JP2014139882A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2014139882A
JP2014139882A JP2013008231A JP2013008231A JP2014139882A JP 2014139882 A JP2014139882 A JP 2014139882A JP 2013008231 A JP2013008231 A JP 2013008231A JP 2013008231 A JP2013008231 A JP 2013008231A JP 2014139882 A JP2014139882 A JP 2014139882A
Authority
JP
Japan
Prior art keywords
barium sulfate
mass
negative electrode
lead
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013008231A
Other languages
Japanese (ja)
Other versions
JP6135143B2 (en
JP2014139882A5 (en
Inventor
Kenji Yamauchi
賢治 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2013008231A priority Critical patent/JP6135143B2/en
Publication of JP2014139882A publication Critical patent/JP2014139882A/en
Publication of JP2014139882A5 publication Critical patent/JP2014139882A5/ja
Application granted granted Critical
Publication of JP6135143B2 publication Critical patent/JP6135143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve high-rate discharge performance of a lead-acid battery, and also to improve cycle life performance of a lead-acid battery.SOLUTION: A negative electrode active material of a lead-acid battery contains barium sulfate having an oil absorption of 14 mL/100 g or more. The lead-acid battery is improved in high-rate discharge performance.

Description

この発明は鉛蓄電池に関し、特に高率放電性能とサイクル寿命性能に優れた鉛蓄電池に関する。   The present invention relates to a lead storage battery, and more particularly to a lead storage battery excellent in high rate discharge performance and cycle life performance.

鉛蓄電池の負極活物質には硫酸バリウムが添加され、特許文献1(JPH08-236119A)、特許文献2(JP2003-36882A)、特許文献3(JP2004-273305A)は、鉛蓄電池の負極活物質へ加える硫酸バリウムの平均粒子径について記載している。特許文献1は、1次粒子径を1.0μm以下にすると負極活物質の収縮を均一にでき、充放電寿命性能を向上できるとしている。特許文献2は、制御弁式鉛蓄電池に平均粒子径が0.5μm以上の硫酸バリウムを加えると、充電不足な使用条件での充電受入性を改善できるとしている。特許文献3は、平均粒子径が1〜4μmの硫酸バリウムを加えると、深い放電を頻繁に繰り返す際の充電受入性を改善できるとしている。   Barium sulfate is added to the negative electrode active material of the lead acid battery. Patent Document 1 (JPH08-236119A), Patent Document 2 (JP2003-36882A), and Patent Document 3 (JP2004-273305A) are added to the negative electrode active material of the lead acid battery. The average particle diameter of barium sulfate is described. Patent Document 1 states that when the primary particle diameter is 1.0 μm or less, the negative electrode active material can be uniformly contracted and the charge / discharge life performance can be improved. Patent Document 2 states that, when barium sulfate having an average particle diameter of 0.5 μm or more is added to a control valve type lead storage battery, charge acceptability can be improved under use conditions with insufficient charge. Patent Document 3 states that when barium sulfate having an average particle diameter of 1 to 4 μm is added, the charge acceptability when deep discharge is frequently repeated can be improved.

上記の特許文献での平均粒子径は、鉛粉と練合して負極活物質とする前の、硫酸バリウム粉体の値で、また上記の特許文献は硫酸バリウムの吸油量を記載していない。そして発明者の経験では、鉛蓄電池の硫酸バリウムには吸油量(JIS-K-5101に規定)が12〜13.5mL/100gのものが用いられている。   The average particle diameter in the above patent document is the value of the barium sulfate powder before kneading with the lead powder to make the negative electrode active material, and the above patent document does not describe the oil absorption of barium sulfate. . According to the inventor's experience, the amount of oil absorption (specified in JIS-K-5101) of 12 to 13.5 mL / 100 g is used for barium sulfate in lead-acid batteries.

JPH08-236119AJPH08-236119A JP2003-36882AJP2003-36882A JP2004-273305AJP2004-273305A

この発明の課題は、鉛蓄電池の高率放電性能を向上させることにある。
この発明の追加の課題は、鉛蓄電池のサイクル寿命性能を向上させることにある。
The subject of this invention is improving the high rate discharge performance of lead acid battery.
An additional problem of the present invention is to improve the cycle life performance of the lead acid battery.

