated by measuring the maximum width of 30 crystals randomly selected from images obtained by TEM. The average crystal grain size is an average value based on these numbers, and the crystal grain size distribution is a standard deviation.

平均線膨張係数はフィゾー干渉式精密膨張率測定装置を用いて測定した。測定試料の形状は直径6mm、長さ約80mmの円柱状である。測定方法として、この試料の両端に光学平面板を接触させ、He−Neレーザーによる干渉縞が観察できるようにし、温度コントロール可能な炉に入れる。次に測定試料の温度を変化させ、干渉縞の変化を観察することによって、温度による測定試料長さの変化量を測定する。本発明においては、0℃から50℃の温度範囲において0.5℃・min−1で昇温あるいは降温させ、5秒毎に測定試料長さの変化量をプロットし、さらに5次の近似曲線を描いたうえで、0℃から50℃における平均線膨張係数および0℃から50℃の温度範囲内でのΔL/Lの最大値−最小値を算出した。なお、平均線膨張係数およびΔL/L−温度曲線の最大値−最小値はいずれも昇温時と降温時の平均値である。 The average linear expansion coefficient was measured using a Fizeau interferometric precise expansion coefficient measuring device. The shape of the measurement sample is a cylindrical shape having a diameter of 6 mm and a length of about 80 mm. As a measuring method, an optical flat plate is brought into contact with both ends of the sample so that interference fringes by a He—Ne laser can be observed, and the sample is placed in a temperature-controllable furnace. Next, by changing the temperature of the measurement sample and observing the change in interference fringes, the amount of change in the measurement sample length due to temperature is measured. In the present invention, the temperature is raised or lowered at 0.5 ° C./min −1 in the temperature range from 0 ° C. to 50 ° C., the amount of change in the measured sample length is plotted every 5 seconds, and a fifth order approximate curve Then, the average linear expansion coefficient from 0 ° C. to 50 ° C. and the maximum value-minimum value of ΔL / L within the temperature range of 0 ° C. to 50 ° C. were calculated. Note that the average linear expansion coefficient and the maximum value-minimum value of the ΔL / L-temperature curve are both average values during temperature rise and temperature drop.

図1には本発明の実施例のΔL/L−温度グラフであり、図2は本発明の実施例のdCTE/dT−温度グラフである。
これによれば、いずれの実施例も所望の平均線膨張係数α、ΔL/L−温度曲線およびdCTE/dT−温度曲線が得られており、特に実施例1及び2においては平均線膨張係数、ΔL/L−温度曲線およびdCTE/dT−温度曲線が極めて零に近いことが分かる。
FIG. 1 is a ΔL / L-temperature graph of an example of the present invention, and FIG. 2 is a dCTE / dT-temperature graph of an example of the present invention.
According to this, the desired average linear expansion coefficient α, ΔL / L-temperature curve and dCTE / dT-temperature curve are obtained in any of the examples, and particularly in Examples 1 and 2, the average linear expansion coefficient, It can be seen that the ΔL / L-temperature curve and the dCTE / dT-temperature curve are very close to zero.

1:実施例1
2:実施例2
3:実施例3
4:実施例4
5:実施例5
1: Example 1
2: Example 2
3: Example 3
4: Example 4
5: Example 5

Claims (9)