この発明の鉛蓄電池は、鉛粉と吸油量が14mL/100g以上である硫酸バリウムとを含む負極活物質を有する。吸油量の上限には制約はなく、硫酸バリウムを微細にし、比表面積を増すと、吸油量は増加する。硫酸バリウムの製造上の便宜の点から、吸油量は例えば20mL/100g以下とし、より狭くは18mL/100g以下とし、最も狭くは16mL/100g以下とする。なお吸油量はJIS-K-5101に準じて測定する。図3に示すように、硫酸バリウムの吸油量が14mL/100gを境に高率放電性能が変化し、吸油量を14mL/100g以上とすると高い高率放電性能が得られる。   The lead acid battery of this invention has a negative electrode active material containing lead powder and barium sulfate having an oil absorption of 14 mL / 100 g or more. There is no restriction on the upper limit of the oil absorption amount, and when the barium sulfate is refined and the specific surface area is increased, the oil absorption amount increases. For convenience in production of barium sulfate, the oil absorption is, for example, 20 mL / 100 g or less, more narrowly 18 mL / 100 g or less, and most narrowly 16 mL / 100 g or less. Oil absorption is measured according to JIS-K-5101. As shown in FIG. 3, the high rate discharge performance changes when the oil absorption of barium sulfate is 14 mL / 100 g, and a high high rate discharge performance is obtained when the oil absorption is 14 mL / 100 g or more.

図4は負極活物質中の硫酸バリウムの含有量と高率放電性能との関係を示し、実施例では硫酸バリウムの吸油量は14mL/100g以上で、従来例では14mL/100g未満である。0.6mass%を境に硫酸バリウムの吸油量の影響が現れる。負極活物質100mass%に対して、吸油量が14mL/100g以上の硫酸バリウムを0.6mass%以上含有することにより、吸油量の効果が発現し、0.7mass%以上、最も狭くは0.8mass%以上含有することにより、吸油量の効果がより顕著になる。なお過剰量の硫酸バリウムを含有させても、効果は飽和すると予想されるので、硫酸バリウム含有量に上限を設ける場合、例えば2.0mass%以下とし、特に1.8mass%以下、最も狭くは1.6mass%以下とする。   FIG. 4 shows the relationship between the content of barium sulfate in the negative electrode active material and the high rate discharge performance. In the examples, the oil absorption of barium sulfate is 14 mL / 100 g or more, and in the conventional example, it is less than 14 mL / 100 g. The effect of oil absorption of barium sulfate appears at the boundary of 0.6 mass%. By containing 0.6 mass% or more of barium sulfate with an oil absorption amount of 14 mL / 100 g or more with respect to 100 mass% of the negative electrode active material, the effect of the oil absorption amount is expressed, 0.7 mass% or more, and most narrowly 0.8 mass% or more By doing so, the effect of the oil absorption becomes more remarkable. Even if an excessive amount of barium sulfate is contained, the effect is expected to be saturated, so when setting an upper limit to the barium sulfate content, for example, 2.0 mass% or less, particularly 1.8 mass% or less, the narrowest is 1.6 mass% The following.

化成済みの負極活物質の例えば断面を電子顕微鏡によりEPMA分析し、バリウム元素の分布を求めると、硫酸バリウムの2次粒子を観察できる。これに対して図2の最大円法により2次粒子径を求めることができる。そして例えば9個所のEPMA分析での最大2次粒子径を硫酸バリウムの最大2次粒子径とする。次ぎに硫酸バリウムの最大2次粒子径を5.0μm以下とすると、図8に示すように軽負荷寿命性能等のサイクル寿命性能が向上する。またサイクル寿命性能の向上は硫酸バリウム含有量が0.8mass%以上で顕著になるので、0.7mass%以上、特に0.8mass%以上の硫酸バリウムを含有することが好ましい。硫酸バリウム含有量に上限を設ける場合、例えば2.0mass%以下とし、特に1.8mass%以下とする。硫酸バリウム含有量に上限と下限とを設ける場合、0.6mass%以上2.0mass%以下が好ましく、例えば0.7mass%以上2.0mass%以下とし、より狭くは0.8mass%以上2.0mass%以下とし、最も狭くは0.8mass%以上1.8mass%以下とする。最大2次粒子径は4.0μm以下が好ましく、硫酸バリウムの調製の便宜の点から1.0μm以上、特に2.0μm以上が好ましい。硫酸バリウムの最大2次粒子径に上限と下限とを設ける場合、5.0μm以下で1.0μm以上が好ましく、例えば4.0μm以下で1.0μm以上とし、より狭くは5.0μm以下で2.0μm以上とし、最も狭くは4.0μm以下で2.0μm以上とする。   For example, when the cross section of the formed negative electrode active material is subjected to EPMA analysis with an electron microscope and the distribution of barium element is obtained, secondary particles of barium sulfate can be observed. On the other hand, the secondary particle diameter can be obtained by the maximum circle method of FIG. For example, the maximum secondary particle diameter in nine EPMA analyzes is set as the maximum secondary particle diameter of barium sulfate. Next, when the maximum secondary particle diameter of barium sulfate is 5.0 μm or less, cycle life performance such as light load life performance is improved as shown in FIG. The improvement in cycle life performance becomes significant when the barium sulfate content is 0.8 mass% or more. Therefore, it is preferable to contain 0.7 mass% or more, particularly 0.8 mass% or more of barium sulfate. When an upper limit is set for the barium sulfate content, for example, it is set to 2.0 mass% or less, particularly 1.8 mass% or less. When setting the upper and lower limits to the barium sulfate content, preferably 0.6 mass% or more and 2.0 mass% or less, for example 0.7 mass% or more and 2.0 mass% or less, more narrowly 0.8 mass% or more and 2.0 mass% or less, the narrowest Is 0.8 mass% or more and 1.8 mass% or less. The maximum secondary particle diameter is preferably 4.0 μm or less, and is preferably 1.0 μm or more, and particularly preferably 2.0 μm or more, for the convenience of preparation of barium sulfate. When upper and lower limits are set for the maximum secondary particle diameter of barium sulfate, it is preferably 5.0 μm or less and 1.0 μm or more, for example, 4.0 μm or less and 1.0 μm or more, and more narrowly 5.0 μm or less and 2.0 μm or more. Narrow is 4.0 μm or less and 2.0 μm or more.

負極活物質中の硫酸バリウムの含有量と最大2次粒子径は、以下のようにして測定する。満充電した鉛蓄電池から負極板を取り出し、水洗と乾燥とにより硫酸を除去する。乾燥した負極活物質中の硫酸バリウム含有量を例えばICP分析により求める。次いで負極活物質の断面が現れるように負極板を切断し、9個所においてEPMA(Electron Probe Micro Analysis)により、Ba原子濃度から硫酸バリウムの粒子を検出する。硫酸バリウム粒子を含む最小の円の直径を最大2次粒子径とし、9個所の画像での最大の2次粒子径を求める。図2に2次粒子径の求め方を示し、硫酸バリウム粒子2を含む最小円4の直径Dが2次粒子径である。   The content of barium sulfate and the maximum secondary particle size in the negative electrode active material are measured as follows. The negative electrode plate is taken out from the fully charged lead acid battery, and sulfuric acid is removed by washing with water and drying. The barium sulfate content in the dried negative electrode active material is determined by, for example, ICP analysis. Next, the negative electrode plate is cut so that the cross section of the negative electrode active material appears, and barium sulfate particles are detected from the Ba atom concentration by EPMA (Electron Probe Micro Analysis) at nine locations. The diameter of the smallest circle containing the barium sulfate particles is taken as the maximum secondary particle diameter, and the maximum secondary particle diameter in nine images is obtained. FIG. 2 shows how to obtain the secondary particle diameter, and the diameter D of the smallest circle 4 containing the barium sulfate particles 2 is the secondary particle diameter.

硫酸バリウムでは1次粒子の凝集によって2次粒子が発達する。最大2次粒子径が小さな硫酸バリウムを製造するには、
・ 篩い分け、サイクロン等により大きな2次粒子を除去する、
・ 硫酸バリウムを水等に懸濁させ、撹拌、超音波等により2次粒子を破壊する、
・ 負極ペーストの製造時に混練条件を強めて、鉛粉との摩擦により2次粒子を破壊する、
等のことが可能である。
In barium sulfate, secondary particles develop due to aggregation of primary particles. To produce barium sulfate with a small secondary particle size,
・ Large secondary particles are removed by sieving, cyclone, etc.
・ Suspend barium sulfate in water, etc., and destroy secondary particles by stirring, ultrasonic waves, etc.
-Strengthen the kneading conditions during the production of the negative electrode paste, destroy the secondary particles by friction with lead powder,
Etc. are possible.