β−石英及び/又はβ−石英固溶体を含み、結晶化前後における屈折率ndの変化量が0.04以下である結晶化ガラス。   A crystallized glass containing β-quartz and / or β-quartz solid solution and having a refractive index nd change of 0.04 or less before and after crystallization. 結晶化度が85wt%以下である請求項1に記載の結晶化ガラス。   The crystallized glass according to claim 1, wherein the crystallinity is 85 wt% or less. 0℃〜50℃における平均線膨張係数の値が0.0±0.2×10−7/℃である請求項1または2に記載の結晶化ガラス。 3. The crystallized glass according to claim 1, wherein the average linear expansion coefficient at 0 ° C. to 50 ° C. is 0.0 ± 0.2 × 10 −7 / ° C. 4. 0℃〜50℃の温度範囲におけるΔL/Lの最大値−最小値の絶対値が10×10−7以下である請求項1から3のいずれかに記載の結晶化ガラス。 4. The crystallized glass according to claim 1, wherein the absolute value of the maximum value−minimum value of ΔL / L in a temperature range of 0 ° C. to 50 ° C. is 10 × 10 −7 or less. 20℃〜30℃におけるdCTE/dT−温度曲線の値が0±1.5ppb・℃−2の範囲内であることを特徴とする請求項1から4のいずれかに記載の結晶化ガラス。 5. The crystallized glass according to claim 1, wherein a value of a dCTE / dT-temperature curve at 20 ° C. to 30 ° C. is in a range of 0 ± 1.5 ppb · ° C. −2 . 酸化物基準の質量%で、
SiO 47〜65%、
Al 17〜29%、
LiO 1〜8%、
の各成分を含有する請求項1から5のいずれかに記載の結晶化ガラス。
% By mass based on oxide,
SiO 2 47~65%,
Al 2 O 3 17-29%,
Li 2 O 1-8%,
The crystallized glass according to any one of claims 1 to 5, comprising each of the following components.
酸化物基準の質量%で、
1〜13%、
MgO 0.1〜5%、
ZnO 0.1〜5.5%、
TiO 1〜7%、
ZrO 1〜7%
の範囲の各成分を含有する請求項1から6のいずれかに記載の結晶化ガラス。
% By mass based on oxide,
P 2 O 5 1~13%,
MgO 0.1-5%,
ZnO 0.1-5.5%,
TiO 2 1-7%,
ZrO 2 1-7%
The crystallized glass according to any one of claims 1 to 6, which contains each component in the range described above.
酸化物基準の質量%で、
NaO 0〜4%、及び/又は
O 0〜4%、及び/又は
CaO 0〜7%、及び/又は
BaO 0〜7%、及び/又は
SrO 0〜4%、及び/又は
As 0〜2%、及び/又は
Sb 0〜2%、
の範囲の各成分を含有することを特徴とする請求項1から7のいずれかに記載の結晶化ガラス。
% By mass based on oxide,
Na 2 O 0-4% and / or K 2 O 0-4% and / or CaO 0-7% and / or BaO 0-7% and / or SrO 0-4% and / or As 2 O 3 0-2% and / or Sb 2 O 3 0-2%,
The crystallized glass according to any one of claims 1 to 7, which contains each component in the range described above.
酸化物基準の質量%で、
SiO+Al+P=65.0〜93.0%であり、
とSiOの質量百分率の比、
とAlの質量百分率の比がそれぞれ、
/SiO=0.02〜0.200、
/Al=0.059〜0.448、
であることを特徴とする請求項1から8のいずれかに記載の結晶化ガラス。
% By mass based on oxide,
SiO 2 + Al 2 O 3 + P 2 O 5 = 65.0-93.0%,
Ratio of mass percentage of P 2 O 5 and SiO 2 ,
The ratio of mass percentages of P 2 O 5 and Al 2 O 3 is respectively
P 2 O 5 / SiO 2 = 0.02 to 0.200,
P 2 O 5 / Al 2 O 3 = 0.059 to 0.448,
The crystallized glass according to any one of claims 1 to 8, wherein
JP2014092749A 2014-04-28 2014-04-28 Crystallized glass Pending JP2014144915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014092749A JP2014144915A (en) 2014-04-28 2014-04-28 Crystallized glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014092749A JP2014144915A (en) 2014-04-28 2014-04-28 Crystallized glass

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009228354A Division JP5650387B2 (en) 2009-09-30 2009-09-30 Crystallized glass

Publications (1)

Publication Number Publication Date
JP2014144915A true JP2014144915A (en) 2014-08-14

Family

ID=51425478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014092749A Pending JP2014144915A (en) 2014-04-28 2014-04-28 Crystallized glass

Country Status (1)

Country Link
JP (1) JP2014144915A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018199612A (en) * 2017-05-26 2018-12-20 ショット アクチエンゲゼルシャフトSchott AG Precision component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089272A (en) * 2003-09-19 2005-04-07 Ohara Inc Very low expansion transparent glass ceramic
JP2005231994A (en) * 2004-02-20 2005-09-02 Schott Ag Low thermal expansion glass ceramic
JP2007022903A (en) * 2005-06-14 2007-02-01 Asahi Glass Co Ltd Method of finishing pre-polished glass substrate surface
JP2007326722A (en) * 2006-06-06 2007-12-20 Ohara Inc Crystallized glass and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089272A (en) * 2003-09-19 2005-04-07 Ohara Inc Very low expansion transparent glass ceramic
JP2005231994A (en) * 2004-02-20 2005-09-02 Schott Ag Low thermal expansion glass ceramic
JP2007022903A (en) * 2005-06-14 2007-02-01 Asahi Glass Co Ltd Method of finishing pre-polished glass substrate surface
JP2007326722A (en) * 2006-06-06 2007-12-20 Ohara Inc Crystallized glass and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018199612A (en) * 2017-05-26 2018-12-20 ショット アクチエンゲゼルシャフトSchott AG Precision component
US10730787B2 (en) 2017-05-26 2020-08-04 Schott Ag Precision component

Similar Documents

Publication Publication Date Title
US8043985B2 (en) Crystallized glass, and method for producing crystallized glass
JP4977406B2 (en) Crystallized glass and method for producing crystallized glass
JP4933863B2 (en) Crystallized glass and method for producing crystallized glass
JP6899938B2 (en) Highly uniform glass-ceramic element
JP5650387B2 (en) Crystallized glass
KR100563362B1 (en) Method of making transparent glass-ceramics with high temperature dimensional stability
CN107935397A (en) Cordierite glass-ceramic, its production method and purposes
US9416048B2 (en) Crystallized glass
JP4412952B2 (en) Ultra-low expansion transparent glass ceramics
JP6627760B2 (en) Crystallized glass
JP2006232661A (en) Crystallized glass and its manufacturing method
JP4647256B2 (en) Glass ceramics
JP5762677B2 (en) Method for producing crystallized glass
JP2014144915A (en) Crystallized glass
JP2010053013A (en) Glass
JP2014091637A (en) Crystallized glass
WO2021210270A1 (en) Method for manufacturing crystallized glass article, method for heat treating crystallized glass, and crystallized glass article
CN116813203A (en) Low expansion high strength crystallized glass
JP5629073B2 (en) Method for producing crystallized glass
TWI272258B (en) Crystallizable glass and crystallized glass of Li2O-Al2O3-SiO2 system and method for producing crystallized glass of Li2O-Al2O3-SiO2 system
TW202319358A (en) crystallized glass

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150811