硫酸バリウムの最大2次粒子径と吸油量との関係を示す特性図Characteristic chart showing the relationship between the maximum secondary particle size of barium sulfate and oil absorption 硫酸バリウムの最大2次粒子径を説明する図Diagram explaining the maximum secondary particle size of barium sulfate 硫酸バリウムの吸油量と低温高率放電性能との関係を示す特性図で、負極活物質中の硫酸バリウム含有量が0.6mass%以上の試料についてのデータである。It is a characteristic diagram showing the relationship between the oil absorption amount of barium sulfate and the low-temperature high-rate discharge performance, and is data on a sample having a barium sulfate content of 0.6 mass% or more in the negative electrode active material. 実施例(吸油量が14mL/100g以上の硫酸バリウム)と従来例(吸油量が14mL/100g未満の硫酸バリウム)の添加量と、低温高率放電性能との関係を示す特性図Characteristic diagram showing the relationship between the amount added in the example (barium sulfate with an oil absorption of 14 mL / 100 g or more) and the conventional example (barium sulfate with an oil absorption of less than 14 mL / 100 g) and the low-temperature, high-rate discharge performance 実施例の負極板断面のEPMA画像EPMA image of negative electrode plate cross section of Example 従来例の負極板断面のEPMA画像EPMA image of the cross section of the negative electrode plate of the conventional example 硫酸バリウムの添加量を縦軸、最大2次粒子径を横軸とし、最大2次粒子径5.0μmの硫酸バリウム0.3mass%含有の試料を100%とする、軽負荷サイクル寿命性能を示す特性図Characteristic diagram showing light duty cycle life performance with the addition amount of barium sulfate as the vertical axis, the maximum secondary particle size as the horizontal axis, and the sample containing 0.3 mass% of barium sulfate with the maximum secondary particle size of 5.0μm as 100% 図7と同じデータを、硫酸バリウムの添加量毎に示す特性図Characteristic diagram showing the same data as Fig. 7 for each added amount of barium sulfate

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.

ボールミル法で製造した鉛粉に、硫酸バリウムとカーボンブラックとリグニンとを加え、水と硫酸とを加えて混練し、負極活物質ペーストとした。負極活物質ペーストをPb-Ca系の負極格子に充填し、熟成後に乾燥した。ボールミル法で製造した鉛粉に水と硫酸を加えて混練した正極活物質ペーストを、Pb-Ca系の正極格子に充填し熟成後に乾燥した。負極活物質の組成は、負極活物質100mass%当たり、硫酸バリウムが0〜1.5mass%、カーボンブラックが0.5mass%、リグニンが0.2mass%で、残りが鉛粉等である。鉛粉はバートンポット法等により製造しても良く、また鉛丹含有量等の鉛粉の酸化度は任意である。さらに硫酸バリウム以外の添加物の種類と含有量は任意で、合成樹脂繊維、水溶性高分子等を含有させても良い。   Barium sulfate, carbon black, and lignin were added to lead powder produced by the ball mill method, and water and sulfuric acid were added and kneaded to obtain a negative electrode active material paste. The negative electrode active material paste was filled in a Pb—Ca negative electrode lattice, and dried after aging. A positive electrode active material paste kneaded by adding water and sulfuric acid to the lead powder produced by the ball mill method was filled in a Pb—Ca positive electrode lattice, and dried after aging. The composition of the negative electrode active material is 0 to 1.5 mass% for barium sulfate, 0.5 mass% for carbon black, 0.2 mass% for lignin, and the rest is lead powder or the like per 100 mass% of the negative electrode active material. Lead powder may be manufactured by the Burton pot method or the like, and the degree of oxidation of lead powder such as lead content is arbitrary. Furthermore, the kind and content of additives other than barium sulfate are arbitrary, and synthetic resin fibers, water-soluble polymers and the like may be contained.

硫酸バリウムの出発材料は、実施例では平均1次粒子径が0.90μm、平均2次粒子径が10.06μmで、従来例では平均1次粒子径が1.19μm、平均2次粒子径が25.90μmであった。平均1次粒子径の差は僅かでも、平均2次粒子径は大きく異なる。なお硫酸バリウムの平均1次粒子径はレーザー光散乱法により測定した。2次粒子径は、硫酸バリウムを電子顕微鏡で観察し、図2に示す相当円直径Dの分布を求めて、粒子径が大きな側から小さな側へ積算して、硫酸バリウム質量の50%が平均2次粒子径以上となるように求めた。これらの硫酸バリウムを篩い分けし、実施例では吸油量が14mL/100g以上16mL/100g以下の硫酸バリウム粉体を調製し、鉛粉と混合した。従来例では吸油量が12.2mL/100g以上14mL/100g未満の硫酸バリウム粉体を調製し、鉛粉と混合した。硫酸バリウムの最大2次粒子径が5.0μm以下で2.8μm以上のものを最適実施例とし、最大2次粒子径が5.0μm超のものをこれ以外の実施例とした。また従来例では、最大2次粒子径は11.0μmから7.5μmの範囲に分布していた。   The starting material of barium sulfate has an average primary particle size of 0.90 μm and an average secondary particle size of 10.06 μm in the examples, and an average primary particle size of 1.19 μm and an average secondary particle size of 25.90 μm in the conventional example. there were. Even if the difference in the average primary particle size is slight, the average secondary particle size varies greatly. The average primary particle diameter of barium sulfate was measured by a laser light scattering method. The secondary particle size is determined by observing barium sulfate with an electron microscope and calculating the distribution of the equivalent circular diameter D shown in Fig. 2 and integrating the particle size from the larger side to the smaller side. It calculated | required so that it might become more than a secondary particle diameter. These barium sulfates were sieved, and in the examples, barium sulfate powder having an oil absorption of 14 mL / 100 g or more and 16 mL / 100 g or less was prepared and mixed with lead powder. In the conventional example, barium sulfate powder having an oil absorption of 12.2 mL / 100 g or more and less than 14 mL / 100 g was prepared and mixed with lead powder. Barium sulfate having a maximum secondary particle size of 5.0 μm or less and 2.8 μm or more was regarded as an optimal example, and that having a maximum secondary particle diameter of more than 5.0 μm was regarded as another example. In the conventional example, the maximum secondary particle diameter was distributed in the range of 11.0 μm to 7.5 μm.

図1に、EPMAで観察した負極活物質中の硫酸バリウムの最大2次粒子径と、硫酸バリウム粉体の吸油量との関係を示し、これらはほぼ直線関係にあり、最大2次粒子径が小さい程、吸油量が大きい。なお最大2次粒子径は、化成済みの負極板を切断し、断面の9個所でのバリウム原子の分布をEPMAにより観察し、9個所での図2の相当円直径Dの最大値を最大2次粒子径とした。   Fig. 1 shows the relationship between the maximum secondary particle diameter of barium sulfate in the negative electrode active material observed by EPMA and the oil absorption of the barium sulfate powder. These are almost linear, and the maximum secondary particle diameter is The smaller the value, the greater the oil absorption. The maximum secondary particle size is obtained by cutting the formed negative electrode plate, observing the distribution of barium atoms at 9 points in the cross section by EPMA, and setting the maximum value of the equivalent circle diameter D in FIG. The secondary particle size was taken.

負極板をリテイナーマットで両側から挟み込み、その外側に正極板を配置して、圧迫を加えた状態で、制御弁を備えた電槽に収容した。リテイナーマットに代えて、硫酸をシリカ等でゲル化したシートあるいは顆粒、硫酸を保持する多孔質のゴムシート、等の任意の保液体を用いても良い。電槽に硫酸を注液してリテイナーマットと正極板及び負極板に吸収させて化成し、5時間率容量が30Ah、出力2Vの制御弁式鉛蓄電池とした。   The negative electrode plate was sandwiched from both sides by a retainer mat, and the positive electrode plate was disposed outside the negative electrode plate, and was accommodated in a battery case equipped with a control valve in a state where pressure was applied. Instead of the retainer mat, any liquid retaining liquid such as a sheet or granule obtained by gelling sulfuric acid with silica or the like, or a porous rubber sheet holding sulfuric acid may be used. Sulfuric acid was poured into the battery case and absorbed into the retainer mat, the positive electrode plate and the negative electrode plate to form a control valve type lead storage battery with a 5-hour rate capacity of 30 Ah and an output of 2 V.

-15℃で150Aの定電流放電を、電池の端子電圧が1.0Vとなるまで行って、低温高率での放電持続時間を測定した。低温高率放電性能は、自動車エンジン等の起動時の性能である、高率放電性能を代表するものである。   A constant current discharge of 150 A was performed at -15 ° C. until the terminal voltage of the battery reached 1.0 V, and the discharge duration at low temperature and high rate was measured. The low-temperature high-rate discharge performance represents the high-rate discharge performance, which is the performance at the start of an automobile engine or the like.

硫酸バリウム含有量が0.6mass%以上の試料について、低温高率放電の持続時間と吸油量との関係を図3に示す。吸油量が14mL/100gを境に持続時間が大きく変化する。また図4に、吸油量が14mL/100g以上の試料(実施例)と未満の試料(従来例)とについて、硫酸バリウムの含有量と低温高率放電の持続時間と添加量との関係を示す。吸油量が14mL/100g以上か否かで、持続時間と添加量との関係が逆になる。   FIG. 3 shows the relationship between the duration of low-temperature, high-rate discharge and the amount of oil absorption for samples having a barium sulfate content of 0.6 mass% or more. The amount of oil absorption varies greatly from 14mL / 100g. FIG. 4 shows the relationship between the content of barium sulfate, the duration of low-temperature high-rate discharge, and the amount added for samples (Examples) with an oil absorption of 14 mL / 100 g or more (Examples) and samples with less than (Examples). . The relationship between the duration and the added amount is reversed depending on whether the oil absorption is 14 mL / 100 g or more.

表1に実施例での低温高率放電の持続時間を示し、表2に従来例での低温高率放電の持続時間を示す。吸油量が大きな硫酸バリウムは最大2次粒子径が小さく、硫酸バリウムの凝集の強さが最大2次粒子径と吸油量とに表れているものと考えることができる。そして吸油量が14mL/100g以上の硫酸バリウムは放電持続時間を長くし、吸油量が14mL/100g未満の硫酸バリウムは放電持続時間を逆に短くする。   Table 1 shows the duration of the low-temperature high-rate discharge in the example, and Table 2 shows the duration of the low-temperature high-rate discharge in the conventional example. It can be considered that barium sulfate having a large oil absorption has a small maximum secondary particle diameter, and the strength of aggregation of barium sulfate appears in the maximum secondary particle diameter and the oil absorption. Barium sulfate with an oil absorption of 14 mL / 100 g or more prolongs the discharge duration, and barium sulfate with an oil absorption of less than 14 mL / 100 g conversely shortens the discharge duration.

図5に実施例の負極活物質のEPMA画像を、図6に従来例の負極活物質のEPMA画像を示す。図の右側のスケールはBa原子の濃度を示し、この値が60%以上の粒子が硫酸バリウムの2次粒子である。硫酸バリウムの2次粒子の境界はBa濃度が42〜46%の明るい領域で縁取られ、内部が暗く、輪郭が白い。例えば図6の左下に粒子径が10μmを越える硫酸バリウムの2次粒子が見られ、図5には5μmを越える硫酸バリウムの2次粒子は見られない。   FIG. 5 shows an EPMA image of the negative electrode active material of the example, and FIG. 6 shows an EPMA image of the negative electrode active material of the conventional example. The scale on the right side of the figure shows the concentration of Ba atoms, and particles with this value of 60% or more are secondary particles of barium sulfate. The boundaries of the secondary particles of barium sulfate are bordered by a bright region with a Ba concentration of 42-46%, the interior is dark, and the outline is white. For example, secondary particles of barium sulfate having a particle diameter exceeding 10 μm are seen in the lower left of FIG. 6, and secondary particles of barium sulfate exceeding 5 μm are not seen in FIG.

吸油量が同じでも最大2次粒子径にはある程度の分布があり、最大2次粒子径により軽負荷寿命性能が変化する。40℃で、放電を25A×4分間、充電を2.466V(最大電流25A)×10分間とするサイクルを、放電時の端子電圧が1V以下になるまで繰り返す試験を行った。結果を、端子電圧が1V以下になるまでのサイクル数の相対値で、図7,図8と表3とに示す。図7の破線、鎖線、実線等の各ラインは、最大2次粒子径が5.0μmの硫酸バリウムを0.3mass%含有する場合を10%とする寿命性能を示す。最大2次粒子径が小さな硫酸バリウムを多量に含有させることにより、寿命性能が向上する。また最大2次粒子径が大きな硫酸バリウムを含有させると、寿命性能は逆に低下する。   Even if the oil absorption is the same, there is a certain distribution in the maximum secondary particle size, and the light load life performance varies depending on the maximum secondary particle size. At 40 ° C., a test was repeated in which the discharge was 25 A × 4 minutes and the charge was 2.466 V (maximum current 25 A) × 10 minutes until the terminal voltage at the time of discharge was 1 V or less. The results are shown in FIG. 7 and FIG. 8 and Table 3 as relative values of the number of cycles until the terminal voltage becomes 1 V or less. Each line such as a broken line, a chain line, and a solid line in FIG. 7 shows a life performance of 10% when 0.3 mass% of barium sulfate having a maximum secondary particle diameter of 5.0 μm is contained. The life performance is improved by containing a large amount of barium sulfate having a small maximum secondary particle size. On the other hand, when barium sulfate having a large maximum secondary particle size is contained, the life performance is lowered.

図8に示すように、最大2次粒子径が5μm以下、好ましくは4μm以下の硫酸バリウムを、0.8mass%以上(一般的には0.7mass%以上)含有させることにより、寿命性能が向上する。これらのことをまとめると、硫酸バリウムの最大2次粒子径は5μm以下が好ましく、4μm以下がより好ましい。このことに硫酸バリウムの調製の容易さを加味すると、最大2次粒子径は5μm以下で1μm以上が好ましく、4μm以下で2μm以上が最も好ましい。   As shown in FIG. 8, the life performance is improved by containing 0.8 mass% or more (generally 0.7 mass% or more) of barium sulfate having a maximum secondary particle diameter of 5 μm or less, preferably 4 μm or less. In summary, the maximum secondary particle diameter of barium sulfate is preferably 5 μm or less, and more preferably 4 μm or less. In consideration of the ease of preparation of barium sulfate, the maximum secondary particle size is preferably 5 μm or less, preferably 1 μm or more, and most preferably 4 μm or less and 2 μm or more.

実施例では、硫酸バリウムの吸油量を14mL/100g以上にすることにより高率放電性能を向上させ、硫酸バリウムの最大2次粒子径を5.0μm以下にすることにより軽負荷寿命性能を向上させる。実施例では制御弁式の鉛蓄電池を示したが、液式の鉛蓄電池でも同様の傾向が得られる。   In Examples, the high rate discharge performance is improved by setting the oil absorption of barium sulfate to 14 mL / 100 g or more, and the light load life performance is improved by setting the maximum secondary particle diameter of barium sulfate to 5.0 μm or less. Although the control valve type lead storage battery is shown in the embodiment, the same tendency can be obtained with a liquid type lead storage battery.

2 硫酸バリウム粒子
4 最小円
2 Barium sulfate particles 4 Minimum circle

Claims (6)

鉛粉と吸油量が14mL/100g以上の硫酸バリウムとを含む負極活物質を有する鉛蓄電池。   A lead-acid battery having a negative electrode active material containing lead powder and barium sulfate having an oil absorption of 14 mL / 100 g or more. 電子顕微鏡により観察した負極活物質中での硫酸バリウムの最大2次粒子径が、5.0μm以下であることを特徴とする請求項1の鉛蓄電池。   The lead acid battery according to claim 1, wherein the maximum secondary particle diameter of barium sulfate in the negative electrode active material observed by an electron microscope is 5.0 µm or less. 前記硫酸バリウムは吸油量が14mL/100g以上20mL/100g以下であることを特徴とする、請求項1または2の鉛蓄電池。   The lead storage battery according to claim 1 or 2, wherein the barium sulfate has an oil absorption of 14 mL / 100 g or more and 20 mL / 100 g or less. 前記硫酸バリウムを、負極活物質100mass%に対して、0.6mass%以上含有することを特徴とする、請求項1〜3のいずれかの鉛蓄電池。   The lead storage battery according to any one of claims 1 to 3, wherein the barium sulfate is contained in an amount of 0.6 mass% or more with respect to 100 mass% of the negative electrode active material. 電子顕微鏡により観察した負極活物質中での硫酸バリウムの最大2次粒子径が、2.0μm以上5.0μm以下であることを特徴とする請求項4の鉛蓄電池。   The lead acid battery according to claim 4, wherein the maximum secondary particle diameter of barium sulfate in the negative electrode active material observed by an electron microscope is 2.0 µm or more and 5.0 µm or less. 前記硫酸バリウムを、負極活物質100mass%に対して、0.7mass%以上2.0mass%以下含有することを特徴とする、請求項5の鉛蓄電池。   The lead acid battery according to claim 5, wherein the barium sulfate is contained in an amount of 0.7 mass% to 2.0 mass% with respect to 100 mass% of the negative electrode active material.
JP2013008231A 2013-01-21 2013-01-21 Lead acid battery Active JP6135143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013008231A JP6135143B2 (en) 2013-01-21 2013-01-21 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013008231A JP6135143B2 (en) 2013-01-21 2013-01-21 Lead acid battery

Publications (3)

Publication Number Publication Date
JP2014139882A true JP2014139882A (en) 2014-07-31
JP2014139882A5 JP2014139882A5 (en) 2016-02-04
JP6135143B2 JP6135143B2 (en) 2017-05-31

Family

ID=51416501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013008231A Active JP6135143B2 (en) 2013-01-21 2013-01-21 Lead acid battery

Country Status (1)

Country Link
JP (1) JP6135143B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152130A (en) * 2015-02-17 2016-08-22 株式会社Gsユアサ Lead acid storage battery
JP2016152131A (en) * 2015-02-17 2016-08-22 株式会社Gsユアサ Lead acid storage battery
CN105895919A (en) * 2015-02-12 2016-08-24 株式会社杰士汤浅国际 Lead-acid battery, negative electrode plate thereof and method for producing lead-acid battery
JP2017228530A (en) * 2017-06-29 2017-12-28 株式会社Gsユアサ Lead storage battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174238A (en) * 1986-01-28 1987-07-31 Okudakazu Kk Filler composition mainly composed of barium sulfate of plate crystal and needle crystal form and production thereof
JPS6372591A (en) * 1986-09-16 1988-04-02 Honshu Paper Co Ltd Thermal recording paper
JPH05182659A (en) * 1992-01-07 1993-07-23 Matsushita Electric Ind Co Ltd Manufacture of negative electrode plate for lead acid battery
JP2003257432A (en) * 2002-02-27 2003-09-12 Furukawa Battery Co Ltd:The Manufacturing method for lead-acid battery negative electrode paste
JP2004111198A (en) * 2002-09-18 2004-04-08 Japan Storage Battery Co Ltd Lead acid storage battery
JP2006184891A (en) * 2004-11-30 2006-07-13 Ricoh Co Ltd Carrier for electrophotography, developer using same, image forming method, image forming apparatus and process cartridge
JP2008153128A (en) * 2006-12-19 2008-07-03 Ntt Data Ex Techno Corp Negative electrode active material for secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174238A (en) * 1986-01-28 1987-07-31 Okudakazu Kk Filler composition mainly composed of barium sulfate of plate crystal and needle crystal form and production thereof
JPS6372591A (en) * 1986-09-16 1988-04-02 Honshu Paper Co Ltd Thermal recording paper
JPH05182659A (en) * 1992-01-07 1993-07-23 Matsushita Electric Ind Co Ltd Manufacture of negative electrode plate for lead acid battery
JP2003257432A (en) * 2002-02-27 2003-09-12 Furukawa Battery Co Ltd:The Manufacturing method for lead-acid battery negative electrode paste
JP2004111198A (en) * 2002-09-18 2004-04-08 Japan Storage Battery Co Ltd Lead acid storage battery
JP2006184891A (en) * 2004-11-30 2006-07-13 Ricoh Co Ltd Carrier for electrophotography, developer using same, image forming method, image forming apparatus and process cartridge
JP2008153128A (en) * 2006-12-19 2008-07-03 Ntt Data Ex Techno Corp Negative electrode active material for secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895919A (en) * 2015-02-12 2016-08-24 株式会社杰士汤浅国际 Lead-acid battery, negative electrode plate thereof and method for producing lead-acid battery
US10573877B2 (en) * 2015-02-12 2020-02-25 Gs Yuasa International Ltd. Lead-acid battery, negative electrode plate thereof and method for producing lead-acid battery
CN105895919B (en) * 2015-02-12 2020-11-24 株式会社杰士汤浅国际 Lead storage battery, negative plate thereof, and method for manufacturing lead storage battery
JP2016152130A (en) * 2015-02-17 2016-08-22 株式会社Gsユアサ Lead acid storage battery
JP2016152131A (en) * 2015-02-17 2016-08-22 株式会社Gsユアサ Lead acid storage battery
JP2017228530A (en) * 2017-06-29 2017-12-28 株式会社Gsユアサ Lead storage battery

Also Published As

Publication number Publication date
JP6135143B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6135143B2 (en) Lead acid battery
JP5884528B2 (en) Liquid lead-acid battery
JP5219360B2 (en) Lead acid battery
KR20170051041A (en) Manufacturing method of active material for lead-acid battery
JP6597308B2 (en) Retainer type lead acid battery
JP2017183283A (en) Positive electrode plate for lead storage battery, lead storage battery using the same, and method for manufacturing positive electrode plate for lead storage battery
JP2015128053A (en) Lead storage battery
JP6060909B2 (en) Positive electrode plate for lead acid battery, method for producing the electrode plate, and lead acid battery using the positive electrode plate
CN113740195B (en) Powder wettability evaluation method and application thereof
JPWO2016157884A1 (en) Lead acid battery
JP6528436B2 (en) Lead storage battery, negative electrode plate thereof and method of manufacturing lead storage battery
JP2014216115A (en) Negative electrode plate for lead-acid battery, liquid type lead-acid battery using the same, and method of manufacturing lead-acid battery
JP5995191B2 (en) Control valve type lead-acid battery and manufacturing method thereof
CN103413946A (en) Formula of lead-acid storage battery negative pole diachylon
JP4556506B2 (en) Lead acid battery
JP5780106B2 (en) Lead-acid battery and method for manufacturing the same
JP6617802B2 (en) Method for producing positive electrode plate for lead acid battery
JP6339030B2 (en) Lead acid battery
AU2015258219A1 (en) Lead-acid battery
CN105720240B (en) Lead-acid battery
JP6136079B2 (en) Lead acid battery
JP5598368B2 (en) Lead acid battery and negative electrode active material thereof
JP6283996B2 (en) Negative electrode plate for lead acid battery and lead acid battery
JP4984430B2 (en) Method for producing paste active material for negative electrode
JP6217921B2 (en) Lead acid battery, negative electrode plate thereof, and method for producing lead acid battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6135143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150